

PORTCORPUSCHRISTI

Project Turnpike Water and Sediment Sampling and Analysis Report

Wood Project No. 6703180051

For Submittal to:

Port of Corpus Christi Authority 222 Power Street Corpus Christi, Texas 78401

Prepared by:

226 S. Enterprise Parkway Suite 120 Corpus Christi, Texas 78405

June 2019

Table of Contents

	Table o	f Contents	.2
	List of F	igures	.2
	List of 1	ables	.3
	List of A	Attachments	.3
	List of A	Appendices	.3
1.0	Backgro	bund and Approach	.4
2.0	Sample	Collection	.4
	2.1	Overview	.4
	2.2	Sample Sites/Locations	.4
	2.3	Sediment Sampling	.4
	2.4	Benthic Macroinvertebrate Sampling	.5
	2.5	Water Quality Sampling	.5
	2.6	Seagrass and Oyster Surveys	.5
	2.7	Plankton Sampling	.5
	2.8	Water Velocity	.6
	2.9	Deviations	.6
3.0	Analyse	¹ 5	.6
	3.1	Physical and Chemical Analyses	.6
	3.2	Laboratory Quality Control	.6
	3.3	Chain of Custody	.6
	3.4	Laboratory Deviations	.7
	3.5	Benthic Macroinvertebrate Sample Processing	.7
	3.6	Plankton Sample Processing	
4.0	Analytic	cal Results	.8
	4.1	Sediment Samples	
	4.2	Benthic Macroinvertebrate Samples	.8
	4.3	Water Quality	.9
	4.4	Seagrass and Oyster	10
	4.5	Plankton Samples	10
	4.6	Water Velocity	11
5.0	Conclus	sions	11
6.0	Referen	ICes	12

List of Figures

- 1 Project Location Map
- 2 Sample Location Map
- 3 Sediment and Benthic Sample Location Map
- 4 Water Quality Measurement Map
- 5 Seagrass Sample Location Map
- 6 Marine Life and Plankton Sample Map

- 7 Water Velocity Measurement Map
- 8 Dendrogram Results from CLUSTER Analysis of Benthic Macroinvertebrate Samples
- 9 Two-Dimensional nMDS Plot of Benthic Macroinvertebrate Samples
- 10 Dendrogram Results from CLUSTER Analysis with SIMPROF Option of Plankton Samples

List of Tables

- 1 Summary of Sample Collection Sites
- 2 Sediment Sampling Parameters and Descriptions
- 3 Sediment Analytical Data
- 4 –Benthic and Plankton Sample Diversity Parameters
- 5 Water Quality Parameters
- 6 Seagrass/Oyster Assessment
- 7 Velocity Measurements

List of Attachments

- 1 Photograph Log
- 2 Datasheets
- 3 Laboratory Reports
- 4 Photograph Log of Invertebrates Identified

List of Appendices

- 1 Phylogenetic Taxonomic List for Benthic Samples
- 2 Phylogenetic Taxonomic List for Plankton Samples

1.0 Background and Approach

The Port of Corpus Christi Authority of Nueces County (PCCA) is planning to develop a 20-Millionbarrel crude oil export terminal at Harbor Island north of Port Aransas, Texas (**Figure 1**). The project requires up to three marine berths with a turning basin large enough to move Very Large Crude Carriers (VLCCs) into and out of the berths.

To develop baseline data for United States Army Corps of Engineers (USACE) permitting of Project Turnpike under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act, Wood Environment & Infrastructure Solutions (Wood) proposed to collect sediment, benthic invertebrates, plankton samples, and measure water current velocity and quality parameters. These samples and measurements were proposed for the berth areas and turning basin.

2.0 Sample Collection

2.1 Overview

Sediment samples were collected for submerged aquatic vegetation, grain size, total organic carbon (TOC), and benthic macroinvertebrates to characterize local substrate. Water measurements and sampling consisted of current water velocity and water quality data. Plankton samples were collected. The plankton sample results identified the abundances and diversity of adult and larval marine species found within the water column. Oyster and seagrass surveys were also conducted to determine presence or absence of these habitats, and the extent of them if present. Photographic documentation of the field activities are provided in **Attachment 1**.

2.2 Sample Sites/Locations

Wood identified 15 sample sites for the project (**Figure 2** and **Table 1**). These 15 sample points include five locations within the turning basin, four within the planned turning basin near Berth 1A, and two locations within each of the three prospective berth locations.

Global Positioning System (GPS) coordinates were used to position the watercraft over the sample locations. Depth to sediment, water levels relative to the mean lower low water (MLLW), and other pertinent information was recorded on datasheets (**Attachment 2**) and by Naismith Marine (Naismith) at each sample location. The date and time of sample collection was recorded so that measurements could be correlated to water level measurements at the Port Aransas, Texas tide gauge (Station ID 8775237) and current measurements at the Port Aransas, Channel View current gauge (Station ID cc0301). Both stations are operated by the National Oceanic and Atmospheric Administration.

2.3 Sediment Sampling

Wood collected 14 sediment substrate samples using a Petite Ponar dredge (**Figure 3**). The dredge was brought onboard and emptied into a stainless-steel bowl. Multiple drops were necessary in some locations to collect sufficient volume for filling the sample containers. After sufficient sediment was retrieved it was inspected and described as to sediment type and color. After describing the material, it was thoroughly mixed before placing into clean sample containers provided by the laboratory. The sample containers were labeled and then placed into a cooler

with ice. Samples were accumulated over the three days of sampling and maintained on ice. Upon completing the sediment sampling, the samples were repackaged and sent to the analytical laboratory under proper chain of custody documentation.

2.4 Benthic Macroinvertebrate Sampling

Benthic macroinvertebrate samples were collected with a Petite Ponar dredge at 15 sampling locations (**Figure 3**). The dredge was brought onboard and emptied into a plastic tub. The insides of the dredge were thoroughly rinsed to ensure all material was removed. The sediment in the plastic tub was emptied into a U.S. Standard No. 35 sieve with a 500 µm mesh. The material was thoroughly sieved to remove particles and organisms smaller than the designated mesh size. The remaining material on the sieve was transferred to a sample container and a magnesium sulfate solution was added to relax the organisms. The sieve was carefully inspected to ensure all organisms had been removed and placed into the sample container. Any organisms stuck in the mesh were removed with forceps and placed in the sample container. An internal sample label with the sample identification and collection date was added to each sample container. The sieve was gently scrubbed in between each sampling location to prevent contamination from one site to the next. Upon completion of fieldwork each day, samples were transferred to approximately a 10% formalin solution stained with Rose Bengal to fix the organisms. Samples were shipped to the Wood taxonomy laboratory in Newberry, Florida for processing by qualified taxonomists.

2.5 Water Quality Sampling

Wood collected water quality measurements at 15 sample sites presented in **Figure 4**. Wood measured water quality parameters of salinity, dissolved oxygen (DO), and temperature using a field calibrated meter (YSI 6920). Data was collected at 5-foot intervals from the surface to the bottom of the channel.

2.6 Seagrass and Oyster Surveys

Prior to mobilization, Wood performed a desktop survey of the area for the presence of known seagrass and oyster beds. Based on these results, neither of the sampled locations were expected to occur in the designated sampling area. To confirm this, Wood personnel noted the presence or absence of seagrass and oysters during the sediment and benthic invertebrate sampling, and performed two additional surveys in areas where seagrass and/or oysters were suspected to occur. For the latter two surveys, the Petite Ponar dredge was used to collect approximately 30 samples in a grid pattern to look for the presence of seagrass or oyster beds (**Figure 5**). Additionally, shallow areas within the project boundary were visually evaluated to the extent possible.

2.7 Plankton Sampling

Plankton samples were collected at two different locations with a 333 μ m, 0.5 m diameter conical mesh net equipped with a flow meter and removable collection container on the cod end (**Figure 6**). The net was towed from the boat in a manner that minimizes disturbance from the bow wake. The deployment consisted of a diagonal tow through the water column from approximately the mid-water column to the surface, to encompass varying depths. The net was deployed for approximately 10 minutes or the time necessary for a minimum of 50 cubic meters (m³) of water to pass through the net, as indicated by the flow meter. Upon retrieval, the net was rinsed and back-rinsed through the mesh into the removable cup. The contents were transferred to labeled

sample containers and preserved with 4% formalin. An internal sample label with the sample identification and collection date was added to each sample container. Samples were shipped to Wood's taxonomy laboratory in Newberry, Florida for processing.

2.8 Water Velocity

Wood collected water velocity measurements at 24 sample sites presented in **Figure 7**. After setting upon the sample locations Wood measured the current velocity during a flood and ebb tide using a Valeport 106 Water Velocity Meter. Documentation included the tidal chart for the day of sampling and the time, location, and depth of each measurement to MLLW using the Port Aransas, Channel View current gauge (Station ID cc0301) and Port Aransas, Texas tide gauge (Station ID 8775237). Data were collected at 5-foot intervals from the surface to the bottom of the channel.

2.9 Deviations

Wood had deviations in sampling locations due to lack of substrate to sample, sediment depth greater than project dredging depth, weather, and safety issues. Sediment samples were collected at 14 locations instead of 15. This was due to sample L-6 lacking sediment which could be collected in the Petite Ponar dredge. Only shell hash was retrieved with the 14 drops of the dredge. Sample locations L-5 and L-6 were moved from the south side of the turning basin to the north side of the turning basin because the depth to sediment at the proposed locations was deeper than the project dredging depth. Visibility issues were cited when collecting water velocity readings during the night.

3.0 Analyses

3.1 Physical and Chemical Analyses

The sediment samples were shipped to ALS Laboratories, Inc. (ALS) in Houston, Texas. ALS analyzed the samples for TOC using United States Environmental Protection Agency Method 1995. ALS subcontracted with Tolunay-Wong Engineers, Inc. (TWE) for the grain size analyses which was performed using American Society for Testing and Materials Method D422 and hydrometer analyses. ALS is an accredited laboratory recognized by the National Environmental Laboratory Accreditation Program.

3.2 Laboratory Quality Control

ALS reported that the recovery of the matrix spike (MS) and/or matrix spike duplicate (MSD) for sample L-2 MS and L-2 MSD were outside of established control limits. However, the laboratory control sample was within control limits and the recovery of the MS/MSD was due to sample matrix interference. Otherwise, ALS and TWE reported no quality control issues and the analytical results were accepted.

3.3 Chain of Custody

As previously described, samples were shipped to the analytical laboratories under proper chain of custody. Copies of the chains of custody are included in the laboratory reports (**Attachment 3**).

3.4 Laboratory Deviations

The laboratories reported no deviations to their standard operating procedures or analytical methods.

3.5 Benthic Macroinvertebrate Sample Processing

Benthic macroinvertebrate samples were processed in the laboratory following guidance provided by the Texas Commission on Environmental Quality (TCEQ) in "Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data". Upon receipt of the benthic invertebrate samples by the Wood taxonomy laboratory, the samples were cross-checked against the chain of custody and logged in. Prior to sorting, the formalin was poured off through a sieve, captured and adequately disposed of. The sample was rinsed in freshwater and then preserved in 70% isopropyl alcohol. Samples were sorted in their entirety by placing small aliquots in petri dishes and sorted under a dissecting microscope by removing organisms from debris and placing them into vials filled with 70% isopropyl alcohol. Internal labels were added to the vials with the sample identification and collection date. Ten percent of samples were checked by a second qualified individual to ensure that 90% sorting efficiency has been achieved. If sorting efficiency falls below 90% for an individual, the remaining samples that this individual processed were resorted.

Benthic macroinvertebrates from each sample were enumerated and identified by qualified taxonomists to the lowest practical taxonomic level, which was usually species level. This was not always possible for immature or damaged organisms, and was noted on the laboratory bench sheets. Organisms were identified using various dissecting and compound microscopes along with appropriate taxonomic keys and references. Wood's extensive voucher collection was also used as reference. Five percent of samples were identified and enumerated by a second taxonomist for quality control. A photograph log can be found in **Attachment 4**.

Data were entered into a Structured Query Language (SQL) relational database and exported to Excel for reporting requirements. A phylogenetic taxonomic list with raw abundances and densities in terms of number of benthic macroinvertebrates per square meter were provided for each sample. PRIMER v7 was utilized to calculate various richness and diversity indices. Nonparametric multivariate statistical analyses were performed to determine significant spatial trends in the benthic community and correlations with the environmental variables.

3.6 Plankton Sample Processing

In the laboratory, samples were processed according to the methods described in APHA 10200 (1995). Upon receipt of the plankton samples by the Wood taxonomy laboratory, the samples were cross-checked against the chain of custody and were logged in. Prior to sorting, the formalin was poured off through a sieve, captured and adequately disposed of. The sample was rinsed in freshwater and then preserved in 70% isopropyl alcohol. The samples were viewed under a stereoscopic microscope and ichthyoplankton were removed from the entire sample and placed into a vial of 70% isopropyl alcohol and labeled with the sample ID and date of collection.

Subsampling with a Folsom plankton splitter was employed following removal of ichthyoplankton due to the large number (>500) of organisms present in the zooplankton samples. On a level surface, each sample was placed into the splitter and divided into sub-splits. The splitter was rinsed into the subsamples to remove any organisms stuck on the device. This splitting process was

conducted five times in order to achieve a target number of approximately 200-500 individuals present in the analyzed subsamples.

Ichthyoplankton and zooplankton organisms from each sample were enumerated and identified by qualified taxonomists to the lowest practical taxonomic level, which is usually species. This is not always possible for immature or damaged organisms, so this was noted on the laboratory bench sheets. Zooplankton were identified to lowest possible taxonomic level by using a stereoscopic microscope capable of a magnification of 10-63x and/or a differential interference contrast compound microscope equipped with a magnification range of 40-1000x. Enumerations were conducted with a multiple tally counter. Ichthyoplankton were identified and enumerated under a stereoscopic microscope at magnification of 10-50x. Appropriate taxonomic keys, references, and Wood's extensive voucher collection were also used to aid identification.

Data were entered into a SQL relational database and exported to Excel for reporting requirements. A phylogenetic taxonomic list with raw abundances and densities in terms of number of organisms per cubic meter of water was provided for each sample. PRIMER v7 was utilized to calculate various richness and diversity indices. Nonparametric multivariate statistical analyses were also performed to determine significant spatial trends in the plankton community and correlations with the environmental variables.

4.0 Analytical Results

4.1 Sediment Samples

Results for the sediment samples are presented in **Table 2**. The sediment sampled was visually characterized as predominantly fine sand with silt and clay present. The color of the sediment was predominantly gray with some samples containing a black clay and had no odor. Shell hash was also observed in several samples.

The grain size analyses are presented in **Table 3**. Coarse gravel ranged from 0.0% to 1.2%, fine gravel from 0.0% to 59.6%, coarse sand from 0.0% to 8.9%, medium sand from 0.1% to 6.8%, fine sand from 32.1% to 95.6%, silt from 2.0% to 53.1%, and clay from 1.5% to 16.3%. Sediment samples from L-4, L-12, and L-13 were the only samples to contain gravel which was identified in the field as shell or shell hash. L-13 contained the highest amount of gravel (shell hash) with a composition of 59%.

TOC concentrations (**Table 3**) ranged from non-detect in samples L-5, L-7, L-8, L-9, and L-15 to 0.515 weight%-dry in sample L-11. ALS reported the sample detection limit and method quantitation limit as 0.0600 weight%-dry. Samples locations with TOC detections were located closer to land or near tributaries. TOC was not detected in samples collected in the proposed turning basin. Samples collected from L-11 and L-13 located in the Tributary Channel to Aransas Pass had the highest TOC concentrations.

4.2 Benthic Macroinvertebrate Samples

A total of 167 different taxa and 1,523 individuals were identified from the 15 benthic macroinvertebrate samples (**Appendix 1**). The raw abundances were converted to densities by dividing by the area of the Petite Ponar grab. The densities ranged from 258 to 31,172 individuals/m² (**Table 4**). Various diversity indices were calculated with the DIVERSE function in

PRIMER v7 for each of the samples and are displayed in **Table 4**. Samples from L-5, L-7, L-8 and L-9 had the lowest abundance, number of taxa, Margalef's richness, and Shannon's diversity indices. Alternatively, the sample from L-2 exhibited the highest density due to numerous juvenile bivalve shells belonging to the Family Tellinidae and polychaete worms belonging to the genus *Mediomastus*. Samples from L-6 and L-12 had the highest Margalef's richness scores, while higher Shannon's diversity were observed from Samples L-4, L-12, and L-15.

Several nonparametric multivariate statistical analyses were performed in PRIMER v7 to examine spatial trends in the benthic macroinvertebrate community. Bray-Curtis similarities were calculated between samples to produce a resemblance matrix (Bray and Curtis, 1957; Clarke et al., 2006). The CLUSTER analysis, which uses hierarchical agglomerative clustering with group average sorting, was applied to the Bray-Curtis resemblance matrix. Similarity profile permutation tests (SIMPROF) used 1000 permutations to identify significant sample groups within the dendrogram produced by the CLUSTER analysis. The CLUSTER analysis results depicted five groups of samples that were significantly different than each other (Figure 8). Solid black lines indicated significant differences between samples or sample groups (p<0.05), while red dotted lines indicated no significant differences (p>0.05). The sample group consisting of L-5, L-7, L-8, and L-9 was significantly different than the rest of the samples and consisted of samples that were characterized by low abundances, richness, and diversity. Samples from L-2 and L-6 were significantly different from all other samples due to higher abundances within these samples that were at least double that in the remaining samples. Samples from L-4, L-12, L-13, L-14, and L-15 comprised the fourth group and exhibited fairly high richness and diversity. Samples from L-1, L-3, L-10, and L-11 comprised the last group which was characterized by moderate richness and diversity (Table 4).

Additionally, Bray-Curtis similarities were ordinated with non-metric Multidimensional Scaling (nMDS). The 5% significance level was used as a factor in the nMDS to further illustrate the significant relationships between the sample groups in 2-D space (**Figure 9**). The closer the sample points were to each other the more similar their benthic community structure. Similar sample grouping was observed in the nMDS as compared to the CLUSTER dendrogram. Analysis of Similarity (ANOSIM) confirmed statistically significant differences between the five sample groups represented in the CLUSTER dendrogram and the nMDS plot (p<0.05).

The BEST analysis with the BIOENV option was performed in order to ascertain which combination of the physicochemical parameters (grain size, %TOC, depth, salinity, DO, and temperature) were best correlated with the observed benthic community structure. No significant correlations were observed with any of the physicochemical parameters or any combination of these parameters (p>0.05).

4.3 Water Quality

Water quality measurements varied throughout the sample locations (**Table 5**). In general, DO in the ship channel and tributary increased with depth. In deeper waters (Turning Basin), DO varied with depth but tended to decrease with depth. Salinity was variable between each sampling point and the measurements generally increased slightly with depth. Sampling points with the highest salinity were points L-1, L-7, and L-8. These readings ranged from 22.48 parts per thousand (ppt) to 25.07 ppt. The sampling points with the lowest salinity were recorded at L-9 and L-10. These readings ranged from 15.32 ppt to 15.52 ppt. In general, water temperature in the Turning Basin

decreased as depth increased. In the shallower locations (the tributary and ship channel), temperature generally decreased as depth increased. However, sample points L-2, L-13, and L-14 all showed increasing temperature as depth increased.

4.4 Seagrass and Oyster

Shallow areas of the sampling area were visually inspected during the field sampling effort for the presence of seagrass or oyster beds. No seagrass or oyster beds were observed in these shallow areas from the boat. While collecting the sediment and benthic macroinvertebrate samples at Sites L-2 and L-14, one live strand of *Halodule wrightii* was retrieved at each station (**Table 6**). No live oysters were retrieved in any of the sediment or benthic macroinvertebrate grab samples collected in the sampling area.

Based on the slight presence of *H. wrightii* at these two sampling locations, transects were setup to ground truth the presence of seagrass beds, and if present, the extent of these beds. One transect was located in between Sites L-1 and L-2, while the other transect was located in a shallow area with decent water clarity near Site L-12 and across the Tributary Channel from Site L-14. A seagrass transect was not conducted near Site L-14 because of its close proximity to a seawall, water with poor visibility and heavy boat traffic where seagrass would be unlikely to occur (**Figure 5**). Fifteen Petite Ponar grab samples were collected along each of the two transects. Seagrass was not found in any of the grab samples from the first seagrass transect (SG-1), and only two strands of *H. wrightii* were retrieved in one of the grab samples from the second seagrass transect (SG-2) (**Table 6**). Based on these observations, seagrass and oyster beds are unlikely to occur in the sampling area. The slight presence of one to two live strands of seagrass collected in a few of the grab samples was incidental. These strands were most likely not rooted in the sampling area and drifted in from a seagrass bed near the vicinity of the proposed project area.

4.5 Plankton Samples

A total of 37 different taxa and 1,539 individuals were identified from the two ichthyoplankton samples and zooplankton subsamples (**Appendix 2**). Zooplankton samples were split five times in order to reach the target number of 200-500 organisms in the subsample selected for taxonomic identification. Therefore, raw abundances from the identified zooplankton subsamples were multiplied by 32 in order to estimate the total number of each taxon in the entire sample. These estimates were combined with the ichthyoplankton abundances to represent the entire plankton sample. The abundances in the entire plankton sample were then converted to densities by dividing by the volume of water that passed through the plankton net during sample collection. Total plankton densities were 228/m³ and 187/m³ for P-1 and P-2 respectively. Both samples had fairly high taxa richness; however, the plankton samples were dominated by calanoid copepods belonging to the Family Pontellidae. This dominance led to lower diversity scores (see **Table 4**).

Because only two plankton samples were collected, the CLUSTER analysis with the SIMPROF option was the only nonparametric multivariate analysis performed in PRIMER v7. Four samples are needed for nMDS and three samples are needed for the BEST analysis. The CLUSTER analysis determined the two plankton samples were 75% similar and not significantly different than each other (**Figure 10**).

4.6 Water Velocity

Velocity measurements were variable throughout the site by location and depth (**Table 7**). As expected, velocities were generally higher in open water and decreased near shore and near the channel bottom where friction losses would be expected. Flows typically ranged from 0.1 to 0.5 m/s, or 0.3 to 1.5 ft/s.

5.0 Conclusions

Sediment in the study area is predominantly fine sand with abundant silt and clay. Shell hash was present in about a third of the samples.

Significant spatial variability in the benthic macroinvertebrate community structure was observed in the sampling area. Samples L-2 and L-6 were significantly different from all other samples, and exhibited higher abundances and diversity. Sample L-2 consisted of dead seagrass blades which had several different types of epiphytic organisms growing on them, thereby provided more habitat structure and food for benthic macroinvertebrates. Sample L-6 contained a moderate amount of shell hash which provided habitat for several different types of organisms such as: epiphytic organisms attached to the shell pieces; polydorid polychaete worms that bore into the shell pieces; and corophiid amphipods that form mud tubes within the crevices of the shell hash (Hartman, 1941; LeCroy, 2004). Moderate to high abundances and diversity were observed in samples taken from shallow water along the south and east sides of Harbor Island and the east side of the Tributary Channel. The samples with the lowest abundances and diversity were all similar to each other and all located in the proposed turning basin which is also the confluence of the three main shipping channels. Variable currents within this area and potential disturbance from ship traffic may be contributing to unfavorable conditions for benthic macroinvertebrates.

Water quality parameters varied throughout the study area. Generally, DO increased with depth in the channel area and tributaries but decreased with depth in the turning basin. Salinity also generally increased slightly with depth. Temperature generally decreased with depth.

Only several strands of seagrass were observed in the study area and no live oysters were observed. Sampling in areas where seagrass and oysters might be expected indicated no presence. Seagrass and oyster beds are unlikely to occur in the project area.

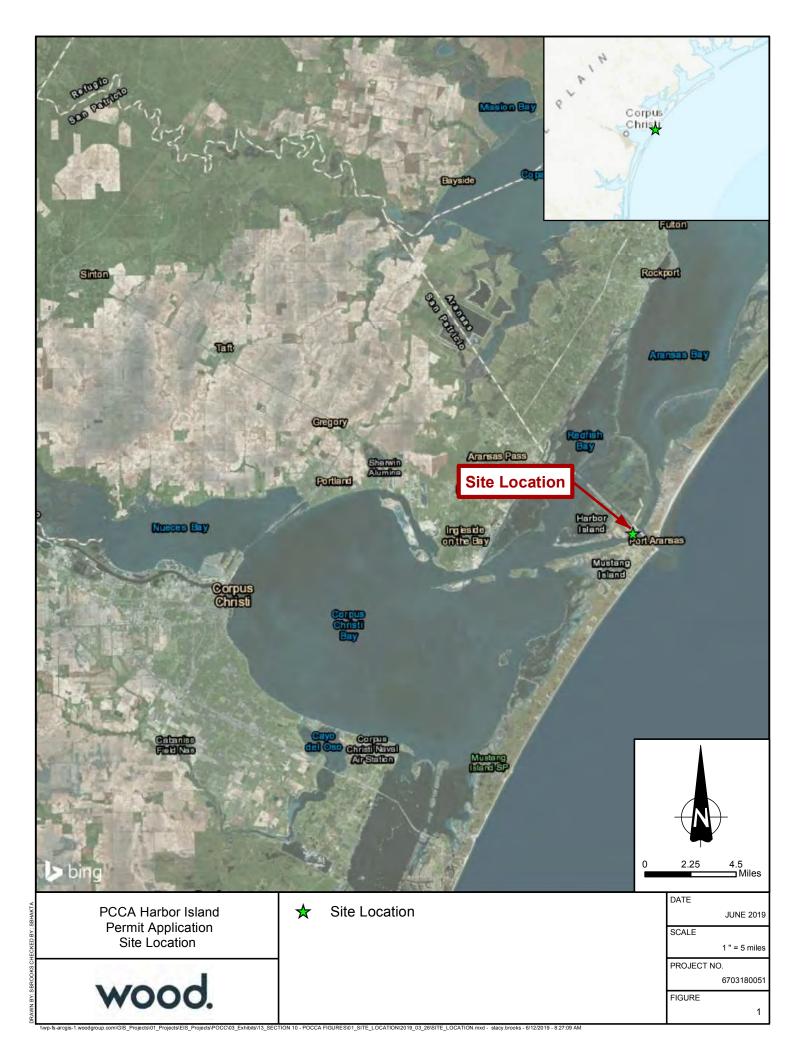
Plankton community structure did not exhibit any spatial variability as the two tows were 75% similar to each other. Both samples were dominated by calanoid copepods belonging to the Family Pontellidae which drove down the diversity scores. Alternatively, taxa richness was fairly high in both tows. The plankton community at Harbor Island was comprised of both holoplanktonic (organisms that are planktonic their entire life) and meroplanktonic (organisms that are planktonic their life) organisms. Detrimental effects from dredging and construction of the berths around Harbor Island are unanticipated for the holoplankton community as sufficient current and tidal exchange was observed in this area which would replenish any losses to this community. A slight reduction in the meroplanktonic larvae may occur due to losses in the benthic community as discussed below, but would recover upon re-establishment of a reproductively-viable benthic community.

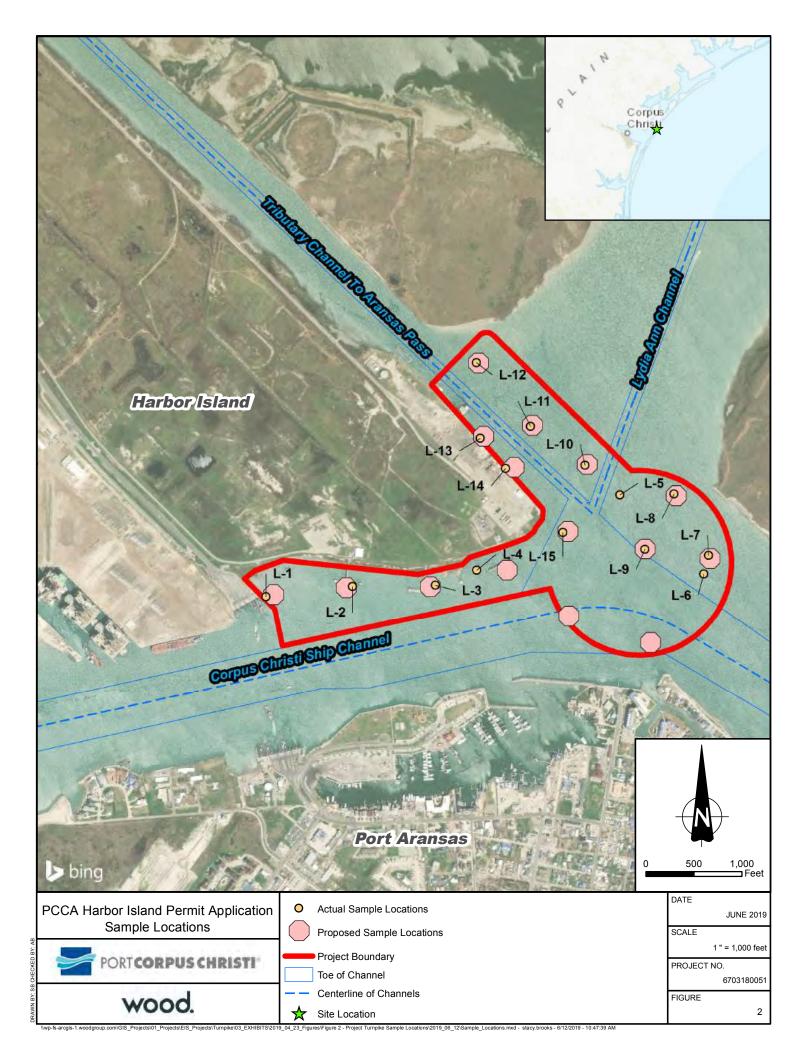
Velocity measurements were variable throughout the site and were generally higher in open water and decreased near shore and near the channel bottom.

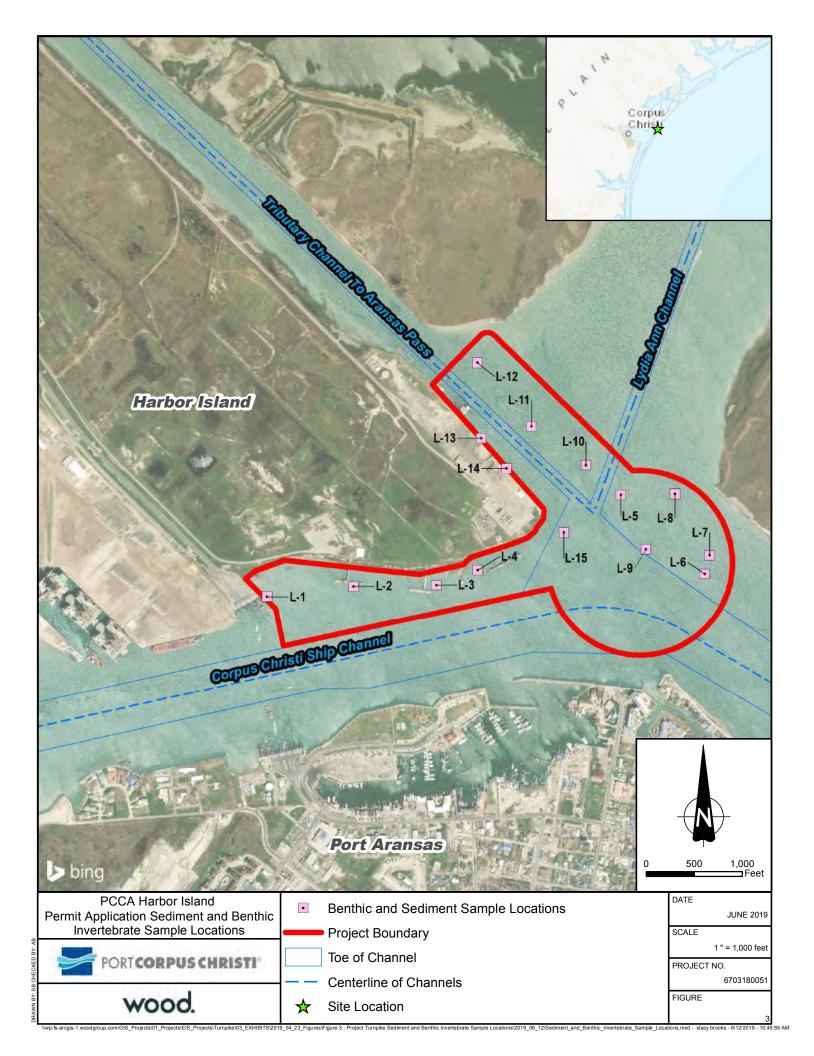
Dredging and construction of the berths around Harbor Island will have an immediate impact on the benthic community due to the physical disturbance of the sediments. The recovery time of benthic communities following dredging activities is highly variable and dependent on a multitude of factors. Opportunistic, mobile, and stress-tolerant species may occur in high densities following disturbance, and areas with these types of species have been shown to be more resistant to dredging effects as compared to areas with sessile, long-living and sensitive species (Bonsdorff, 1980; Bemvenuiti et al., 2005). Additionally, benthic communities have been shown to recover faster in areas with sufficient water exchange and steeper slopes as opposed to flat-bottom, sheltered areas (Van Dolah et al., 1984; Kotta et al., 2009; Szymelfenig et al., 2006). Maintenance dredging and frequent physical disturbances have also been shown to slow benthic community recovery. Given the current velocities and tidal exchange observed during the field sampling, it is hypothesized that the benthic community will have a reasonably swift recovery assuming no recurrent physical disturbance. However, the increased ship traffic to this area will likely cause some recurrent physical disturbance and may slow the recovery process. Post-dredging monitoring consisting of several sampling events throughout the first year following completion of construction is recommended to assess the benthic community recovery process.

