

# Review of Entrainment Survival Studies: 1970-2000

Technical Report



# Review of Entrainment Survival Studies: 1970–2000

1000757

Final Report, December 2000

EPRI Project Manager D. A. Dixon

EPRI • 3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 • USA 800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com

#### DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

ORGANIZATION(S) THAT PREPARED THIS DOCUMENT

EA Engineering Science & Technology

#### ORDERING INFORMATION

Requests for copies of this report should be directed to the EPRI Distribution Center, 207 Coggins Drive, P.O. Box 23205, Pleasant Hill, CA 94523, (800) 313-3774.

Electric Power Research Institute and EPRI are registered service marks of the Electric Power Research Institute, Inc. EPRI. ELECTRIFY THE WORLD is a service mark of the Electric Power Research Institute, Inc.

Copyright © 2000 Electric Power Research Institute, Inc. All rights reserved.

### CITATIONS

This report was prepared by

EA Engineering Science & Technology 15 Loveton Circle Sparks, MD 21152

Principal Investigator D. Mayhew

This report describes research sponsored by EPRI.

The report is a corporate document that should be cited in the literature in the following manner:

Review of Entrainment Survival Studies: 1970–2000, EPRI, Palo Alto, CA: 2000. 1000757.



### **REPORT SUMMARY**

This report summarizes the results of entrainment survival studies conducted at power stations over the last 30 years. It is the most comprehensive review to date and will be of value to utilities, industries, and government agencies involved in assessing potential environmental impacts of cooling water intake structures.

#### Background

The potential impacts of entraining aquatic organisms, particularly young fish and larger invertebrates, in power plant cooling-water streams received only limited attention prior to 1972. The passage of the Clean Water Act in 1972 heightened concern over the potential effects of cooling water intake structures (CWIS). Section 316(b) of the Act requires that the "design, location, construction and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact." Subsequently, many utilities sponsored studies of the impacts of their CWIS on aquatic organisms. In that early period, the prevailing opinion was that most if not all entrained organisms were killed. However, in addition to quantifying the number of entrained organisms, some studies also measured survival rates of entrained organisms. Survival rates were shown to be notably high for some species, particularly following improvements in sampling gear and techniques through the 1970s. As a result of legal action in the early 1990s, the U.S. EPA entered into a consent decree with the Hudson Riverkeeper and a coalition of environmental groups and agreed to undertake a rulemaking to implement Section 316(b). This provided the impetus for a synthesis and review of existing data on entrainment survival.

#### Objectives

To review, organize, and summarize nearly 30 years of entrainment survival data collected at steam-electric power stations

To identify common factors affecting, or associated with, the entrainment survival phenomenon.

#### Approach

The project team identified and assembled copies of reports and publications describing entrainment survival studies, aided by an EPRI survey of utilities and resources in EPRI's library and databases. The team then carefully reviewed each available report and summarized it on a single page. They prepared various tabular and graphical displays to provide an overview of the entrainment experience and identified biological and plant-operating factors that influence entrainment survival.

#### Results

A total of 36 discrete entrainment survival studies were identified from 21 power stations. Most of the studies were done in the 1970s, with fewer in the 1980s and 1990s. The majority of the studies were done at estuarine sites in the northeast, primarily in the Hudson River. The remaining studies were done mainly in the Midwest, with a few in California and Florida. Entrainment survival of estuarine species was most commonly evaluated. Larvae of striped bass and white perch frequently exhibited a high rate of survival (>50 percent), but fragile species such as herring and anchovies had relatively low survival rates (~25 percent). Macroinvertebrates, which are important in the food chain, experienced very high survival, averaging in the 70 to 90 percent range. Key factors that influence the level of entrainment survival were identified as (1) the species entrained; (2) size of entrained fish larvae (larger larvae fare better); (3) biocide use at the power station; (4) mechanical effects such as abrasion and pressure changes; and (5) temperature of the discharge water. The latter was found to be particularly important, with a threshold of 30-32°C above which survival rapidly declines. Based on this review, it is recommended that assessment of CWIS impacts be based on the actual number of organisms experiencing entrainment mortality, and not the total number entrained.

#### **EPRI** Perspective

The information presented in this report will be a valuable resource for utilities and other CWIS owners, as well as resource agency and regulatory personnel, as the EPA 316(b)-rulemaking process evolves. The availability of the report will ensure that new generations of both CWIS owners and regulators will benefit from the intensive research and resulting large body of data accrued over the last 30 years. It will also serve as a resource for researchers designing future studies of entrainment survival.

#### Keywords

Section 316(b) Entrainment Entrainment survival Cooling water intake structures (CWIS) Impact Assessment

### ACKNOWLEDGEMENTS

The authors of this report wish to thank Doug Dixon and Kent Zammit of EPRI for their support and guidance during the preparation of the report.

Special thanks to Dave Bailey and Jules Loos (Potomac Electric Power Company), Don Danila, Ernesto Lorda and Paul Jacobson (Northeast Utilities), Mark Strickland and John Balletto (Public Service Electric & Gas), David Michaud (Wisconsin Electric Power Company), Jim Wright (Tennessee Valley Authority), and Kristy Bulleit (Utility Water Act Group/Hunton & Williams) for their efforts in reviewing and editing draft versions of this report. Special thanks are also owed to members of EPRI's Clean Water Act Section 316(b) Technical Advisory Team for their general comments and recommendations on the report's structure and content.

EPRI and EA Engineering, Science & Technology, Inc. would also like to extend a special thanks to all the electric power companies that supplied the entrainment survival data presented in this report.

The report was prepared and edited by EA Engineering, Science, & Technology, Inc.

### **EXECUTIVE SUMMARY**

This review of entrainment survival studies was undertaken to summarize a body of information that has accrued over the past nearly 30 years. The impetus for the review was the Section 316(b) rulemaking process mandated in a 1995 consent decree between the U.S. EPA and a coalition of environmental groups. The rulemaking is intended to implement Section 316(b) of the Clean Water Act, which requires that the "location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact." This report will be a valuable resource for both the U.S. EPA and industry in addressing one facet of Section 316(b), the entrainment of small aquatic organisms in cooling-water systems.

Following passage of the Clean Water Act in 1972, many utilities began to sponsor studies of the effects of their cooling water intake structures (CWIS) on the aquatic environment. Entrained aquatic organisms are pulled into power plant cooling systems and subjected to elevated temperatures, physical stresses, and potential chemical stresses from biocides as they transit pumps and condensers, and are discharged back to the receiving water. Limited studies and much conjecture in the early 1970s appeared to support a conclusion that virtually all entrained organisms were killed. Subsequent research began to contradict that conclusion as sampling techniques and gear were more and more refined through the 1970s.

This review was initiated by identifying and compiling study reports on entrainment survival. Most of these were unpublished reports sponsored by utilities. A few were found in peer-review publications or workshop proceedings. Thirty-six reports were identified covering 20 power plants in the U.S. and 1 in the Netherlands. The U.S. studies were concentrated in the northeast, and most of those were done at Hudson River power plants. More than 80 percent of the studies were carried out between 1972 and 1980, a period bracketed by passage of the Clean Water Act in 1972 and settlement of the Hudson River case in 1980. Approximately 50 different species or species groups were evaluated in these studies. Estuarine fish species such as striped bass, white perch, herring, and anchovies were most commonly studied. Entrainment survival data on estuarine macroinvertebrates such as amphipods and mysid shrimp were also common in the reports.

When available in the reviewed studies, data were compiled for both initial and extended survival. That is, the proportion of organisms found alive immediately after plant passage, and the proportion of initially-alive organisms that survived an extended holding period, most commonly 96 hours. Initial and extended survival were combined to estimate total entrainment survival, the best estimate of the total entrainment experience for a species. Some studies measured only initial survival.

The survival rates of entrained organisms varied considerably within and among species, and among power plants. The survival of young life stages of striped bass in approximately 60 individual tests ranged from 28 to 90 percent, with a mean of 61 percent. Tests of Atlantic tomcod and cyprinids (minnows) produced similar results, with means of 57 and 64 percent survival, respectively. Survival rates of young white perch, winter flounder, and freshwater drum were lower with means between 48 and 51 percent. At one power plant, survival of larval catostomids (suckers) was high (88 to 98 percent). Larval and juvenile spot survival was measured at two estuarine power plants and the mean survival rate was just over 75 percent. In contrast to these relatively high survival rates, larvae and juveniles of herring (alewife, blueback herring, and menhaden) and bay anchovy did not fare well in entrainment survival tests. Survival rates about 25 percent. Tests of estuarine macroinvertebrates had a mean survival rate of near 75 percent. Survival of entrained freshwater macroinvertebrates (drifting aquatic insects) was measured at one power station over a four-year period and ranged from about 84 to 93 percent.

Although survival rates were quite variable, even for the same species, it is clear that for most species survival can be quite high. The available data do not support the assumption that all entrained organisms are killed.

This review identified several factors that influence the rate of survival of entrained organisms. As noted above, survival is species specific. Under similar conditions, survival of striped bass is higher than survival of herring. The size of young fish entrained is an important factor noted in a number of studies. In one Hudson River study, survival of 3.0–5.9-mm entrained striped bass larvae was between 10 and 30 percent, and survival increased with growth to 65–90+ percent for larvae 12 mm or longer. The use of biocides to control condenser-tube fouling can substantially reduce survival of entrained organisms. Typically, biocide applications are intermittent and of short duration, and represent a negligible influence on overall entrainment survival at a power station. However, if a particular power station is permitted for frequent biocide use to control fouling, entrainment survival rates will be low. Mechanical effects such as abrasion, pressure changes, and shear forces were once thought to be the primary factor causing entrainment mortality. However, many later studies—including measurement of survival with circulating-water pumps running but no thermal addition—have shown that mechanical effects, although present, are not a major influence on entrainment survival. The one factor that has been most consistently reported as a major influence on entrainment survival rates is discharge temperature.

As would be expected, the influence of discharge temperature varies with species, but in all cases survival decreases as discharge temperature increases. When the entrainment survival data were segregated by discharge temperature range and plotted, the inverse relationship was clear. When discharge temperatures were less than 30°C, survival of striped bass and white perch young was between 60 and 70 percent. Between 30 and 33°C, striped bass survival remained at about 70 percent, but survival of white perch had decreased to below 50 percent. When discharge temperatures exceeded 33°C, survival of both species decreased to about 30 percent. Herring and anchovy exhibited a similar pattern, but started with lower survival at discharge temperatures less than 30°C, and ended with lower survival (near zero) at discharge temperatures greater than 33°C. Mysid shrimp had high survival rates (90 percent) at less than 30°C discharge temperature, but survival decreased to 30 percent and lower at discharge temperatures greater than 30°C. This field-based relationship of survival with discharge temperature has been corroborated by

laboratory studies of thermal tolerance of young fish. Both indicate that there is a threshold between 30 and 33°C above which entrainment survival markedly decreases.

To illustrate the appropriate use of entrainment survival data, an entrainment survival model was described that integrates exposure, mortality, and involvement. Exposure (primarily temperature) and mortality (or survival) have been discussed above. Involvement refers to the seasonal and day-night occurrence and abundance of entrainable organisms. Entrainment survival data is one important component of this model, which must be integrated with other components to measure or model the population impacts of entrainment. Several examples were cited where investigators used this approach to estimate population impacts of entrainment. In these studies, it was recognized that entrainment survival can be substantial, and that survival rates must be incorporated into overall impact assessment, rather than assume 100 percent loss of entrained organisms.

The entrainment survival data can also be of value as a screening tool for addressing proposed new power plants or existing plants that have not had entrainment evaluations. When data from environmental surveys and plant-operating specifications are evaluated in light of the factors that affect entrainment survival, a qualitative estimate of entrainment effects is possible. There is the potential to move from a qualitative screening tool to a quantitative predictive model by applying appropriate statistical treatments to biological data and plant-operating specifications for proposed and existing plants.

### CONTENTS

| 1 INTRODUCTION                             |
|--------------------------------------------|
| 2 BACKGROUND                               |
| 3 ENTRAINMENT SURVIVAL SUMMARIES           |
| 3.1 Information Sources                    |
| 3.2 Approach                               |
| 3.2.1 Entrainment Survival Test Methods    |
| 3.2.2 Preparation of Summary Tables        |
| 3.3 Entrainment Survival Results           |
| 4 FACTORS AFFECTING ENTRAINMENT SURVIVAL   |
| 4.1 Species Entrained4-1                   |
| 4.2 Size of Entrained Species              |
| 4.3 Biocide Use                            |
| 4.4 Mechanical Effects                     |
| 4.5 Discharge-Temperature Effects4-4       |
| 5 APPLICATION OF ENTRAINMENT SURVIVAL DATA |
| 5.1 Existing Facilities                    |
| 5.2 Proposed Facilities                    |
| <i>6</i> REFERENCES                        |
| A ENTRAINMENT SURVIVAL SUMMARY SHEETS A-1  |

### LIST OF FIGURES

| Figure 2-1 Design of the Larva Collection Table (from Mayhew et al. 2000)                                                                                                                                         | 2-2  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 2-2 Chronological Distribution of Entrainment Survival Studies.                                                                                                                                            | 2-3  |
| Figure 2-3 Location of Entrainment Survival Studies                                                                                                                                                               | 2-4  |
| Figure 3-1 Survival Data (Mean 1 S.D.) for Key Species/Groups from Table 3-5                                                                                                                                      | 3-16 |
| Figure 4-1 Factors Affecting Entrainment Survival.                                                                                                                                                                | 4-1  |
| Figure 4-2 Initial Survival as a Function of Length for Striped Bass Collected at Five<br>Stations During Entrainment Survival Sampling at the Roseton Generating Station,<br>26 May–31 July 1980. [From EA 1983] | 4-2  |
| Figure 4-3 Effect of Discharge Temperature on Entrainment Survival.                                                                                                                                               | 4-5  |
| Figure 5-1 Predictive Model for Entrainment Mortality (from Jinks et al. 1978).                                                                                                                                   | 5-1  |