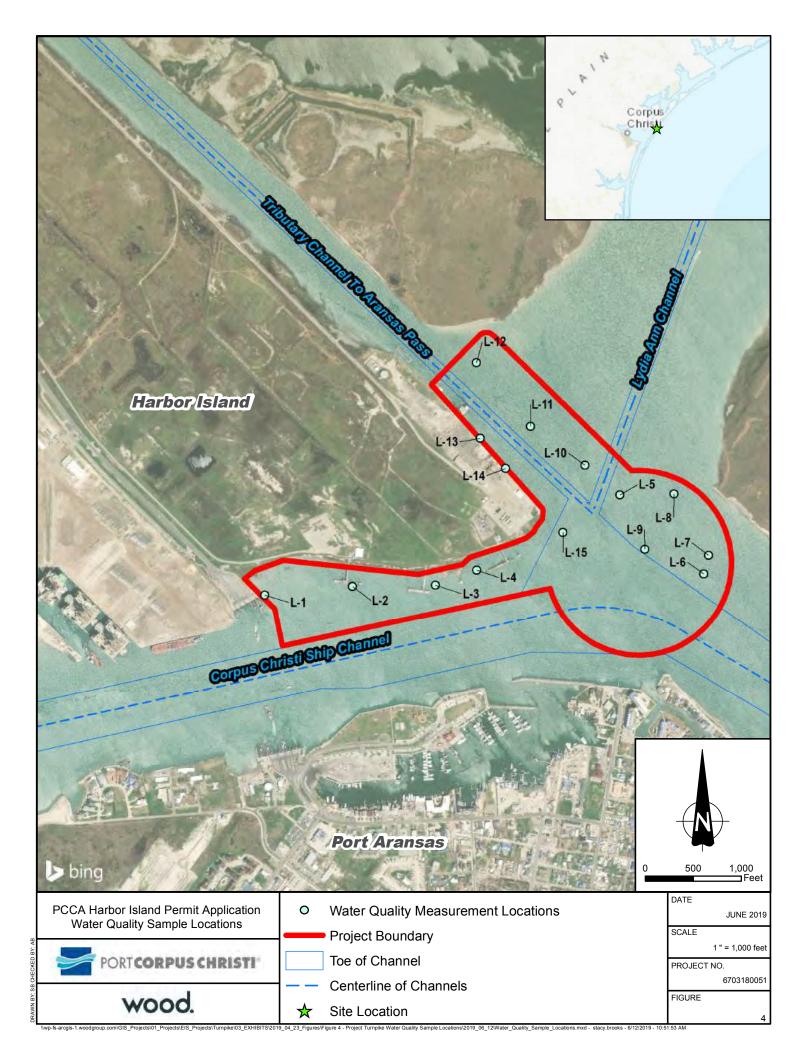
6.0 References

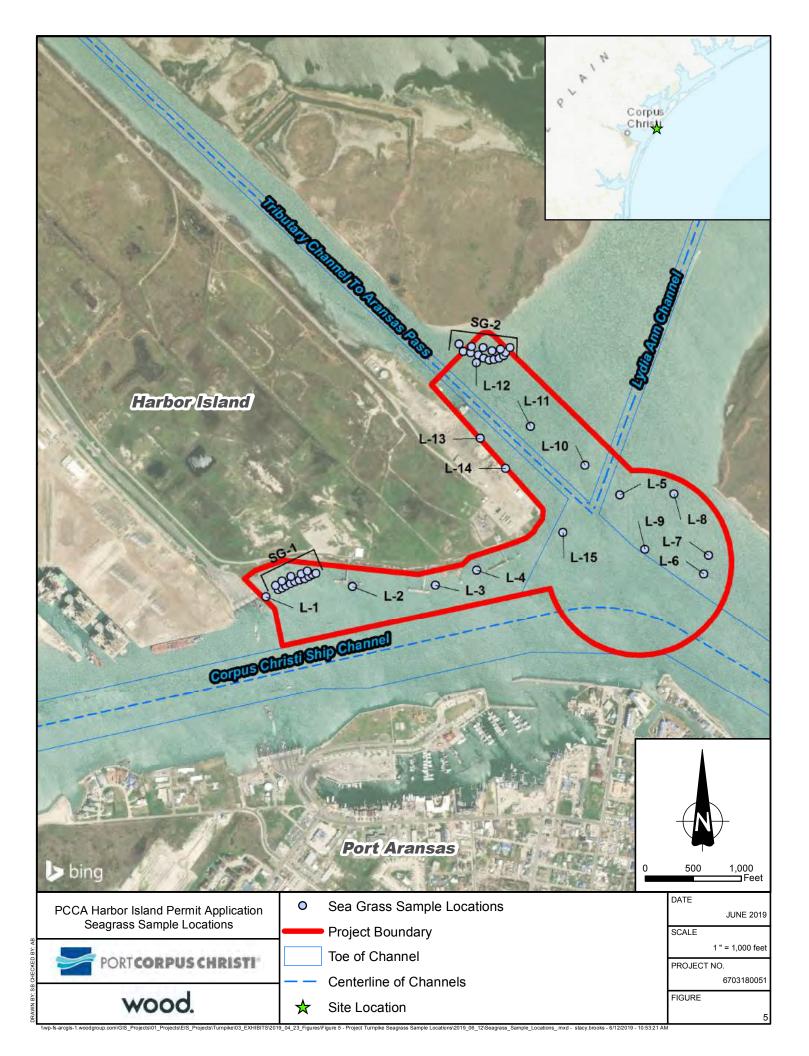
- Bemvenuiti, C. E., L. G. Angonesi, and M. S. Gandra. 2005. Effects of dredging operations on soft bottom macrofauna in a harbor in the Patos Lagoon estuarine region of southern Brazil. Brazilian Journal of Biology 65 (4): 573-581.
- Bonsdorff, E. 1980. Macrozoobenthic recolonization of a dredged brackish water bay in SW Finland. Ophelia Supplement 1: 145-155.
- Bray, J. R. and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27 (4): 325-349.
- Clarke, K. R., P. J. Somerfield, and M. G. Chapman. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330 (1): 55-80.
- Hartman, O. 1941. Some contributions to the biology and life history of Spionidae from California. Allan Hancock Pacific Expeditions 7: 289-324.
- Kotta, J., K. Herkül, I. Kotta, H. Orav-Kotta, and R. Aps. 2009. Response of benthic invertebrate communities to the large-scale dredging of Muuga Port. Estonian Journal of Ecology 58 (4): 286-296.
- LeCroy, S. A. 2004. An illustrated identification guide to the nearshore marine and estuarine gammaridean Amphipoda of Florida. Volume 3. Families Bateidae, Biancolinidae, Cheluridae, Colomastigidae, Corophiidae, Cyproideidae and Dexaminidae. Annual Report for DEP Contract Number WM724. State of Florida, Department of Environmental Protection, Tallahassee, Florida.

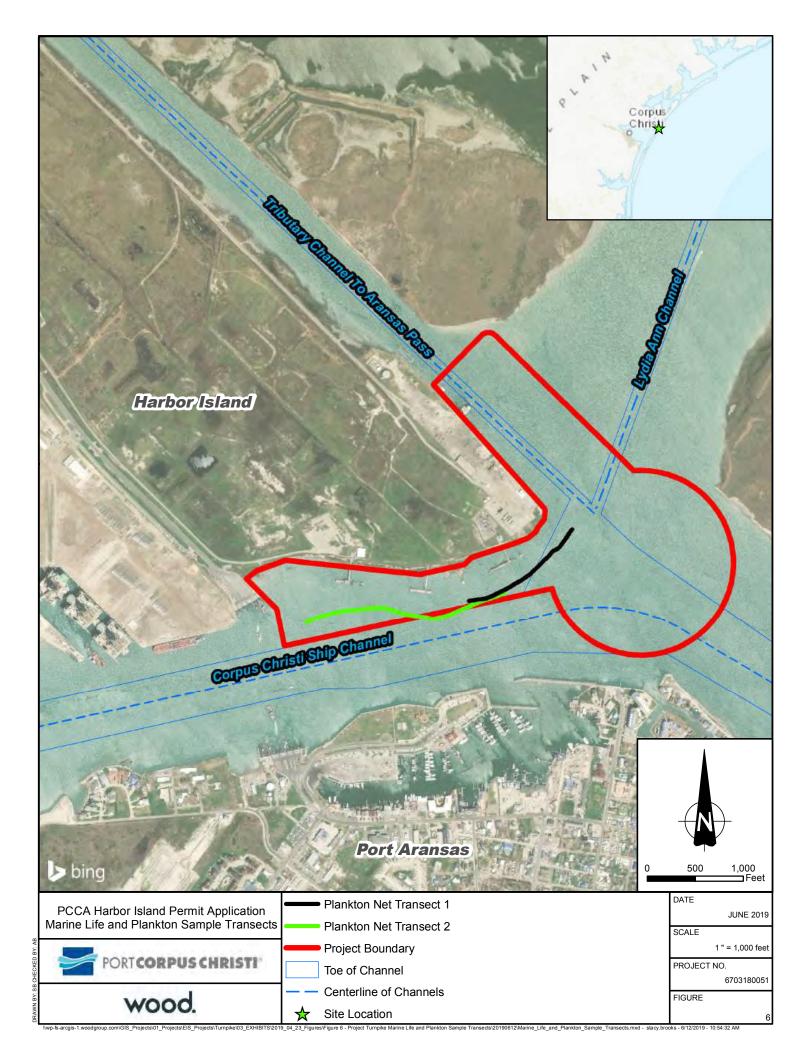


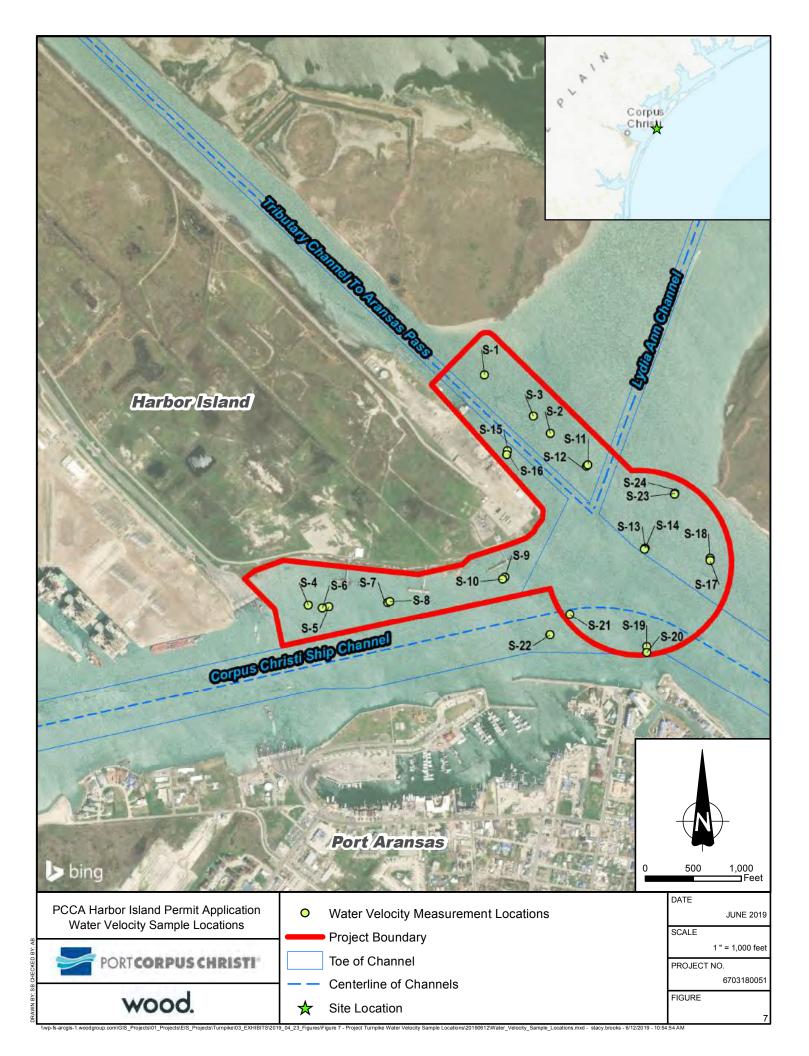

- Szymelfenig, M., L. Kotwicki, and B. Graca. 2006. Benthic re-colonization in post-dredging pits in the Puck Bay (Southern Baltic Sea). Estuarine Coastal and Shelf Science 68: 489-498.
- Van Dolah, R. F., D. R. Calder, and D. M. Knott. 1984. Effects of dredging and open-water disposal on benthic macroinvertebrates in a South Carolina estuary. Estuaries 7 (1): 28-37.

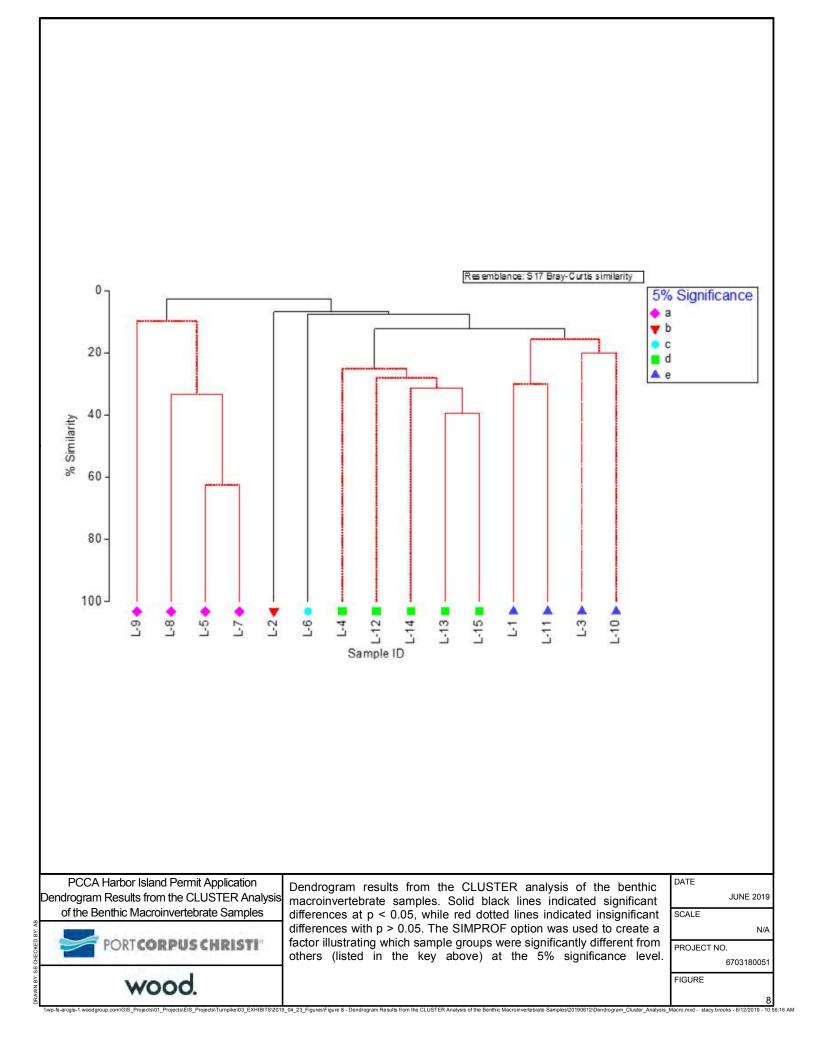


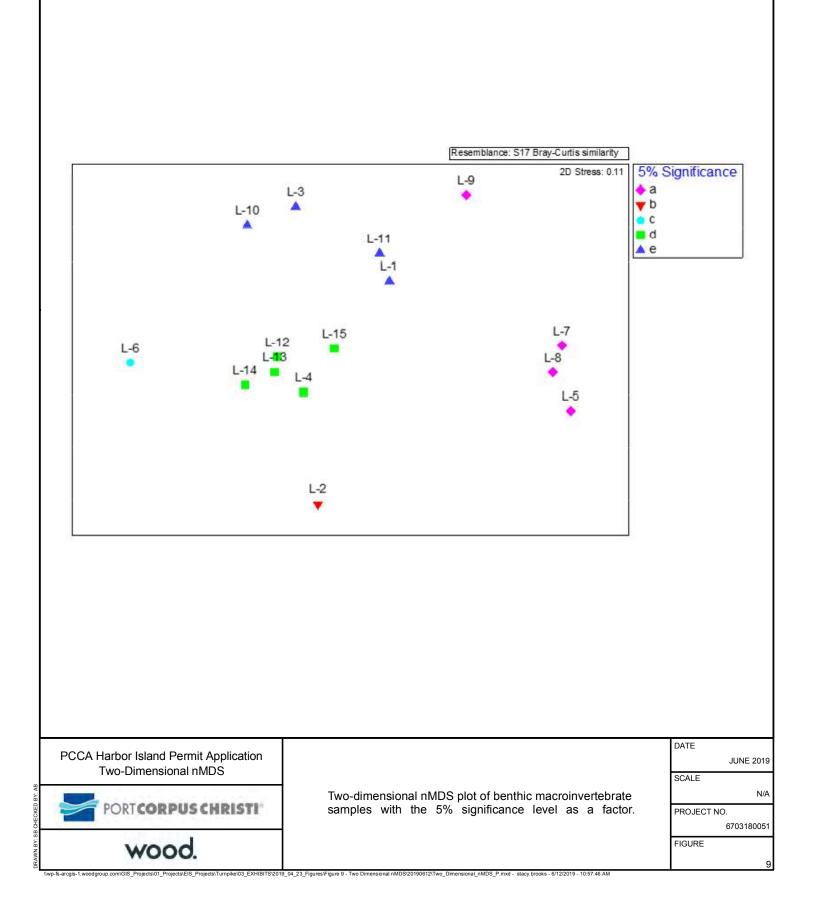

FIGURES

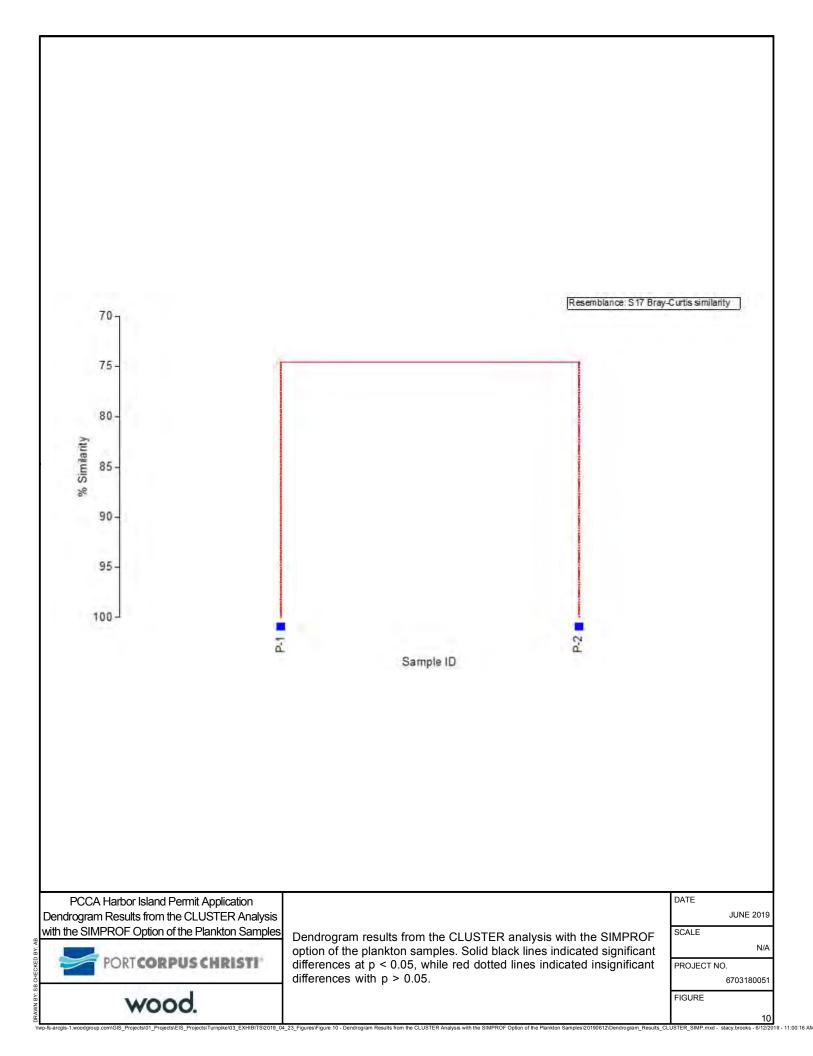












TABLES

TABLE 1 SUMMARY OF SAMPLE COLLECTION SITES AND ANALYSES PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

	GPS Coordin	ates (Proposed)	GPS Coord	inates (Actual)
Location	North	West	North	West
L-1	27.844318	-97.069441	27.84427	-97.06970
L-2	27.844493	-97.067105	27.84454	-97.06691
L-3	27.844501	-97.064404	27.84455	-97.06424
L-4	27.844950	-97.061924	27.84496	-97.06291
L-5	27.843608	-97.059952	27.84707	-97.05827
L-6 ^a	27.842822	-97.057325	27.84478	-97.05560
L-7	27.845212	-97.055378	27.84531	-97.05544
L-8	27.847017	-97.056448	27.84708	-97.05653
L-9	27.845511	-97.057463	27.84550	-97.05749
L-10	27.847944	-97.059301	27.84793	-97.05938
L-11	27.849084	-97.061056	27.84906	-97.06112
L-12	27.850885	-97.062762	27.85090	-97.06284
L-13	27.848790	-97.062619	27.84874	-97.06274
L-14	27.847891	-97.061656	27.84787	-97.06194
L-15	27.846039	-97.059951	27.84602	-97.06012

FOOTNOTES:

^aUnable to collect sediment sample from L-6: there were 14 ponar drops (4 on port side, 10 on starboard side) which only yielded shell hash.

TABLE 2 SEDIMENT SAMPLING PARAMETERS PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

				Top of Sediment		GPS Coordin	ates (Actual)
Location	Date	Time	Depth to Sediment (ft)	Elevation MLLW (ft)	Description	North	West
L-1	02/04/19	1155	3.3	-2.47	dark gray silty mud	27.84427	-97.06970
L-2	02/05/19	1015	22.3	-21.60	dark gray, sand and mud, 1 strand of seagrass	27.84454	-97.06691
L-3	02/05/19	1055	13.4	-12.71	dark gray, clay, sandy, shell hash	27.84455	-97.06424
L-4	02/05/19	1515	28.5	-27.28	dark gray, clayey sand, some shell	27.84496	-97.06291
L-5	02/05/19	1620	20.9	-19.40	gray, fine-grained sand	27.84707	-97.05827
L-6 ^a	02/06/19	1538	35.8	-34.27		27.84478	-97.05560
L-7	02/04/19	1530	16.3	-14.72	gray sand and mud	27.84531	-97.05544
L-8	02/04/19	1440	16.8	-15.54	gray sand and mud	27.84708	-97.05653
L-9	02/06/19	1505	44.9	-43.49	brownish gray sand and mud	27.84550	-97.05749
L-10	02/06/19	1407	34.8	-33.51	brownish gray, fine-grained sand with clay	27.84793	-97.05938
L-11	02/05/19	1400	25.5	-24.3	gray sand with clay	27.84906	-97.06112
L-12	02/04/19	1325	6.9	-5.74	dark gray sandy mud	27.85090	-97.06284
L-13	02/05/19	1251	28.0	-26.99	dark gray, sand and mud, shell hash	27.84874	-97.06274
L-14	02/05/19	1200	27.5	-26.71	dark gray, sand and mud, some shell hash, 1 strand of seagrass	27.84787	-97.06194
L-15	02/06/19	1305	53.5	-52.48	dark gray, muddy sand	27.84602	-97.06012

FOOTNOTES:

^aUnable to collect sediment sample from L-6: there were 14 ponar drops (4 on port side, 10 on starboard side) which only yielded shell hash.

TABLE 3 SEDIMENT ANALYTICAL DATA PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

		Total Organic		Grain Size Analysis									
Location	Date	Carbon	%≥3″	w ≥3″ % Gravel			% Sand		% Fines				
		(weight%-dry)	$\sim 10^{-10}$	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
L-1	02/04/19	0.0630	0.0	0.0	0.0	0.0	0.5	89.1	7.9	2.5			
L-2	02/05/19	0.475	0.0	0.0	0.0	0.0	0.1	63.4	20.2	16.3			
L-3	02/05/19	0.407	0.0	0.0	0.0	0.0	5.1	74.3	9.8	10.8			
L-4	02/05/19	0.319	0.0	0.0	31.1	8.9	1.7	31.2	15.2	11.9			
L-5	02/05/19	<0.0600	0.0	0.0	0.0	0.0	0.1	95.9	2.0	2.0			
L-6 ^a	02/06/19												
L-7	02/04/19	<0.0600	0.0	0.0	0.0	0.0	0.4	95.0	3.1	1.5			
L-8	02/04/19	<0.0600	0.0	0.0	0.0	0.0	0.2	95.6	2.7	1.5			
L-9	02/06/19	<0.0600	0.0	0.0	0.0	0.0	0.6	92.7	4.2	2.5			
L-10	02/06/19	0.0670	0.0	0.0	0.0	0.0	0.3	91.8	5.9	2.0			
L-11	02/05/19	0.515	0.0	0.0	0.0	0.0	3.9	89.6	3.0	3.5			
L-12	02/04/19	0.161	0.0	1.2	19.9	0.0	3.6	66.8	5.3	3.2			
L-13	02/05/19	0.494	0.0	0.0	59.6	0.0	6.8	28.7	2.1	2.8			
L-14	02/05/19	0.264	0.0	0.0	0.0	0.0	3.2	78.6	7.3	10.9			
L-15	02/06/19	<0.0600	0.0	0.0	0.0	0.0	0.1	43.4	53.1	3.4			

Footnotes:

^aUnable to collect sediment sample from L-6: there were 14 ponar drops (4 on port side, 10 on starboard side) which only yielded shell hash.

TABLE 4 BENTHIC AND PLANKTON SAMPLE DIVERSITY PARAMETERS PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

Sample Type	(S) Unit Area* (N)		Total # of Individuals per Unit Area* (N)	Margalef's Richness (d)	Pielow's Evenness (J')	Shannon's Diversity (H'(log _e))	Simpson's Diversity (1-λ')	
	L-1	02/04/19	11	775.00	3.46	0.91	2.18	0.91
	L-2	02/05/19	59	31172.28	8.81	0.59	2.41	0.80
	L-3	02/05/19	11	516.67	4.02	0.99	2.37	0.98
	L-4	02/05/19	30	2798.62	6.95	0.89	3.04	0.94
	L-5	02/05/19	5	344.45	1.92	0.86	1.39	0.79
	L-6	02/06/19	51	9601.41	9.25	0.74	2.91	0.86
	L-7	02/04/19	3	344.45	0.96	0.67	0.74	0.46
Benthic	L-8	02/04/19	4	301.39	1.54	0.92	1.28	0.81
	L-9	02/06/19	5	258.33	2.23	0.97	1.56	0.93
	L-10	02/06/19	21	1205.56	6.00	0.96	2.92	0.97
	L-11	02/05/19	11	947.22	3.24	0.91	2.17	0.90
	L-12	02/04/19	55	4650.01	11.53	0.91	3.63	0.97
	L-13	02/05/19	28	3745.84	6.05	0.88	2.92	0.94
	L-14	02/05/19	37	6329.18	7.21	0.69	2.51	0.85
	L-15	02/06/19	30	2583.34	7.08	0.91	3.08	0.95
Dianistan	P-1	02/06/19	30	228.43	2.96	0.38	1.29	0.46
Plankton	P-2	02/06/19	24	186.78	2.46	0.51	1.61	0.61

* Unit area is per square meter and per cubic meter for benthic and plankton samples, respectively.

TABLE 5 WATER QUALITY PARAMETERS PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

		_		Depth of Sample		Water		Dissolved	GPS Coordi	nates (Actual)	Section of
Location	Date	Depth to Sediment	Time	(ft. below water surface)	Elevation (MLLW) ^a	Temperature (°C)	Salinity (ppt)	Oxygen (mg/L)	North	West	Project Area
L-1	02/04/19	3.3	1614	2.8	-1.97	16.62	23.81	4.92	27.84432	-97.06974	Corpus Christi Ship Channel
			1001	5.0	-4.30	15.67	21.28	6.27			
L-2	02/05/19	22.3	1004	10.0	-9.30	15.64	21.28	7.79	27.84454	-97.06691	Corpus Christi
L-Z	02/05/19	22.5	1007	15.0	-14.30	15.68	21.29	7.68	27.84454		Ship Channel
			1010	20.0	-19.30	15.81	21.36	7.65			
L-3	02/05/19	13.4	1045	5.0	-4.31	16.41	19.96	5.78	27.84455	-97.06424	Corpus Christi
L-3	02/05/19	15.4	1048	10.0	-9.31	16.03	21.41	6.26	27.84455	-97.00424	Ship Channel
			1458	5.0	-3.78	16.94	17.02	5.78			
			1501	10.0	-8.78	16.71	18.02	5.73	27.84496	-97.06291	Corpus Christi Ship Channel
L-4	02/05/19	28.5	1504	15.0	-13.78	16.69	18.28	5.72			
			1507	20.0	-18.78	16.61	19.08	4.65			
			1510	25.0	-23.78	16.29	21.59	4.61			
			1603	5.0	-3.50	16.47	18.38	5.92		7 -97.05827	Turning Basin
	02/05/10	20.0	1606	10.0	-8.50	16.11	20.74	5.87	27 04707		
L-5	02/05/19	20.9	1609	15.0	-13.50	16.04	20.98	5.86	27.84707		
			1612	20.0	-18.50	16.09	21.10	6.20			
			1542	5.0	-3.47	16.87	16.22	6.20			
			1545	10.0	-8.47	16.82	16.42	5.89			
L-6	02/06/19	35.8	1548	15.0	-13.47	16.81	16.80	6.19	27.84478	-97.05560	Turning Docin
L-0	02/00/19	55.0	1551	20.0	-18.47	16.76	17.41	5.83	27.04470	-97.05500	Turning Basin
			1554	25.0	-23.47	16.75	17.51	5.95			
			1557	30.0	-28.47	16.76	17.45	5.82			
			1514	5.0	-3.42	16.05	22.48	4.29			
L-7	02/04/19	16.3	1517	10.0	-8.42	15.91	24.67	4.25	27.84531	-97.05544	Turning Basin
			1520	15.0	-13.42	15.87	25.07	4.57			
			1422	5.0	-3.74	16.01	20.63	6.16			Turning Basin
L-8	02/04/19	16.8	1426	10.0	-8.74	15.94	21.99	6.15	27.84708	08 -97.05653	
			1430	15.0	-13.74	15.96	23.25	6.08			

TABLE 5 WATER QUALITY PARAMETERS PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

GPS Coordinates (Actual) Depth of Sample Water Dissolved Elevation Depth to Salinity Section of (ft. below water Location Date Time Temperature Oxygen Sediment (MLLW)^a (ppt) Project Area North West surface) (°C) (mg/L) 1441 5.0 -3.59 16.76 15.52 6.31 1444 10.0 -8.59 16.25 5.96 16.76 1447 15.0 -13.59 16.71 17.42 6.19 20.0 -18.59 17.57 1450 16.78 6.17 44.9 **Turning Basin** L-9 02/06/19 27.84550 -97.05749 1453 25.0 -23.59 16.86 17.68 6.01 30.0 -28.59 17.92 1456 16.76 6.19 1459 17.95 35.0 -33.59 16.73 5.90 1502 40.0 -38.59 16.72 17.96 5.93 5.0 15.37 1351 -3.71 16.91 6.02 1354 10.0 -8.71 16.90 15.32 6.06 Tributary 1357 15.0 -13.71 16.81 15.33 5.98 L-10 02/06/19 34.8 27.84793 -97.05938 Channel to 1400 20.0 -18.71 16.79 15.46 6.31 Aransas Pass 1403 25.0 -23.71 16.77 16.46 6.06 1406 30.0 -28.71 16.68 17.29 5.84 1347 5.0 -3.80 6.21 16.13 15.78 1350 10.0 -8.80 16.62 16.17 5.78 Tributary 02/05/19 25.5 1353 15.0 -13.80 16.22 6.11 27.84906 -97.06112 Channel to L-11 16.72 1356 20.0 17.06 Aransas Pass -18.80 17.59 5.62 1359 25.0 -23.80 16.12 19.19 5.68 Tributary 02/04/19 6.9 1350 5.0 16.26 20.32 4.64 27.85090 -97.06284 Channel to L-12 -3.84 Aransas Pass 1221 5.0 -3.99 17.02 16.51 6.12 1224 10.0 -8.99 17.62 17.67 7.01 Tributary 02/05/19 1227 L-13 28.0 15.0 -13.99 17.73 17.84 6.99 27.84874 -97.06274 Channel to 1230 20.0 -18.99 17.78 17.92 6.99 Aransas Pass 1232 25.0 -23.99 17.82 17.97 7.09

TABLE 5 WATER QUALITY PARAMETERS PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

				Depth of Sample		Water		Dissolved	GPS Coordi	nates (Actual)	
Location	Date	Depth to Sediment	Time	(ft. below water surface)	Elevation (MLLW) ^a	Temperature (°C)	Salinity (ppt)	Oxygen (mg/L)	North	West	Section of Project Area
			1141	5.0	-4.21	16.92	16.73	6.99		-97.06194	
			1144	10.0	-9.21	16.92	16.73	6.18			Tributary
L-14	02/05/19	27.5	1147	15.0	-14.21	17.19	17.18	6.79	27.84787		Channel to
			1150	20.0	-19.21	17.75	18.04	7.05			Aransas Pass
			1153	25.0	-24.21	17.75	18.06	7.04			
			1246	5.0	-3.98	17.62	15.71	7.30			
			1249	10.0	-8.98	17.34	15.79	6.83	-		
			1252	15.0	-13.98	17.04	16.00	6.89			
			1255	20.0	-18.98	16.83	16.57	6.94			
L-15	02/06/10	53.5	1258	25.0	-23.98	16.70	16.69	6.56	27.84602	-97.06012	Turning Dacin
L-15	02/06/19	53.5	1321 (a)	30.0	-28.98	16.66	17.21	6.15	27.84002	-97.06012	Turning Basin
			1324	35.0	-33.98	16.63	17.63	6.28			
			1327	40.0	-38.98	16.60	17.78	6.01			
			1330	45.0	-43.98	16.60	18.04	6.30			
			1333	50.0	-48.98	16.62	18.06	6.19			

FOOTNOTES:

^aMLLW calculated using water level data from NOAA Tides and Currents Website; Port Aransas, Texas, Station ID: 8775237

TABLE 6 SEAGRASS/OYSTER ASSESSMENT PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

	GPS Coordin	nates (Actual)	Data	T :	Course Doublet	Come Description	Queter Descent
SG-1 Location	North	West	Date	Time	Seagrass Present	Genus Description	Oysters Present
1-1	27.8444638	-97.0692948	02/07/19	1319	Absent		Absent
1-2	27.8445089	-97.0691706	02/07/19	1321	Absent		Absent
1-3	27.8445728	-97.0690468	02/07/19	1322	Absent		Absent
1-4	27.8446371	-97.0689096	02/07/19	1323	Absent		Absent
1-5	27.8446882	-97.0687655	02/07/19	1323	Absent		Absent
1-6	27.8447276	-97.0686111	02/07/19	1324	Absent		Absent
1-7	27.8447654	-97.0684378	02/07/19	1325	Absent		Absent
1-8	27.8448309	-97.0683039	02/07/19	1326	Absent		Absent
1-9	27.8448833	-97.0681927	02/07/19	1327	Absent		Absent
1-10	27.8449196	-97.0680758	02/07/19	1329	Absent		Absent
1-11	27.8445801	-97.0693803	02/07/19	1330	Absent		Absent
1-12	27.8447131	-97.0691747	02/07/19	1331	Absent		Absent
1-13	27.8448311	-97.0688794	02/07/19	1332	Absent		Absent
1-14	27.8449061	-97.0685487	02/07/19	1333	Absent		Absent
1-15	27.8449831	-97.0683574	02/07/19	1334	Absent		Absent
			02/07/20	100 .	,		7.0000.110
SG-2 Location	GPS Coordin N	nates (Actual) W	Time	Time	Seagrass Present	Genus Description	Oysters Present
2-1	27.8512259	-97.0632498	02/07/19	1350	Slight Presense	2 strands of Halodule	Absent
2-2	27.8511793	-97.0630166	02/07/19	1351	Absent		Absent
2-3	27.8511198	-97.0627718	02/07/19	1352	Absent		Absent
2-4	27.8510258	-97.0625961	02/07/19	1354	Absent		Absent
2-5	27.8509690	-97.0624241	02/07/19	1355	Absent		Absent
2-6	27.8509815	-97.0622654	02/07/19	1356	Absent		Absent
2-7	27.8510183	-97.0620960	02/07/19	1357	Absent		Absent
2-8	27.8510912	-97.0619529	02/07/19	1358	Absent		Absent
2-9	27.8511843	-97.0618898	02/07/19	1359	Absent		Absent
2-10	27.8513152	-97.0617466	02/07/19	1400	Absent		Absent
2-11	27.8512723	-97.0620545	02/07/19	1402	Absent		Absent
2-12	27.8512344	-97.0623265	02/07/19	1403	Absent		Absent
2-13	27.8513289	-97.0626104	02/07/19	1405	Absent		Absent
2-14	27.8513605	-97.0629851	02/07/19	1406	Absent		Absent
2-15	27.8514359	-97.0633794	02/07/19	1408	Absent		Absent
Original	GPS Coordin	nates (Actual)					
Locations	N	W	Date	Time	Seagrass Present	Genus Description	Oysters Present
L-1	27.84427	-97.06970	02/04/19	1155	Absent		Absent
L-2	27.84454	-97.06691	02/05/19	1015	Slight Presense	1 strand of Halodule	Absent
L-3	27.84455	-97.06424	02/05/19	1055	Absent		Absent
L-4	27.84496	-97.06291	02/05/19	1515	Absent		Absent
L-5	27.84707	-97.05827	02/05/19	1620	Absent		Absent
L-6	27.84478	-97.05560	02/06/19	1600	Absent		Absent
L-7	27.84531	-97.05544	02/04/19	1530	Absent		Absent
L-8	27.84708	-97.05653	02/04/19	1440	Absent		Absent
L-9	27.84550	-97.05749	02/06/19	1505	Absent		Absent
L-10	27.84793	-97.05938	02/06/19	1407	Absent		Absent
L-11	27.84906	-97.06112	02/05/19	1400	Absent		Absent
L-12	27.85090	-97.06284	02/04/19	1325	Absent		Absent
L-13	27.84874	-97.06274	02/05/19	1251	Absent		Absent
				-		1 strand of Halodule	Absent
L-14	27.84787	-97.06194	02/05/19	1200	Slight Presense	I SU ANU UL HAIUUUIE	Absent

TABLE 7 VELOCITY MEASUREMENTS PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

PROJECT TURNPIKE											
Comula Doint	Data	Start/End	Depth	Velocity	Direction	The /Flood	GPS Coordin	nates (Actual)	Cardian of David and Anna		
Sample Point	Date	Time	(ft. below water surface)	(m/s)	(°)	Ebb/Flood	North	West	Section of Project Area		
S-1	2/7/2019	1413	5	0.256	102.3	Ebb	27.85055	-97.06259	Tributary Channel To Aransas Pass		
		1417	5	0.736	301.7						
S-2	2/7/2010		10	0.493	314.5	Flood	27 04005	07.06048	Tellester Changel Te Arrange Deer		
3-2	2/7/2019		15 20	0.518	327.2 325.2	Flood	27.84885	-97.06048	Tributary Channel To Aransas Pass		
		1418	25	0.581	324.5						
		837	5	0.321	18.6						
S-3	2/11/2019		10 15	0.465	14.3 26.3	Ebb	27.84935	-97.06102	Tributary Channel To Aransas Pass		
		838	20	0.330	20.3						
S-4	2/7/2019	1122	5	0.199	338.4	Ebb	27.84402	-97.06834	Corpus Christi Ship Channel		
54	2///2015	1123	10	0.265	114.7	200	ENOTIDE	57.00051	corpus cirristi ship channel		
		1129	5 10	0.537 0.414	62.2 62.2						
			15	0.385	62.7						
S-5	2/7/2019		20	0.384	60.2	Ebb	27.84397	-97.06768	Corpus Christi Ship Channel		
			25 30	0.483	66.9 46.5						
		1130	35	0.455	74.0						
		932	5	0.037	33.6						
S-6	2/11/2019		10	0.421	152.5	Flood	27.84393	-97.06789	Corpus Christi Ship Channel		
		934	15 20	0.181 0.112	209.1 246.1						
		1142	5	0.112	83.8						
			10	0.361	68.4	1					
			15	0.259	58.2						
S-7	2/7/2019	-	20 25	0.167 0.249	91.2 82.5	Ebb	27.84407	-97.06578	Corpus Christi Ship Channel		
5.7	2,7,2015		30	0.249	56.1	200	27.01107	57.00570	corpus christi ship channer		
			35	0.390	52.0						
		1144	40 45	0.346	60.3 86.6						
		1058	45	0.207	57.1						
			10	0.128	52.8						
			15	0.057	32.8			-97.06571	Corpus Christi Ship Channel		
S-8	2/11/2019		20 25	0.095	347.6 291.0	Flood	27.84409				
50	2/11/2015	-	30	0.077	284.4	noou	27.01105	57.00571			
			35	0.077	255.3						
		4404	40	0.143	250.4						
		1101 1158	45 5	0.157	249.7 233.4						
		1150	10	0.261	246.6						
			15	0.166	203.0						
			20	0.246	273.3						
S-9	2/7/2019	-	25 30	0.071 0.048	155.2 141.2	Ebb	27.84475	-97.06200	Corpus Christi Ship Channel		
			35	0.140	150.8						
			40	0.272	71.9						
		-	45 50	0.454 0.284	102.0 47.7						
		1202	55	0.421	62.8						
		944	5	0.149	165.5						
			10 15	0.299 0.147	173.0 193.4						
		-	20	0.147	193.4						
			25	0.203	161.3	1					
S-10	2/11/2019	<u> </u>	30	0.158	185.1	Flood	27.84470	-97.06207	Corpus Christi Ship Channel		
			35 40	0.158	208.2 217.7						
			45	0.119	258.2	1					
			50	0.106	240.4						
		948 850	55	0.118	254.4 130.0						
		0.00	10	0.151	14.3						
S-11	2/11/2019		15	0.196	17.2	Ebb	27.84791	-97.05933	Tributary Channel To Aransas Pass		
	. ,		20	0.126	34.1						
		852	25 30	0.066	17.6 351.2						
		1039	5	0.041	221.3						
<i></i>	2/44/200-		10	0.110	333.0	.	27.0.77	07 07000			
S-12	2/11/2019		15 20	0.106	358.1 9.9	Flood	27.84794	-97.05929	Tributary Channel To Aransas Pass		
		1041	20	0.187	16.2						
		911	5	0.128	352.6						
			10	0.260	26.6						
			15 20	0.298	40.9 32.6						
S-13	2/11/2019		25	0.108	25.7	Flood	27.84554	-97.05748	Turning Basin		
			30	0.163	145.4				Turning Basin		
			35	0.132	234.0						
		914	40 45	0.158	281.4 9.5	1					
	•						i				

PROJECT TURNPIKE											
		Start/End	Depth	Velocity	Direction		GPS Coordin	nates (Actual)			
Sample Point	Date	Time	(ft. below water surface)	(m/s)	(°)	Ebb/Flood	North	West	Section of Project Area		
		1956	5	0.110	128.1						
			10	0.080	28.9						
			15	0.070	22.2						
	2/14/2010		20	0.277	18.4	5 b b	27.04550	-97.05750			
S-14	2/11/2019		25 30	0.072	14.5	Ebb	27.84550		Turning Basin		
			30	0.360 0.049	22.9 61.4						
			40	0.103	42.5						
		1959	45	0.164	10.0						
		956	5	0.050	214.4						
S-15	2/11/2019		10	0.127	234.9	Flood	27.84837	-97.06187	Tributary Channel To Aransas Pass		
			15	0.123	223.1			57.00107			
		957 1949	20 5	0.169	223.3 345.8						
		1949	10	0.332	19.1						
S-16	2/11/2019		15	0.055	71.7	Ebb	27.84826	-97.06189	Tributary Channel To Aransas Pass		
		1951	20	0.050	68.6						
S-17	2/11/2019	1008	5	0.173	284.9	Flood	27.84523	-97.05539	Turning Basin		
5-17	2/11/2019	1009	10	0.070	304.8	1000	27.04323		running DdSill		
	2/44/2010	2003	5	0.085	181.6	Fbb	27.84516	07.05520			
S-18	2/11/2019	2004	10	0.155 0.288	57.6	EDD	27.84516	-97.05539	Turning Basin		
		1018	15 5	0.288	63.8 357.7						
		1018	10	0.076	354.8						
			15	0.105	339.0						
			20	0.108	318.9						
			25	0.074	354.4			-97.05746	Turning Basin		
S-19	2/11/2019		30	0.102	340.1	Flood	27.84271				
			35 40	0.196	290.9						
			40	0.134	313.8 299.9						
			50	0.207	299.6						
		1022	55	0.114	260.8						
		2016	5	0.113	281.4						
			10	0.384	49.5						
			15	0.540	52.8						
S-20	2/11/2019		20 25	0.365 0.275	47.8 51.0	Ebb	27.84254	-97.05746	Turning Basin		
5 20	2/11/2015		30	0.421	50.1	200	27.04234	-57.05740			
			35	0.245	26.8						
			40	0.195	21.4						
		2018	45	0.151	36.5						
		1026	5	0.082	246.1						
			10	0.050	248.0						
			15 20	0.141 0.152	270.4 231.5						
			25	0.155	226.7						
S-21	2/11/2019		30	0.057	211.3	Flood	27.84367	-97.05992	Turning Basin		
			35	0.127	192.8				-		
			40	0.236	346.7						
			45	0.182	349.4						
		1031	50 55	0.158 0.039	14.5 58.8						
		2022	5	0.039	58.8						
		2322	10	0.590	70.7						
			15	0.677	59.3						
			20	0.637	59.9						
S-22	2/11/2019		25	0.439	56.6	Ebb	27.84308	-97.06057	Turning Basin		
			30	0.446	69.2						
			35 40	0.514	74.0 46.0						
		2024	40	0.465	46.0 35.7						
	a / ! :	1047	45	0.285	10.9			0.000			
S-23	2/11/2019	1047	10	0.367	21.2	Flood	27.84710	-97.05650	Turning Basin		
S-24	2/11/2019	2009	5	0.065	140.3	Ebb	27.84707	-97.05651	Turning Davin		
5-24	2/11/2019	2010	10	0.226	79.3	LUU	27.04/0/	-21.02021	Turning Basin		


TABLE 7 VELOCITY MEASUREMENTS PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

ATTACHMENTS

ATTACHMENT 1 PHOTOGRAPHS

PHOTO 1:

Wood personnel calibrating water quality meter.

PHOTO 2:

Wood preparing saline solution used to relax benthic invertebrates prior to fixation and preservation.

PHOTO 3:

Naismith personnel prepare petite ponar for deployment. Wood personnel investigates ponar grab for evidence of seagrass.

PHOTO 4:

Wood personnel sieve material collected by a petite ponar grab for benthic invertebrates.

PHOTO 5:

Collected materials after sieving.

PHOTO 6:

Wood personnel use water bottle to collect invertebrate samples from a sifter.

PHOTO 7:

Placing sediment collected using petite ponar into sample containers for laboratory testing.

PHOTO 8:

Brittle star (Ophiuroidea sp.) species caught in a petite ponar grab.

РНОТО 9:


Bay Anchovy (*Anchoa mitchilli*) caught in a petite ponar grab.

PHOTO 10:

Luidia clathrata caught during a petite ponar grab.

PHOTO 11:

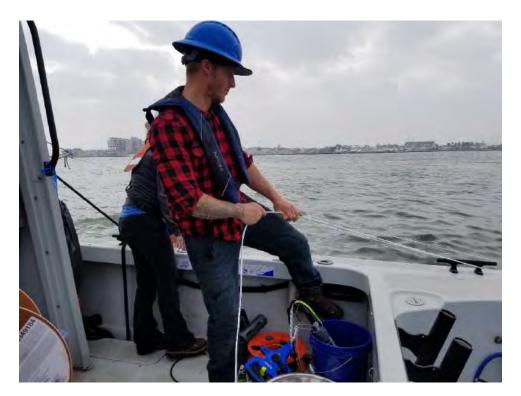

Wood and Naismith personnel deploy plankton net.

PHOTO 12:

Wood observes and maintains plankton net.

PHOTO 13:

Naismith personnel maintaining stability of plankton net while in water.

PHOTO 14:

Plankton net being retrieved.

PHOTO 15:

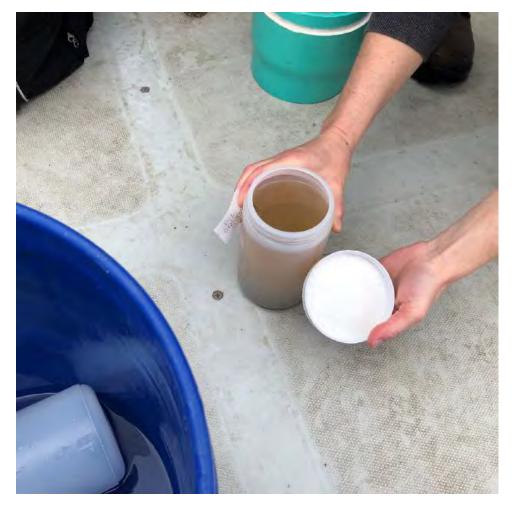
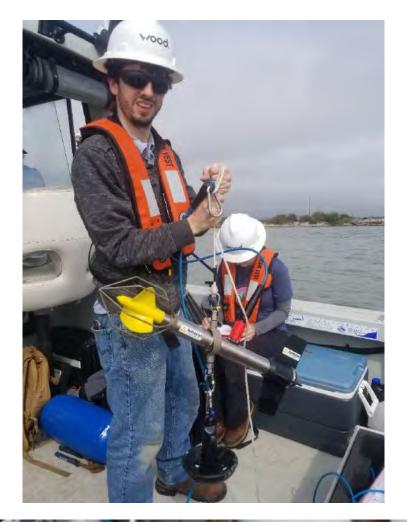

Wood personnel rinsing the net to get all organisms down to the sample collection container at the cod end.

PHOTO 16:

Wood personnel use a fine mesh sieve to concentrate plankton samples prior to transferring to sample containers.


PHOTO 17:

Plankton sample collection container.

PHOTO 18:

Wood personnel use a 10% formalin solution to fix all benthic invertebrate samples.

Wood supporting the Valeport 106 Water Velocity Meter.

PHOTO 20:

Valeport 106 Water Velocity Meter display screen.

PHOTO 21:

Wood and Naismith personnel preparing to deploy the Valeport 106 Water Velocity Meter.

PHOTO 22:

Wood and Naismith personnel deploying the Valeport 106 Water Velocity Meter.

ATTACHMENT 2 DATASHEETS

wood

PROJECT NUMBER: CLIENT: SITE LOCATION: SCIENTIST:	Port of Corpus Christ Project Turnpike		-	LOCATION: Ship DATE: 27.8 ORDINATES: 27.8 (ACTUAL) -97.00	Berly 2-7-19 1410 7 1578	- - -	MLLW V DEPTH TO	VARIANCE TIME: /ARIANCE (ft.)(a) +/-) SEDIMENT (ft.)
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
142	5			0,482	020.046	89.38	3.8 ebb	
	0			0.34(pp.0-487	p-637 1	8,4	
	15				0.259	58,2		
	20				0.167	91,2		· · · · · · · · · · · · · · · · · · ·
	25 30				0,249	82.5		
	<u> </u>				6, 390	56.1 52.0		
	<u> </u>				0.346	60.3		
144	US				0.207	86.6		
								m m
						1		

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

01/24/2019

wood.

	6703180051 Port of Corpus Christi Project Tumpike		SAMPL GPS CO	DATE: DATE: ORDINATES: (ACTUAL)	Berth (1 2019 195cm 27.8440 -97.0657	いってろ) 19	MLLW V DEPTH TO	/ARIANCE TIME: ARIANCE (ft.)(a) +/-) SEDIMENT (ft.) EV. (MLLW) (ft.)
Time	Depth (ft.)	Temperature	Salinity (ppt)	Dissorved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1058	5				0.140	57,1	Flood	
	10				0.138	53.8		
	30				0.057	37.8 347.6		
	25				0.011	291.0		
	30				0.097	284.4		
	35				0.077	255.3		
1101	40				0.143	250.4		
1101	45				0.157	249.7		

WOC

PROJECT NUMBER: CLIENT: SITE LOCATION: SCIENTIST:	6703180051 Port of Corpus Christ Project Turnpike	ti Authority	SAMPLI GPS CO	LOCATION: Ship B DATE: SHIP B ORDINATES:	019 27.24837 -97.06187	- - -	MLLW V DEPTH T	VARIANCE TIME:
Time	Depth (ft.)	Temperature (°C)	Salinity (Pet)	Dissolved Oxygen (ml/t)	Velocity (m/s)	Direction	Ebb/Flow	Comments
0956	5 10 15 20				0.050 0.137 0.133 0.169	214,4 234,9 223,1 223,3	Flood	
								·

wood.

	Port of Corpus Christ		SAMPLI GPS CO	ELOCATION: Ship B DATE: JINJC ORDINATES: (ACTUAL)	27.24226 -97.0618	9	VARIANCE TIME: /ARIANCE (ft.)(a) <u>+/-</u> O SEDIMENT (ft.) 	
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1949	5				,332	3મંડ. જ	EBB	
	10				1081	19,1 71,7		
1951	20				,337 ,081 ,085 ,055 ,050	68.6		
· · ·			1					
······								

wood

CLIENT: Po	PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST: $\underline{AB + SM}$		SAMPLE LOCATION: <u>Intake</u> ² , <u>Berth</u> 1B DATE: <u>2-7-19</u> GPS COORDINATES: <u>37.84402</u> (ACTUAL) <u>-97.06834</u> <u>97.667.62</u> SCM			VARIANCE TIME: MLLW VARIANCE (ft.)(a) +/- DEPTH TO SEDIMENT (ft.) SEDIMENT ELEV. (MLLW) (ft.)			
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/4-)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
1122	5				0.199		ebb		
1123	lo			0	0.265	14.7	J		
	· · · · ·								
	· · · · · · · · · · · · · · · · · · ·								
				:					
						4. P			
			,				-		

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

۸.

01/24/2019

200		1
Ŵ	OC	od.
	~~	0.

PROJECT NUMBER: <u>(</u> CLIENT: <u>F</u> SITE LOCATION: <u>F</u> SCIENTIST: _	Port of Corpus Chris		SAMPL GPS CC	elocation: Intelle a Date 311-14 ORDINATES: 3CM (ACTUAL)	Berth 1B-D 2-7-19 -97	Deep 184397 196768	VARIAN MLLW VARIANG DEPTH TO SEDIM SEDIMENT ELEV. (MI	IENT (ft.)
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1129	5	~			0,577	62.2	665	
	10				0.414	62.2	1	
	15				0.385	62.7		
	20			1	0.384	60.2		
	25				0.483	66,9	1.2	
1130	20				0.455	46.5	V	
1130	35				0,307	74,0	V	
-								
-	_							
					N			
	J							
-								

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

01/24/2019

wood.

	Port of Corpus Christ Project Turnpike	ti Authority	SAMPLE	LOCATION: THEALE DATE: 211/3 DRDINATES:	+Berth 4P 7. 84393 7. 06789		MLLW VA	ARIANCE TIME: RIANCE (ft.)(a) +/- SEDIMENT (ft.) V. (MLLW) (ft.)
Time	Depth (ft.)	Temperature	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity OV (m/SK2 M	D irection	Ebb/Flow	Comments
0938	5				0.037	33. 33.	E TINOT	
0.00	10				•	152.5	6 Filla	
	15				0,471 0.181	152,5		
	30					246.1		
0934	 Ø				0.113	1.01		
10157	WP .							

wood

PROJECT NUMBER: _ CLIENT: _ SITE LOCATION: _ SCIENTIST: _	Port of Corpus Christ			accation: <u>Ship B</u> date: <u>2-7</u> ordinates: (actual)	2044 1C -19 -17.84475 -97.06200		MLLW V DEPTH TO	VARIANCE TIME: /ARIANCE (ft.)(a) +/- D SEDIMENT (ft.)
Time	Depth (ft.)	Temperature	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1158	5				0.23(233.4	ebb	likely in slack fide
	10	*			0, 261 0, 099 166	246.6		
	15					203,0		
	20				0,246	273.3		
	25				0,071	155.2		
	30				0,048	141.2		
	35			0.140	0-1-4930	150.8		
· · · · · · · · · · · · · · · · · · ·	L(D				0.272	71.9		
	45				0.454	102.0		
	50				0.284	47.7		
1207	55				0,421	62.8	V	\checkmark
	······							
				<u> </u>				

approximation and an entropy of the second statement of th

wood.

PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST: ASSAC			SAMPLE GPS CO		Berth 1C 019 17.84470 17.06207	•	VARIANCE TIME: MLLW VARIANCE (ft.)(a) +/- DEPTH TO SEDIMENT (ft.) SEDIMENT ELEV. (MLLW) (ft.)			
Time	Depth (ft.)	Temperature (°C)	Salinity (PPt)	Dissolved Oxygen (ml/t)	Velocity (m/s)	Direction	Ebb/Flow	Comments		
0944	5				0.149	165.5	Flood			
	10				0,299	173.0				
	15				0.147	193.4				
	<u> </u>				0.172	5.001				
	25				0.303	161.3				
	30			!	0.158	185,1				
	35				0,158	208,2				
	40				0.115	217.7				
	45				0.139	258,2				
	50		- <u></u>		0.106	240,4				
0948	_55_			•	0:118	254.4	<u>_</u>			

٩

wood.

PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST:				LOCATION: LS (DATE: 211) DRDINATES: 27, (ACTUAL) - 77,	original) 84367 05992	VARIANCE TIME:			
Time	Depth (ft.)	Temperature	Salinity (ppt)	Dissofved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
1036	5				0,087	246,1	Flood		
	10				0.050	248.0			
	15				0.141	270.4			
	<u> 30</u>		· · · · · · · · · · · · · · · · · · ·		0.152	231.5			
	25 30				0.155	226.7			
	30				0.057	211.3			
	35				0.127	192,8			
	ЧÓ				0.236	346.7			
	45				0.183	349,4			
	50				0.158	14.5			
1031	55				0.158	58.8	_		

WOO

PROJECT NUMBER: CLIENT: 5ITE LOCATION: SCIENTIST:	6703180051 Port of Corpus Christ Project Turnpike	ti Authority		elocation: Date: Ordinates: (actual) - 97	14254 05746	VARIANCE TIME: MLLW VARIANCE (fL.)(a) +/- DEPTH TO SEDIMENT (fL.) SEDIMENT ELEV. (MLLW) (fL.)			
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
2016	5				,113	281.4	EBB		
·	10				,384	49.5			
	15				,540	57.8			
	30				. 365	47.8			
	25 25				• 275	51.0			
	30				e 421	50:1			
	35				220245	36.X			
	<u>46</u>				,195	26.8 21.9			
3018	45				, 151	36.5			
				L5			G	es. Coordinates (Actual):	
2032	5			·.	1667	77.7	EBB	es. Cordinates (Actual): 27.84308	
(M	10				·590	70.7		-97.06057	
	15				1677	59.3			
	20				.637	59.9			
	23				1429	56.6			
					1446	69.2			
	30 35				,514	74.0			
	40				.465	46.0			
2624	45				: 289	<u>46.0</u> 35.7	ŧ		

d

WOC

SITE LOCATION:	6703180051 Port of Corpus Christ Project Turnpike		_	e location: Lb, date: 2007 pordinates: (actual)	Loviginal) 209 27.24271 -77.05746	VARIANCE TIME: MLLW VARIANCE (fL)(a) +/- DEPTH TO SEDIMENT (fL) SEDIMENT ELEV. (MLLW) (fL)			
Time	Depth (ft.)	Temperature	Salinity (ppt)	Dissolved Oxygen (ml/L)		Direction	Ebb/Flow	Comments	
1018	5				0,131	357,7			
	10 15				0.076	354.8			
					0,105	339,0			
	<u>み</u> ろ		 		801,0	318.9			
	25				0.074	354,4			
	30			ļ	0,103	340.1			
	35		ļ		0.196	290.9			
	40				0.134	313.8			
	45				0.307	299.9			
	50				0.216	299,6			
1022	55				0,114	760,8	+		

PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST:			Salinity Dissolved Oxygen Velocity Direction					VARIANCE TIME: ARIANCE (ft.)(a) +/- D SEDIMENT (ft.) EV. (MLLW) (ft.)
Time	Depth (ft.)	Temperature	Salinity	Dissolved Oxygen	Velocity (m/s)	Direction	Ebb/Flow	Comments
2003	5				0.085	181.6	EBB	
2004	15				0,155 0,788	57.6 63.8	4	
							×	

,

PROJECT NUMBER: <u>6703180051</u> CLIENT: <u>Port of Corpus Christi Authority</u> SITE LOCATION: <u>Project Turnpike</u> SCIENTIST:			-	e LOCATION: DATE: DATE: DORDINATES: ACTUAL] -97,0	R SAMPLING PA ng Basin 2 FBJ sin 2019 sins 2 sins 2 n5537	RAMETERS	RIANCE TIME: RIANCE (ft.){a) +/- SEDIMENT (ft.) /. (MLLW) (ft.)	wood	
Time	Depth (ft.)	Temperature (°C)	Salinity (PP+)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
1008	5				0:173	284.9	FIDDA		
1009	10				0,070	304.8	L		
							-	<u>_</u>	
	<u>_</u>								
				_ /					
	-								
					1				

wood

SITE LOCATION:	Port of Corpus Chris		_	actual	- - -	VARIANCE TIME:		
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/t)	Velocity (m/s)	Direction	Ebb/Flow	Comments
3009	5				,065	140,3	EBB	
2010	10				,065 1336	140,3 39.3		
						<i>"</i>		
<u> </u>								
							-	

MB

(ACTUAL)

Z

Z

12014

-97.05650

84710

PROJECT NUMBER: 6703180051	SAMPLE LOCATION:
CLIENT: Port of Corpus Christi Authority	DATE:
SITE LOCATION: Project Turnpike	GPS COORDINATES:
SCIENTIST: AB ASM	(ACTUAL)

VARIANCE TIME:	
MLLW VARIANCE (ft.)(a)	+/
DEPTH TO SEDIMENT (ft.)	
SEDIMENT FLEV. (MILLW) (ft.)	

Time	Depth (ft.)	Temperature	Satinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1047 1047	5				0.456	10,9 21,7	Flood	
10471	10				0,367	H.J.		
	· · ·			·			-	
			·					

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

1

	IT: Port of Corpus Christi Au N: Project Turnpike				SAMPLING PAR 9 Basin 2019 27.84554 97.85548	VARIANCE MLLW VARIANCE DEPTH TO SEDIMEI SEDIMENT ELEV. (MLLY	(ft.)(a) <u>+/</u> NT (ft.)	wood	
Time	(ft.)	Temperature (°C)	Satinity (ppt)	Dissöftred Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flo <i>Gd</i>	Comments	
0911	5				0.128	3526.	Flood		
	10				0.360	26.6			
	15			0,298		40.9			
	30				0:767 88	32.6			
	25			0-108		25.7			
	30				0.163	145,4			
	35				0.133	234.0			
	40				0.158	281.4			
0914	45				0.317	9.5			
-									

PROJECT NUMBER: <u>6703180051</u> CLIENT: <u>Port of Corpus Christi Authority</u> SITE LOCATION: Project Turnpike SCIENTIST:			GPS C	LE LOCATION: TB1 DATE: 2111 DORDINATES: <u>37.244</u> (ACTUAL) <u>-97.05</u>	R SAMPLING PAF		ICE TIME:	
Time	Depth (ft.)	Temperature	Salinity (ppt)	Dissofted Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1956	5				.110	128.1	EBB	
	10				.080	28.9	1 I	
	15				, 070	38,9 37,7		
	20				8705,371	18.4		
	20 25 30 35				,072			
	30				, 360	33.7		
	35				,049	61,7		
	40				,103	42.5		
1959	45				.164	10.0		
			997 997 - 99					

wood.

PROJECT NUMBER: <u>6703180051</u> CLIENT: <u>Port of Corpus Christi Authority</u> SITE LOCATION: <u>Project Turnpike</u> SCIENTIST: <u>AG</u>			SAMPLE LOCATION: 640 DATE: 211 2019 GPS COORDINATES: 27,84794 (ACTUAL) - 97,05929			VARIANCE TIME:			
Time	Depth (ft.)	Temperature	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
1039	5				9.041	221.3	Flood		
	10				0.110	333,0			
	15				0,106	358,1			
	30				0,187	9.9			
1041	25				0.133	16.7	A		
		· · · · · · · · · · · · · · · · · · ·							
	~								

.

	-10
Sample Location:	tio-letofscm
GPS COORDINATES: {ACTUAL}	- 17.059.33

VARIANCE TIME:	
MLLW VARIANCE (ft.)(a)	+/-
DEPTH TO SEDIMENT (ft.)	
SEDIMENT ELEV. (MLLW) (ft.)	

Time	Depth (ft.)	Temperature	Salinity (ppt)	Dissofwed Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
0850 0800-19	5				0.151	130,0	EBB	
OKO2~D	310				0.117	14.3		
	15	·····			0,196	17.2		
	30				0.126	34,1		
	25				0:066	17.6		
0858	30				0,130	351.2	<u></u>	

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

PROJECT NUMBER: 6703180051

SITE LOCATION: Project Turnpike SCIENTIST:

CLIENT: Port of Corpus Christi Authority

				WATER SAMPLING PARAMETERS								
PROJECT NUMBER: <u>6703180051</u> CLIENT: <u>Port of Corpus Christi Authority</u> SITE LOCATION: <u>Project Turnpike</u> SCIENTIST: <u>AB+SM</u>			SAMPLE LOCATION: DATE: 2-7-19 GPS COORDINATES: 27.85055 (ACTUAL) - 97.06359									
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen	Velocity (m/s)	Direction	Ebb/Flow		Comments			
<u>1</u> 4B	5				0.256	102.3	Flogt	EBB				
· · ·												

and a second second

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

V	VC)(0	5.

				(L-12)					woo
PROJECT NUMBER: <u>6703180051</u> CLIENT: <u>Port of Corpus Christi Authority</u> SITE LOCATION: <u>Project Turnpike</u> SCIENTIST: <u>AB + 5</u> Depth Temperature			_	LOCATION: 12 DATE: 2-7-19 ORDINATES: 27. (ACTUAL) - 77.	Деер 84885 06048		MILW V DEPTH TO	VARIANCE TIME: ARIANCE (ft.){ə) +/-) SEDIMENT (ft.) EV. (MLLW) (ft.)	
Time	Depth (ft.)	Temperature	Salinity (ppt)	Dissolved Oxygen	Velocity (m/s)	Direction	Ebb/Flow	Comments	
1417	Ś				6,736	301.7	Flood		
	10				6.493 0.518	<u>314,5</u> 327,2			
1418	20 25				6 372	325,2			
					0,501				
			,						
		1						· · · · · · · · · · · · · · · · · · ·	

and the second second

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

in the second second

5

ι

3

WOC

PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST: A S S S S S S S S S S S S S S S S S S		_	SAMPLE LOCATION: V12 (L-12) DATE: 27.84935 (ACTUAL) -97.06102			VARIANCE TIME:			
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
0837	5				0,321	18.6	Ebb		
• /	10				0.465	14.3			
	15				0.391	263			
0838	20				0.330	27.2			
							<u> </u>		
					· · · · · · · · · · · · · · · · · · ·				
		1				1			

WOOd

SITE LOCATION:	6703180051 Port of Corpus Christ Project Turnpike SCM +		-	LOCATION: <u>1-1</u> DATE: <u>3-1</u> DRDINATES: <u>27.5</u> (ACTUAL) <u>-97.</u>	-19 2-4- 24432 26974	12	MLLW V DEPTH TO	VARIANCE TIME:
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (m f /L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
140		15.12	4199	865-	£m			5cm
1118	3.80	15.74	27.00	96.34				· · · · · · · · · · · · · · · · · · ·
1120	2.20	15.76	27.01 5	×33,38		-		
1122	2.80	15,74	27,00	81.03				
					cadings	invalid	recali	but UST
			4	T and in	ent back	to 1	1 to	retake rendings
1610	2.80	16.49	24.01	4.43	en voich		4 19	
1612	2.80	1659	23.67	4.39				
1614	2.80	16.62	23.81	4.92	<u> </u>	•		
				4,92				
		· · · · · · · · · · · · · · · · · · ·						
						V.m.,	-	
						<u>. </u>		
								· · · · · · · · · · · · · · · · · · ·

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

01/24/2019

-

.

wood

PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST: SCM + CAT				LOCATION: L-2 DATE: 2-5-) DRDINATES: 27.844 (ACTUAL) - 97.06	9 54 691		VARIAN MLLW VARIANO DEPTH TO SEDIM SEDIMENT ELEV. (MI	1ENT (ft.)
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1000	5.0	15.68	21,27	7.51				
1002	5	15.67	21,28	6.27				
1003	10	15.64	21,29	7,73				
1004	1C	15,64	21,28	7.79				
1006	15	15.63	21.28	7.69				
1007	15	15.68	21,29	7.68				
1007	20	15,71	21.34	7.33				
1010	20	15.81	21,36	7.65				
-								
			1					

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

wood.

PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST: SCM + CAT				ELOCATION: DATE: 2-5-1 DORDINATES: 27,84 (ACTUAL) - 97,064	9 455 24		VARIANCE TIME: MILW VARIANCE (ft.)(a) +/- DEPTH TO SEDIMENT (ft.) SEDIMENT ELEV. (MILW) (ft.)		
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
1045 1047 1047 1048	551010	16.46 16.41 16.05 16.03	20,11 19,96 21,44 21,44	6.46 5.78 6.23 6.26					

wood

PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST: SCM + CAT Depth Temperature			SAMPLE LOCATION: DATE: GPS COORDINATES: (ACTUAL) SCHOOL			-	VARIANCE TIME:		
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
1457	5	1691	17.21	5.80					
1458	5	16.94	17.02	5.78					
1 500	10	16.72	18,04	6.13					
1501	10	16,71	18.02	2+75.73					
1503	15	16.68	18,41	5.72 Scm					
1504	15	16,69	18,28	5.72					
1506	20	16.63	18, 19,13	5,70					
1597	20	16.61	5m 19.08	4.65					
1509	25	16:30	21.55	4.23					
1510	25	16.29	21,59	4,61		1			
	Plan								
	BSCM								
	-			-	_				
						1			

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

WOO

PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST: SCM+CAT Depth Temperature				elocation: $L-5$ date: $2-5-$ ordinates: 24.8 (actual) -97 ,	19 4707 05827		VARIANCE (MLLW VARIANCE (DEPTH TO SEDIMEN SEDIMENT ELEV. (MLLW	ft.)(a) +/
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1612	5	16.58	18,20	6.27				
1603	5	16:47	18,38	5,92				
605	10	16.24	20,98	5.89				
1606	10	[6:11	20.74	M	7			
1608	15	16:15	24.05	5.84				
1609	15	16.04	20.98	5.86				
1611	20	16.12	21.12	6,16				
1612	20	16.09	21.10	6.20				
		-						
_					-			

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

wood.