### LIST OF TABLES

| Table 3-1 Example Entrainment Survival Calculations                                                                   |
|-----------------------------------------------------------------------------------------------------------------------|
| Table 3-2 Example Entrainment Survival Study Summary: Pittsburg Power Plant                                           |
| Table 3-3 Example Entrainment Survival Study Summary: Protrero Power Plant                                            |
| Table 3-4 Example Entrainment Survival Study Summary: Bowline Point Generating                                        |
| Station                                                                                                               |
| Table 3-5 Compilation of Survival Data from Appendix A Summaries                                                      |
| Table A-1 Entrainment Survival Study Summary, Anclote Power Plant, 1995A-2                                            |
| Table A-2 Entrainment Survival Study Summary, Bergum Power Station, 1976A-3                                           |
| Table A-3 Entrainment Survival Study Summary, Bowline Point Generating Station,<br>1975                               |
| Table A-4 Entrainment Survival Study Summary, Bowline Point Generating Station,         1977         A-5              |
| Table A-5 Entrainment Survival Study Summary, Bowline Point Generating Station,         1978                          |
| Table A-6 Entrainment Survival Study Summary, Bowline Point Generating Station,         1979                          |
| Table A-7 Entrainment Survival Study Summary, Braidwood Nuclear Station, 1988A-8                                      |
| Table A-8 Entrainment Survival Study Summary, Calvert Cliffs Nuclear Power Plant,         1978–1980                   |
| Table A-9 Entrainment Survival Study Summary, Cayuga Generating Plant, 1979A-10                                       |
| Table A-10 Entrainment Survival Study Summary, Connecticut Yankee Atomic Power         Plant, 1970, 1971 and 1972A-11 |
| Table A-11 Entrainment Survival Study Summary, Contra Costa Power Plant, 1976A-12                                     |
| Table A-12 Entrainment Survival Study Summary, Danskammer Point Generating           Station, 1975                    |
| Table A-13 Entrainment Survival Study Summary, Fort Calhoun Nuclear Station, 1977A-14                                 |
| Table A-14 Entrainment Survival Study Summary, Fort Calhoun Nuclear Station, 1973–<br>1977A-15                        |
| Table A-15 Entrainment Survival Study Summary, Ginna Generating Station, 1980A-16                                     |
| Table A-16 Entrainment Survival Study Summary, Indian Point Generating Station,<br>1977A-17                           |
| Table A-17 Entrainment Survival Study Summary, Indian Point Generating Station,<br>1978A-18                           |

| Table A-18 Entrainment Survival Study Summary, Indian Point Generating Station,<br>1979A-19                 |
|-------------------------------------------------------------------------------------------------------------|
| Table A-19 Entrainment Survival Study Summary, Indian Point Generating Station,         1980                |
| Table A-20 Entrainment Survival Study Summary, Indian Point Generating Station,           1985              |
| Table A-21 Entrainment Survival Study Summary, Indian Point Generating Station,           1988         A-22 |
| Table A-22 Entrainment Survival Study Summary, Indian River Power Plant, 1975–1976A-23                      |
| Table A-23 Entrainment Survival Study Summary, Monroe Power Plant, 1982A-24                                 |
| Table A-24 Entrainment Survival Study Summary, Northport Generating Station, 1980A-25                       |
| Table A-25 Entrainment Survival Study Summary, Oyster Creek Nuclear Generating           Station, 1984–1985 |
| Table A-26 Entrainment Survival Study Summary, Pittsburg Power Plant, 1976A-27                              |
| Table         A-27 Entrainment Survival Study Summary, Pittsburg Power Plant, 1978–1979A-28                 |
| Table A-28 Entrainment Survival Study Summary, Port Jefferson Generating Station,<br>1978A-29               |
| Table         A-29 Entrainment Survival Study Summary, Protrero Power Plant, 1979                           |
| Table A-30 Entrainment Survival Study Summary, Quad Cities Station, 1978A-31                                |
| Table A-31 Entrainment Survival Study Summary, Quad Cities Station, 1984A-32                                |
| Table A-32 Entrainment Survival Study Summary, Roseton Generating Station, 1975A-33                         |
| Table A-33 Entrainment Survival Study Summary, Roseton Generating Station, 1976A-34                         |
| Table A-34 Entrainment Survival Study Summary, Roseton Generating Station, 1977A-35                         |
| Table A-35 Entrainment Survival Study Summary, Roseton Generating Station, 1978A-36                         |
| Table A-36 Entrainment Survival Study Summary, Roseton Generating Station, 1980A-37                         |

# 1 INTRODUCTION

Section 316(b) of the Clean Water Act requires that the "location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact." Under an October 1995 consent decree, the U.S. Environmental Protection Agency (EPA) was directed to develop proposed regulations implementing Section 316(b) and to take final action on those regulations in accordance with a schedule established by the Court. All power plants and industrial facilities that withdraw cooling water from U.S. surface waters and have point source discharges will be subject to the new rule. In July 2000, the EPA published the proposed draft rule for new facilities. A separate draft rule for existing facilities currently is scheduled to be published in July 2001.

EPRI has initiated a number of projects to develop information that may be useful to EPA in its deliberations on the new rule for Section 316(b). This report presents the results of one of those projects: a distillation and summary of existing data on the survival of aquatic organisms entrained through power plant cooling systems.

In the context of Section 316(b), entrainment refers to the incorporation of small animals such as fish eggs and larvae and macroinvertebrates in the cooling water that is pulled into a power plant or other industrial facility. These floating or weakly-swimming organisms are carried with the cooling water into the intake, through the circulating-water pumps, then through the condensers, and ultimately, in once-through cooling systems, are discharged back to the receiving water body in heated effluent. The effect of this passage on the individual animals and their populations has been the subject of much research and debate. As discussed in the next section, much conjecture and some limited research in the 1960s and very early 1970s appeared to support the conclusion that virtually all entrained organisms were killed. Later studies, with more advanced sampling gear, demonstrated that a significant proportion of entrained animals survived. The key studies are reviewed in this report.

The objectives of this report are:

- Review, organize, and summarize nearly 30 years of entrainment survival data collected at steam-electric power plants; and
- Identify common factors affecting, or associated with, the entrainment survival phenomenon.



## 2 BACKGROUND

During the late 1960s and early 1970s, when concern about the possible impacts of cooling water intake structure (CWIS) entrainment began to heighten, the prevailing assumption was that virtually all entrained organisms were killed. In large part, this assumption was based on unsupported conjecture, as reviewed by EA (1979a), which then was perpetuated by secondary references (e.g., Marcy et al. 1978). Some early research (Marcy 1971, 1973) reported 100 percent mortality of entrained larval fish. Consequently, the assumption of 100 percent mortality was widely accepted. Jinks et al. (1981) acknowledged that, lacking hard data, the obvious intuitive conclusion reached in those early days was that "...most, if not all, of these apparently fragile organisms must certainly be killed." As a result of this assumption, most entrainment studies and resulting 316(b) demonstrations did not attempt to evaluate survival, and the assumption of 100 percent mortality was common. Attempts at modeling population impacts of entrainment typically included the assumption of 100 percent mortality, e.g., Hess et al. (1975) for winter flounder in Long Island Sound and Spigarelli et al. (1981) for alewife, rainbow smelt, and yellow perch in Lake Michigan. As this report will show, the opinion of 100 percent entrainment mortality began to change as more and more research began to document considerable survival of entrained organisms.

Muessig et al. (1988) reviewed the entrainment survival research from the Hudson River in the 1970s and included case history information for the Indian Point Generating Station. According to these authors, once it was known that some species and life stages had considerable entrainment survival probability, research focused on reducing sampling variability and bias. In particular, increasing sample sizes and/or the proportion of animals surviving intake sampling was important, as well as equalizing sampling stress between intake and discharge locations. The solution to these problems came with the evolution of the larva table. This is essentially a flume modified for the collection of planktonic organisms, developed by McGroddy and Wyman (1977) (Figure 2-1). Samples are introduced to the flume in a reduced-velocity environment that permits relatively gentle handling and collection. Originally, samples were pumped into the front of the table (pump/larva table, Figure 2-1). Subsequent, sequential improvements included use of recessed impeller pumps, moving the pump to the rear of the table so organisms did not have to pass through the pump, and removing the pump altogether. Muessig et al. (1988) reported marked increases in survival of striped bass larvae at the Indian Point Station as collection gear transitioned from *in situ* plankton nets to pump/larva tables to rear-draw or pumpless flumes.

Ultimately, due to extensive research at Hudson River power stations, the "preconceived ideas" referenced by Muessig et al. (1988) regarding 100 percent mortality began to dissipate. Englert and Boreman (1988), in discussing the historical evolution of Hudson River entrainment impact assessments produced by government and utility-consulting biologists, indicated that government biologist estimates of conditional entrainment mortality were initially about eight times higher than those of the utility-consulting biologists. Ultimately, the resource agency estimates of

#### Background

conditional entrainment mortality dropped to nearly the level of the utility scientists, a principal reason being the resource agency's "acceptance of estimates of through-plant mortality obtained from larva table data collected at the power plants." These authors further noted that "by reducing sampling mortality, the larva table demonstrated that a considerable percentage of the entrained organisms survived passage through the plant."



Figure 2-1 Design of the Larva Collection Table (from Mayhew et al. 2000).

As a result of legal action in the early 1990s, the U.S. EPA entered into a consent decree with the Hudson Riverkeeper and a coalition of environmental groups and agreed to undertake a rulemaking to implement Section 316(b). As the proposed rule for new sources is under review,

and the proposed rule for existing sources is in preparation, EPRI intends to submit to the U.S. EPA updated information on a variety of pertinent subjects related to the rulemaking, including entrainment survival. The purpose of this report on entrainment survival is to ensure that the "hard-won knowledge of the past is not lost or ignored" by a new generation of regulators, and to suggest that the impact assessment process should begin by considering the "number of organisms that are actually killed by entrainment and not the total number entrained" (Mayhew et al. 2000).

Thirty-six entrainment survival studies conducted at 21 power stations are summarized in this report. As far as can be determined, this collection of entrainment survival studies represents most, and perhaps all, of the studies performed to assess entrainment survival of fish eggs/larvae and macroinvertebrates. As indicated in Figure 2-2, most of the studies were done during the period 1975 to 1980. This prominent grouping of studies was undoubtedly a result of Section 316(b) of the Federal Water Pollution Control Act (Clean Water Act) Amendments of 1972 and the settlement of the Hudson River power plant case in late 1980. Most of the entrainment survival studies were done in the northeastern U.S., primarily in the Hudson River (Figure 2-3). Smaller clusters of studies are evident in large, Midwestern rivers and in the San Francisco Bay/Delta area.



#### Figure 2-2 Chronological Distribution of Entrainment Survival Studies.

Since the late 1970s, several authors published reports that reviewed and synthesized information on entrainment. Some were general reviews of the effects of power plants on the environment, including entrainment. Examples include the extensive work of Langford (1983) who described

#### Background

the interaction of power plants and the environment from both a European and U.S. perspective. Also, Hocutt et al. (1980) evaluated the effects of power plants on the behavior of fish and shellfish. Schubel and Marcy (1978) published a detailed review of entrainment data, including survival, which had accrued over the first half of the 1970s. Jinks et al. (1981) described techniques for estimating entrainment survival, including laboratory simulation and thermal tolerance testing and *in situ* sampling of power plant discharges. These authors included a compilation of entrainment survival data from the 1970s. In a more focused review, Englert and Boreman (1988) detailed the evolution of entrainment impact assessments, including survival estimates, conducted on the Hudson River in the 1970s. In a recent review, Mayhew et al. (2000) reevaluated historical entrainment survival data from a limited number of estuarine power plants. The current review encompasses all historical and contemporary information on entrainment survival and represents the most comprehensive data available.



Figure 2-3 Location of Entrainment Survival Studies.

## **3** ENTRAINMENT SURVIVAL SUMMARIES

#### 3.1 Information Sources

The primary source of information on entrainment survival was unpublished reports prepared for utilities. The majority of those used to prepare this report were accessed from the library of EA Engineering, Science, and Technology, Inc. (formerly Ecological Analysts, Inc.). To ensure that all pertinent reports were obtained and reviewed, EPRI resources, including library materials and internal databases were also utilized.

The search for entrainment survival information was augmented with a utility questionnaire circulated by EPRI. This questionnaire was developed jointly by Alden Research Laboratory, Inc., EA Engineering, Science, and Technology, Inc., and EPRI, and was circulated to EPRI utility members via E-mail. The questionnaire solicited several kinds of information, including the availability of entrainment survival reports.

For several of the entrainment survival studies summarized herein, the information sources were peer review journals or published workshop proceedings (e.g., Marcy 1973, Hadderingh 1978, Jensen 1978).

#### 3.2 Approach

#### 3.2.1 Entrainment Survival Test Methods

This section contains information that may be helpful to the reader in interpreting the various study summaries, and the syntheses provided in this report.