PROJECT NUMBER: $\underline{6703180051}$ CLIENT: <u>Port of Corpus Christi Authority</u> SITE LOCATION: <u>Project Turnpike</u> SCIENTIST: <u>SCIENTIST:</u> <u>SCIENTIST:</u> <u>Depth</u> Temperature Time (ft) (°C)		SAMPLE LOCATION: L-6 DATE: 2-6-19 GPS COORDINATES: 2724478 (ACTUAL) -97.05560			VARIANCE TIME: MLLW VARIANCE (ft.)(a) +/- DEPTH TO SEDIMENT (ft.) SEDIMENT ELEV. (MLLW) (ft.)			
	(ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
154)	5	16.88	16.21	5.85				
1542	5	16.87	16.22	6.20				
1544	ĪQ	16.83	16.48	5.84				
1545	10	16.82	16.42	5.89				
154 Bron	15	16.82	16.77	5.81				
1548	15	16.81	16.80	6.19				
1550	20	16.76	17.45	582				
1551	20	16.76	17.211	5.83				
1553 Son	25	16.75	17.60	6,17				
1554	<u>a5</u>	16.75	17.51	5.95				
1556	30	16.74	17.67	5.85				
1557	30	16.76	17:45	5.22				
								· ·
					-			

a see to be added by grant and an end of the total manufactor of the second state of the second state of the

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST: SCM + CAT Depth Temperature			-	LOCATION: DATE: ORDINATES: 77, 845 (ACTUAL) - 97, 0.55	7 <u>-4 - 19</u> 531 44	VARIANCE TIME: MLLW VARIANCE (ft.)(a) +/- DEPTH TO SEDIMENT (ft.) SEDIMENT ELEV. (MLLW) (ft.)			
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
1512	5	16.23	21.52	4,45					
1514 15 15	10	16.05 15.90	24,17	4,29 4.62					
1517,50	10	15.91	24.67	4.25					
1520,0	15	15.87	25.07	4,57					
						· · · · ·			
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				
					· · · · · · · · · · · · · · · · · · ·				

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

wood.

. س

-.7

and a second second

wood

CLIENT SITE LOCATION	PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Tumpike SCIENTIST: SCIENTIST: SCIENTIS		SAMPLE LOCATION: L-2 DATE: 2-4-19 GPS COORDINATES: 27.84708 (ACTUAL) - 97,05653			VARIANCE TIME:			
Time	Depth (ft.)	Temperature (°C) ·	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
1420	5	16.02	20.40	5,85 50 6.16					
1422	5	16.01	20:63	sorta 6.16					
1424	10	15,95	22.50	6.10					
1426	10	15.94	21,99	6.15					
1428	15	15,97	24.69	6,06					
430	15	15.96	23.25	6.085m		~			
								· · · · · · · · · · · · · · · · · · ·	
	-								
					··· =··········				

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

States.

wood

PROJECT NUMBER: <u>6703180051</u> CLIENT: <u>Port of Corpus Christi Authority</u> SITE LOCATION: <u>Project Turnpike</u> SCIENTIST: <u>SCM</u> + CAT			-	L-9 date: 2-6- ordinates: 27.8455 (actual) -97.0574		VARIANCE TIME:			
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	. Comments	
440	5	16.8 4	15,33	6.09					
1441	5	16.76	15,52	6.31					
1443	10	16.75	16.00	5.94					
1444	10	16.76	16.25	5.96					
1446	15	17.16.77	17.34	6.21					
1947	15	16.71	17.42	6.19					
1449	29	1678	17.26	5.89					
1450	20	16.78	17.57	6,17					
1452	25	16.86	17.69	6,15					
1453	25	16.86	17.68	6.01					
1455	30	16.82	17.73	5.72					
1456	30	16.76	17.92	6.19					
1458	35	16.73	17.95	5.93					
1459	35	16.73	17.95	5.90					
1501	ЙQ	16.72	18.00	6.19		1			
1502	40	16.72	17.96	5.13		,		· · · · · · · · · · · · · · · · · · ·	
+504	ЧŠ	- SCM	-					New Lead Line = 44,9-	
1505	45-	SCM						No need for 45 rending	

California and The State Balance and Alexandra and Alexand Tables

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

wood.

TimeDepth (t.)Temperature (p)Salinity (pp)Disolved Oxygen (m/L)Velocity (m/s)DirectionEbb/FlowComments 1350 516.86(5.38)6.09 1351 516.9115.376.02 1353 1016.8815.366.29 1354 1016.9015.326.01 1354 1516.8213.316.01 1354 1516.8115.335.92 1357 2.0,16.7915.466.31 1357 2.0,16.7116.746.03 1402 3516.6217.395.84 1403 3016.6817.395.84 1404 3016.6817.395.84 1405 3016.6817.395.84 1404 3016.6817.395.84 1405 3016.6817.395.84 1405 3016.6817.395.84 1405 3016.6817.3	SITE LOCATION:	6703180051 Port of Corpus Christ Project Tumpike	AT		L-LA DATE: 2-6-19 ORDINATES: 27.247 (ACTUAL) -97.25	193 138		MLLW V DEPTH T	VARIANCE TIME:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(ft.)	(°C)	(ppt)	(ml/L)	(m/s)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(5,38					Ţ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1351	5	16.91	15.37	\dot{c}				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1353				6.29	· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	16.90	15,32	6.06				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1356		16.82		6,01				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1357		16.81		4				.**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			16.79						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1400		16.19		6.31				
1405 39 16.68 18.24 5.94			16.81	16.30	621				
		25		1.60					
			16:68						
Image: state s	1406	30	16,68	17,29	5,84				
Image: selection of the									
· Image: Second sec									
	•								
							· · · · · · · · · · · · · · · · · · ·		
	<u> </u>						· · · · · · · · · · · · · · · · · · ·		
						·			
Rety.									

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

WOC

	T: Port of Corpus Chris I: Project Turnpike			LOCATION: DATE: 2-5-1 DATE: 27.8 (ACTUAL) -97.0	1 4906 6112	-		
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1346	5 5	35.7216.	1915.71	6.23				
1347	5	25.80 161	3 15,78	6,21				
1347	10 3	marta 16.59	16.07	6.17				
1350	10	16.62	16.17	5,78				
1352	15	16.73	16.23	6.20				
1353	15	16,72	16:22	6,11				
355	20	16.64	17.01	5.89				
1356	20	17.06	17,59	5.62				
358	25	16:12	18,91	5.65				
1359	25	1612	19.19	5.68				
_								
							-	

WOOd

PROJECT NUMBER: 6703180051 CLIENT: Port of Corpus Christi Authority SITE LOCATION: Project Turnpike SCIENTIST: SCM+CAT				ELOCATION: L-17 DATE: 214(ORDINATES: 27.80 (ACTUAL) -77.0	19	VARIANCE TIME: MILW VARIANCE (ft.)(a) +/- DEPTH TO SEDIMENT (ft.) SEDIMENT ELEV. (MLLW) (ft.)			
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments	
1346	5.0	16.33	20,44	4,66					
(348	5.0 5.0 5.0	16,30	20,28	4.22					
1350	5,0	16.26	20,22	4,64					
1									
-									
	-								
							+		
1									

wood.

	Port of Corpus Christ Project Turnpike			ELOCATION: DATE: 2-5-1 ORDINATES: 27.248 (ACTUAL) -97.062	3 74 74		VARIAN MLLW VARIAN DEPTH TO SEDIN SEDIMENT ELEV. (M	MENT (ft.)
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
220	5	16,98	16.46	6,11				
ATA	5	17.02	16.51	6,12				
123	10	17:59	4016 17.60	7.00				
22.24	10	17.62	17:67	7.01				
225	13	17.78	17.91	6.91				
227	15	17.73	17.84	6.99				
23.9	90	17.80	11.95	7.29				
230	20	17.78	17.92	6.99				
231	25	1100	17.99	6.95				
33 Sch	25	17.82	17,97	7.09				
20								
							-	
	_		-					

WOOD

SITE LOCATIO	R: <u>6703180051</u> T: <u>Port of Corpus Chris</u> N: <u>Project Turnpike</u> T: <i>GCM</i>	ti Authority + <u>C</u> AT		DATE: 2-5 DRDINATES: 27.8 (ACTUAL) -97.0	-19 4787 6194		VARIANCE MLLW VARIANCE (DEPTH TO SEDIMEN SEDIMENT ELEV. (MLLV	ft.)(a) +/
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1140 1141 1143 1144 1146 1147 1149 1150 1152 1153	5 5 10 10 15 15 15 20 20 25 25	16.92 16.92	16.71 16.73 16.73 16.73 16.73 16.71	5.18 5.18 5.18 5.18 5.18 5.18 5.79 7.36 7.05 7.38 7.04				

(a) MLLW variance taken from NOAA (National Oceanic and Atmospheric Administration) Tides and Currents; Port Aransas, TX, Station ID: 8775237

wood.

PROJECT NUMBER: <u>6703180051</u> CLIENT: <u>Port of Corpus Christi Authority</u> SITE LOCATION: <u>Project Turnpike</u> SCIENTIST: <u></u>			SAMPLE GPS COU	5	VARIANCE TIME: MLLW VARIANCE (ft.)(a) +/- DEPTH TO SEDIMENT (ft.) SEDIMENT ELEV. (MLLW) (ft.)			
Time	Depth (ft.)	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (ml/L)	Velocity (m/s)	Direction	Ebb/Flow	Comments
1745	E	1-7.88	1510	9781				
1245	5	11.00	15.68	402 d 6.	<u>xa</u>			÷
1276	5	17.62	15.71	7,30				
1248	10	17.52	1579	6.85				
1249	0	17,34	15,79	6.83				
1251	15	17.11	16.01	690				
1252	15	17.04	16.00	689				
1254	29	16.84	16.23	6.90				
1255	29	16.83	16.57	6.94				
1257	25	16.74	16.70	6.06			-	
1258	25	16.70	16.69	6.56				
1300	30	16.66	17.20	6.44				
1321 J3A150	30	16.66	17.21	6.15		-	ć	20 minutes last due to
13231303	35	16.63	17.45	629				YSI Malfunction
1324 204	35	16.63	17.63	6.28				
1326 1300	140	16.62	17.65	6.32				
1327 1309	40	16.60	17.78	6.01				
1329 1309	45	16.61	18.04	6.30				
1.330 30	45	16.60	18.04	6,30				
13321212	50	16.62	18.07	6.44				· · · · · · · · · · · · · · · · · · ·
1333	50	16.62	1806	6.19		1. N		
SCM	١			,				

	ten	ION SHEE	T			NOOd.
Project Name:	1 1	Urnpika	A 		Project Number:	6703180051.0002
					Date.	
6(N)	Nuality Meter Y5I 692			_ _	Serial Number:	07F100587
Calibration (as necessary, minimu	ım twice pe	r day):	· · · · · · · · · · · · · · · · · · ·			
Calibration #1 Calibration Standard: Instrument Reading:	pH 40	Cond. 1,415	Jarb.	DO 	QRP 200/300	Time: <u>0825</u>
Calibration (as necessary, minimu		r day):				
Calibration #2 Calibration Standard: Instrument Reading:				DO 	ORP 200-300	Time:
Calibration (as necessary, minimu						
Calibration #3	pH	Cond.	Turb.	DO	ORP	Time:
Calibration Standard: Instrument Reading:					200-300	* <u>-</u>
Calibration (as necessary, minimu						
Calibration #4 Calibration Standard:	•		Turb. 0.0	DO	ORP 200-300	Time:
Instrument Reading:						
Date of Last Calibration:	instrument	s: 5	m Nel	G	Date(s) In	strument Used:
Calibration Standards Used: (1) <u>1.4/3 m5/</u>	Cm (Eanduda	ACR	Standa	u-d	
(2) (3)				·		
(4)	Δ.	D) C	21 11	orts (Pin	
Source of Calibration Standards: Miscellaneous Comments:	July	a fnoe	m _{tx} = Se	iontit	icm . C	((5))
					٩~ ٨	
:\6706\2018 Wood Field Forms\U-22 Instrume	nt Calibration.	doc	Cali	ibrated by:	- Amul	CALVE (XO -)

1944 - 19

 ${}^{\theta} \cdot {}_{\eta}$

(

(

(i

1

FIELD INSTRU	•		TION SHEE	т			wood.	
Project Name:	<u>l'ioje</u>	Project Turpike				Project Number: Date:	6703180051,000. 2-5-19	
	·							
Equipment Type:	Water Q	uality Mete	ər					
Manufacturer:	Honba-	<u> 45</u>]					NTEINDEDY	
Model Number:		69	20			Serial Number:	Q7F100587	
Calibration (as nec	essary, minimu	m twice pe	er day):				0.2 C F	
Calibration #1		pH	Cond.	Ţurb.	DO ·	ORP	Time: 0755	
Calibrat	tion Standard:	4.0	4.49	0.0	 htm	200-300		
Instrun	nent Reading:		1.391					
Calibration (as nec	essary, minimu	m twice pe	er day):		<u></u>			
Calibration #2		pН	Cond.	Turb.	DO	ORP	Time:	
Calibrat	tion Standard:	4.0	4.49	0.0		200-300		
Instrun	nent Reading:							
Calibration (as nec	essary, minimu	m twice pe	r day):			· · · · · · · · · · · · · · · · · · ·		
Calibration #3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	рН	Cond.	Turb.	DO	ORP	Time:	
Calibrat	tion Standard:	4.0	4.49	0.0		200-300		
Instrun	nent Reading:				· · · · · · · · · · · ·			
Calibration (as nec	essary, minimu	m twice pe	r day):					
Calibration #4		pН	Cond.	Turb.	DO	ORP	Time:	
Calibrat	ti o n Standard:	4.0	4.49	0.0		200-300		
Instrun	nent Reading:			<u>.</u>				
Date of Last Calibra	ation:	-거 -	18			Date(s) li	nstrument Used: 2-5-19	
Name of person(s)	who calibrated	instrument	ts: Stan	nd C	<u> . l</u>	WEAN		
Calibration Standar	(¹)	<u> </u>			<1			
(1) 413	JN9/CM	<u> </u>	Conduct.	Ince	Plane	Amp		
(2)						_ /		
(3)								
(4)							\`	
(4)	n Standardou *	AAIAA	Nh n an' V	50	à.1.1	· (Pine	,)	
	monter	The second	AN UCAILY		· M! !		2.)	
Miscellaneous Com		V						
<u> </u>						Gen	Smil & Mora	
				Cal	ibrated by:		AVVVY LYES / VEA	

1

(

.

FIELD INSTRU Project Name:	ment cal Prajec	*	ION SHEET	0			WOC er: <u>6703 /</u> te: <u>2-6-1</u>)d. 80051.000- 9
Equipment Type: Manufacturer: Model Number:		ality Mete 5 J 7 2 O				Serial Numb	er: <u>aifa</u>	223
	essary, minimum on Standard: _ ent Reading: _	øH	r day): Cond. <i>Milen</i> 1.913 4.49 1.911	Tefb. 9.0	DO 3.45	QRP 200-300	Time:	0755
	on Standard:	рН 4.0	Cond.			ORP 200-300	Time:	
	on Standard:	рН 4.0	Cond.	0.0		ORP 200-300	Time:	
	on Standard:	рН 4.0				ORP 200-300	Time:	
(2)	who calibrated in the Used: 3 MJ/CM	nstrument	s: <u>Same</u> Conduzianc		57 an Jai	<u>Can</u>	s) Instrument Used:	2-6-19
(4) Source of Calibratio Miscellaneous Com Serial	ments: Li Jiffere	٨	naphaenix. Set Char Erial #	J	int (- D . I	is day, Mar	hence

Q:\6706\2018 Wood Field Forms\U-22 Instrument Calibration.doc

ĺ

(

(ţ

Corpus Christi Field Form – Plankton Sampling

9,481 Courts

Project Information

Sample ID: P-	Collection Date: 4Feb 2019
Sampling Method: planithon tow bit ster 15;	Collection Time: 1035 an
Client: Porto Carpus Christ	Field Team: Carl Teinerf, Senate Daverport, Naisman Marthe
Location: Port Aransas, TX -	Weather: Doudy

	Operational Data	
Tow location (CIRCLE ONE): SURFACE MIDI	Staff BOTTOM Other: oblique	
Depth (ft) Ind	Depth (m): Ind	
Sample Start Time: 9:57 amor pm	Sample Stop Time: 0:07	amor pm
Start Flow Meter Reading: 1583	Stop Flow Meter Reading: 16447	
Effort (seconds): 600 speards	Waypoint ID: WPT N/A	In I
GPS Location: Longitude	North Latitude: See back of	West

Comments (observations, etc) Distance $(m) = \frac{16447}{16447}$ 1×20,273 = 399.44 m

Speed (ands)	= 399.444×100 = 66.57 on/s
Volume (m?)= 3,14159×.25°×399.44= 78.43 m3

Signature:		Date:		Page of	-
Data form QA'd	by	Data entered in db	by	Data entry QA [*] d	by
Date	Initials	Date	Initials	Date	Initials

Corpus Christi Field Form – Plankton Sampling

Project Information

Sample ID: P-Z	Collection Date: 6 Feb 2019
Sampling Method: plantaubh 122	Collection Time: 122/200
Client: POA of Corpus Christi	Field Team: Cast Toiner, Senite Davenport, San Marcon
Location: Port Aransas, TX	Weather: <u>cloudy</u>

Operational Data						
Tow location (CIRCLE ONE): SURFACE MIDI	DLE BOTTOM Other: Obligue					
Depth (ft) End (04	Depth (m): End					
Sample Start Time: 10 54 am or pm	Sample Stop Time: 1103	_am or pm				
Start Flow Meter Reading: 17593	Stop Flow Meter Reading:					
Effort (seconds): 540	Waypoint ID: WPT_NA					
GPS Location: Longitude See boat 109	North Latitude: the both log	West				

Signature:		Date:		Page of	
Data form QA'd	by	Data entered in db Date	by Initials	Data entry QA'd	by Initials

Corpus Christi, TX Benthic Samples										
	6703180051	Collection Time	Samplers: P/A Seagrass & Oysters	Ashty Borrand, Carl TpineA, San Maron, Jenship Davenport Comments						
Sample ID	Sample Date	11:38am	Absent	saint, little chell hach						
L-2	STEG 2019	10:15an	Present	- Haldule + ny bit - finemulicla						
L-3	STED 2019	10:53am	Absent	Shill hash, sand						
L-4	STEB 2019	15:18	Absent	Clay, shell hash						
L-5	STED 2019	16:12	Abont	Sand						
L-6	6 Feb adg	16:05	Albert	shall hash, Dispedratubes						
L-7	4 Feb 2019	15:20	Abseit	fine sand, very small simple						
L-8	47662019	14:33	Absent	fine sand very small sample						
L-9	6 Feb 2019	15:00	Absert	Sand, shall hash						
L-10	6 Feb 2019	13:55	Absent	diad Haldale, five sand much						
L-11	STeb 2019	13:57	Absent	shell hash, fire sand						
L-12	4 Feb 2019	13:15	Abbert	fine sand, larger shell hash						
L-13	STEB 2019	12.741	Present - 1 Pager	station rocks, shell hash, five sand						
L-14	ST-66 2019	12:00	Absent	mud, shall hash, I dead aver, rla						
L-15	6Feb 2019	12:55	Present-Ipier	e of Haladule, mud, fine sand						

Thalassia testadinum = turille grass

Ruppia

Syringedium filiforme = manate Spaghetti USU. WHI halasin

shoul gram Habodule -flat, tiny Skimuy

= Lideron

Flowmeter Model General Oceanics, Mechanical Flowmeter, Model #2030R Rotor Constant 26873

Station ID	Date	Time	Tech(s) JSD, CT,	Mesh Size, microns	Opening Diameter, cm	Initial Time	Final Time	Elapsed Time, min	Initial Count, Flowmeter
P-1	2/6/2019	10:35	SM, AB JSD, CT,	333	50	9:57	10:07	0:10	1583
P-2	2/6/2019	11:22		333	50	10:54	11:03	0:09	17593

Final Count, Flowmeter	Turns	Distance, m	Speed, cm/sec	Volume, cubic meters
16447	14864	399.44	66.57	78.43
29317	11724	315.06	58.34	61.86

ATTACHMENT 3 LABORATORY REPORTS

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

February 27, 2019

Carl Teinert Wood Environment & Infrastructure Solutions 3755 S. Capital of Texas Highway Ste. 375 Austin, TX 78704

Work Order: HS19020370

Laboratory Results for: PCCA Turnpike 6703180051

Dear Carl,

ALS Environmental received 14 sample(s) on Feb 07, 2019 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Generated By: JUMOKE.LAWAL Dane J. Wacasey

Page 1 of 73

SAMPLE SUMMARY

Client:Wood Environment & Infrastructure SolutionsProject:PCCA Turnpike 6703180051Work Order:HS19020370

Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS19020370-01	L-1	Sediment		04-Feb-2019 11:55	07-Feb-2019 07:30	
HS19020370-02	L-2	Sediment		05-Feb-2019 10:15	07-Feb-2019 07:30	
HS19020370-03	L-3	Sediment		05-Feb-2019 10:55	07-Feb-2019 07:30	
HS19020370-04	L-4	Sediment		05-Feb-2019 15:15	07-Feb-2019 07:30	
HS19020370-05	L-5	Sediment		05-Feb-2019 16:20	07-Feb-2019 07:30	
HS19020370-06	L-7	Sediment		04-Feb-2019 15:30	07-Feb-2019 07:30	
HS19020370-07	L-8	Sediment		04-Feb-2019 14:40	07-Feb-2019 07:30	
HS19020370-08	L-9	Sediment		06-Feb-2019 15:05	07-Feb-2019 07:30	
HS19020370-09	L-10	Sediment		06-Feb-2019 14:07	07-Feb-2019 07:30	
HS19020370-10	L-11	Sediment		05-Feb-2019 14:00	07-Feb-2019 07:30	
HS19020370-11	L-12	Sediment		04-Feb-2019 13:25	07-Feb-2019 07:30	
HS19020370-12	L-13	Sediment		05-Feb-2019 12:51	07-Feb-2019 07:30	
HS19020370-13	L-14	Sediment		05-Feb-2019 12:00	07-Feb-2019 07:30	
HS19020370-14	L-15	Sediment		06-Feb-2019 13:05	07-Feb-2019 07:30	

Page 2 of 73

RIGHT SOLUTIONS | RIGHT PARTNER

Client:Wood Environment & Infrastructure SolutionsProject:PCCA Turnpike 6703180051Work Order:HS19020370

CASE NARRATIVE

Work Order Comments

• The analysis for Grain Size was subcontracted to Tolunay-Wong Engineers in Houston, TX. Final report attached.

WetChemistry by Method SW9060

Batch ID: 137969

Sample ID: L-2 (HS19020370-02MS)

• The recovery of the Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) associated with this analyte was outside of the established control limits. However, the LCS was within control limits. The recovery of the MS/MSD may be due to sample matrix interference. (Total Organic Carbon)

Sample ID: L-2 (HS19020370-02MSD)

• The recovery of the Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) associated with this analyte was outside of the established control limits. However, the LCS was within control limits. The recovery of the MS/MSD may be due to sample matrix interference. (Total Organic Carbon)

Client:	Wood Environ	Wood Environment & Infrastructure Solutions			ANALYTICAL REPORT			
Project:	PCCA Turnpik	PCCA Turnpike 6703180051			WorkOrder:HS19020370			
Sample ID:	L-1				Lab ID:HS19020370-01			
Collection Date:	04-Feb-2019 1	1:55			Matrix:Sediment			
ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED	
TOTAL ORGANIC CARB	ON BY SW9060A	Method:	SW9060		Prep:SW9060 /	21-Feb-2019	Analyst: KMU	
Total Organic Carbon	0.0630		0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30	
SUBCONTRACT ANALY	SIS - GRAIN SIZE	Metho	d:NA				Analyst: SUB	
Subcontract Analysis	See Attached		0		NA	1	27-Feb-2019 15:39	

Client:	Wood Environment	& Infrastructure Sol	utions		ANALYT	ICAL REPORT		
Project:	PCCA Turnpike 670	PCCA Turnpike 6703180051			WorkOrder:HS19020370			
Sample ID:	L-2			Lab ID:HS19020370-02				
Collection Date:	05-Feb-2019 10:15		Matrix:Sediment			nent		
ANALYSES	RESULT QUAL	. SDL	MQL	UNITS	DILUTION	DATE ANALYZED		
TOTAL ORGANIC CARB	ON BY SW9060A Metho	od:SW9060		Prep:SW9060 /	21-Feb-2019	Analyst: KMU		
Total Organic Carbon	0.475	0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30		
SUBCONTRACT ANALYS	SIS - GRAIN SIZE Me	ethod:NA				Analyst: SUB		
Subcontract Analysis	See Attached	0		NA	1	27-Feb-2019 15:39		

Client:	Wood Environment & Infrastructure Solutions PCCA Turnpike 6703180051 L-3			ANALYTICAL REPORT WorkOrder:HS19020370 Lab ID:HS19020370-03			
Project:							
Sample ID:							
Collection Date:	on Date: 05-Feb-2019 10:55			Matrix:Sediment			
ANALYSES	RESULT QI	JAL SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED	
TOTAL ORGANIC CARBO	ON BY SW9060A M	ethod:SW9060		Prep:SW9060 /	21-Feb-2019	Analyst: KMU	
Total Organic Carbon	0.407	0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30	
SUBCONTRACT ANALYSIS - GRAIN SIZE		Method:NA				Analyst: SUB	
Subcontract Analysis	See Attached	0		NA	1	27-Feb-2019 15:39	

Client:	Wood Environment & Infrastructure Solutions PCCA Turnpike 6703180051			utions	ANALYTICAL REPORT WorkOrder:HS19020370			
Project:								
Sample ID:	L-4				Lab ID:HS19020370-04			
Collection Date:	05-Feb-2019 15:15				Matrix:Sediment			
ANALYSES	RESULT Q	UAL SI)L	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED	
TOTAL ORGANIC CARBON BY SW9060A Method:SW9060					Prep:SW9060 / 21-Feb-2019 Analy		Analyst: KMU	
Total Organic Carbon	0.319	0.06	00	0.0600	wt%-dry	1	23-Feb-2019 10:30	
SUBCONTRACT ANALYS	Method:NA					Analyst: SUB		
Subcontract Analysis	See Attached		0		NA	1	27-Feb-2019 15:39	

Subcontract Analysis

27-Feb-2019 15:39

Client:	Wood Environment & Infrastructure Solutions				ANALYTICAL REPORT			
Project:	PCCA Turnpil	PCCA Turnpike 6703180051			WorkOrder:HS19020370			
Sample ID:	L-5		Lab ID:HS19020370-05					
Collection Date:	05-Feb-2019			Matrix:Sediment				
ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED	
TOTAL ORGANIC CARB		Prep:SW9060 /	21-Feb-2019	Analyst: KMU				
Total Organic Carbon	U		0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30	
SUBCONTRACT ANALY	SIS - GRAIN SIZE	Meth	od:NA				Analyst: SUB	

NA

1

0

See Attached

Subcontract Analysis

27-Feb-2019 15:39

Client:	Wood Environ	nfrastructure	ANALYTICAL REPORT					
Project:	PCCA Turnpike 6703180051				WorkOrder:HS19020370			
Sample ID:	L-7				Lab ID:HS19020370-06			
Collection Date:	04-Feb-2019 15:30				Matrix:Sediment			
ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED	
TOTAL ORGANIC CARB		Prep:SW9060 /	21-Feb-2019	Analyst: KMU				
Total Organic Carbon	U		0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30	
SUBCONTRACT ANALYSIS - GRAIN SIZE Method:NA						Analyst: SUB		

NA

1

0

See Attached

Subcontract Analysis

27-Feb-2019 15:39

Client:	Wood Environ	ment &	Infrastructure	Solutions	ANALYTICAL REPORT			
Project:	PCCA Turnpik	e 6703 ²	180051		WorkOrder:HS19020370			
Sample ID:	L-8				Lab ID:HS19020370-07			
Collection Date:	04-Feb-2019 1	14:40			Matrix:Sediment			
ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED	
TOTAL ORGANIC CARB	ON BY SW9060A	Method	:SW9060		Prep:SW9060 /	21-Feb-2019	Analyst: KMU	
Total Organic Carbon	U		0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30	
SUBCONTRACT ANALY	SIS - GRAIN SIZE	Meth	od:NA				Analyst: SUB	

NA

1

0

See Attached

ALS Houston, US					Date: 27-Feb-19				
Client:	Wood Environ	ment & I	nfrastructure S	olutions		ANALYT	ICAL REPORT		
Project:	PCCA Turnpik	e 67031	80051		WorkOrder:HS19020370				
Sample ID:	L-9				La	b ID:HS19	9020370-08		
Collection Date:	06-Feb-2019 1	5:05			Matrix:Sediment				
ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR			
TOTAL ORGANIC CARB	ON BY SW9060A	Method	SW9060		Prep:SW9060 /	21-Feb-2019	Analyst: KMU		
Total Organic Carbon	U		0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30		
SUBCONTRACT ANALY	SIS - GRAIN SIZE	Meth	od:NA				Analyst: SUB		
Subcontract Analysis	See Attached		0		NA	1	27-Feb-2019 15:39		

Client:	Wood Environme	nt & Infrastructure Sol	utions	ANALYTICAL REPORT				
Project:	PCCA Turnpike 6	703180051		WorkOrder:HS19020370				
Sample ID:	L-10			Lab ID:HS19020370-09				
Collection Date:	06-Feb-2019 14:0)7		Matrix:Sediment				
ANALYSES	RESULT QU	JAL SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED		
TOTAL ORGANIC CARB	ON BY SW9060A M	ethod:SW9060		Prep:SW9060 /	21-Feb-2019	Analyst: KMU		
Total Organic Carbon	0.0670	0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30		
SUBCONTRACT ANALY	SIS - GRAIN SIZE	Method:NA				Analyst: SUB		
Subcontract Analysis	See Attached	0		NA	1	27-Feb-2019 15:39		

Client:	Wood Environment	& Infrastructure Sol	utions	ANALYTICAL REPORT				
Project:	PCCA Turnpike 670	3180051		WorkOrder:HS19020370				
Sample ID:	L-11			Lab ID:HS19020370-10				
Collection Date:	05-Feb-2019 14:00			Matrix:Sediment				
ANALYSES	RESULT QUA	_ SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED		
TOTAL ORGANIC CARBO	ON BY SW9060A Meth	od:SW9060		Prep:SW9060 /	21-Feb-2019	Analyst: KMU		
Total Organic Carbon	0.515	0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30		
SUBCONTRACT ANALYS	SIS - GRAIN SIZE M	ethod:NA				Analyst: SUB		
Subcontract Analysis	See Attached	0		NA	1	27-Feb-2019 15:39		

Client:	Wood Environment	& Infrastructure Sol	utions	ANALYTICAL REPORT				
Project:	PCCA Turnpike 670	3180051		WorkOrder:HS19020370				
Sample ID:	L-12			Lab ID:HS19020370-11				
Collection Date:	04-Feb-2019 13:25		Matrix:Sediment					
ANALYSES	RESULT QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED		
TOTAL ORGANIC CARBO	ON BY SW9060A Meth	od:SW9060		Prep:SW9060 / 21-Feb-2019 Ana				
Total Organic Carbon	0.161	0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30		
SUBCONTRACT ANALYS	SIS - GRAIN SIZE Me				Analyst: SUB			
Subcontract Analysis	See Attached	0		NA	1	27-Feb-2019 15:39		

Client:	Wood Environm	nent & Inf	rastructure So	olutions	ANALYTICAL REPORT				
Project:	PCCA Turnpike	6703180	051		WorkOrder:HS19020370				
Sample ID:	L-13				Lab ID:HS19020370-12				
Collection Date:	05-Feb-2019 12	2:51			Ma	atrix:Sedir	nent		
ANALYSES	RESULT (QUAL	SDL	MQL	UNITS	DILUTION	DATE ANALYZED		
TOTAL ORGANIC CARB	ON BY SW9060A	Method:SV	V9060		Prep:SW9060 /	21-Feb-2019	Analyst: KMU		
Total Organic Carbon	0.494		0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30		
SUBCONTRACT ANALY	SIS - GRAIN SIZE	Method:	NA				Analyst: SUB		
Subcontract Analysis	See Attached		0		NA	1	27-Feb-2019 15:39		

Client:	Wood Environment	& Infrastructure Sol	utions	ANALYTICAL REPORT				
Project:	PCCA Turnpike 67	03180051		WorkOrder:HS19020370				
Sample ID:	L-14			Lab ID:HS19020370-13				
Collection Date:	05-Feb-2019 12:00			Matrix:Sediment				
ANALYSES	RESULT QUA	L SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED		
TOTAL ORGANIC CARBO	ON BY SW9060A Met	hod:SW9060		Prep:SW9060 /	21-Feb-2019	Analyst: KMU		
Total Organic Carbon	0.264	0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30		
SUBCONTRACT ANALYS	SIS - GRAIN SIZE M	lethod:NA				Analyst: SUB		
Subcontract Analysis	See Attached	0		NA	1	27-Feb-2019 15:39		

Client:	Wood Environment & Ir	frastructure Solu	utions	ANALYTICAL REF			
Project:	PCCA Turnpike 670318	80051		WorkOrder:HS19020370			
Sample ID:	L-15			La	ab ID:HS190	20370-14	
Collection Date:	06-Feb-2019 13:05			Matrix:Sediment			
ANALYSES	RESULT QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED	
TOTAL ORGANIC CARB	ON BY SW9060A Method:S	SW9060		Prep:SW9060	/ 21-Feb-2019	Analyst [.] KMU	

TOTAL ORGANIC CARBON BT	SW9000A Metho	54.5449000		Fiep.31/30007	21-160-2019	Analyst. Rivio
Total Organic Carbon	U	0.0600	0.0600	wt%-dry	1	23-Feb-2019 10:30
SUBCONTRACT ANALYSIS - G	RAIN SIZE Me	thod:NA				Analyst: SUB
Subcontract Analysis	See Attached	0		NA	1	27-Feb-2019 15:39

WEIGHT LOG

Client:Wood Environment & Infrastructure SolutionsProject:PCCA Turnpike 6703180051