A "typical" entrainment survival study involved collecting samples from both the intake and discharge, ideally simultaneously, or with the discharge sample delayed by the amount of time it takes water to transit from the intake to the discharge sampling point. The purpose of the intake samples was to serve as a control to account for organisms already dead or those killed by the sampling process. Some studies, particularly earlier ones, used plankton nets placed in intake and discharge flows to collect the samples. Many later studies used the larva table, as described in Section 2. Upon collection, the samples were immediately sorted, and live and stunned organisms were separated from dead organisms. This information could then be used to calculate initial entrainment survival, which was the endpoint for some of the studies. That is, survival immediately after plant passage was used to estimate entrainment impacts.

#### Entrainment Survival Summaries

To investigate the possibility of delayed mortality, many studies involved extended observations of organisms initially collected alive. These organisms were held in a laboratory setting and periodically observed for up to 96 hours. The data from these extended observations were then either examined separately, or incorporated with initial survival to calculate total entrainment survival. Some investigators tested intake and discharge extended (=latent) survival statistically, and if there was no difference, initial survival was used as an estimate of total entrainment survival.

Table 3-1 contains several examples of entrainment survival calculations encountered in the review of available studies. The first example is a simple calculation of initial survival, i.e., the survival evident immediately after plant passage. The proportions of larvae alive in both intake and discharge samples ( $P_1$  and  $P_D$ ) are determined by dividing the live counts by the total number collected (live + dead). Entrainment survival is calculated by dividing the proportion live in the discharge ( $P_D$ ) by the proportion live in the intake ( $P_1$ ). The intake sample serves as an experimental control. It is assumed that the number of dead larvae in the intake sample—due either to natural causes, or sampling-gear damage, or both—is the same in the discharge sample. The entrainment survival calculation "corrects" for these "already dead" larvae, and assures that any mortality reflected in the estimate is due solely to the effects of entrainment passage.

The second example in Table 3-1 involves both initial and extended survival measurements of a relatively large number of macroinvertebrates. Initial survival is calculated just as in Example 1. A portion of the initially alive animals were stocked in a laboratory setting, and the number live and dead recorded at intervals up to 24 hours. At each extended observation interval, entrainment survival is calculated in a similar manner to initial survival. However, to estimate P<sub>1</sub> and P<sub>2</sub>, rather than dividing the number live by the total number collected (as with initial survival), the number alive at each extended observation interval is divided by the total number of live animals originally stocked in the laboratory. In this case, neither initial survival nor extended survival alone reflects the entire entrainment experience. Therefore, the conditional probability of surviving both initially and during the extended observation period is calculated by multiplying the initial entrainment survival proportion by the 24-hr entrainment survival proportion to obtain the estimate of total entrainment survival.

The third example in Table 3-1 also involves both initial and extended survival, but differs from Example 2 in that every initially living larva was accounted for and monitored through the extended observation period. Entrainment survival is calculated by dividing the number alive initially and at each extended observation interval by the total number originally collected. Because the number alive at each interval is divided by the total number originally collected (in both intake and discharge), initial survival is automatically integrated with extended survival. Thus, the entrainment survival value for the last extended observation (24-hr) is the estimate of total entrainment survival.