WorkOrder: HS19020370

Batch ID: 137969	Method:	TOTAL SW9060	ORGANIC CA)A	ARBON BY	Prep: TOC_SOLID_PR
SampID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS19020370-01	1	0.5	0.5 (mL)	1	
HS19020370-02	1	0.5	0.5 (mL)	1	
HS19020370-03	1	0.5	0.5 (mL)	1	
HS19020370-04	1	0.5	0.5 (mL)	1	
HS19020370-05	1	0.5	0.5 (mL)	1	
HS19020370-06	1	0.5	0.5 (mL)	1	
HS19020370-07	1	0.5	0.5 (mL)	1	
HS19020370-08	1	0.5	0.5 (mL)	1	
HS19020370-09	1	0.5	0.5 (mL)	1	
HS19020370-10	1	0.5	0.5 (mL)	1	
HS19020370-11	1	0.5	0.5 (mL)	1	
HS19020370-12	1	0.5	0.5 (mL)	1	
HS19020370-13	1	0.5	0.5 (mL)	1	
HS19020370-14	1	0.5	0.5 (mL)	1	

Client:Wood Environment & Infrastructure SolutionsProject:PCCA Turnpike 6703180051WorkOrder:HS19020370

Sample ID	Client Sam	p ID Collection Date	TCLP Date	Prep Date	Analysis Date	DF
Batch ID 13796	9	Test Name : TOTAL ORGANIC CARB	ON BY SW9060A	Matrix: S	Sediment	
HS19020370-01	L-1	04 Feb 2019 11:55		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-02	L-2	05 Feb 2019 10:15		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-03	L-3	05 Feb 2019 10:55		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-04	L-4	05 Feb 2019 15:15		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-05	L-5	05 Feb 2019 16:20		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-06	L-7	04 Feb 2019 15:30		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-07	L-8	04 Feb 2019 14:40		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-08	L-9	06 Feb 2019 15:05		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-09	L-10	06 Feb 2019 14:07		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-10	L-11	05 Feb 2019 14:00		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-11	L-12	04 Feb 2019 13:25		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-12	L-13	05 Feb 2019 12:51		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-13	L-14	05 Feb 2019 12:00		21 Feb 2019 16:20	23 Feb 2019 10:30	1
HS19020370-14	L-15	06 Feb 2019 13:05		21 Feb 2019 16:20	23 Feb 2019 10:30	1
Batch ID R3336	355	Test Name : SUBCONTRACT ANALY	SIS - GRAIN SIZE	Matrix: S	Sediment	
HS19020370-01	L-1	04 Feb 2019 11:55			27 Feb 2019 15:39	1
HS19020370-02	L-2	05 Feb 2019 10:15			27 Feb 2019 15:39	1
HS19020370-03	L-3	05 Feb 2019 10:55			27 Feb 2019 15:39	1
HS19020370-04	L-4	05 Feb 2019 15:15			27 Feb 2019 15:39	1
HS19020370-05	L-5	05 Feb 2019 16:20			27 Feb 2019 15:39	1
HS19020370-06	L-7	04 Feb 2019 15:30			27 Feb 2019 15:39	1
HS19020370-07	L-8	04 Feb 2019 14:40			27 Feb 2019 15:39	1
HS19020370-08	L-9	06 Feb 2019 15:05			27 Feb 2019 15:39	1
HS19020370-09	L-10	06 Feb 2019 14:07			27 Feb 2019 15:39	1
HS19020370-10	L-11	05 Feb 2019 14:00			27 Feb 2019 15:39	1
HS19020370-11	L-12	04 Feb 2019 13:25			27 Feb 2019 15:39	1
HS19020370-12	L-13	05 Feb 2019 12:51			27 Feb 2019 15:39	1
HS19020370-13	L-14	05 Feb 2019 12:00			27 Feb 2019 15:39	1
HS19020370-14	L-15	06 Feb 2019 13:05			27 Feb 2019 15:39	1

Date: 27-Feb-19

DATES REPORT

Client:Wood Environment & Infrastructure SolutionsProject:PCCA Turnpike 6703180051WorkOrder:HS19020370

QC BATCH REPORT

Batch ID:	13796	9		Instrume	nt:	ТОС_03		Metho	od: SW906	0		
MBLK		Sample ID:	MBLK-137969			Units:	wt%-dry	Ana	alysis Date:	23-Feb-2019	10:30	
Client ID:				Run ID: 1	OC_0	3_33387	SeqNo:	4961530	PrepDate:	21-Feb-2019	DF: 1	
Analyte			Result	M	QL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Total Organ	nic Carb	on	U	0.06	00							
LCS		Sample ID:	LCS-137969			Units:	wt%-dry	Ana	alysis Date:	23-Feb-2019	10:30	
Client ID:				Run ID: 1	OC_0	3_33387	SeqNo:	4961529	PrepDate:	21-Feb-2019	DF: 1	
Analyte			Result	M	QL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Total Orgar	nic Carb	on	29	0.06	00	30	0	96.6	80 - 120			
MS		Sample ID:	HS19020370-02	MS		Units:	wt%-dry	Ana	alysis Date:	23-Feb-2019	10:30	
Client ID:	L-2			Run ID: 1	OC_0	3_33387	SeqNo:	4961527	PrepDate:	21-Feb-2019	DF: 1	
Analyte			Result	М	QL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Total Organ	nic Carb	on	7.866	0.06	00	10	0.475	73.9	80 - 120			ç
MSD		Sample ID:	HS19020370-02	MSD		Units:	wt%-dry	Ana	alysis Date:	23-Feb-2019	10:30	
Client ID:	L-2			Run ID: 1	OC_0	3_33387	SeqNo:	4961528	PrepDate:	21-Feb-2019	DF: 1	
Analyte			Result	M	QL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Total Organ	nic Carb	on	7.523	0.06	00	10	0.475	70.5	80 - 120	7.866	4.46 20	ç
The following	g sample	es were analyze	HS	519020370-0 519020370-0 519020370-0 519020370-0 519020370-1	5 9	HS1902037 HS1902037 HS1902037 HS1902037	70-06 70-10	HS190203 HS190203 HS190203	70-07	HS19020370- HS19020370- HS19020370-	-08	

Page 20 of 73

Client: Project: WorkOrder:	Wood Environment & Infrastructure Solutions PCCA Turnpike 6703180051 HS19020370	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
B	Analyte detected in the associated Method Blank above the Reporting Limit	
E	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
М	Manually integrated, see raw data for justification	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL/SDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	
Unit Reported	Description	

Unit Reported Description

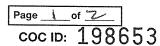
Date

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	88-0356	27-Mar-2019
Texas	T10470231-18-21	30-Apr-2019
North Dakota	R193 2018-2019	30-Apr-2019
Illinois	004438	29-Jun-2019
Louisiana	03087	30-Jun-2019
Dept of Defense	ANAB L2231	20-Dec-2021
Kentucky	123043 - 2018	30-Apr-2019
Kansas	E-10352 2018-2019	31-Jul-2019
Oklahoma	2018-156	31-Aug-2019
North Carolina	624-2019	31-Dec-2019
California	2919, 2018-2019	30-Apr-2019
Maryland	343, 2018-2019	30-Jun-2019

					Sample Receipt Checklist
Client Name: Wood	Austin		Date/	Time Received:	<u>07-Feb-2019 07:30</u>
Work Order: HS190	020370		Recei	ved by:	DDG
Checklist completed by	^{r:} <u>Raegen Giga</u> eSignature	7-Feb-2019 Date	Reviewed by:	Dane J. Wa eSignature	acasey 8-Feb-2019 Date
Matrices: <u>S</u>	<u>ediment</u>		Carrier name:	Greyhound	l
Custody seals intact or VOA/TX1005/TX1006 Chain of custody prese Chain of custody signe Samplers name preser Chain of custody agree Samples in proper cont Sample containers inta Sufficient sample volum All samples received w	n shipping container/cooler? n sample bottles? Solids in hermetically sealed via ent? ed when relinquished and receiv nt on COC? es with sample labels? tainer/bottle? net? me for indicated test?		Yes V Yes V	No No No No No No No No No No	Not Present Not Present Not Present Not Present 1 Page(s) COC IDs:198653/198652
Temperature(s)/Therm	ometer(s):		0.2c/0.5c - 0.5c/0.		c/c IR 25
Cooler(s)/Kit(s):			4417/23954/43777	7	
Date/Time sample(s) s Water - VOA vials have Water - pH acceptable pH adjusted? pH adjusted by: Login Notes:	e zero headspace?		02/07/2019 17:46 Yes Yes Yes	No No No	No VOA vials submitted N/A N/A
Client Contacted:	Γ	Date Contacted:		Person Con	tacted:
Contacted By:	F	Regarding:			
Comments:					
Corrective Action:					

Page 23 of 73



Cincinnati, OH +1 513 733 5336

Everett, WA +1 425 356 2600 +1 970 490 1511 Holland, MI +1 616 399 6070

Fort Collins, CO

Chain of Custody Form

Spring City, PA +1 610 948 4903 Houston, TX +1 281 530 5656 Middletown, PA Salt Lake City, UT

+1 801 266 7700

+1 717 944 5541

South Charleston, WV +1 304 356 3168

York, PA +1 717 505 5280

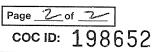
						t Manager:	anager: ALS Work Order #:											
		Customer Information		Pr	Project Information		ļ	Parameter/Method Request for Analysis										
Purchase Order 6703180051.0003		Project N	Project Name PCCA Turnpike 6703180051 A		A	TOC_S (9060 TOC)												
	Work Order		Project Nu	mber 6	703180051.000	3		в	SUB_G	RAIN	SIZE (ASTM	D422	Grain	Size (Sub T	WE))	
Co	mpany Name	Wood Environment & Infrastructure	Bill To Com	ipany V	Vood Environme	ent & Infra	structure	С							······			
S	end Report To	Carl Teinert	Invoice	Attn C	Carl Teinert			D	-		Ŀ	1010	2020	1270	 }			
Address 3755 S. Capital of Texas Highway Ste. 375		Ado	Address		E F	no 19020370												
(City/State/Zip	Austin, TX 78704	City/State	e/Zip A	wstin TX 78704	ļ		G										
	Phone	(512) 795-0360	P	hone (§	512) 795-0360			H										
	Fax	(512) 795-8423		Fax (§	512) 795-8423			1										
e-	Mail Address	carl.teinert@woodplc.com	e-Mail Add	dress Ca	arl.teinert@woo	dplc.com		J										
No.		Sample Description	Date	Time	Matrix	Pres.	# Bottles	A	В	С	D	E	F	G	H	I	J	Hold
1	L-1		2/4/19	1155	5 Sediment	8	2	X	Х			1						
2	L-2		2/5/19	1015	Sediment	8	2	х	X									
3	L-3		215/19	1055		8	2	х	X									
4	L-4		75/19	1515		8	2	x	X									
5	L-5		215/19	1620	c Sediment	8	2	Х	X									
6	L-6 N	o sample es	×	X	Sediment	8		- x -	- <u>x</u> -	•								
7	L-7		44/19	153	Sediment		2	х	x									
8	L-8		2/4/19	1440		8	2	х	X									
9	L-9		216/19	1505		8	2	Х	X									
10	L-10		Yulia	140		8	2	Х	X									
San	Sampler(s) Please Print & Sign Shipment Metho				Requi	ired Turnar	ound Time: (0		1 1	Oth	or			R	esults I	Due Da	te:	
CAT, SCM, AB Call Tent AB/Greyh				vound X 3	TD 10 Wk Da	ye 🔲 5	Wk Day	ys [2 W	k Days	E] 24 H		-				
Relinquished by: Calco Tender Date: John Time: Received by: Relinquished by:				y:			Notes:	PCC	CA Tur	npike		-				<u></u>		
Reli	Received by. Hereit Received by.			Received b	ved by (Laboratory): Cooler ID Cooler Temp. QC Package: (Check One Box Below)													
Logg					y (Laboratory):	17 5	1.20,	Level II Std QC										
Pre	Preservative Key: 1-HCI 2-HNO ₃ 3-H ₂ SO ₄ 4-NaOH 5-Na ₂ S ₂ O ₃ 6-NaH					8-4°C	9-5035		Level IV SW846/CLP									
Jote ·	1 Any change	s must be made in writing once samples and						55	QU	ιcμ	<u>~~``</u> `````		Cither					

Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
 Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
 The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

RIGHT SOLUTIONS | RIGHT PARTNER

Page 24 of 73



Cincinnati, OH +1 513 733 5336

Everett, WA +1 425 356 2600 +1 970 490 1511 Holland, MI +1 616 399 6070

Fort Collins, CO

Chain of Custody Form

Houston, TX +1 281 530 5656 Middletown, PA

+1 717 944 5541

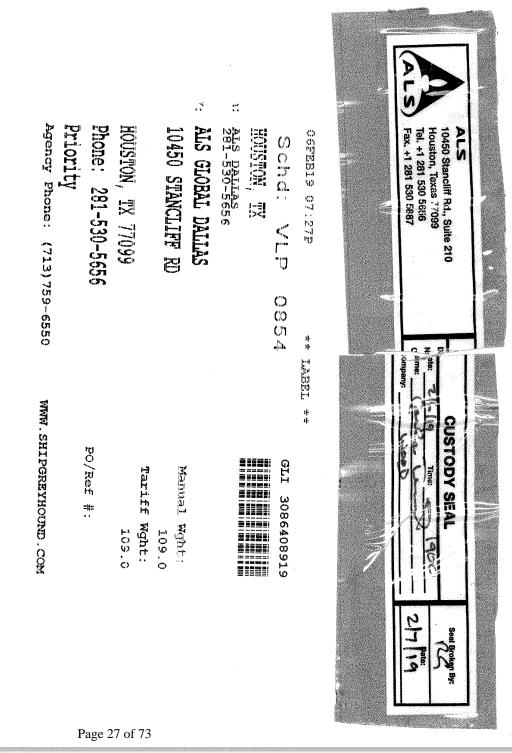
Spring City, PA +1 610 948 4903 South Charleston, WV +1 304 356 3168

Salt Lake City, UT

+1 801 266 7700

York, PA +1 717 505 5280

Customer Information Project Name Project Information Parameter/Method Request Purchase Order 6703180051.0003 Project Name PCCA Turnpike 6703180051 A TOC_S (9060 TOC) Work Order Project Name Project Name 6703180051.0003 B SUB_GRAINSZE (ASTM D422 Grain Company Name Wood Environment & Infrastructure BIII To Company Wood Environment & Infrastructure C Send Report To Carl Teinert Invoice Attn Carl Teinert D Address 3755 S. Capital of Texas Highway Site. 375 F Wood Environment & Infrastructure C City/State/Zip Austin, TX. 78704 City/State/Zip Austin TX. 78704 G Phone (512) 795-0360 Phone (512) 795-0360 H I I L-11 Z/5[[4] [4 = ∞ Sediment & 8 Z X X I I 1 L-13 Z Z/5[[4] [4 = ∞ Sediment & 8 Z X X I I I	370				
brows rouge Project Number PCCA Tumpike 6703180051 A TOC_S (9060 TOC) Work Order Project Number 6703180051.0003 B SUB_GRAINSIZE (ASTM D422 Grain Company Name Wood Environment & Infrastructure BIII To Company Wood Environment & Infrastructure C Send Report To Carl Teinert Invoice Attn Carl Teinert D HS19020370 Address 3755 S. Capital of Texas Highway Ste. 375 Address 3755 S. Capital of Texas Highway Ste. 375 Address Osta 375 Wood Environment & Infrastruc PCCA Tumpike 6703180 City/State/Zip Austin, TX 78704 City/State/Zip Austin TX 78704 Git2) 795-0360 H Phone (512) 795-0350 Fax (512) 795-0360 H B C D E F No. Sample Description Date Tum Matrix Pres. # Bottles A B C D E G 1 L-11 2/55[4] (4 ∞) Sediment 8 2 X X I I	370				
Work Order Company NameWood Environment & Infrastructure Bill To CompanyBill To CompanyBill To CompanyBill To CompanyBill To CompanyBill To CompanyWood Environment & Infrastructure Nucleo EntriCarl TeinertDSend Report ToCarl TeinertInvoice AttnCarl TeinertCarl TeinertD $IIII To CompanyBill To CompanySize$	370				
Company Name Wood Environment & Infrastructure Bill To Company Wood Environment & Infrastructure C Send Report To Carl Teinert Invoice Attn Carl Teinert D HS19020370 Address 3755 S. Capital of Texas Highway Sta. 375 Address 3755 S. Capital of Texas Highway Sta. 375 E F F Citly/State/Zip Austin, TX 78704 Citly/State/Zip Austin, TX 78704 Citly/State/Zip Austin TX 78704 G F	370				
AddressCarl VertexD STOS S. Capital of Texas Highway Ste. 375Address3755 S. Capital of Texas Highway Ste. 375E S. Capital of Texas Highway Ste. 375HS19020370City/State/Zip PhoneAustin, TX 78704City/State/Zip Austin, TX 78704Austin, TX 78704GFax(512) 795-0360Phone(512) 795-0360HFax(512) 795-0360Phone(512) 795-8423Ie-Mail AddressCarl.teinert@woodplc.come-Mail AddressCarl.teinert@woodplc.comJNo.Sample DescriptionDateTimeMatrixPres.# BottlesABCDEFG1L-112/j 5/(< (2/5) ((2/5) Sediment82XXIIII2L-12 $?/ k/($ (1/5) ((2/5) Sediment82XXIIIII2L-12 $?/ k/($ (1/2) ((2/5) Sediment82XXIII <tdi<< td=""><td>tructure Solutions</td></tdi<<>	tructure Solutions				
AddressSte. 375AddressSte. 375Vood Environment & Infrastruc PCCA Tumpike 6703180City/State/ZipAustin, TX 78704City/State/ZipAustin TX 78704GPhone(512) 795-0360Phone(512) 795-0360He-Mail AddressCarl.teinert@woodplc.come-Mail AddressCarl.teinert@woodplc.comJNo.Sample DescriptionDateTimeMatrixPres.# BottlesABCDEFG1L-112/5 (< (< 2/5 (< 4j 4 ∞Sediment82XXIII2L-122/4 (V:417:25Sediment82XXIIII2L-1374/5 (\q 4(?25) (3 \sigmas)Sediment82XXIIIII3L-1374/5 (\q 4(?25) (3 \sigmas)Sediment82XXIII </td <td>tructure Solutions</td>	tructure Solutions				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
No. Sample Description Date Time Matrix Pres. # Bottles A B C D E F G 1 L-11 2/5/1(9 /4 00 Sediment 8 2 X X I I I 2 L-12 $\frac{7}{4}$ /1925 Sediment 8 2 X X I I I I 3 L-13 $\frac{7}{4}$ /192 Sediment 8 2 X X I I I I 4 L-14 $\frac{7}{4}$ /126 Sediment 8 2 X X I					
1 L-11 $2/5 [(4]$ 14∞ Sediment 8 2 X X L L L 2 L-12 $2/5 [(4]$ $1/4 \infty$ Sediment 8 2 X X L L L L 3 L-13 $2/5 [(4]$ $1/3 c5$ Sediment 8 2 X X L L L L 4 L-14 $2/5 [(4]$ $1/3 c5$ Sediment 8 2 X X L </td <td>· —</td>	· —				
1 2 X	G H I J Ho				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
3 L-13 745 (19 1251 Sediment 8 2 X X 1 1 4 L-14 75 (19 1200 Sediment 8 2 X X 1 1 1 5 L-15 76 (19 1305 Sediment 8 2 X X 1					
4					
10 13 146(14) 13 14 1 1 1 1 6 1 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1					
7					
8 9 <td></td>					
9					
10					
Sampler(s) Please Print & Sign Shipment Method Required Turnaround Time: (Check Box) Other Results Due Date: CMT, SCM, AB Caller Territy ALS (Graybound) X STD 10 Wk Days 5 Wk Days 2 Wk Days 24 Hour					
Relinquighed by: Date: Date: Time: Received by: Notes: PCCA Tumpike Relinquished by: Date: Time: Beceived by (I aboratority) Notes: PCCA Tumpike					
Relinquished by: Date: Time: Received by (Laboratory): Cooler ID Cooler Temp. QC Package: (Chec Logged by (Laboratory): DC 212/19 07:30 Cooler ID Cooler Temp. QC Package: (Chec	(Check One Box Below)				
Level II Sta QC	Level II Std QC TRRP Checklist Level II Std QC/Rew Date TRRP Level IV Level IV SWB46/CLP				


Note:

Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
 Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
 The Chain of Custody is a legal document. All information must be completed accurately.

Page 25 of 73

Copyright 2011 by ALS Environmental.

Page 28 of 73

10710 S. Sam Houston Parkway W., Suite 100 * Houston, TX 77031 * Phone (713) 722-7064 * Fax (713) 722-0319

Mr. Dane Wacasey ALS 450 Stancliff Rd, Ste 210 Houston, TX 77099

February 22, 2019 TWE Project No. 19.14.025 Clients Chain of Custody Number: 10715 Clients Purchase Order Number: HS19020370

Re: Laboratory Test Results

Dear Mr. Wacasey:

Attached are the results of the laboratory testing performed on the samples delivered to our laboratory in Houston, Texas on February 8, 2019 for the subject project.

The testing consisted of 14 hydrometer analyses.

D-422 was withdrawn by ASTM in 2016 and has not been reinstated or replaced.

We hope this report satisfies your testing requirements at this time. The invoice will be sent separately.

We thank you for the opportunity to serve you, and look forward to working with you on future projects.

Sincerely, TOLUNAY- WONG ENGINEERS, INC.

Patricia Hodgkins Geotechnical Laboratory Manager

Encl: Customer Survey (1) Clients Chain of Custody (2) Hydrometer & Sieve Report (42)

10450 Stancliff Rd, Ste 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887 www.alsglobal.com

Subcontract Chain of Custody

COC ID: 10715

SUBCONTRACT TO:

Tolunay-Wong 10710 S. Sam Houston Parkway WestSuite 100 Houston, TX 77031

CUSTOMER INFORMATION:

ALS Houston
Dane J. Wacasey
10450 Stancliff Rd, Ste 210
+1 281 530 5656
Dane.Wacasey@alsglobal.com
Jumoke M. Lawal
jumoke.lawal@alsglobal.com

Phone:	+1	713	722	7064	

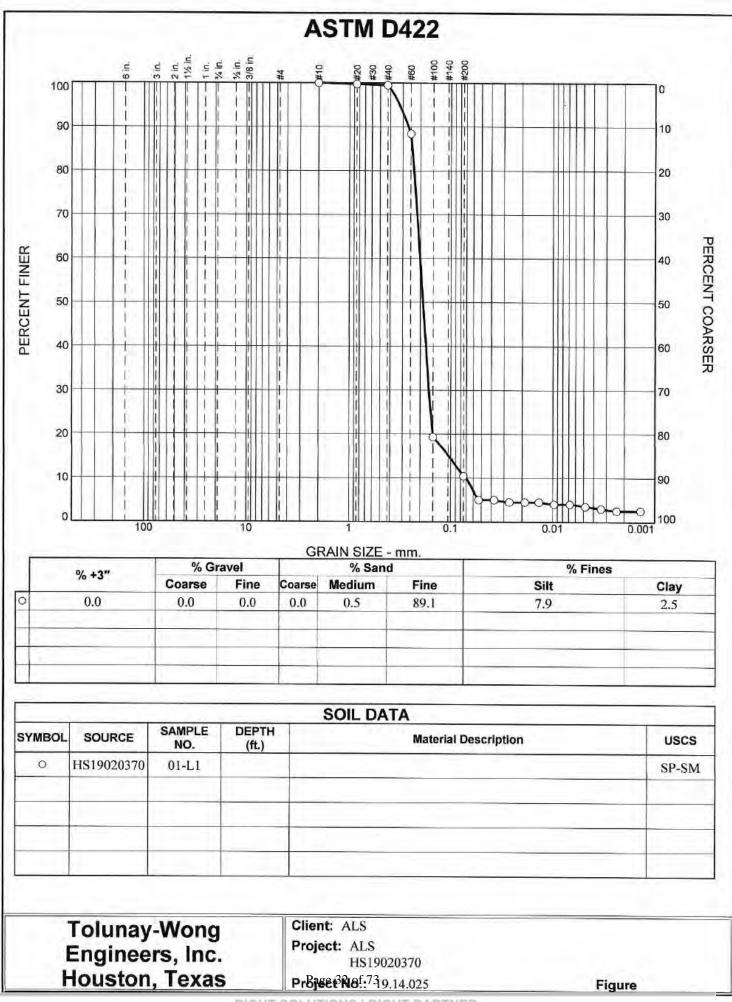
INVOICE INFORMATION:

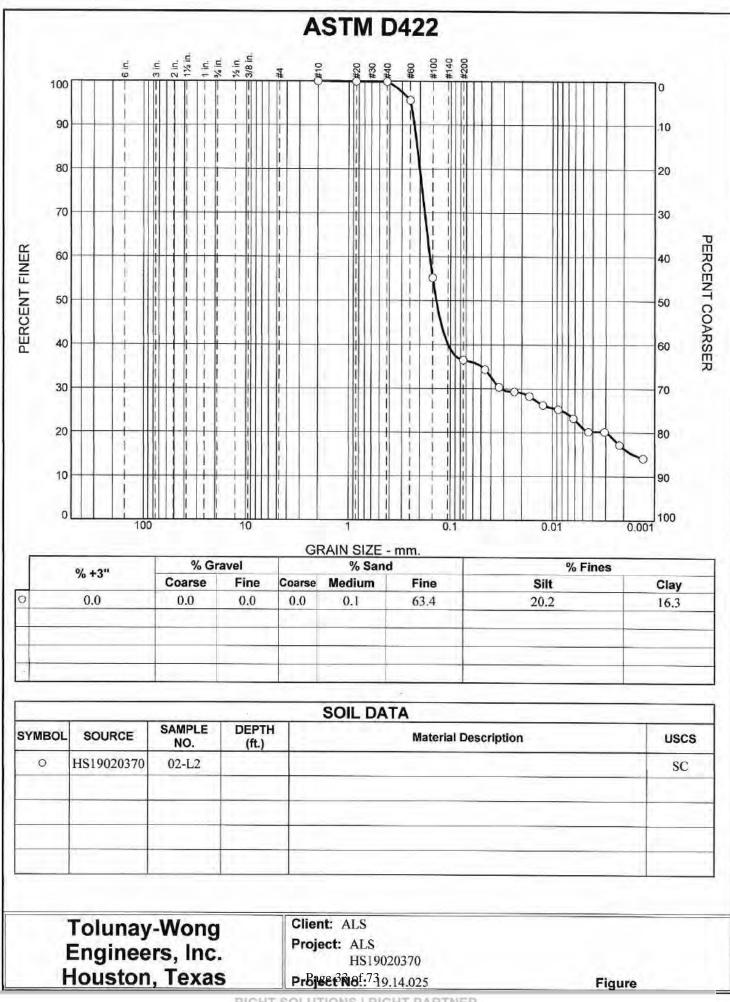
	COC ID: 1	0715
		014.000
	1	9.1
one: +1 71	13 722 7064	Judeen
NVOICE		Inclus system
NFORMATI	ON:	(aFD=0
Company:	ALS Houston	tout 1 to
Contact:	Accounts Payable	oriving
Address:	10450 Stancliff Rd, Ste 210	1 when I
Phone:	+1 281 530 5656	Oier
Reference:	HS19020370	dere
TSR:	Danielle Winnings	

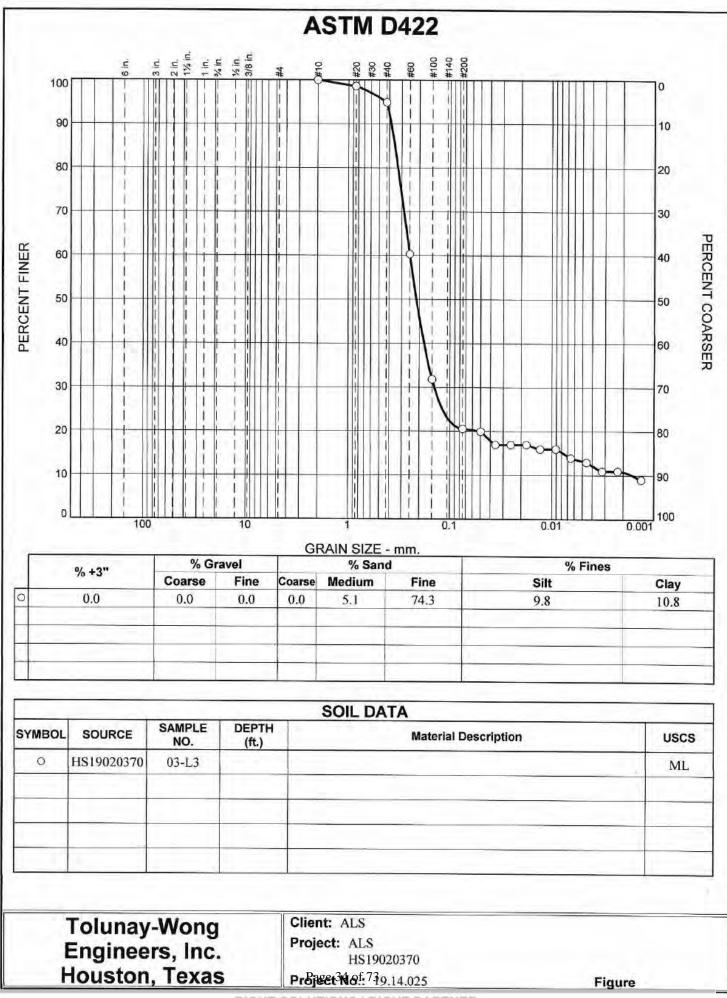
	LAB SAMPLE ID ANALYSIS R	CLIENT SAMPLE ID EQUESTED	MATRIX	COLLECT DATE DUE DATE	
1.	HS19020370-01	L-1	Sediment	04 Feb 2019 11:55	
	D422-63; Siev	e+Hydrom; Need D50 values	, 10 day TAT	21 Feb 2019	
2.	HS19020370-02	L-2	Sediment	05 Feb 2019 10:15	
	D422-63; Siev	e+Hydrom; Need D50 values	, 10 day TAT	21 Feb 2019	
3.	HS19020370-03	L-3	Sediment	05 Feb 2019 10:55	
	D422-63; Siev	e+Hydrom; Need D50 values	, 10 day TAT	21 Feb 2019	
4.	HS19020370-04	L-4	Sediment	05 Feb 2019 15:15	
	D422-63; Siev	e+Hydrom; Need D50 values	, 10 day TAT	21 Feb 2019	
5.	HS19020370-05	L-5	Sediment	05 Feb 2019 16:20	
	D422-63; Sieve	e+Hydrom; Need D50 values	, 10 day TAT	21 Feb 2019	
6.	H\$19020370-06	L-7	Sediment	04 Feb 2019 15:30	
	D422-63; Sieve	e+Hydrom; Need D50 values	, 10 day TAT	21 Feb 2019	
7.	HS19020370-07	L-8	Sediment	04 Feb 2019 14:40	
	D422-63; Sieve	e+Hydrom; Need D50 values	, 10 day TAT	21 Feb 2019	
8.	HS19020370-08	L-9	Sediment	06 Feb 2019 15:05	
	D422-63; Sieve	e+Hydrom; Need D50 values	, 10 day TAT	21 Feb 2019	
9.	HS19020370-09	L-10	Sediment	06 Feb 2019 14:07	

Page 30 of 73

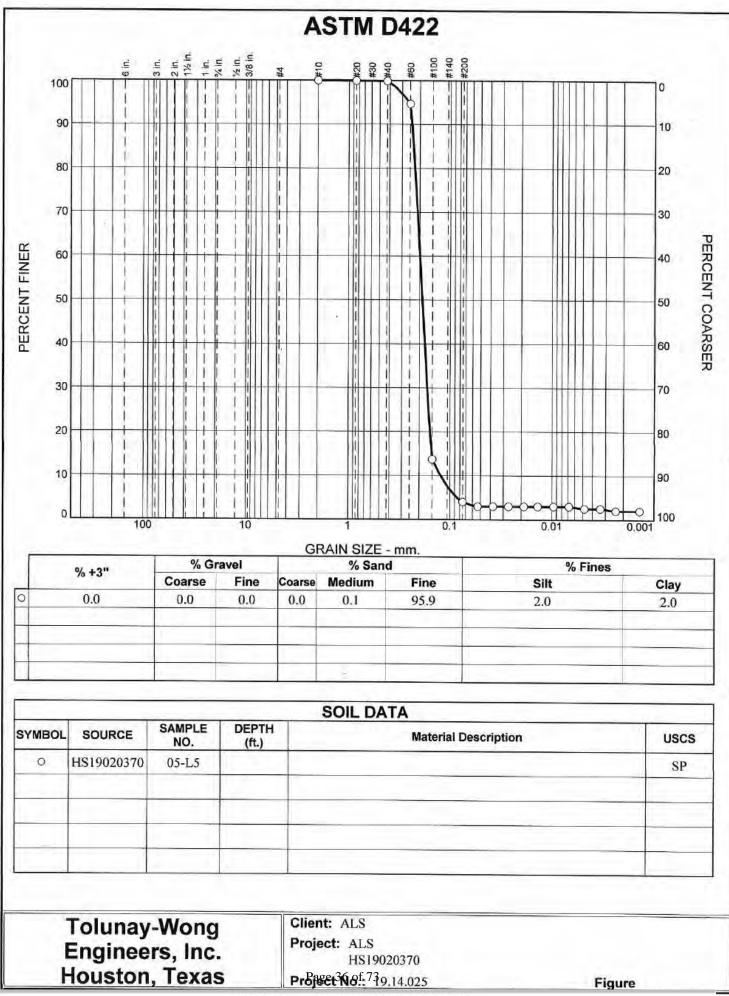
Subcontract Chain of Custody

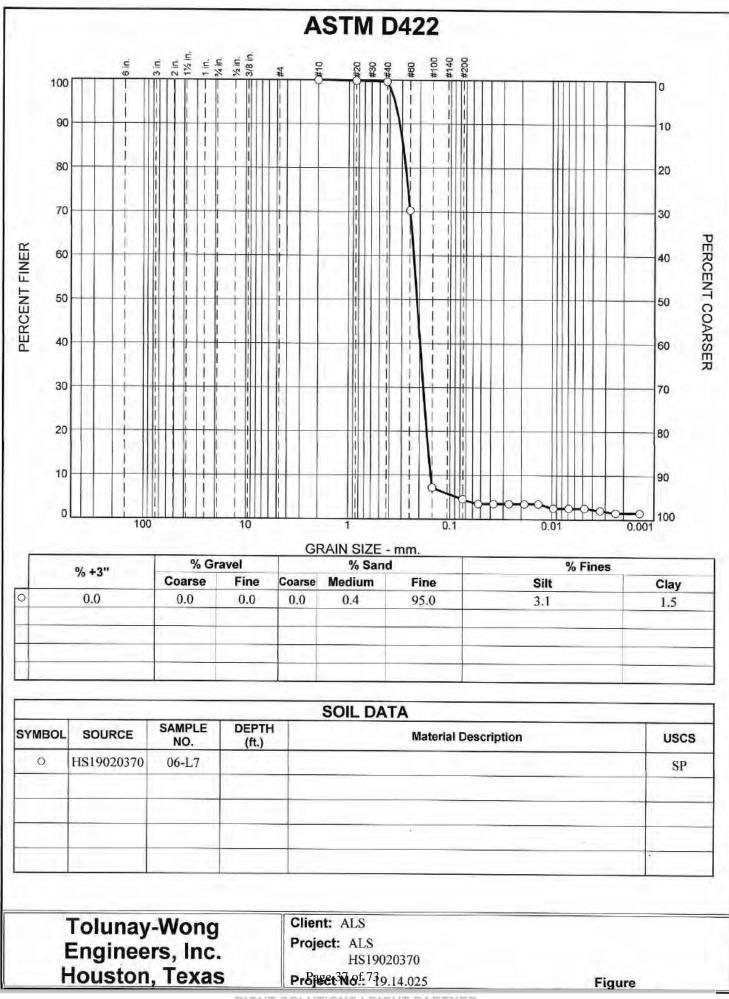

COC ID: 10715

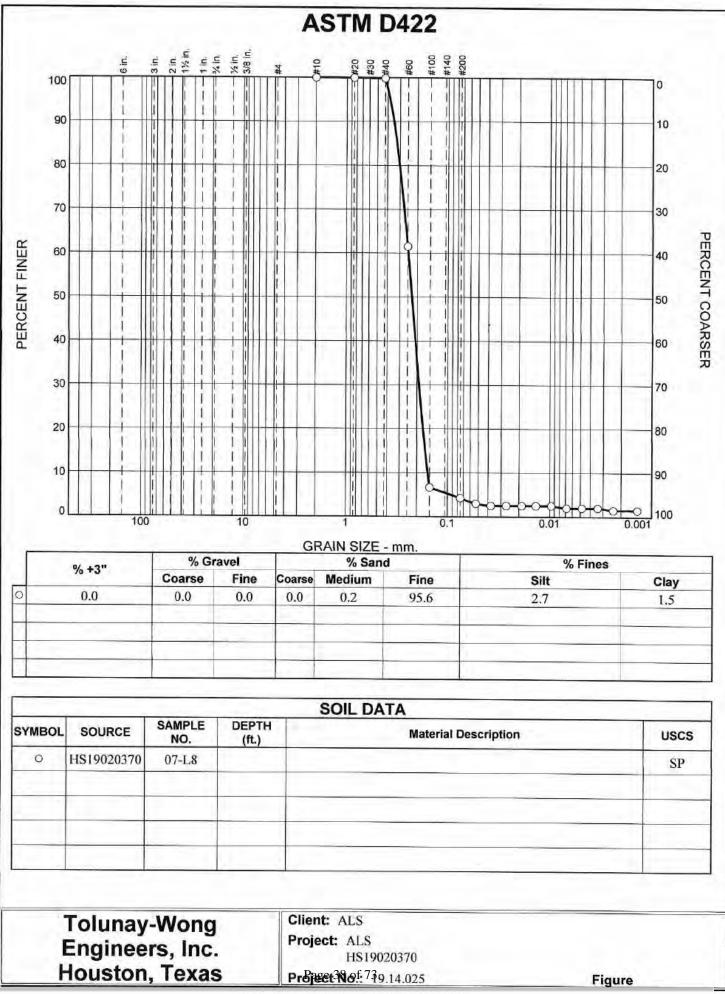

	LAB SAMPLE ID ANALYSIS F	CLIENT SAMPLE ID REQUESTED	MATRIX	COLLECT DATE DUE DATE
-	D422-63; Siev	e+Hydrom; Need D50 values, 1	0 day TAT	21 Feb 2019
10.	HS19020370-10	L-11	Sediment	05 Feb 2019 14:00
	D422-63; Siev	e+Hydrom; Need D50 values, 1	0 day TAT	21 Feb 2019
11.	H519020370-11	L-12	Sediment	04 Feb 2019 13:25
	D422-63; Siev	e+Hydrom; Need D50 values, 1	0 day TAT	21 Feb 2019
12.	HS19020370-12	L-13	Sediment	05 Feb 2019 12:51
	D422-63; Siev	e+Hydrom; Need D50 values, 1	0 day TAT	21 Feb 2019
13.	HS19020370-13	L-14	Sediment	05 Feb 2019 12:00
	D422-63; Siev	e+Hydrom; Need D50 values, 1	0 day TAT	21 Feb 2019
14.	HS19020370-14	L-15	Sediment	06 Feb 2019 13:05
	D422-63; Siev	e+Hydrom; Need D50 values, 1	0 day TAT	21 Feb 2019

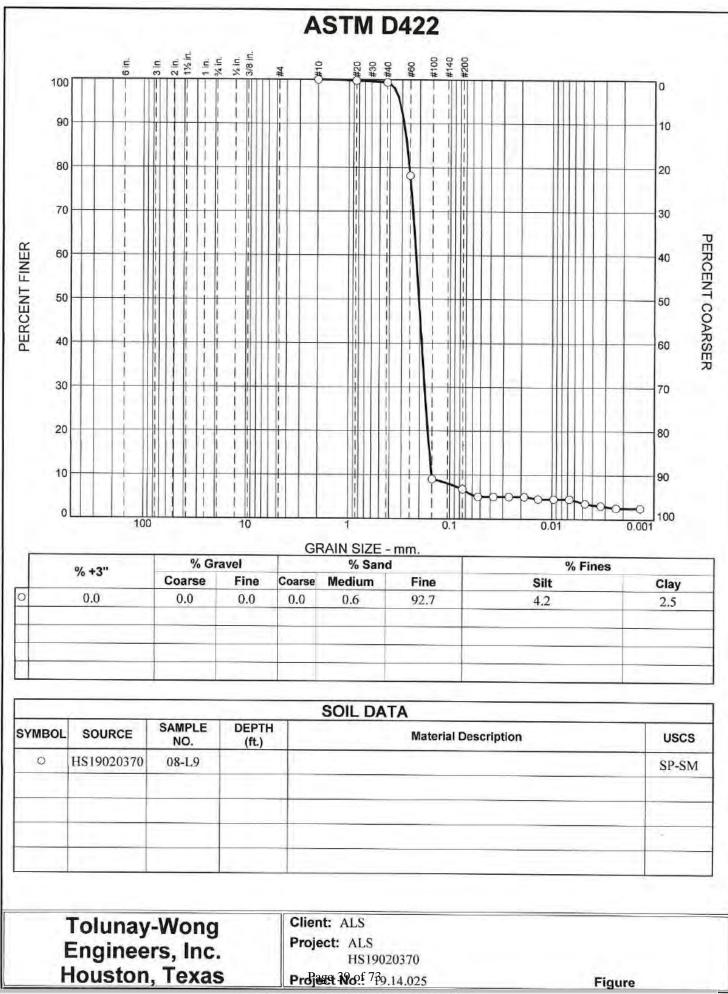

Comments: Please analyze for the analysis listed above. Send report to the emails shown above.

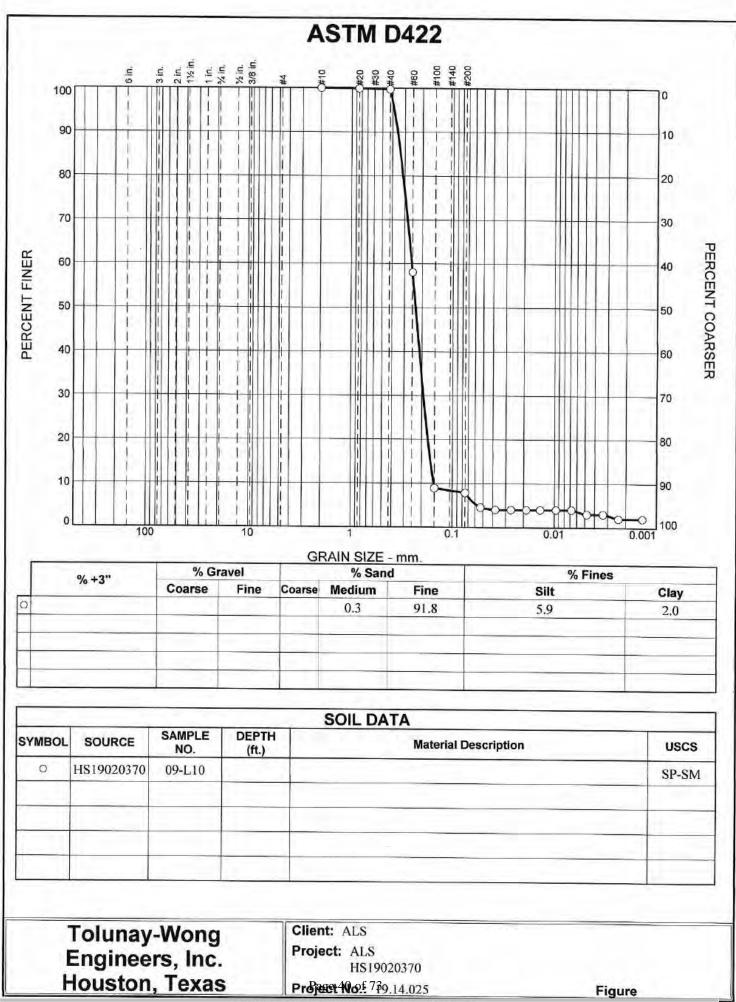
QC Level: TRRP LRC (TRRP checklist only+Level II (normal))

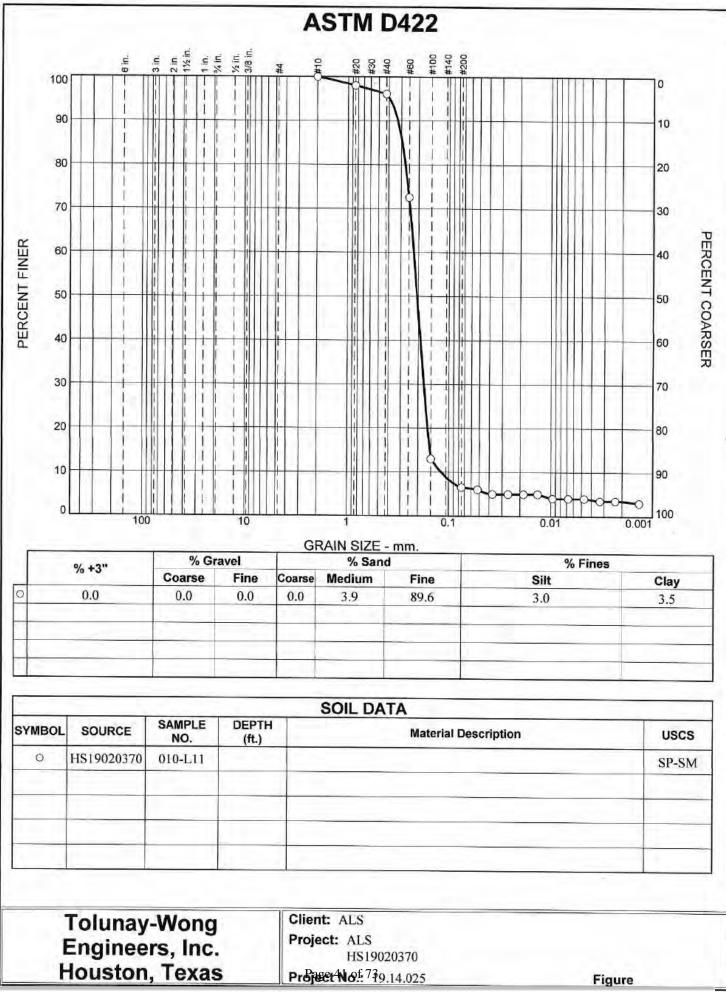

Relinquished By: DD	Date/Time: 2.8-19 1140
Received By:	Date/Time:
Cooler ID(s):	Temperature(s):

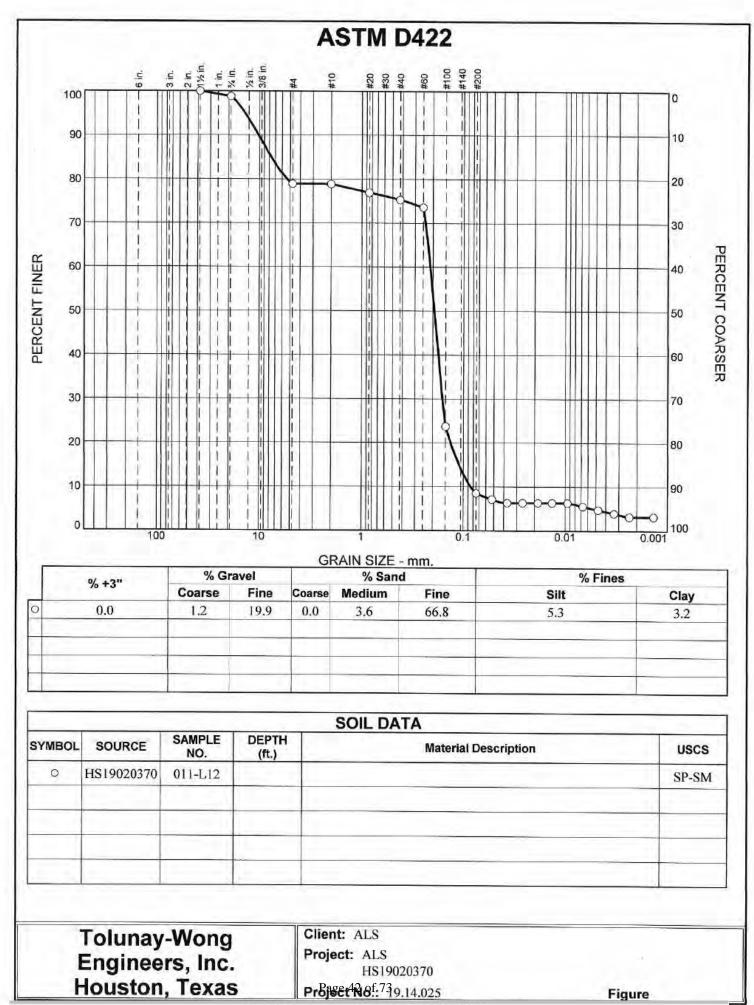


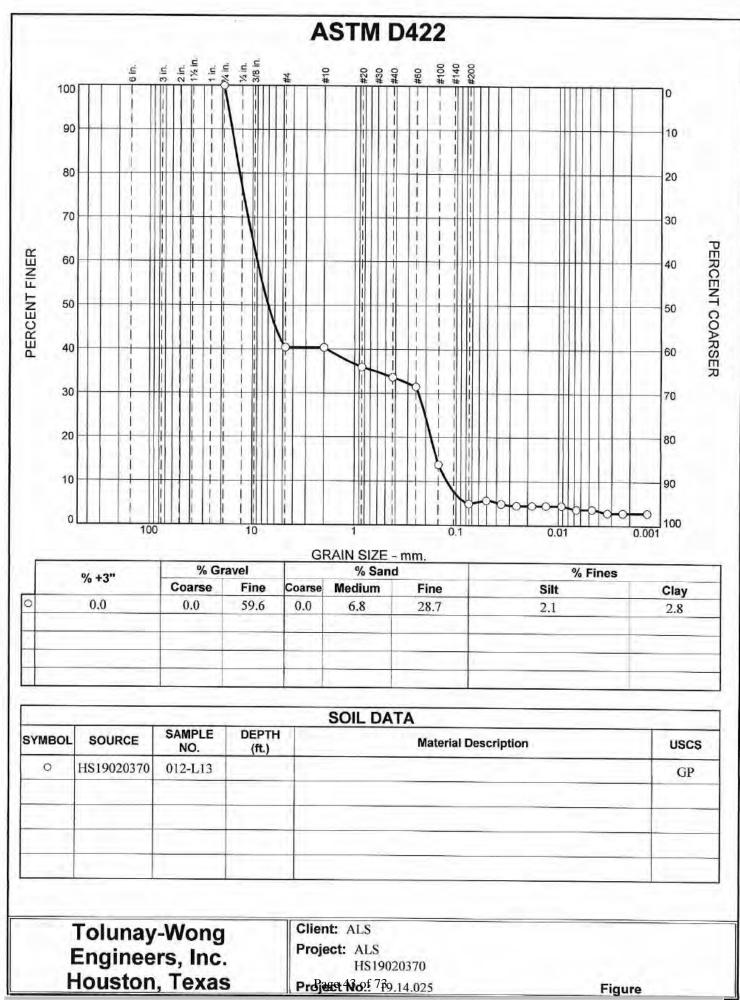


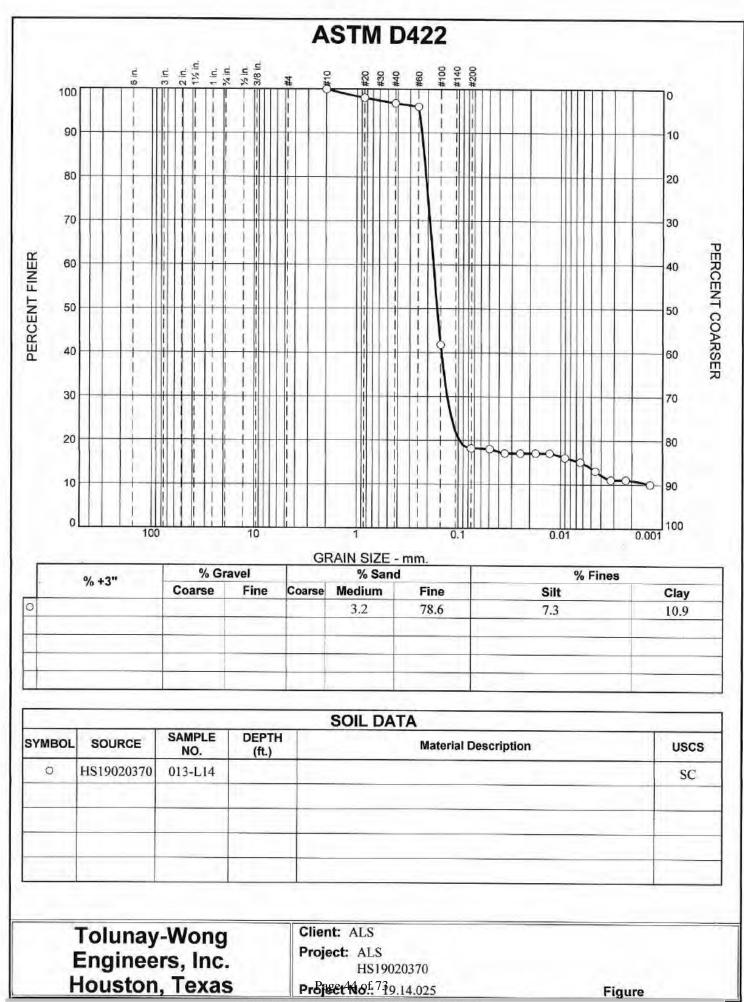


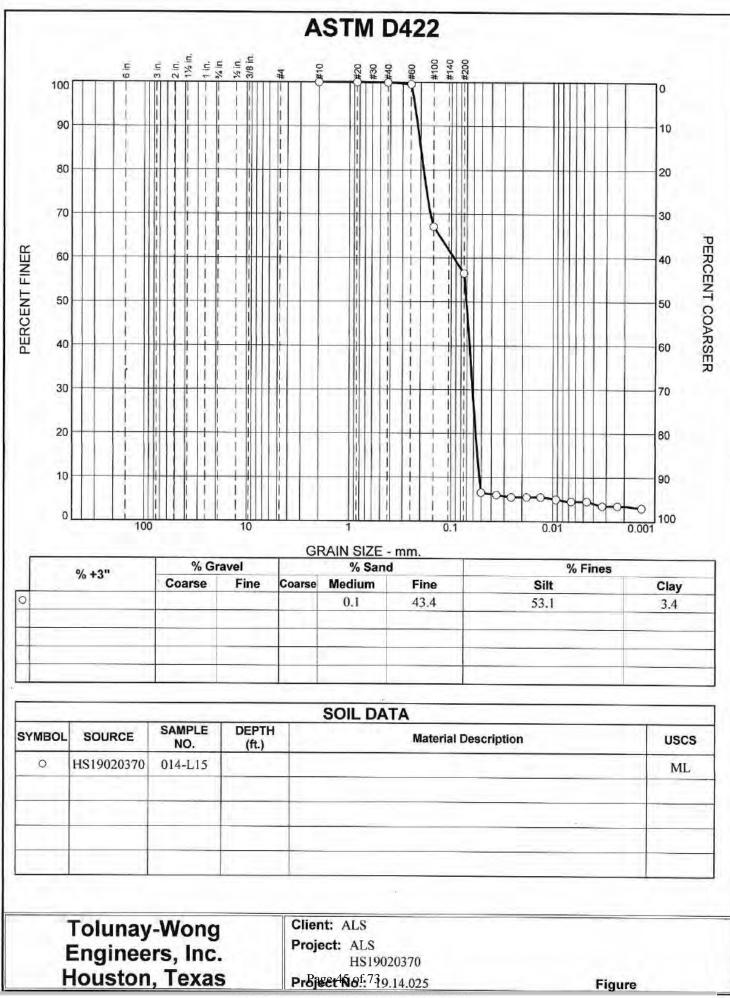







RIGHT SOLUTIONS | RIGHT PARTNER





Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 01-L1 USCS: SP-SM

1440.00

17.8

8.5

2.5

-	-	-		Siev	e Test Dal	la		_	
Dry Sample and Tare (grams)	Tare (grams)	Cumulativ Pan Tare Weigh (grams)	Sie nt Ope	eve ning	umulative Weight Retained (grams)	Percent Finer	Percent Retained		
318.50	218.50	218.50		#10	218.50	100.0	0.0		
		×		#20	218.76	99.7	0.3		
				#40	219.01	99.5	0.5		
				#60	230.10	88.4	11.6		
			#	¥100	299.17	19.3	80.7		
			1	#200	308.11	10.4	89.6		
				Hydrom	eter Test	Data	-	-	
Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer typ	ection only = of solids = 1 be = 152H	2.65	18.4 -6.0 L = 16.294964	- 0 2645 -	Pm				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к.	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	15.0	11.0	5.0	0.0145	11.5	13.3	0.0530	5.0	95.0
2.00	15.0	11.0	5.0	0.0145	11.5	13.3	0.0374	5.0	95.0
4.00	15.1	10.5	4.5	0.0145	11.0	13.4	0.0266	4.5	95.5
8.00	15.2	10.5	4.5	0.0145	11.0	13.4	0.0188	4.5	95.5
15.00	15.2	10.5	4.5	0.0145	11.0	13.4	0.0137	4.5	95.5
30.00	15.5	10.0	4.0	0.0145	10.5	13.5	0.0097	4.0	96.0
60.00	16.1	10.0	4.0	0.0143	10.5	13.5	0.0068	4.0	96.0
120.00	16.6	9.5	3.5	0.0142	10.0	13.6	0.0048	3.5	96.5
240,00	17.6	9.0	3.0	0.0141	9.5	13.8	0.0034	3.0	97.0
480.00	18,4	8.5	2.5	0.0139	9.0	13.9	0.0024	2.5	97.5
1110 00	17 0			0.01.10			10 10 10 10 10	1.	

TOLUNAY WONG ENGINEERS, INC.

9.0

13.9

0.0014

2.5

97.5

0.0140

		-		F	ractional (Componer	nts				
Cobbles		Grave	1		1	Sand				Fines	
CODDICS	Coarse	Fine	Tota	l Coa	rse Me	lium I	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.	0 0	.5 8	39.1	89.6	7.9	2.5	10.4
D5	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D95

Fineness Modulus	cu	Cc
0.88	2.85	1.90

_ TOLUNAT WONG BNGINEERS, INC.

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 02-L2 USCS: SC

240.00

480.00

1440.00

17.8

17.9

17.9

16.0

14.5

13.0

10.0

8.5

7.0

0.0138

0.0138

0.0138

16.5

15.0

13.5

11.9

12.3

12.7

0.0031

0.0022

0.0013

20.2

17.2

14.1

79.8

82.8

85.9

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weigh (grams)	Sie	eve ning	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained		
268.32	218.32	218.32		#10	218.32	100.0	0.0		
				#20	218.37	99.9	0.1		
				#40	218.39	99.9	0.1		
				#60	220.50	95.6	4.4		
			ŧ	<i>ŧ</i> 100	240.71	55.2	44.8		
			4	/200	250.08	36.5	63.5		
				Hydron	neter Test	Data	-		
Temp., deg. Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer	ection only = of solids = 1 be = 152H	2.70	17.9 -6.0 L = 16.294964	- 0 2645	v Pm				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	14.5	23.0	17.0	0.0144	23.5	10.1	0.0458	34.4	65.6
2.00	14.5	21.0	15.0	0.0144	21.5	10.6	0.0332	30.3	69.7
4.00	14.6	20.5	14.5	0.0144	21.0	10.7	0.0236	29.3	70.7
8.00	14.6	20.0	14.0	0.0144	20.5	10.9	0.0168	28.3	71.7
15.00	15.0	19.0	13.0	0.0143	19.5	11.1	0.0123	26.3	73.7
30.00	15.3	18,5	12.5	0.0143	19.0	11.3	0.0087	25.3	74.7
60.00	15.8	17.5	11.5	0.0142	18.0	11.5	0.0062	23.2	76.8
120.00	16.6	16.0	10.0	0.0140	16.5	11.9	0.0044	20.2	79.8

TOLUNAY aveng ENGINEERS, INC. .

Cobbles		Grave		1.1		Sand				Fines	
CODDIES	Coarse	Fine	Tota	I Coa	rse Me	dium I	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0 0	.1 (53.4	63.5	20.2	16.3	36.5
D ₅	D ₁₀	0.0016	D ₂₀ 0.0030	D ₃₀ 0.0319	0.1061	D ₅₀ 0.1381	D ₆₀	0.2011	0.2134	0.2280	0.2469
		0.0016	0.0030	0.0319	0.1061	0.1381	0.1598	0.2011	0.2134	0.2280	0.24

TOLUNAT WONG FNGINEERS, INC.

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 03-L3 USCS: ML

				Siev	e Test Dat	a			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weigh (grams)	Sie	ve ning	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained		
265.48	215.48	215.48		#10	215.48	100.0	0.0		
				#20	216.19	98.6	1.4		
				#40	218.02	94.9	5.1		
				#60	235.31	60.3	39.7		
			#	100	249.58	31.8	68.2		
			#	200	255.19	20.6	79.4		
				Hydrom	eter Test.	Data	-		
able of compo Temp., deg. Comp. corr.:	: moisture = 0 osite correcti C: 1 -	on values: 4.6 6.0	18.3 -6.0				X		
Hygroscopic able of compo Temp., deg. Comp. corr.: leniscus corre pecific gravity ydrometer typ	: moisture = 0 osite correcti C: 1 	.8% on values: 4.6 6.0 0.5 2.70		- 0.2645 3	c Rm		X		
Hygroscopic able of compo Temp., deg. Comp. corr.: leniscus corre pecific gravity ydrometer typ	: moisture = 0 osite correcti C: 1 	.8% on values: 4.6 6.0 0.5 2.70	-6.0	- 0.2645 з К	k Rm Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
Hygroscopic able of compo Temp., deg. Comp. corr.: leniscus corro pecific gravity ydrometer typ Hydrometer Elapsed	: moisture = 0 osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective depr Temp.	.8% on values: 4.6 6.0 0.5 2.70 th equation: I Actual	-6.0 = 16.294964 Corrected		Rm				
Hygroscopic able of compo- Temp., deg. Comp. corr.: leniscus corre pecific gravity ydrometer typ Hydrometer Elapsed Time (min.)	: moisture = 0 osite correcti C: 1 	.8% on values: 4.6 6.0 0.5 2.70 th equation: I Actual Reading	-6.0 _ = 16.294964 Corrected Reading	к	Rm 16.5	Depth	(mm.)	Finer	Retained
Hygroscopic able of compo- Temp., deg. Comp. corr.: leniscus corre- pecific gravity ydrometer typ Hydrometer Elapsed Time (min.) i.00	: moisture = () osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective depr Temp. (deg. C.) 14.6	.8% on values: 4.6 6.0 0.5 2.70 th equation: I Actual Reading 16.0	-6.0 -= 16.294964 Corrected Reading 10.0	к 0.0144	Rm 16.5 15.0	Depth 11.9	(mm.) 0.0498	Finer 19.9	Retained 80.1
Hygroscopic able of compo- Temp., deg. Comp. corr.: leniscus com- pecific gravity ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00	: moisture = 0 osite correcti C: 1 	.8% on values: 4.6 6.0 0.5 2.70 th equation: 1 Actual Reading 16.0 14.5	-6.0 = 16.294964 Corrected Reading 10.0 8.5	к 0.0144 0.0144	Rm 16.5 15.0 15.0	Depth 11.9 12.3	(mm.) 0.0498 0.0358	Finer 19.9 17.0	Retained 80.1 83.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: leniscus corre- pecific gravity ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00	: moisture = 0 osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 14.6 14.6 14.8	.8% on values: 4.6 6.0 0.5 2.70 th equation: I Actual Reading 16.0 14.5 14.5	-6.0 -= 16.294964 Corrected Reading 10.0 8.5 8.5	K 0.0144 0.0144 0.0144	Rm 16.5 15.0 15.0 15.0	Depth 11.9 12.3 12.3	(mm.) 0.0498 0.0358 0.0252	Finer 19.9 17.0 17.0	Retained 80.1 83.0 83.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: leniscus corre- pecific gravity ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00	: moisture = 0 osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 14.6 14.8 14.8 14.9	.8% on values: 4.6 6.0 0.5 2.70 th equation: I Actual Reading 16.0 14.5 14.5 14.5	-6.0 = 16.294964 Corrected Reading 10.0 8.5 8.5 8.5 8.5	K 0.0144 0.0144 0.0144 0.0144	Rm 16.5 15.0 15.0 15.0 14.5	Depth 11.9 12.3 12.3 12.3	(mm.) 0.0498 0.0358 0.0252 0.0178	Finer 19.9 17.0 17.0 17.0	Retained 80.1 83.0 83.0 83.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: leniscus com- pecific gravity ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00	: moisture = 0 osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 14.6 14.6 14.8 14.9 15.3	.8% on values: 4.6 6.0 0.5 2.70 th equation: 1 Actual Reading 16.0 14.5 14.5 14.5 14.5 14.0	-6.0 = 16.294964 Corrected Reading 10.0 8.5 8.5 8.5 8.5 8.5 8.0	K 0.0144 0.0144 0.0144 0.0144 0.0143	Rm 16.5 15.0 15.0 15.0 14.5 14.5	Depth 11.9 12.3 12.3 12.3 12.3 12.5	(mm.) 0.0498 0.0358 0.0252 0.0178 0.0130	Finer 19.9 17.0 17.0 17.0 16.0	Retained 80.1 83.0 83.0 83.0 84.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: leniscus corre- pecific gravity ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00	: moisture = 0 osite correcti C: 1 	.8% on values: 4.6 6.0 0.5 2.70 th equation: I Actual Reading 16.0 14.5 14.5 14.5 14.5 14.0 14.0	-6.0 = 16.294964 Corrected Reading 10.0 8.5 8.5 8.5 8.5 8.0 8.0 8.0	K 0.0144 0.0144 0.0144 0.0144 0.0143 0.0142	Rm 16.5 15.0 15.0 15.0 14.5 14.5 13.5	Depth 11.9 12.3 12.3 12.3 12.5 12.5	(mm.) 0.0498 0.0358 0.0252 0.0178 0.0130 0.0092	Finer 19.9 17.0 17.0 17.0 16.0 16.0	Retained 80.1 83.0 83.0 83.0 84.0 84.0 84.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: leniscus corre- pecific gravity Hydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00 60.00	: moisture = 0 osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 14.6 14.8 14.9 15.3 15.7 16.0	.8% on values: 4.6 6.0 0.5 2.70 th equation: I Actual Reading 16.0 14.5 14.5 14.5 14.5 14.0 14.0 13.0	-6.0 = 16.294964 Corrected Reading 10.0 8.5 8.5 8.5 8.5 8.0 8.0 7.0	K 0.0144 0.0144 0.0144 0.0144 0.0143 0.0142 0.0141	Rm 16.5 15.0 15.0 15.0 14.5 14.5 13.5 13.0	Depth 11.9 12.3 12.3 12.3 12.5 12.5 12.5 12.7	(mm.) 0.0498 0.0358 0.0252 0.0178 0.0130 0.0092 0.0065	Finer 19.9 17.0 17.0 17.0 16.0 16.0 16.0 14.0	Retained 80.1 83.0 83.0 83.0 84.0 84.0 84.0 86.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: leniscus comp pecific gravity ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00 60.00 120.00	: moisture = 0 osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 14.6 14.6 14.8 14.9 15.3 15.7 16.0 16.9	.8% on values: 4.6 6.0 0.5 2.70 th equation: 1 Actual Reading 16.0 14.5 14.5 14.5 14.5 14.0 14.0 13.0 12.5	-6.0 = 16.294964 Corrected Reading 10.0 8.5 8.5 8.5 8.5 8.0 8.0 7.0 6.5	K 0.0144 0.0144 0.0144 0.0144 0.0143 0.0142 0.0141 0.0140	Rm 16.5 15.0 15.0 15.0 14.5 14.5 13.5 13.0 12.0	Depth 11.9 12.3 12.3 12.3 12.5 12.5 12.7 12.9	(mm.) 0.0498 0.0358 0.0252 0.0178 0.0130 0.0092 0.0065 0.0046	Finer 19.9 17.0 17.0 17.0 16.0 16.0 14.0 13.0	Retained 80.1 83.0 83.0 84.0 84.0 86.0 87.0

_ TOLUNAY WONG BNGINEERS, INC. _

-				F	ractional (Componer	nts			-	
Cobbles		Grave	1	-		Sand				Fines	
Connies	Coarse	Fine	Tota	l Coa	rse Me	dium I	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.	0 5	.1	74.3	79.4	9.8	10.8	20.6
					1	1	1	-	1		
D ₅	D10	D15	D20	D30	D40	D50	Den	Dao	Des	Doo	Dos
D ₅		D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D95
	D ₁₀ 0.0016	D ₁₅ 0.0077	D ₂₀ 0.0516	D ₃₀ 0.1426	D ₄₀ 0.1801	D ₅₀ 0.2143	D ₆₀ 0.2488	D ₈₀ 0.3274	D ₈₅ 0.3528	D ₉₀ 0.3836	D 95 0.4300
D ₅ Fineness Modulus							1		1		

_ TOLUNAY awong ENGINEERS, INC.