#### Table 3-1 Example Entrainment Survival Calculations

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1: Fish Larva                                                                                                                                                                                                                                 | e, Initial Surviva                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Data:                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                               | Discharge                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | Entrainment Survival                                                                                                                                                                                                                                                                                                     |  |  |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>o. Live</u> <u>N</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lo. Dead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>E</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No. Live                                                                                                                                                                                                                                      | No. Dead                                                                                                                                                                                                                                                                 | <u>P</u> ρ                                                                                                                                                                                                     | (P <sub>p</sub> /P <sub>1</sub> )*100                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 325                                                                                                                                                                                                                                           | 175                                                                                                                                                                                                                                                                      | 0.65                                                                                                                                                                                                           | 81.3                                                                                                                                                                                                                                                                                                                     |  |  |
| Propo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ortion live in inta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ake sample (P <sub>i</sub> )=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | number live,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /number live +                                                                                                                                                                                                                                | dead= 0.80                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          |  |  |
| Propo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ortion live in disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | charge sample (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P <sub>D</sub> )=number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | live/number liv                                                                                                                                                                                                                               | ve + dead= 0.65                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          |  |  |
| Entra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inment (initial) s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | survival is calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ated as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /P,)*100 = (0.65/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.80)*100 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81.3%                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          |  |  |
| This o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | calculation corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ects for any dead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | larvae in in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | take samples                                                                                                                                                                                                                                  | due to natural cau                                                                                                                                                                                                                                                       | uses or from s                                                                                                                                                                                                 | ampling damage.                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mple 2: Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | croinvertebra                                                                                                                                                                                                                                 | tes, Extended S                                                                                                                                                                                                                                                          | urvival                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nple Data:                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                               | Discharge                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | Entrainment Survival                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. Live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No. Dead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>P</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No. Live                                                                                                                                                                                                                                      | No. Dead                                                                                                                                                                                                                                                                 | <u>P</u> <sub>o</sub>                                                                                                                                                                                          | <u>(P<sub>p</sub>/P<sub>1</sub>)*100</u>                                                                                                                                                                                                                                                                                 |  |  |
| nitial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 650                                                                                                                                                                                                                                           | 350                                                                                                                                                                                                                                                                      | 0.65                                                                                                                                                                                                           | 81.3                                                                                                                                                                                                                                                                                                                     |  |  |
| After the in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | itial live-dead s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | orts are complet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ed, subsets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of live animals                                                                                                                                                                                                                               | from both intake                                                                                                                                                                                                                                                         | and discharg                                                                                                                                                                                                   | e are selected for extended                                                                                                                                                                                                                                                                                              |  |  |
| survival ob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | servations in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e laboratory, wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h the followi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng results:                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          |  |  |
| 0-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 368                                                                                                                                                                                                                                           | 32                                                                                                                                                                                                                                                                       | 0.92                                                                                                                                                                                                           | 96.8                                                                                                                                                                                                                                                                                                                     |  |  |
| 6-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220                                                                                                                                                                                                                                           | 62                                                                                                                                                                                                                                                                       | 0.85                                                                                                                                                                                                           | 94.4                                                                                                                                                                                                                                                                                                                     |  |  |
| 6-hr<br>12-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 550                                                                                                                                                                                                                                           | 02                                                                                                                                                                                                                                                                       | 14.44                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                          |  |  |
| 6-hr<br>12-hr<br>18-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 361<br>343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.90<br>0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 297                                                                                                                                                                                                                                           | 103                                                                                                                                                                                                                                                                      | 0.74                                                                                                                                                                                                           | 86.0                                                                                                                                                                                                                                                                                                                     |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361<br>343<br>325<br>e, or combine, i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39<br>57<br>75<br>initial survival wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.90<br>0.86<br>0.81<br>th extended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 297<br>273<br>survival, the p                                                                                                                                                                                                                 | 103<br>173<br>roportions are mu                                                                                                                                                                                                                                          | 0.74<br>0.68<br>Iltiplied to cald                                                                                                                                                                              | 86.0<br>84.0<br>culate total entrainment                                                                                                                                                                                                                                                                                 |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.90<br>0.86<br>0.81<br>th extended<br>extended) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 297<br>273<br>survival, the p<br>0.683, or 68.3                                                                                                                                                                                               | 103<br>173<br>roportions are mu<br>% total entrainme                                                                                                                                                                                                                     | 0.74<br>0.68<br>ultiplied to calc                                                                                                                                                                              | 86.0<br>84.0<br>culate total entrainment                                                                                                                                                                                                                                                                                 |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39<br>57<br>75<br>initial survival wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.90<br>0.86<br>0.81<br>th extended<br>extended) =<br>Example 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>: Fish Larvae,                                                                                                                                                                             | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv                                                                                                                                                                                                  | 0.74<br>0.68<br>ultiplied to calo<br>ent survival<br>val                                                                                                                                                       | 86.0<br>84.0<br>culate total entrainment                                                                                                                                                                                                                                                                                 |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.90<br>0.86<br>0.81<br>th extended<br>extended) =<br>Example 3:<br>Sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>Fish Larvae,<br>nple Data:                                                                                                                                                                 | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv                                                                                                                                                                                                  | 0.74<br>0.68<br>ultiplied to cald<br>ent survival<br>val                                                                                                                                                       | 86.0<br>84.0<br>culate total entrainment                                                                                                                                                                                                                                                                                 |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>Intake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.90<br>0.86<br>0.81<br>th extended<br>extended) =<br>Example 3:<br>Sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>Fish Larvae,<br>mple Data:                                                                                                                                                                 | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge                                                                                                                                                                                     | 0.74<br>0.68<br>ultiplied to cald<br>ent survival<br>val                                                                                                                                                       | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival                                                                                                                                                                                                                                                         |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>Fo integrat<br>survival:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>No.Live<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>)<br>Intake<br><u>No. Dead</u><br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.90<br>0.86<br>0.81<br>th extended<br>extended) =<br>Example 3:<br>Sar<br>P,<br>0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 297<br>273<br>survival, the p<br>0.683, or 68.3<br><b>: Fish Larvae</b> ,<br>nple Data:<br><u>No. Live</u><br>325                                                                                                                             | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead                                                                                                                                                                         | 0.74<br>0.68<br>ultiplied to cald<br>ent survival<br>val<br><br>P_0<br>0.65                                                                                                                                    | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(P <sub>p</sub> /P <sub>i</sub> )*100<br>81.3                                                                                                                                                                                                        |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>Fo integrat<br>survival:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 (initial<br>No.Live<br>400<br>380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>)<br>Intake<br><u>No. Dead</u><br>100<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.90<br>0.86<br>0.81<br>th extended<br>extended) =<br>Example 3:<br>Sar<br>P <sub>i</sub><br>0.80<br>0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>Fish Larvae,<br>nple Data:<br><u>No. Live</u><br>325<br>302                                                                                                                                | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182                                                                                                                                                           | 0.74<br>0.68<br>ultiplied to cald<br>ent survival<br>val<br><u>Po</u><br>0.65<br>0.60                                                                                                                          | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(Pp/P,)*100<br>81.3<br>78.9                                                                                                                                                                                                                          |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 (initial<br>No.Live<br>400<br>380<br>361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>)<br>Intake<br><u>No. Dead</u><br>100<br>120<br>139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.90<br>0.86<br>0.81<br>th extended) =<br>Example 3:<br>Sar<br>P <sub>i</sub><br>0.80<br>0.76<br>0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>Fish Larvae,<br>nple Data:<br><u>No. Live</u><br>325<br>302<br>217                                                                                                                         | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182<br>283                                                                                                                                                    | 0.74<br>0.68<br>ultiplied to cald<br>ent survival<br>val<br>E <sub>g</sub><br>0.65<br>0.60<br>0.43                                                                                                             | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(Pp/P,)*100<br>81.3<br>78.9<br>59.7                                                                                                                                                                                                                  |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 (initial<br>No.Live<br>400<br>380<br>361<br>343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>) X 0.84 (24-hr e<br>) No. Dead<br>100<br>120<br>139<br>157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.90<br>0.86<br>0.81<br>th extended) =<br>Example 3:<br>Sar<br>P <sub>i</sub><br>0.80<br>0.76<br>0.72<br>0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 297<br>273<br>survival, the p<br>0.683, or 68.3<br><b>Fish Larvae,</b><br>mple Data:<br><u>No. Live</u><br>325<br>302<br>217<br>200                                                                                                           | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182<br>283<br>300                                                                                                                                             | 0.74<br>0.68<br>ultiplied to cald<br>ent survival<br>val<br><u>E<sub>0</sub></u><br>0.65<br>0.60<br>0.43<br>0.40                                                                                               | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(P <sub>p</sub> /P <sub>i</sub> )*100<br>81.3<br>78.9<br>59.7<br>58.0                                                                                                                                                                                |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 (initial<br>No.Live<br>400<br>380<br>361<br>343<br>326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>)<br>Intake<br>No. Dead<br>100<br>120<br>139<br>157<br>174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.90<br>0.86<br>0.81<br>th extended<br>extended) =<br>Example 3:<br>Sar<br>P <sub>i</sub><br>0.80<br>0.76<br>0.72<br>0.69<br>0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>Fish Larvae,<br>nple Data:<br>No. Live<br>325<br>302<br>217<br>200<br>175                                                                                                                  | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182<br>283<br>300<br>325                                                                                                                                      | 0.74<br>0.68<br>Iltiplied to cald<br>ent survival<br>val<br>E <sub>g</sub><br>0.65<br>0.60<br>0.43<br>0.40<br>0.35                                                                                             | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(P <sub>p</sub> /P <sub>.</sub> )*100<br>81.3<br>78.9<br>59.7<br>58.0<br>53.8                                                                                                                                                                        |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:<br>nitial<br>3-hr<br>12-hr<br>18-hr<br>24-hr<br>p. this ever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 ( | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>)<br>100<br>120<br>139<br>157<br>174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.90<br>0.86<br>0.81<br>th extended) =<br>Example 3:<br>Sar<br>P,<br>0.80<br>0.76<br>0.72<br>0.69<br>0.65<br>otake and di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 297<br>273<br>survival, the p<br>0.683, or 68.3<br><b>Fish Larvae,</b><br>nple Data:<br><u>No. Live</u><br>325<br>302<br>217<br>200<br>175                                                                                                    | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182<br>283<br>300<br>325                                                                                                                                      | 0.74<br>0.68<br>ultiplied to calc<br>ent survival<br>val<br>E <sub>q</sub><br>0.65<br>0.60<br>0.43<br>0.40<br>0.35<br>tracked throw                                                                            | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(Pp/P,)*100<br>81.3<br>78.9<br>59.7<br>58.0<br>53.8<br>ch the extended observation                                                                                                                                                                   |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 ( | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>) X 0.84 (24-hr e<br>Intake<br>No. Dead<br>100<br>120<br>139<br>157<br>174<br>larva from the ir<br>I entrainment su<br>last extended ob<br>dividing the 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.90<br>0.86<br>0.81<br>th extended) =<br>Example 3:<br>Sar<br>P,<br>0.80<br>0.76<br>0.72<br>0.69<br>0.65<br>0.65<br>0.65<br>0.65<br>0.80<br>0.72<br>0.69<br>0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>Fish Larvae,<br>mple Data:<br>No. Live<br>325<br>302<br>217<br>200<br>175<br>scharge was a<br>calculated as<br>eriod (24-hr), o                                                            | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182<br>283<br>300<br>325<br>ccounted for and<br>in Example 2. Rat<br>r 53.8 %. If needed<br>8/81 3)=0.662 c                                                   | 0.74<br>0.68<br>Iltiplied to calc<br>ent survival<br>val<br>E <sub>p</sub><br>0.65<br>0.60<br>0.43<br>0.40<br>0.35<br>tracked throu-<br>ther, total entred<br>for compare<br>66.2 %                            | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(P <sub>p</sub> /P <sub>.</sub> )*100<br>81.3<br>78.9<br>59.7<br>58.0<br>53.8<br>gh the extended observation<br>ainment survival is equal to the<br>ative purposes, extended                                                                         |  |  |
| 6-hr<br>12-hr<br>24-hr<br>To integrat<br>survival:<br>nitial<br>5-hr<br>12-hr<br>18-hr<br>24-hr<br>n this exar<br>period. Cor<br>survival cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 ( | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>) X 0.84 (24-hr e<br>)<br>Intake<br>No. Dead<br>100<br>120<br>139<br>157<br>174<br>larva from the ir<br>l entrainment su<br>last extended ob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.90<br>0.86<br>0.81<br>th extended) =<br>Example 3:<br>Sar<br>P,<br>0.80<br>0.76<br>0.72<br>0.69<br>0.65<br>ntake and dia<br>rvival is not<br>iservation p<br>hr by the ini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>Fish Larvae,<br>mple Data:<br>No. Live<br>325<br>302<br>217<br>200<br>175<br>scharge was a<br>calculated as<br>eriod (24-hr), o<br>tial survival (53                                       | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182<br>283<br>300<br>325<br>ccounted for and<br>in Example 2. Rat<br>r 53.8 %. If neede<br>3.8/81.3)=0.662, co                                                | 0.74<br>0.68<br>ultiplied to calc<br>ent survival<br>val<br>E <sub>g</sub><br>0.65<br>0.60<br>0.43<br>0.40<br>0.35<br>tracked throu-<br>ther, total entre-<br>or 66.2 %.                                       | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(P <sub>p</sub> /P,)*100<br>81.3<br>78.9<br>59.7<br>58.0<br>53.8<br>gh the extended observation<br>ainment survival is equal to th<br>ative purposes, extended                                                                                       |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:<br>nitial<br>5-hr<br>12-hr<br>18-hr<br>24-hr<br>n this exar<br>period. Cor<br>survival cal<br>survival cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 (initial<br>0.813 (initial<br>400<br>380<br>361<br>343<br>326<br>mple, every live<br>resequently, tota<br>iculated for the<br>m be isolated by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>) X 0.84 (24-hr e) X 0.84 (24-hr e) X 0.84 (24-hr e) X | 0.90<br>0.86<br>0.81<br>th extended<br>extended) =<br>Example 3:<br>Sar<br>P,<br>0.80<br>0.76<br>0.72<br>0.69<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.80<br>0.72<br>0.65<br>0.72<br>0.65<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.72<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0 | 297<br>273<br>survival, the p<br>0.683, or 68.3<br><b>Fish Larvae</b> ,<br>mple Data:<br><u>No. Live</u><br>325<br>302<br>217<br>200<br>175<br>scharge was a<br>calculated as<br>eriod (24-hr), o<br>tial survival (53<br><b>Fish Eggs, F</b> | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182<br>283<br>300<br>325<br>ccounted for and<br>in Example 2. Rat<br>r 53.8 %. If neede<br>3.8/81.3)=0.662, cc<br>Extended Surviv                             | 0.74<br>0.68<br>ultiplied to calc<br>ent survival<br>val<br>E <sub>a</sub><br>0.65<br>0.60<br>0.43<br>0.40<br>0.35<br>tracked throw<br>ther, total entre<br>ed for compar<br>or 66.2 %.<br>al                  | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(Pp/P)*100<br>81.3<br>78.9<br>59.7<br>58.0<br>53.8<br>gh the extended observation<br>ainment survival is equal to th<br>ative purposes, extended                                                                                                     |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:<br>nitial<br>6-hr<br>12-hr<br>18-hr<br>24-hr<br>n this exar<br>period. Cor<br>survival cal<br>survival cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 ( | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>) X 0.84 (24-hr e<br>100<br>120<br>139<br>157<br>174<br>larva from the ir<br>l entrainment su<br>last extended ob<br>d viding the 24-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.90<br>0.86<br>0.81<br>th extended) =<br>Example 3:<br>Sar<br>P,<br>0.80<br>0.76<br>0.72<br>0.69<br>0.65<br>take and dia<br>rvival is not<br>vival is not<br>servation pe<br>hr by the ini<br>Example 4<br>Sample Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>Fish Larvae,<br>mple Data:<br>No. Live<br>325<br>302<br>217<br>200<br>175<br>scharge was a<br>calculated as<br>eriod (24-hr), o<br>tial survival (53<br>Fish Eggs, F<br>a:                 | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182<br>283<br>300<br>325<br>ccounted for and<br>in Example 2. Rat<br>r 53.8 %. If neede<br>3.8/81.3)=0.662, c                                                 | 0.74<br>0.68<br>ultiplied to calc<br>ent survival<br>val<br>P <sub>g</sub><br>0.65<br>0.60<br>0.43<br>0.40<br>0.35<br>tracked throu-<br>ther, total entred<br>for compar-<br>pr 66.2 %.<br>al                  | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(Pp/P,)*100<br>81.3<br>78.9<br>59.7<br>58.0<br>53.8<br>gh the extended observation<br>ainment survival is equal to th<br>ative purposes, extended<br>Entrainment Survival                                                                            |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:<br>nitial<br>3-hr<br>12-hr<br>18-hr<br>12-hr<br>18-hr<br>24-hr<br>n this exar<br>period. Cor<br>survival cal<br>survival cal<br>survival cal<br>survival cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 (initial<br>0.813 (initial<br>0.813 (initial<br>400<br>380<br>361<br>343<br>326<br>mple, every live<br>nsequently, tota<br>culated for the l<br>n be isolated by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>) X 0.84 (24-hr e<br><u>Intake</u><br><u>No. Dead</u><br>100<br>120<br>139<br>157<br>174<br>larva from the ir<br>l entrainment su<br>last extended ob<br>dividing the 24-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.90<br>0.86<br>0.81<br>th extended) =<br>Example 3:<br>Sar<br>P,<br>0.80<br>0.76<br>0.72<br>0.69<br>0.65<br>take and dia<br>rvival is not<br>vservation pe<br>hr by the ini<br>Example 4<br>Sample Data<br><u>Intake</u><br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>Fish Larvae,<br>mple Data:<br>No. Live<br>325<br>302<br>217<br>200<br>175<br>scharge was a<br>calculated as<br>eriod (24-hr), o<br>tial survival (53<br>Erish Eggs, F<br>a:<br>E           | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182<br>283<br>300<br>325<br>ccounted for and<br>in Example 2. Rat<br>r 53.8 %. If neede<br>3.8/81.3)=0.662, c<br>Extended Surviv                              | 0.74<br>0.68<br>Iltiplied to calc<br>ent survival<br>val<br>P <sub>p</sub><br>0.65<br>0.60<br>0.43<br>0.40<br>0.35<br>tracked throw<br>ther, total entr<br>ed for compar<br>or 66.2 %.<br>al<br>P <sub>p</sub> | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>$(\underline{P_p/P_i)^*100}$<br>81.3<br>78.9<br>59.7<br>58.0<br>53.8<br>gh the extended observation<br>ainment survival is equal to th<br>ative purposes, extended<br>Entrainment Survival<br>$(\underline{P_p/P_i)^*100}$                           |  |  |
| 6-hr<br>12-hr<br>18-hr<br>24-hr<br>To integrat<br>survival:<br>nitial<br>3-hr<br>12-hr<br>18-hr<br>12-hr<br>18-hr<br>24-hr<br>n this exar<br>beriod. Cor<br>survival cal<br>survival cal | 361<br>343<br>325<br>e, or combine, i<br>0.813 (initial<br>0.813 (initial<br>0.813 (initial<br>400<br>380<br>361<br>343<br>326<br>mple, every live<br>nsequently, tota<br>culated for the line<br>be isolated by<br>gs collected:<br>gs hatched by S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39<br>57<br>75<br>initial survival wi<br>) X 0.84 (24-hr e<br>) X 0.84 (24-hr e<br>Intake<br>No. Dead<br>100<br>120<br>139<br>157<br>174<br>larva from the ir<br>l entrainment su<br>last extended ob<br>d dividing the 24-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.90<br>0.86<br>0.81<br>th extended) =<br><b>Example 3:</b><br><b>Sar</b><br><b>E</b> ,<br>0.80<br>0.76<br>0.72<br>0.69<br>0.65<br>otake and dir<br>rvival is not<br>pervation point<br><b>Example 4</b><br>Sample Data<br><u>Intake</u><br>600<br>280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 297<br>273<br>survival, the p<br>0.683, or 68.3<br>Fish Larvae,<br>mple Data:<br>No. Live<br>325<br>302<br>217<br>200<br>175<br>scharge was a<br>calculated as<br>eriod (24-hr), o<br>tial survival (53<br>Fish Eggs, F<br>a:<br>E            | 103<br>173<br>roportions are mu<br>% total entrainme<br>Extended Surviv<br>Discharge<br>No. Dead<br>175<br>182<br>283<br>300<br>325<br>ccounted for and<br>in Example 2. Rat<br>r 53.8 %. If neede<br>3.8/81.3)=0.662, co<br>Extended Surviva<br>Discharge<br>600<br>190 | 0.74<br>0.68<br>ultiplied to calc<br>ent survival<br>val<br>$E_{0}$<br>0.65<br>0.60<br>0.43<br>0.40<br>0.35<br>tracked throughter, total entred for comparison of 66.2 %.<br>al<br>$E_{0}$<br>0.32             | 86.0<br>84.0<br>culate total entrainment<br>Entrainment Survival<br>(P <sub>p</sub> /P <sub>i</sub> )*100<br>81.3<br>78.9<br>59.7<br>58.0<br>53.8<br>gh the extended observation<br>ainment survival is equal to th<br>ative purposes, extended<br>Entrainment Survival<br>(P <sub>p</sub> /P <sub>i</sub> )*100<br>88.1 |  |  |