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 04-L4 USCS: SC

-			5	ileve Test Data		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained
411.38	268.26	268.26	.75	268.26	100.0	0.0
			#4	312.75	68.9	31.1
			#10	325.52	60.0	40.0
265.73	215.73	215.73	#20	216.50	59.1	40.9
			#40	217.11	58.3	41.7
			#60	218.07	57.2	42.8
			#100	233.39	38.8	61.2
_			#200	243.17	27.1	72.9
			Hugh	increation Tool D	and an	and the second division of

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 60.0

Weight of hydrometer sample =50

Hygroscopic moisture correction:

Moist weight and tare = 106.55

Dry weight and tare = 105.03

Tare weight = 30.61

Hygroscopic moisture = 2.0%

Table of composite correction values:

Temp., deg. C: 15.6

Comp. corr.: -6.0

Meniscus correction only = -0.5 Specific gravity of solids = 2.65

```
Hydrometer type = 152H
```

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

18.2

-6.0

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	15.6	23.5	17.5	0.0144	23.0	10.2	0.0461	21.4	78.6
2.00	15.6	22.0	16.0	0.0144	21.5	10.6	0.0332	19.6	80.4
4.00	15.6	22.0	16.0	0.0144	21.5	10.6	0.0235	19.6	80.4
8.00	15.7	21.0	15.0	0.0144	20.5	10.9	0.0168	18.4	81.6
15.00	15.9	20.5	14.5	0.0144	20.0	11.0	0.0123	17.8	82.2
30.00	16.0	20.0	14.0	0.0144	19.5	11.1	0.0087	17.1	82.9
60.00	16.7	18.0	12.0	0.0142	17.5	11.7	0.0063	14.7	85.3
120.00	17.3	17.5	11.5	0.0141	17.0	11.8	0.0044	14.1	85.9
240.00	18.0	17.0	11.0	0.0140	16.5	11.9	0.0031	13.5	86.5
480.00	18.2	16.0	10.0	0.0140	15.5	12.2	0.0022	12.2	87.8
1440.00	18.0	15.0	9.0	0.0140	14.5	12.5	0.0013	11.0	89.0

TOLUNAY AND FNGINEERS, INC. _

Cobbles		Grave				Sand	1			Fines	
CODDIES	Coarse	Fine	Tota	I Coa	rse Me	dium	Fine	Total	Silt	Clay	Total
0.0	0.0	31.1	31.1	8.9	9 1	1.7	31.2	41.8	15.2	11.9	27.1
D5	D ₁₀	D ₁₅ 0.0066	D ₂₀ 0.0378	D ₃₀ 0.0982	D ₄₀ 0.1553	D ₅₀ 0.1999	D ₆₀ 2.0042	D ₈₀ 8.3806	D ₈₅ 10.4155	D ₉₀ 12.8039	D 95 15.640
						-	1	-			15.6407
Fineness Modulus											
2.73											

.

TOLUNAY WONG SNGINEERS, INC.

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 05-L5 USCS: SP

				Siev	e Test Dat	8		particular and the second	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weigh (grams)	Sie	ive ning l	umulative Weight Retained (grams)	Percent Finer	Percent Retained		
316.30	216.30	216.30		#10	216.30	100.0	0.0		
				#20	216.36	99.9	0.1		
				#40	216.43	99.9	0.1		
				#60	221.63	94.7	5.3		
			ħ	100	302.61	13.7	86.3		
			ħ	200	312.27	4.0	96.0		
	_	-	5-11-1-1-	Hydrom	ater Test			-	-
able of compo Temp., deg.	c moisture = 0 osite correcti C: 1	on values: 6.1	18.6						
Hygroscopic able of compo Temp., deg. Comp. corr.: Jeniscus corre pecific gravity lydrometer typ	c moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H	0.2% on values: 6.1 6.0 0.5 2.65	18.6 -6.0 L = 16.294964	- 0.2645 x	Rm				
Hygroscopic able of compo Temp., deg. Comp. corr.: Jeniscus corre pecific gravity lydrometer typ	c moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H	0.2% on values: 6.1 6.0 0.5 2.65	-6.0	- 0.2645 х К	Rm Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
Hygroscopic able of compo- Temp., deg. Comp. corr.: Jeniscus corre- pecific gravity lydrometer typ Hydrometer Elapsed Time (min.) 1.00	c moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 16.1	.2% on values: 6.1 6.0 0.5 2.65 th equation: I Actual	-6.0 L = 16.294964 Corrected				Contraction of the contract		
Hygroscopic able of compo- Temp., deg. Comp. corr.: Jeniscus corre- pecific gravity dydrometer typ Hydrometer Elapsed Time (min.) 1.00 2.00	c moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 16.1 16.1	.2% on values: 6.1 6.0 0.5 2.65 th equation: I Actual Reading 9.0 9.0	-6.0 = 16.294964 Corrected Reading 3.0 3.0 3.0	к	Rm	Depth	(mm.)	Finer	Retained
Hygroscopic able of compo- Temp., deg. Comp. corr.: Jeniscus corre- pecific gravity Hydrometer typ Hydrometer Elapsed Time (min.) 1.00 2.00 4.00	c moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 16.1 16.1 16.2	.2% on values: 6.1 6.0 0.5 2.65 th equation: I Actual Reading 9.0 9.0 9.0 9.0	-6.0 L = 16.294964 Corrected Reading 3.0	к 0.0143	Rm 9.5	Depth 13.8	(mm.) 0.0532	Finer 3.0	Retained 97.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: Jeniscus corre- pecific gravity Hydrometer typ Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8,00	c moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 16.1 16.1 16.2 16.2	.2% on values: 6.1 6.0 0.5 2.65 th equation: I Actual Reading 9.0 9.0 9.0 9.0 9.0 9.0	-6.0 L = 16.294964 Corrected Reading 3.0 3.0 3.0 3.0 3.0 3.0	к 0.0143 0.0143	Rm 9.5 9.5	Depth 13.8 13.8	(mm.) 0.0532 0.0376	Finer 3.0 3.0	Retained 97.0 97.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: Jeniscus corre- pecific gravity Hydrometer typ Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00	c moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 16.1 16.1 16.2 16.2 16.2	.2% on values: 6.1 6.0 0.5 2.65 th equation: I Actual Reading 9.0 9.0 9.0 9.0 9.0 9.0 9.0	-6.0 L = 16.294964 Corrected Reading 3.0 3.0 3.0 3.0	к 0.0143 0.0143 0.0143	Rm 9.5 9.5 9.5	Depth 13.8 13.8 13.8	(mm.) 0.0532 0.0376 0.0266	Finer 3.0 3.0 3.0	Retained 97.0 97.0 97.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: Jeniscus corre- pecific gravity Hydrometer typ Hydrometer typ Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00	: moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 16.1 16.2 16.2 16.2 16.2 16.6	.2% on values: 6.1 6.0 0.5 2.65 th equation: I Actual Reading 9.0 9.0 9.0 9.0 9.0 9.0	-6.0 L = 16.294964 Corrected Reading 3.0 3.0 3.0 3.0 3.0 3.0	K 0.0143 0.0143 0.0143 0.0143	Rm 9.5 9.5 9.5 9.5	Depth 13.8 13.8 13.8 13.8 13.8	(mm.) 0.0532 0.0376 0.0266 0.0188	Finer 3.0 3.0 3.0 3.0	Retained 97.0 97.0 97.0 97.0 97.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: Jeniscus corre- pecific gravity Hydrometer typ Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00	c moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 16.1 16.1 16.2 16.2 16.2	.2% on values: 6.1 6.0 0.5 2.65 th equation: I Actual Reading 9.0 9.0 9.0 9.0 9.0 9.0 9.0	-6.0 L = 16.294964 Corrected Reading 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	K 0.0143 0.0143 0.0143 0.0143 0.0143	Rm 9.5 9.5 9.5 9.5 9.5	Depth 13.8 13.8 13.8 13.8 13.8 13.8	(mm.) 0.0532 0.0376 0.0266 0.0188 0.0137	Finer 3.0 3.0 3.0 3.0 3.0 3.0	Retained 97.0 97.0 97.0 97.0 97.0 97.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: Jeniscus corre- pecific gravity Hydrometer typ Hydrometer typ Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00	: moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 16.1 16.2 16.2 16.2 16.2 16.6	.2% on values: 6.1 6.0 0.5 2.65 th equation: I Actual Reading 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	-6.0 L = 16.294964 Corrected Reading 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	K 0.0143 0.0143 0.0143 0.0143 0.0143 0.0142	Rm 9.5 9.5 9.5 9.5 9.5 9.5	Depth 13.8 13.8 13.8 13.8 13.8 13.8 13.8	(mm.) 0.0532 0.0376 0.0266 0.0188 0.0137 0.0097	Finer 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Retained 97.0 97.0 97.0 97.0 97.0 97.0 97.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: Jeniscus corre- pecific gravity Hydrometer typ Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8,00 15.00 30.00 60,00	: moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 16.1 16.2 16.2 16.2 16.2 16.6 16.9	.2% on values: 6.1 6.0 0.5 2.65 th equation: I Actual Reading 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	-6.0 L = 16.294964 Corrected Reading 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	K 0.0143 0.0143 0.0143 0.0143 0.0143 0.0142 0.0142	Rm 9.5 9.5 9.5 9.5 9.5 9.5 9.5	Depth 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8	(mm.) 0.0532 0.0376 0.0266 0.0188 0.0137 0.0097 0.0068	Finer 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Retained 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0
Hygroscopic able of compo- Temp., deg. Comp. corr.: Jeniscus corre- pecific gravity Hydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00 60.00 120.00	: moisture = 0 osite correction C: 1 ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 16.1 16.2 16.2 16.2 16.2 16.6 16.9 17.3	.2% on values: 6.1 6.0 0.5 2.65 th equation: I Actual Reading 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	-6.0 L = 16.294964 Corrected Reading 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	K 0.0143 0.0143 0.0143 0.0143 0.0143 0.0142 0.0142 0.0141	Rm 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	Depth 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8	(mm.) 0.0532 0.0376 0.0266 0.0188 0.0137 0.0097 0.0068 0.0048	Finer 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5	Retained 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0

_ TOLUNAX WONG ENGINEERS, INC. _

		-		F	ractional	Componer	nts	-			-
Cobbles		Grave	4			Sand		1		Fines	
Connica	Coarse	Fine	Tota	l Coa	rse Me	dium l	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.	0 0).1	95.9	96.0	2.0	2.0	4.0
						-	1	-	-		-
D ₅	D10	D ₁₅	D ₂₀	D30	D40	D50	D ₆₀	D80	D85	D90	Das
D5 0.0848	D ₁₀ 0.1238	D ₁₅ 0.1516	D ₂₀ 0.1574	D ₃₀			D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0848					D ₄₀ 0.1781	D50 0.1883	D ₆₀ 0.1989	D ₈₀ 0.2237	D ₈₅ 0.2313	D 90 0.2401	D ₉₅ 0.2560
							1.000				

_ TOLUNAX WONG SNGINEERS, INC. _

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 06-L7 USCS: SP

				Steve	e Test Dat	a			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weigh (grams)	Sie	ve ning F	umulative Weight Retained (grams)	Percent Finer	Percent Retained		
318.31	218.31	218.31		#10	218.31	100.0	0.0		
				#20	218.47	99.8	0.2		
				#40	218.68	99.6	0,4		
				#60	247.99	70.3	29.7		
			#	100	311.17	7.1	92.9		
			#	200	313.74	4.6	95.4		
		20-50		Hydrom	eter Test	Data	-	-	-
able of compo Temp., deg. Comp. corr.:	C: 1		18.6 -6.0						
able of compo Temp., deg. Comp. corr.: Aeniscus corre pecific gravity lydrometer typ	osite correcti C: 1 ection only = y of solids = 2 pe = 152H	on values: 6.5 6.0 0.5 2.65	18.6 -6.0 L = 16.294964	- 0.2645 x	Rm				
able of compo Temp., deg. Comp. corr.: Aeniscus corre pecific gravity lydrometer typ	osite correcti C: 1 ection only = y of solids = 2 pe = 152H	on values: 6.5 6.0 0.5 2.65	-6.0	- 0.2645 х К	Rm Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
able of compo Temp., deg. Comp. corr.: Meniscus corre pecific gravity lydrometer typ Hydrometer o Elapsed	osite correcti C: 1 	on values: 6.5 6.0 0.5 2.65 th equation: I Actual	-6.0 L = 16.294964 Corrected						
able of compo Temp., deg. Comp. corr.: Meniscus corre pecific gravity lydrometer typ Hydrometer typ Elapsed Time (min.)	osite correcti C: 1 	on values: 6.5 6.0 0.5 2.65 th equation: I Actual Reading	-6.0 L = 16.294964 Corrected Reading	к	Rm	Depth	(mm.)	Finer	Retained
able of compo Temp., deg. Comp. corr.: Meniscus corre pecific gravity hydrometer typ Hydrometer typ Elapsed Time (min.) 1.00 2.00 4.00	osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dep Temp. (deg. C.) 16.5 16.5 16.5	on values: 6.5 6.0 0.5 2.65 th equation: I Actual Reading 9.5 9.5 9.5	-6.0 L = 16.294964 Corrected Reading 3.5	к 0.0143	Rm 10.0	Depth 13.6	(mm.) 0.0527	Finer 3.5	Retained 96.5
able of compo Temp., deg. Comp. corr.: Meniscus corres pecific gravity lydrometer typ Hydrometer of Elapsed Time (min.) 1.00 2.00 4.00 8.00	osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dep Temp. (deg. C.) 16.5 16.5 16.5 16.5	on values: 6.5 6.0 0.5 2.65 th equation: I Actual Reading 9.5 9.5	-6.0 L = 16.294964 Corrected Reading 3.5 3.5	K 0.0143 0.0143	Rm 10.0 10.0	Depth 13.6 13.6	(mm.) 0.0527 0.0373	Finer 3.5 3.5	Retained 96.5 96.5
able of compo Temp., deg. Comp. corr.: Meniscus corres pecific gravity lydrometer typ Hydrometer d Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00	osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dep Temp. (deg. C.) 16.5 16.5 16.5	on values: 6.5 6.0 0.5 2.65 th equation: I Actual Reading 9.5 9.5 9.5	-6.0 L = 16.294964 Corrected Reading 3.5 3.5 3.5 3.5	к 0.0143 0.0143 0.0143	Rm 10.0 10.0 10.0	Depth 13.6 13.6 13.6	(mm.) 0.0527 0.0373 0.0264	Finer 3.5 3.5 3.5	Retained 96.5 96.5 96.5
able of compo Temp., deg. Comp. corr.: Meniscus corres pecific gravity hydrometer typ Hydrometer f Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00	osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dep Temp. (deg. C.) 16.5 16.5 16.5 16.5	on values: 6.5 6.0 0.5 2.65 th equation: I Actual Reading 9.5 9.5 9.5 9.5 9.5	-6.0 L = 16.294964 Corrected Reading 3.5 3.5 3.5 3.5 3.5	K 0.0143 0.0143 0.0143 0.0143	Rm 10.0 10.0 10.0 10.0	Depth 13.6 13.6 13.6 13.6	(mm.) 0.0527 0.0373 0.0264 0.0186	Finer 3.5 3.5 3.5 3.5 3.5	Retained 96.5 96.5 96.5 96.5
able of compo Temp., deg. Comp. corr.: Meniscus correspecific gravity lydrometer typ Hydrometer of Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00 60.00	osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dep Temp. (deg. C.) 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.7 17.0	on values: 6.5 6.0 0.5 2.65 th equation: I Actual Reading 9.5 9.5 9.5 9.5 9.5 9.5	-6.0 L = 16.294964 Corrected Reading 3.5 3.5 3.5 3.5 3.5 3.5 3.5	K 0.0143 0.0143 0.0143 0.0143 0.0142	Rm 10.0 10.0 10.0 10.0 10.0	Depth 13.6 13.6 13.6 13.6 13.6 13.6	(mm.) 0.0527 0.0373 0.0264 0.0186 0.0136	Finer 3.5 3.5 3.5 3.5 3.5 3.5	Retained 96.5 96.5 96.5 96.5 96.5
able of compo Temp., deg. Comp. corr.: Meniscus correspecific gravity Hydrometer typ Hydrometer d Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00 60.00 120.00	osite correcti C: 1 ection only = y of solids = 2 oe = 152H effective dep Temp. (deg. C.) 16.5 16.5 16.5 16.5 16.5 16.6 16.7 17.0 17.4	on values: 6.5 6.0 0.5 2.65 th equation: I Actual Reading 9.5 9.5 9.5 9.5 9.5 9.5 8.5 8.5 8.5 8.5	-6.0 L = 16.294964 Corrected Reading 3.5 3.5 3.5 3.5 3.5 3.5 3.5 2.5	K 0.0143 0.0143 0.0143 0.0143 0.0142 0.0142	Rm 10.0 10.0 10.0 10.0 10.0 9.0	Depth 13.6 13.6 13.6 13.6 13.6 13.6 13.9	(mm.) 0.0527 0.0373 0.0264 0.0186 0.0136 0.0097	Finer 3.5 3.5 3.5 3.5 3.5 3.5 3.5 2.5	Retained 96.5 96.5 96.5 96.5 96.5 97.5
able of compo Temp., deg. Comp. corr.: Meniscus corres pecific gravity Hydrometer typ Hydrometer typ 1.00 2.00 4.00 8.00 15.00 30.00 60.00 120.00 240.00	osite correcti C: 1 ection only = y of solids = 2 oe = 152H effective dep Temp. (deg. C.) 16.5 16.5 16.5 16.5 16.5 16.6 16.7 17.0 17.4 18.2	on values: 6.5 6.0 0.5 2.65 th equation: I Actual Reading 9.5 9.5 9.5 9.5 9.5 8.5 8.5 8.5 8.5 8.5 8.5	-6.0 L = 16.294964 Corrected Reading 3.5 3.5 3.5 3.5 3.5 3.5 2.5 2.5 2.5 2.5 2.0	K 0.0143 0.0143 0.0143 0.0143 0.0142 0.0142 0.0142	Rm 10.0 10.0 10.0 10.0 10.0 9.0 9.0	Depth 13.6 13.6 13.6 13.6 13.6 13.9 13.9	(mm.) 0.0527 0.0373 0.0264 0.0186 0.0136 0.0097 0.0068	Finer 3.5 3.5 3.5 3.5 3.5 2.5 2.5	Retained 96.5 96.5 96.5 96.5 96.5 97.5 97.5
able of compo Temp., deg. Comp. corr.: Meniscus correspecific gravity Hydrometer typ Hydrometer d Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00 60.00 120.00	osite correcti C: 1 ection only = y of solids = 2 pe = 152H effective dep Temp. (deg. C.) 16.5 16.5 16.5 16.5 16.5 16.6 16.7 17.0 17.4	on values: 6.5 6.0 0.5 2.65 th equation: I Actual Reading 9.5 9.5 9.5 9.5 9.5 9.5 8.5 8.5 8.5 8.5	-6.0 L = 16.294964 Corrected Reading 3.5 3.5 3.5 3.5 3.5 3.5 2.5 2.5 2.5 2.5	K 0.0143 0.0143 0.0143 0.0143 0.0142 0.0142 0.0142 0.0142	Rm 10.0 10.0 10.0 10.0 10.0 9.0 9.0 9.0	Depth 13.6 13.6 13.6 13.6 13.6 13.9 13.9 13.9	(mm.) 0.0527 0.0373 0.0264 0.0186 0.0136 0.0097 0.0068 0.0048	Finer 3.5 3.5 3.5 3.5 3.5 2.5 2.5 2.5 2.5	Retained 96.5 96.5 96.5 96.5 96.5 97.5 97.5 97.5

_ TOLUNAT WONG BNGINEERS, INC. _

2/22/2019

1		-		F	ractional (Componer	nts	-	- 2	2	
Cobbles		Grave	1			Sand				Fines	
CODDICS	Coarse	Fine	Tota	l Coa	rse Me	dium I	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.	0 0).4	95.0	95.4	3.1	1.5	4.6
							2.04. J	THE REAL PROPERTY OF			1.4
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D40	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D95

Fineness Modulus	cu	Cc
1.07	1.48	0.95

_ TOLUNAY TYONG BNGINEERS, INC.

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 07-L8 USCS: SP

1440.00

18.2

7.5

1.5

				Sieve	Tast Da	a			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weigh (grams)	Sie ot Ope	ning R	mulative Weight tetained grams)	Percent Finer	Percent Retained		
318.45	218.45	218.45		#10	218.45	100.0	0.0		
				#20	218.50	99.9	0.1		
				#40	218.62	99.8	0.2		
				#60	256.94	61.5	38.5		
			#	¥100	311.84	6.6	93.4		
			ŧ	#200	314.21	4.2	95.8		
				Hydrome	ter Test	Datar	-		
Temp., deg. (Comp. corr.: Meniscus corre Specific gravity lydrometer typ Hydrometer typ	ection only = of solids = 1 be = 152H	2.65	18.6 -6.0 L = 16.294964	- 0 2645 -	Pm				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	16.7	9.0	3.0	0.0142	9.5	13.8	0.0528	3.0	97.0
2.00	16.7	8.5	2.5	0.0142	9.0	13,9	0.0375	2.5	97.5
4.00	16.7	8.5	2.5	0.0142	9.0	13.9	0.0265	2.5	97.5
8.00	16.8	8.5	2.5	0.0142	9.0	13.9	0.0187	2.5	97.5
15.00	16.9	8.5	2.5	0.0142	9.0	13.9	0.0137	2.5	97.5
30.00	17.0	8.5	2.5	0.0142	9.0	13.9	0.0097	2.5	97.5
60.00	17.3	8.0	2.0	0.0141	8.5	14.0	0.0068	2.0	98.0
120.00	17.6	8.0	2.0	0.0141	8.5	14.0	0.0048	2.0	98.0
240.00	18.4	8.0	2.0	0.0139	8.5	14.0	0.0034	2.0	98.0
480.00	18.6	7.5	1.5	0.0139	8.0	14.2	0.0024	1.5	98.5
1440.00	10.0			A	à à	2.2		2.61	

_ TOLUNAY WONG SNGINEERS, INC. .

8.0

14.2

0.0014

1.5

98.5

0.0140

	-		-		ractional	Componer	ns				
Cobbles		Grave	1		- 1-1 C	Sand				Fines	
CODDICS	Coarse	Fine	Tota	l Coa	rse Mee	dium l	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.	0 0	.2 9	95.6	95.8	2.7	1.5	4.2
1.2.1	Carlo et al	a 2 1		-			1	-		-	-
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D40	D50	D60	D ₈₀	D ₈₅	D ₉₀	D ₉₅
D 5 0.0934	D ₁₀ 0.1572	D ₁₅ 0.1666	D ₂₀ 0.1753	D ₃₀ 0.1918	D ₄₀ 0.2086	D ₅₀ 0.2265	D ₆₀ 0.2466	D ₈₀ 0.3023	D ₈₅ 0.3220	D ₉₀ 0.3462	D ₉₅
0.0934	0.1572						100			-	
							100			-	

_ TOLUNAY-WONG SNGINEERS, INC. .

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 08-L9 USCS: SP-SM

				Stev	e Tesi Dai	8			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weigh (grams)	Sie	eve ning	Cumulative Weight Retained (grams)	Percent Finer	l Percent Retained		
316.84	216.84	216.84		#10	216.84	100.0	0.0		
				#20	217.07	99.8	0.2		
				#40	217.44	99.4	0.6		
				#60	238.72	78.1	21.9		
			ŧ	¢100	307.81	9.0	91.0		
			#	200	310.09	6.7	93.3		
12000	the second second			Hydroin	leter Test	Data		a contra	
Temp., deg. Comp. corr.: Meniscus corre pecific gravity lydrometer typ Hydrometer	ection only = y of solids = 2 pe = 152H	2.65	18.9 -6.0 L = 16.294964	- 0.2645 1	x Rm				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	15.4	11.0	5.0	0.0145	11.5	13.3	0.0527	5.0	95.0
2.00	15.4	11.0	5.0	0.0145	11.5	13.3	0.0373	5.0	95.0
4.00	15.5	11.0	5.0	0.0145	11.5	13.3	0.0263	5.0	95.0
8.00	15.6	11.0	5.0	0.0144	11.5	13.3	0.0186	5.0	95.0
15.00	15.9	10.5	4.5	0.0144	11.0	13.4	0.0136	4.5	95.5
30.00	16.1	10.5	4.5	0.0143	11.0	13.4	0.0096	4.5	95.5
60.00	16.5	10.5	4.5	0.0143	11.0	13.4	0.0067	4.5	95.5
120.00	17.6	9.5	3.5	0.0141	10.0	13.6	0.0047	3.5	96.5
									10,5
240.00	18.6	9.0	3.0	0.0139		13.8	0.0033	3.0	97.0
240.00 480.00 1440.00	18.6 18.9 18.6	9.0 8.5 8.5	3.0 2.5 2.5		9.5	13.8 13.9	0.0033 0.0024	3.0 2.5	

_ TOLUNAY age ONG ENGINEERS, INC. _

-				F	ractional (Componer	its		-	-	-
Cobbles		Grave	1	21/72		Sand				Fines	
oobbles	Coarse	Fine	Tota	Coa	rse Med	lium f	ine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0 0	.6 9	02.7	93.3	4.2	2.5	6.7
		-									
D ₅	D10	D15	D20	D30	D40	D50	D60	D80	D85	D90	D95

Fineness Modulus	cu	Cc	
0.99	1.44	0.96	

_ TOLUNAY WONG ENGINEERS, INC. .

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 09-L10 USCS: SP-SM

100			\$	ileve Test Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
288.25	188.25	188.25	#10	188.26	100.0	0.0	
			#20	188.33	99.9	0.1	
			#40	188.52	99.7	0.3	
			#60	230.17	58.1	41.9	
			#100	279.35	8.9	91.1	
			#200	280.40	7.9	92.1	
			Hydr	rometer Test D)ata		
Percent passi Neight of hyd Hygroscopic i	ng #10 based rometer sam moisture corr	ection:					
Hygroscopic I	moisture corr nt and tare = and tare =	ection:					

Tare weight = 31.28 Hygroscopic moisture = 0.3%

Table of composite correction values:

Temp., deg. C: 15.3 19.0 Comp. corr.: -6.0 -6.0

Meniscus correction only = 0.5

Specific gravity of solids = 2.65

Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained	
1.00	15.3	10.5	4.5	0.0145	11.0	13.4	0.0530	4.5	95.5	
2.00	15.3	10.0	4.0	0.0145	10.5	13.5	0.0377	4.0	96.0	
4.00	15.4	10.0	4.0	0.0145	10.5	13.5	0.0266	4.0	96.0	
8.00	15.6	10.0	4.0	0.0144	10.5	13.5	0.0188	4.0	96.0	
15.00	15.7	10.0	4.0	0.0144	10.5	13.5	0.0137	4.0	96.0	
30.00	16.2	10.0	4.0	0.0143	10.5	13.5	0.0096	4.0	96.0	
60.00	16.6	10.0	4.0	0.0142	10.5	13.5	0.0068	4.0	96.0	
120.00	17.4	9.0	3.0	0.0141	9.5	13.8	0.0048	3.0	97.0	
240.00	18.8	9.0	3.0	0.0139	9.5	13.8	0.0033	3.0	97.0	
480.00	19.0	8.0	2.0	0.0138	8.5	14.0	0.0024	2.0	98.0	
1440.00	18.6	8.0	2.0	0.0139	8.5	14.0	0.0014	2.0	98.0	
									1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

TOLUNAY-WONG ENGINEERS, INC.

-	-	-	-	F	ractional	Compone	nts				
Cobbles	L	Grave	1			Sand	1			Fines	
COUDIES	Coarse	Fine	Tota	l Coa	rse M	edium	Fine	Total	Silt	Clay	Total
	B.0.44	1.0		-	1.1	0.3	91.8		5.9	2.0	7.9
21		1				1	D ₆₀	D80	D ₈₅	D ₉₀	D ₉₅
D ₅	D10	D15	D20	D30	D40	D50	D60	D80	D ₈₅	D90	D95
0.0572	0.1530	0.1646	0.1748	0.1937	0.2125	0.2323	0.2545	0.3126	0.3321	0.3554	0.3849
Finanasa	Cu	Cc									
Fineness Modulus	°u										

TOLUNAY-WONG ENGINEERS, INC.

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 010-L11 USCS: SP-SM

			\$	ieve Test Data	V		
Dry Sample Ind Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
316.94	216.94	216.94	#10	216.94	100.0	0.0	
			#20	218.91	98.0	2.0	
			#40	220.84	96.1	3.9	
			#60	244.40	72.5	27.5	
			#100	303.96	13.0	87.0	
			#200	310.45	6.5	93.5	
			Hydr	ometer Test D	ata		

Percent passing #10 based upon complete sample = 100.0

Weight of hydrometer sample =100

Hygroscopic moisture correction:

Moist weight and tare = 88.53 Dry weight and tare = 88.38

Tare weight =

30.49 Hygroscopic moisture = 0.3%

Table of composite correction values:

Temp., deg. C: 15.7

Comp. corr.: -6.0

Meniscus correction only = 0.5

Specific gravity of solids = 2.65

```
Hydrometer type = 152H
```

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

19.0

-6.0

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	15.7	12.0	6.0	0.0144	12.5	13.0	0.0520	6.0	94.0
2.00	15.7	11.0	5.0	0.0144	11.5	13.3	0.0371	5.0	95.0
4.00	15.8	11.0	5.0	0.0144	11.5	13.3	0.0262	5.0	95.0
8.00	15.9	11.0	5.0	0.0144	11.5	13.3	0.0185	5.0	95.0
15.00	16.2	11.0	5.0	0.0143	11.5	13.3	0.0135	5.0	95.0
30.00	16.2	10.0	4.0	0.0143	10.5	13.5	0.0096	4.0	96.0
60.00	16.9	10.0	4.0	0.0142	10.5	13.5	0.0067	4.0	96.0
120.00	17.7	10.0	4.0	0.0140	10.5	13.5	0.0047	4.0	96.0
240.00	18.9	9.5	3.5	0.0138	10.0	13.6	0.0033	3.5	96.5
480.00	19.0	9.5	3.5	0.0138	10.0	13.6	0.0023	3.5	96.5
1440.00	18.7	9,0	3.0	0.0139	9.5	13.8	0.0014	3.0	97.0

TOLUNAK WONG FNGINEERS, INC.

				F	ractional	Compone	nts			-	-
Cobbles		Grave	1			Sand				Fines	-
	Coarse	Fine	Tota	l Coa	rse Me	dium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.	0 3	.9	89.6	93.5	3.0	3.5	6.5
D ₅	D10	Der	Dee	Der	Du						
	010	D15	D ₂₀	D30	D40	D50	D ₆₀	D80	D85	D90	D95
0.0134	0.1190	0.1536	0.1618	0.1767	0.1913	0.2065	0.2235	0.2724	0.2936	0.3253	0.392

Fineness Modulus	cu	Cc
1.05	1.88	1.17

_ TOLUNAY-WONG ENGINEERS, INC. _

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 011-L12 USCS: SP-SM

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
447.93	264.61	264.61	1.5"	264.61	100.0	0.0	
		1.0	3/4"	266.87	98.8	1.2	
			#4	303.29	78.9	21.1	
267.20	217.20	217.20	#10	217.21	78.9	21.1	
			#20	218.46	76.9	23.1	
			#40	219.49	75.3	24.7	
			#60	220.58	73.6	26.4	
			#100	252.18	23.7	76.3	
			#200	261.80	8.5	91.5	

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 78.9

Weight of hydrometer sample =50

Hygroscopi	c mo	sture	cor	rection	5
Moist we	ight a	nd tar	-	103 97	ł.

the for the grit and the	100121
Dry weight and tare =	103.82
Tare moinht -	20 57

Tare weight = 30.57 Hygroscopic moisture = 0.2%

Table of composite correction values:

Temp., deg. C: 16.6

- Comp. corr.: -6.0
- Meniscus correction only = 0.5 Specific gravity of solids = 2.65
- Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

19.0

-6.0

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained	
1.00	16.6	10.5	4.5	0.0142	11.0	13.4	0.0521	7.1	92.9	
2.00	16.6	10.0	4.0	0.0142	10.5	13.5	0.0370	6.3	93.7	
4.00	16.7	10.0	4.0	0.0142	10.5	13.5	0.0262	6.3	93.7	
8.00	16.8	10.0	4.0	0.0142	10.5	13.5	0.0185	6.3	93.7	
15.00	16.9	10.0	4.0	0.0142	10.5	13.5	0.0135	6.3	93.7	
30.00	17.1	10.0	4.0	0.0142	10.5	13.5	0.0095	6.3	93.7	
60.00	17.4	9.5	3.5	0.0141	10.0	13.6	0.0067	5.5	94.5	
120.00	17.9	9.0	3.0	0.0140	9.5	13.8	0.0047	4.7	95.3	
240.00	18.9	8.5	2.5	0.0138	9.0	13.9	0.0033	4.0	96.0	
480.00	19.0	8.0	2.0	0.0138	8.5	14.0	0.0024	3.2	96.8	
1440.00	18.7	8.0	2.0	0.0139	8.5	14.0	0.0014	3.2	96.8	

TOLUNAY awong Engineers, INC.

1000			-	F	ractional	Compone	nts				
Cobbles		Grave				Sand				Fines	
CODDies	Coarse	Fine	Tota	l Coa	arse Me	dium	Fine	Total	Silt	Clay	Total
0.0	1.2	19.9	21.1	0	.0	3.6	56.8	70.4	5.3	3.2	8.5
- 1		-	-	1	1525	1	1	IT a set	1		
D ₅	D ₁₀	D ₁₅	D ₂₀	D30	D40	D50	D ₆₀	D80	D ₈₅	D ₉₀	D95
D 5 0.0054	D ₁₀ 0.0847	D ₁₅ 0.1106	D ₂₀ 0.1335	D ₃₀ 0.1609	D ₄₀ 0.1770	D ₅₀ 0.1937	D ₆₀ 0.2126	D ₈₀ 5.3684	D ₈₅	D ₉₀ 10.2525	D95
0.0054	0.0847	0.1106		Contraction of the second	1.000					D ₉₀ 10.2525	
				Contraction of the second	1.000						

TOLUNAY WONG FNGINEERS, INC.

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 012-L13 USCS: GP

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained
474.04	272.13	272.13	3/4	272.13	100.0	0.0
			#4	392.54	40.4	59.6
268.55	218.55	218.55	#10	218.55	40.4	59.6
			#20	224,01	36.0	64.0
			#40	226.87	33.6	66.4
			#60	229.54	31.5	68.5
			#100	251.50	13.8	86.2
			#200	262.50	4.9	95.1

Hydrometer Test Da

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 40.4

Weight of hydrometer sample =50

Hygroscopic moisture correction:

Moist weight and tare = 71.95

Dry weight and tare = 71.81 30.48

Tare weight = Hygroscopic moisture = 0.3%

Table of composite correction values: Temp., deg. C: 17.0 19.0 -6.0

Comp. corr.: -6.0

Meniscus correction only = 0.5 Specific gravity of solids = 2.65

Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained	
1.00	17.0	13.0	7.0	0.0142	13.5	12.7	0.0506	5.7	94.3	
2.00	17.0	12.0	6.0	0.0142	12.5	13.0	0.0361	4.9	95.1	
4.00	17.2	11.5	5.5	0.0141	12.0	13.1	0.0256	4.5	95.5	
8.00	17.2	11.5	5.5	0.0141	12.0	13.1	0.0181	4.5	95.5	
15.00	17.3	11.5	5.5	0.0141	12.0	13.1	0.0132	4.5	95.5	
30.00	17.4	11.5	5.5	0.0141	12.0	13.1	0.0093	4.5	95.5	
60.00	17.6	10.5	4.5	0.0141	11.0	13.4	0.0066	3.6	96.4	
120.00	18.2	10.5	4.5	0.0140	11.0	13,4	0.0047	3.6	96.4	
240.00	19.0	9.5	3.5	0.0138	10.0	13.6	0.0033	2.8	97.2	
480.00	18.5	9.5	3.5	0.0139	10.0	13.6	0.0023	2.8	97.2	
1440.00	18.8	9.5	3.5	0.0139	10.0	13.6	0.0013	2.8	97.2	

TOLUNAY WONG ENGINEERS, INC.

Cobbles		Grave	iter	1.200		Sand				Fines	
oobbics	Coarse	Fine	Tota	Coa	rse Med	lium	Fine	Total	Silt	Clay	Total
0.0	0.0	59.6	59.6	0.0) 6	.8	28.7	35.5	2.1	2.8	4.9
									100 1		
D5	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Fineness Modulus	Cu	C _c
4.38	72.42	0.05

TOLUNAY ageong ENGINEERS, INC.

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 013-L14 USCS: SC

480.00

1440.00

18.6

18.9

11.5

11.0

5.5

5.0

0.0139

0.0138

		-	1000	Siev	e Test Dat	ta	_		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weigh (grams)	Sie nt Ope	ve	Cumulative Weight Retained (grams)	Percen Finer	t Percent Retained		
282.98	232.98	232.98		#10	233.00	100.0	0.0		
				#20	233.98	98.0	2.0		
				#40	234.59	96.8	3.2		
				#60	234.97	96.0	4.0		
			#	100	262.09	41.8	58.2		
-			#	200	273.86	18.2	81.8		
	Ter G	-		Hydrom	eter Test	Data			
Hygroscopic Table of compo Temp., deg. Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer	osite correcti C: 1 ection only = / of solids = 2 be = 152H	on values: 7.3 6.0 0.5 2.65	19.2 -6.0 L = 16.294964	- 0.2645	« Rm				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	17.3	15.0	9.0	0.0141	15.5	12.2	0.0493	18.1	81.9
2.00	17.3	14.5	8.5	0.0141	15.0	12.3	0.0351	17.1	82.9
4.00	17.4	14.5	8.5	0.0141	15.0	12.3	0.0248	17.1	82.9
8.00	17.4	14.5	8.5	0.0141	15.0	12.3	0.0175	17.1	82.9
15.00	17.5	14.5	8.5	0.0141	15.0	12.3	0.0128	17.1	82.9
30.00	17.6	14.0	8.0	0.0141	14.5	12.5	0.0091	16.1	83.9
60.00	17.9	13.5	7.5	0.0140	14.0	12.6	0.0064	15.1	84.9
120.00	18.3	12.5	6.5	0.0139	13.0	12.9	0.0046	13.1	86.9
240,00	19.2	11.5	5.5	0.0138	12.0	13.1	0.0032	11.0	89.0
400.00	10 /	11.0		0.0100			2 2422	2 5 3 3	

TOLUNAY-WONG FNGINEERS, INC.

12.0

11.5

13.1

13.3

0.0023

0.0013

11.0

10.0

89.0

90.0

Cobbles -		Grave	1			Sand		Fines			
CODDIES	Coarse	Fine	Tota	l Coa	rse Mee	lium I	Fine	Total	Silt	Clay	Total
		10.00		21420	3	.2 1	78.6		7,3	10.9	18.2
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D40	D ₅₀	D ₆₀	D ₈₀	D85	D90	D95
		0.0063	0.0973	0.1287	0.1471	0.1623	0.1768	0.2092	0.2192	0.2310	0.2461

TOLUNAY-WONG ENGINEERS, INC.

Client: ALS Project: ALS HS19020370 Project Number: 19.14.025 Location: HS19020370 Sample Number: 014-L15 USCS: ML

8.00

15.00

30.00

60.00

120.00

240.00

480.00

1440.00

17.6

17.4

17.8

18.1

18.4

19.2

18.8

18.9

11.5

11.5

11.0

10.5

10.5

9.5

9.5

9.0

5.5

5.5

5.0

4.5

4.5

3.5

3.5

3.0

0.0141

0.0141

0.0140

0.0140

0.0139

0.0138

0.0139

0.0138

12.0

12.0

11.5

11.0

11.0

10.0

10.0

9.5

13.1

13.1

13.3

13.4

13.4

13.6

13.6

13.8

0.0180

0.0132

0.0093

0.0066

0.0046

0.0033

0.0023

0.0014

5.5

5.5

5.0

4.5

4.5

3.5

3.5

3.0

94.5

94.5

95.0

95.5

95.5

96.5

96,5

97.0

And in case of the local diversion of the local diversion of the local diversion of the local diversion of the				Sie	we Test Dat	a			
Dry Sample and Tare (grams)	Tare (grams)	Cumulativ Pan Tare Weigl (grams)	Sie ht Ope	eve ning ize	Cumulative Weight Retained (grams)	Percent Finer	t Percer Retaine		
318.20	218.20	218.20	6	#10	218.21	100.0	0.0		
				#20	218.22	100.0	0.0		
				#40	218.28	99.9	0.1		
				#60	218.66	99.5	0.5		
			#	#100	251.11	67.1	32.9		÷
			ŧ	#200	261.69	56.5	43.5		
				Huden	meter Test I	Defe.			
Dry weight a Tare weight Hygroscopic Table of comp Temp., deg. Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer	= : ::::::::::::::::::::::::::::::::::	ion values: 7.4 -6.0 0.5 2.65	19.2 -6.0 L = 16.294964	- 0.2645	x Rm				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	17.8	12.5	6.5	0.0140	0 13.0	12.9	0.0503	6.5	93.5
2.00	17.8	12.0	6.0	0.0140	0 12.5	13.0	0.0358	6.0	94.0
4.00	17.5	11:5	5.5	0.014	1 12.0	13.1	0.0255	5.5	94.5
0.00	17.6	11.0				Children and Child		0.04	C. C

TOLUNAY age 926 ENGINEERS, INC.

Cobbles	obbles Gravel		A	Sar	Fines					
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
			1	12.20	0.1	43.4	· · · · ·	53.1	3.4	56.5

D ₅	D10	D15	D ₂₀	D30	D40	D50	D60	D80	D85	D90	D95
0.0093	0.0525	0.0550	0.0572	0.0614	0.0658	0.0708	0.0943	0.1875	0.2002	0.2140	0.2301

Fineness Modulus	cu	Cc		
0.33	1.80	0.76		

TOLUNAY age ONG ENGINEERS, INC.

ATTACHMENT 4 INVERTEBRATE PHOTOLOG

PHOTO 1:

Magelona riojai, a polychaete worm belonging to the Family Magelonidae, found in benthic samples from L-1, L-7, L-8, and L-9.

PHOTO 2:

Onuphis eremita oculata, a polychaete worm belonging to the Family Onuphidae, found in benthic samples from L-9 and L-11.

PHOTO 3:

Laonome sp., a polychaete worm belonging to the Family Sabellidae, found in benthic samples from L-2 and L-4.

PHOTO 4:

Astyris lunata, a gastropod mollusc belonging to the Family Columbellidae, found in the benthic sample from L-6.

PHOTO 5:

Nassarius acutus, a gastropod mollusc belonging to the Family Nassariidae, found in the benthic sample from L-15.

PHOTO 6:

Anadara transversa, a bivalve mollusk belonging to the Family Arcidae, found in benthic samples from L-6, L-10, L-13, and L-14.

PHOTO 7:

Petricolaria

pholadiformis, a bivalve mollusc belonging to the Family Petricolidae, found in benthic samples from L-4 and L-12.

PHOTO 8:

Tellidora cristata, a bivalve mollusc belonging to the Family Tellinidae, found in the benthic sample from L-12.

PHOTO 9:

Oxyurostylis lecroyae, a cumacean crustacean belonging to the Family Diastylidae, found in benthic samples from L-2, L-5, and L-15.

PHOTO 10:

Caprella equilibra, an amphipod crustacean belonging to the Family Caprellidae, found in benthic samples from L-4 and L-6 and the plankton sample from P-1.

PHOTO 11:

Monocorophium tuberculatum, an amphipod crustacean belonging to the Family Corophiidae, found in benthic samples from L-2 and L-6.

PHOTO 12:

Elasmopus levis, an amphipod crustacean belonging to the Family Melitidae, found in the benthic sample from L-6.

PHOTO 13:

Argissa hamatipes, an amphipod crustacean belonging to the Family Argissidae, found in the benthic sample from L-2.

PHOTO 14:

Eobrolgus spinosus, an amphipod crustacean belonging to the Family Phoxocephalidae, found in the benthic sample from L-6.

PHOTO 15:

Ericthonius brasiliensis, an amphipod crustacean belonging to the Family Ischyroceridae, found in the benthic sample from L-6.

PHOTO 16:

Eudevenopus honduranus, an amphipod crustacean belonging to the Family Platyischnopidae, found in the benthic sample from L-5.

PHOTO 17:

Protohaustorius cf. *bousfieldi*, an amphipod crustacean found in benthic samples from L-5, L-7, and L-8.

PHOTO 18:

Hepatus sp., a decapod crustacean belonging to the Family Hepatidae, found in the benthic sample from L-4.

PHOTO 19:

Amphiodia atra, an ophiuroid echinoderm belonging to the Family Amphiuridae, found in the benthic sample from L-12.

PHOTO 20:

Hemipholis cordifera, an ophiuroid echinoderm belonging to the Family Ophiactidae, found in the benthic sample from L-6.

PHOTO 21:

Amathia alternata, a colonial bryozoan belonging to the Family Vesiculariidae, found in benthic samples from L-2, L-4, L-6, L-10, L-14, and L-15.

PHOTO 22:

Bugula neritina, a colonial bryozoan belonging to the Family Bugulidae, found in benthic samples from L-2, L-3, L-10, L-13, L-14, and L-15.

APPENDICES

APPENDIX 1 PHYLOGENETIC TAXONOMIC LIST FOR BENTHIC SAMPLES PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

Species ID	Phylum	Subphylum	Class	Subclass	Order	Family	Таха	Species Notes	Reference					
00000000010	Porifera						Porifera spp.	Colonial; present						
01020000000	Cnidaria		Anthozoa				Anthozoa spp.							
010303010100	Cnidaria		Hydrozoa	Hydroidolina	Anthoathecata	Eudendriidae	Eudendrium spp.	Colonial; present	Boullion & Boero, 2000; Felder & Camp, 2009					
010303030100	Cnidaria		Hydrozoa	Hydroidolina	Anthoathecata	Tubulariidae	Ectopleura spp.	Colonial; present	Boullion & Boero, 2000; Felder & Camp, 2009					
010304000000	Cnidaria		Hydrozoa	Hydroidolina	Leptothecata		Leptothecata spp.	Colonial; present	Boullion & Boero, 2000; Felder & Camp, 2009					
010304010000	Cnidaria		Hydrozoa	Hydroidolina	Leptothecata	Campanulariidae	Campanulariidae spp.	Colonial; present	Boullion & Boero, 2000; Felder & Camp, 2009					
010304010101	Cnidaria		Hydrozoa	Hydroidolina	Leptothecata	Campanulariidae	Laomedea cf. flexuosa	Colonial; present	Boullion & Boero, 2000; Felder & Camp, 2009					
010304040100	Cnidaria		Hydrozoa	Hydroidolina	Leptothecata	Lovenellidae	Lovenella spp.	Colonial; present						
020000000000	Platyhelminthes						Platyhelminthes spp.							
030000000000	Nemertea						Nemertea spp.							
030101000000	Nemertea		Anopla		Palaeonemertea		Palaeonemertea spp.							
030101010101	Nemertea		Anopla		Palaeonemertea	Tubulanidae	Tubulanus pellucidus							
030102000000	Nemertea		Anopla		Heteronemertea		Heteronemertea spp.							
030201030101	Nemertea		Enopla		Hoplonemertea	Amphiporidae	Zygonemertes virescens							
040101010100	Annelida		Polychaeta	Sedentaria		Orbiniidae	Leitoscoloplos spp.							
040101010200	Annelida		Polychaeta	Sedentaria		Orbiniidae	Scoloplos spp.							
040101010203	Annelida		Polychaeta	Sedentaria		Orbiniidae	Scoloplos capensis							
040101020202	Annelida		Polychaeta	Sedentaria		Paraonidae	Aricidea (Acmira) philbinae							
040104010100	Annelida		Polychaeta	Sedentaria		Cossuridae	Cossura spp.							
040105020201	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Minuspio perkinsi	=Prionospio perkinsi	Delgado-Blas & Salazar-Silva, 2011					
040105020204	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Prionospio cristata							
040105020400	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Streblospio spp.		Rice & Levin, 1998					
									Delgado-Blas & Carrera-Parra, 2018;					
040105020501	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Paraprionospio yokoyamai	=Paraprionospio pinnata/alata	Yokoyama, 2007; Delgado-Blas, 2004					
040105020601	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Dipolydora socialis	=Polydora socialis	Blake, 1996					
040105020602	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Polydora websteri							
							Polydora cornuta sp.							
040105020603	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	complex	=Polydora cornuta/ligni	Blake & Maciolek, 1987; Rice et al. 2008					
040105020607	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Polydora aggregata							
040105020701	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Apoprionospio pygmaea		Foster, 1969					
040105021001	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Spiophanes bombyx							
040105021301	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Boccardiella hamata							
			Polychaeta											
040105030101	Annelida		incertae sedis			Magelonidae	Magelona pettiboneae							
			Polychaeta			-		=Magelona sp. H (of Uebelacker & Jones,						
040105030102	Annelida		incertae sedis			Magelonidae	Meredithia uebelackerae	1984)	Hernandez-Alcantara & Solis-Weiss, 2000					
			Polychaeta											
040105030104	Annelida		incertae sedis			Magelonidae	Magelona riojai							
							Spiochaetopterus costarum		Bhaud et al., 2003; Bhaud, 2003; Bhaud &					
040105070101	Annelida		Polychaeta	Sedentaria		Chaetopteridae	sp. complex	=Spiochaetopterus costarum	Petti, 2001					
040105080300	Annelida	1	Polychaeta	Sedentaria	Terebellida	Cirratulidae	Cirriformia spp.	· · ·	1					

APPENDIX 1 PHYLOGENETIC TAXONOMIC LIST FOR BENTHIC SAMPLES PORT OF CORPUS CHRISTI AUTHORITY

PROI	FCT T	URNP	IKF

						PROJECT TURN		
Species ID	Phylum	Subphylum	Class	Subclass	Order	Family	Таха	Species Notes
040105080400	Annelida		Polychaeta	Sedentaria	Terebellida	Cirratulidae	Aphelochaeta spp.	
040105080601	Annelida		Polychaeta	Sedentaria	Terebellida	Cirratulidae	Dodecaceria sp. A	
040106010300	Annelida		Polychaeta	Sedentaria		Capitellidae	Mediomastus spp.	
040106010301	Annelida		Polychaeta	Sedentaria		Capitellidae	Mediomastus californiensis	
040106010302	Annelida		Polychaeta	Sedentaria		Capitellidae	Mediomastus ambiseta	
040106010400	Annelida		Polychaeta	Sedentaria		Capitellidae	Notomastus spp.	
040106020101	Annelida		Polychaeta	Sedentaria		Arenicolidae	Arenicola cristata	
040107010102	Annelida		Polychaeta	Sedentaria		Opheliidae	Armandia agilis	
040108010102	Annelida		Polychaeta	Errantia	Phyllodocida	Phyllodocidae	Eteone foliosa	=Eteone lactea
040108100100	Annelida		Polychaeta	Errantia	Phyllodocida	Sigalionidae	Sthenelais spp.	
040108140101	Annelida		Polychaeta	Errantia	Phyllodocida	Hesionidae	Podarkeopsis levifuscina	
040108150102	Annelida		Polychaeta	Errantia	Phyllodocida	Pilargidae	Sigambra tentaculata	
040108150302	Annelida		Polychaeta	Errantia	Phyllodocida	Pilargidae	Ancistrosyllis papillosa	
040108160100	Annelida		Polychaeta	Errantia	Phyllodocida	Syllidae	Syllis (Typosyllis) spp.	Subgenus
040108160103	Annelida		Polychaeta	Errantia	Phyllodocida	Syllidae	Syllis (Typosyllis) alosae	
040108160201	Annelida		Polychaeta	Errantia	Phyllodocida	Syllidae	Exogone dispar	
							Syllis (Syllis) gracilis sp.	
040108160301	Annelida		Polychaeta	Errantia	Phyllodocida	Syllidae	complex	
040108160701	Annelida		Polychaeta	Errantia	Phyllodocida	Syllidae	Salvatoria clavata	=Brania/Grubeosyllis clavata
040108180201	Annelida		Polychaeta	Errantia	Phyllodocida	Nereididae	Neanthes micromma	
040108180202	Annelida		Polychaeta	Errantia	Phyllodocida	Nereididae	Alitta succinea	=Neanthes succinea
040108180400	Annelida		Polychaeta	Errantia	Phyllodocida	Nereididae	Nereis spp.	
040108180401	Annelida		Polychaeta	Errantia	Phyllodocida	Nereididae	Nereis falsa	
040108200101	Annelida		Polychaeta	Errantia	Phyllodocida	Glyceridae	Glycera americana	
040108210000	Annelida		Polychaeta	Errantia	Phyllodocida	Goniadidae	Goniadidae spp.	
040108210101	Annelida		Polychaeta	Errantia	Phyllodocida	Goniadidae	Glycinde multidens	=Glycinde solitaria
040108240103	Annelida		Polychaeta	Errantia	Phyllodocida	Nephtyidae	Nephtys cryptomma	
040108240201	Annelida		Polychaeta	Errantia	Phyllodocida	Nephtyidae	Aglaophamus verrilli	
040111010101	Annelida		Polychaeta	Errantia	Eunicida	Onuphidae	Diopatra cuprea	
040111010401	Annelida		Polychaeta	Errantia	Eunicida	Onuphidae	Onuphis eremita oculata	Subspecies
040111030201	Annelida		Polychaeta	Errantia	Eunicida	Lumbrineridae	Scoletoma verrilli	=Lumbrineris verrilli
040113010000	Annelida		Polychaeta	Sedentaria	Sabellida	Oweniidae	Oweniidae spp.	
040113010101	Annelida		Polychaeta	Sedentaria	Sabellida	Oweniidae	Owenia sp. A	
040116030003	Annelida		Polychaeta	Sedentaria	Terebellida	Ampharetidae	Ampharetidae sp. A	=Sabellides sp. A (of Uebelacker, 1984)
040116030201	Annelida		Polychaeta	Sedentaria	Terebellida	Ampharetidae	Melinna maculata	
040116030301	Annelida		Polychaeta	Sedentaria	Terebellida	Ampharetidae	Isolda pulchella	
040117010001	Annelida		Polychaeta	Sedentaria	Sabellida	Sabellidae	Sabellinae spp.	Subfamily
							Acromegalomma	
040117010303	Annelida		Polychaeta	Sedentaria	Sabellida	Sabellidae	bioculatum	=Megalomma bioculatum
040117011200	Annelida		Polychaeta	Sedentaria	Sabellida	Sabellidae	Laonome spp.	
040117011300	Annelida		Polychaeta	Sedentaria	Sabellida	Sabellidae	Chone spp.	

	Reference
	of Wolf, 1984
	Wilson, 1988
	Cognetti & Maltagliati, 2000
	San Martin, 1991, 2003
	Bakken, 2004; Bakken & Wilson, 2005
	Boggemann, 2005
	Carrera-Parra, 2001
	of Milligan, 1984
84)	of Davenport, pers. comm.
	Gil & Nishi, 2017

APPENDIX 1 PHYLOGENETIC TAXONOMIC LIST FOR BENTHIC SAMPLES PORT OF CORPUS CHRISTI AUTHORITY

						PROJECT TURNPIR		
Species ID	Phylum	Subphylum	Class	Subclass	Order	Family	Таха	Species Notes
040117020000	Annelida		Polychaeta	Sedentaria	Sabellida	Serpulidae	Serpulidae spp.	
040117020002	Annelida		Polychaeta	Sedentaria	Sabellida	Serpulidae	Pileolariini spp.	Tribe
040117020004	Annelida		Polychaeta	Sedentaria	Sabellida	Serpulidae	Januini spp.	Tribe
040117020100	Annelida		Polychaeta	Sedentaria	Sabellida	Serpulidae	Hydroides spp.	
040117020101	Annelida		Polychaeta	Sedentaria	Sabellida	Serpulidae	Hydroides dianthus	
040201020000	Annelida		Clitellata	Oligochaeta	Tubificida	Naididae	Naididae spp.	=Tubificidae spp.
040201020003	Annelida		Clitellata	Oligochaeta	Tubificida	Naididae	Tubificinae spp.	Subfamily
040201020401	Annelida		Clitellata	Oligochaeta	Tubificida	Naididae	Tubificoides brownae	
05010000001	Mollusca		Gastropoda	Heterobranchia			Heterobranchia spp.	Subclass
050103020101	Mollusca		Gastropoda	Caenogastropoda	Littorinimorpha	Caecidae	Caecum pulchellum	
050108010000	Mollusca		Gastropoda	Caenogastropoda	Littorinimorpha	Calyptraeidae	Calyptraeidae spp.	
050108010103	Mollusca		Gastropoda	Caenogastropoda	Littorinimorpha	Calyptraeidae	Crepidula depressa	=Crepidula plana
050111010000	Mollusca		Gastropoda	Caenogastropoda	Littorinimorpha	Naticidae	Naticidae spp.	
050111010202	Mollusca		Gastropoda	Caenogastropoda	Littorinimorpha	Naticidae	Neverita delessertiana	
050116020000	Mollusca		Gastropoda	Caenogastropoda	Neogastropoda	Buccinidae	Buccinidae spp.	
050116030101	Mollusca		Gastropoda	Caenogastropoda	Neogastropoda	Columbellidae	Astyris lunata	
050116030202	Mollusca		Gastropoda	Caenogastropoda	Neogastropoda	Columbellidae	Parvanachis ostreicola	
050116040103	Mollusca		Gastropoda	Caenogastropoda	Neogastropoda	Nassariidae	Nassarius acutus	
050120010501	Mollusca		Gastropoda	Heterobranchia		Pyramidellidae	Cyclostremella humilis	
050120010603	Mollusca		Gastropoda	Heterobranchia		Pyramidellidae	Eulimastoma harbisonae	
050200000000	Mollusca		Bivalvia				Bivalvia spp.	
050202010101	Mollusca		Bivalvia	Pteriomorphia	Arcoida	Arcidae	Anadara transversa	
050204010101	Mollusca		Bivalvia	Pteriomorphia	Mytiloida	Mytilidae	Arcuatula papyria	=Amygdalum papyrium
050211010101	Mollusca		Bivalvia	Heterodonta	Veneroida	Lucinidae	Parvilucina crenella	=Parvilucina multilineata
050216010101	Mollusca		Bivalvia	Heterodonta	Veneroida	Mactridae	Mulinia lateralis	
050218010000	Mollusca		Bivalvia	Heterodonta	Veneroida	Tellinidae	Tellinidae spp.	
050210010202	Mollusca		Bivalvia		Venereide	Tellinidae	Ameritella versicolor	=Angulus versicolor; =Tellina versicolo
050218010202	Mollusca		Bivalvia	Heterodonta	Veneroida		Tellidora cristata	
050218010401				Heterodonta	Veneroida	Tellinidae		-Macama tanta
050218010701	Mollusca		Bivalvia	Heterodonta	Veneroida	Tellinidae	Macoploma tenta	=Macoma tenta
050218011001	Mollusca		Bivalvia	Heterodonta	Veneroida	Tellinidae	Pseudomacalia antillarum	=Macoma pseudomera
050220020101	Mollusca		Bivalvia	Heterodonta	Veneroida	Petricolidae	Petricolaria pholadiformis	
050220050000	Mollusca	1	Bivalvia	Heterodonta	Veneroida	Ungulinidae	Ungulinidae spp.	1
050221020101	Mollusca	1	Bivalvia	Heterodonta	Myoida	Myidae	Sphenia fragilis	=Sphenia antillensis
050221040401	Mollusca		Bivalvia	Heterodonta	Myoida	Pholadidae	Diplothyra curta	=Diplothyra smithii
060101010000	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Tanaidacea	Leptocheliidae	Leptocheliidae spp.	
060102010100	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Cumacea	Diastylidae	Oxyurostylis spp.	
060102010102	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Cumacea	Diastylidae	Oxyurostylis lecroyae	
060102010102	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Isopoda	Hyssuridae	Xenanthura brevitelson	
	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Melitidae	Elasmopus levis	

	Reference
	Erseus et al., 2008
	Collin, 2000
	Mikkelsen & Bieler, 2008
or	Mikkelsen & Bieler, 2008; Huber et al., 2015
	Mikkelsen & Bieler, 2008
	Coan & Valentich-Scott, 2012

APPENDIX 1 PHYLOGENETIC TAXONOMIC LIST FOR BENTHIC SAMPLES PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

			PROJECT TURNPIKE							
Species ID	Phylum	Subphylum	Class	Subclass	Order	Family	Таха	Species Notes		
060104040101	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Bateidae	Batea catharinensis			
							Protohaustorius cf.			
060104050201	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Haustoriidae	bousfieldi			
060104060101	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Argissidae	Argissa hamatipes			
060104070301	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Oedicerotidae	Americhelidium sp. A			
060104100101	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Phoxocephalidae	Eobrolgus spinosus			
060104120101	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Ampeliscidae	Ampelisca abdita			
060104150100	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Ampithoidae	Cymadusa spp.			
060104170001	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Corophiidae	Corophiidae spp.			
060104170201	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Ischyroceridae	Ericthonius brasiliensis			
060104170302	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Ischyroceridae	Cerapus ryanadamsi	=Cerapus sp. C (of LeCroy, 2007)		
060104170400	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Corophiidae	Monocorophium spp.			
							Monocorophium			
060104170401	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Corophiidae	acherusicum			
060104170402	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Corophiidae	Monocorophium sp. A			
							Monocorophium			
060104170403	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Corophiidae	tuberculatum			
060104170501	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Corophiidae	Laticorophium baconi			
060104200000	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Caprellidae	Caprellidae spp.			
060104200100	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Caprellidae	Caprella spp.			
060104200103	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Caprellidae	Caprella equilibra			
060104200200	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Caprellidae	Paracaprella spp.			
060104200201	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Caprellidae	Paracaprella tenuis			
060104200202	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Caprellidae	Paracaprella pusilla			
060104200401	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Caprellidae	Caprellidae sp. A			
060104220101	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Platyischnopidae	Eudevenopus honduranus			
060104250101	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Podoceridae	Podocerus brasiliensis			
060104260101	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Photidae	Photis cf. longicaudata			
060104260103	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Photidae	Photis macromana			
060105000006	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Decapoda		Paguroidea spp.	Superfamily		
060105000011	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Decapoda		Brachyura spp.	Infraorder		
060105010000	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Decapoda	Penaeidae	Penaeidae spp.			
060105130000	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Decapoda	Panopeidae	Panopeidae spp.	=Xanthidae spp.		
060105160000	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Decapoda	Portunidae	Portunidae spp.			
060105220100	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Decapoda	Hepatidae	Hepatus spp.			
060106010205	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Mysida	Mysidae	Americamysis stucki			
060107000000	Arthropoda	Crustacea	Hexanauplia	Thecostraca	Sessilia		Sessilia spp.			
070301010000	Echinodermata	Eleutherozoa	Ophiuroidea		Ophiurida	Amphiuridae	Amphiuridae spp.			
070301010301	Echinodermata	Eleutherozoa	Ophiuroidea		Ophiurida	Amphiuridae	Amphiodia atra	=Micropholus atra		
070301020101	Echinodermata	Eleutherozoa	Ophiuroidea		Ophiurida	Ophiactidae	Hemipholis cordifera	=Hemipholis elongata		
090101010100	Phoronida						Phoronis spp.			

Reference
of Lecroy, 2000
Drumm, 2018
of Lecroy, 2004
of Knight-Gray, pers. comm.
Lecroy et al., 2009
Handler 2011
Hendler, 2011

APPENDIX 1 PHYLOGENETIC TAXONOMIC LIST FOR BENTHIC SAMPLES PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

	PROJECT TURNPIKE								
Species ID	Phylum	Subphylum	Class	Subclass	Order	Family	Таха	Species Notes	
11010000000	Chordata	Tunicata	Ascidiacea				Ascidiacea spp.	Colonial; present	
110501010101	Chordata		Cephalochordata		Amphioxiformes	Branchiostomatidae	Branchiostoma floridae		
	Bryozoa								
13010100003	(Ectoprocta)		Gymnolaemata		Cheilostomatida		Membraniporoidea spp.	Colonial; present, Superfamily	
	Bryozoa								
130101010000	(Ectoprocta)		Gymnolaemata		Cheilostomatida	Electridae	Electridae spp.	Colonial; present	
	Bryozoa								
130101010101	(Ectoprocta)		Gymnolaemata		Cheilostomatida	Electridae	Conopeum tenuissimum	Colonial; present	
	Bryozoa								
130101010201	(Ectoprocta)		Gymnolaemata		Cheilostomatida	Electridae	Arbocuspis bellula	Colonial: present	
	Bryozoa								
130101020202	(Ectoprocta)		Gymnolaemata		Cheilostomatida	Membraniporidae	Biflustra denticulata	Colonial; present	
120101020200	Bryozoa		Currencelo currente		Chaile stansatida	Cabina na suall'ida a	Cabizonavalla, ann		
130101030200	(Ectoprocta)		Gymnolaemata		Cheilostomatida	Schizoporellidae	Schizoporella spp.	Colonial; present	
120101050101	Bryozoa (Ectoprocta)		Gymnolaemata		Chailantamatida	Dugulidaa	Bugula neritina	Colonial; present	
130101050101	• • •		Gymnolaemata		Cheilostomatida	Bugulidae	Биуши пенціни		
130101060100	Bryozoa (Ectoprocta)		Gymnolaemata		Cheilostomatida	Epistomiidae	Synnotum spp.	Colonial; present	
130101060100	Bryozoa		Gynnolaeniata		Chenostomatida	Epistorinidae	Synnotum spp.		
130102010301	(Ectoprocta)		Gymnolaemata		Ctenostomatida	Vesiculariidae	Amathia distans	Colonial; present	
130102010301	Bryozoa		Cymiolaemata		etenostomatida	Vesicularilade			
130102010302	(Ectoprocta)		Gymnolaemata		Ctenostomatida	Vesiculariidae	Amathia alternata	Colonial: present	
150102010502	Bryozoa		-,						
130102030100	(Ectoprocta)		Gymnolaemata		Ctenostomatida	Aeverrilliidae	Aeverrillia spp.	Colonial: present	
150101010101	Sipuncula		Sipunculidea		Golfingiiformes	Phascoliidae	Phascolion cryptum	=Phascolion cryptus	
16000000000	Echiura						Echiura spp.		
160101010101	Echiura		Echiuroidea		Echiuroinea	Echiuridae	Thalassema philostracum		

Reference
Winston, 1982
Cutler, 1994

APPENDIX 2 PHYLOGENETIC TAXONOMIC LIST FOR PLANKTON SAMPLES PORT OF CORPUS CHRISTI AUTHORITY PROJECT TURNPIKE

Species ID	Phylum	Subphylum	Class	Subclass	Order	Family	Таха	Species Notes	Reference
01000000000	Cnidaria						Cnidaria spp.		
01030000000	Cnidaria		Hydrozoa				Hydrozoa spp.	Colonial; present	
020103000000	Platyhelminthes	Rhabditophora			Rhabdocoela		Rhabdocoela spp.		
04010000000	Annelida		Polychaeta				Polychaeta spp.		
040105020000	Annelida		Polychaeta	Sedentaria	Spionida	Spionidae	Spionidae spp.		
050111010000	Mollusca		Gastropoda	Caenogastropoda	Littorinimorpha	Naticidae	Naticidae spp.		
05020000000	Mollusca		Bivalvia				Bivalvia spp.		
060102010100	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Cumacea	Diastylidae	Oxyurostylis spp.		
060104150000	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Ampithoidae	Ampithoidae spp.		
060104170001	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Corophiidae	Corophiidae spp.		
060104170402	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Corophiidae	Monocorophium sp. A		of Lecroy, 2004
060104200103	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Caprellidae	Caprella equilibra		
060104200201	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Caprellidae	Paracaprella tenuis		
060104250101	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Podoceridae	Podocerus brasiliensis		
060105000000	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Decapoda		Decapoda spp.		
060105000011	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Decapoda		Brachyura spp.	Infraorder	
060106010000	Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Mysida	Mysidae	Mysidae spp.		
060107000003	Arthropoda	Crustacea	Hexanauplia	Thecostraca			Cirripedia spp.	Infraclass	
060150000001	Arthropoda	Crustacea	Hexanauplia	Copepoda			Copepoda spp.	Subclass	
060151000000	Arthropoda	Crustacea	Hexanauplia	Copepoda	Calanoida		Calanoida spp.		
060151020000	Arthropoda	Crustacea	Hexanauplia	Copepoda	Calanoida	Pontellidae	Pontellidae spp.		
060151020101	Arthropoda	Crustacea	Hexanauplia	Copepoda	Calanoida	Pontellidae	Labidocera aestiva		
060151030101	Arthropoda	Crustacea	Hexanauplia	Copepoda	Calanoida	Temoridae	Temora turbinata		
060151040100	Arthropoda	Crustacea	Hexanauplia	Copepoda	Calanoida	Centropagidae	Centropages spp.		
060154000000	Arthropoda	Crustacea	Hexanauplia	Copepoda	Misophrioida		Misophrioida spp.		
060155000000	Arthropoda	Crustacea	Hexanauplia	Copepoda	Siphonostomatoida		Siphonostomatoida spp.		
10000000000	Hemichordata						Hemichordata spp.		
11020000000	Chordata	Tunicata	Appendicularia				Appendicularia spp.		
110301000000	Chordata	Tunicata	Thaliacea		Doliolida		Doliolida spp.		
110605010000	Chordata	Vertebrata	Actinopterygii		Myctophiformes	Myctophidae	Myctophidae spp.		
110607010000	Chordata	Vertebrata	Actinopterygii		Pleuronectiformes	Bothidae	Bothidae spp.		
110609010000	Chordata	Vertebrata	Actinopterygii		Clupeiformes	Engraulidae	Engraulidae spp.		
110610010000	Chordata	Vertebrata	Actinopterygii		Gadiformes	Bregmacerotidae	Bregmacerotidae spp.		
110610020000	Chordata	Vertebrata	Actinopterygii		Gadiformes	Phycidae	Phycidae spp.		
110611010000	Chordata	Vertebrata	Actinopterygii		Scorpaeniformes	Scorpaenidae	Scorpaenidae spp.		
120101010201	Chaetognatha		Sagittoidea		Aphragmophora	Sagittidae	Ferosagitta hispida		
19000000000	Ctenophora						Ctenophora spp.		