#### Entrainment Survival Summaries

The fourth example in Table 3-1 involves fish eggs that could not be assigned as live or dead when initially collected. Survival was equated with hatching success, and the number that successfully hatched within the 96-hr extended observation period was divided by the total number originally collected to calculate P<sub>1</sub> and P<sub>2</sub>. Similar to Example 3, the entrainment survival calculation incorporates both initial and extended survival, and thus is an estimate of total entrainment survival. This procedure requires the assumption that the numbers of eggs already dead or killed by sampling are identical between intake and discharge.

#### 3.2.2 Preparation of Summary Tables

Each available entrainment survival study report was reviewed and summarized. Many of the reports were voluminous, and heavy with detail, assumptions, and qualifications. The approach taken in this report was to reduce the information to the minimum essential elements to convey the essence of the study. One-page summaries were produced for each study. Each contains pertinent information on the power plant and operating characteristics, the receiving water body, sampling gear, entrainment survival data, pertinent qualifying remarks, and a complete citation for the study report. Examples of these one page summaries are provided in Tables 3-2 through 3-4.

These examples illustrate the range of information types available in study reports. Table 3-2 summarizes survival testing of striped bass larvae at Pittsburg Power Plant in California. In addition to data on the power plant, receiving-water body, and sampling gear, a matrix of the survival data is presented. In this case, and whenever the data were available, survival data were presented by discharge temperature ranges. As discussed later in this report, discharge temperature has a major influence on entrainment survival, so the temperature data were presented whenever readily available. The last column is the percent initial survival, that is, the proportion of striped bass larvae determined to be alive immediately after having passed through the cooling system. The "remarks" section contains observations on the data, either evident from this summary process, or provided by the authors.

Table 3-3 presents a simpler summary for an entrainment survival study at the Protrero Power Plant. This study was short-term, and focused on a single species. The survival results information was easily summarized in a brief text section. In this study, both initial and extended survival were measured, and used to calculate total entrainment survival.

A more extensive survival study is illustrated in Table 3-4 for the Bowline Point Generating Station on the Hudson River. In this study, the larvae of several species of fish were evaluated, as well as two types of macroinvertebrates. Both initial and extended survival were measured in this study. For this summary, initial and extended survival data were used to calculate total entrainment survival, as described in Section 3.2.1.

Summary tables for all studies reviewed are contained in Appendix A, Tables A-1 through A-36.

### Table 3-2 Example Entrainment Survival Study Summary: Pittsburg Power Plant

| ENTRAINME                                  | ENT SURVIVAL STUDY SUMMARY SHEET                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Station:                             | Pittsburg Power Plant                                                                                                                                                                                                                                                                                                                                    |
| Owner:                                     | Pacific Gas and Electric Company                                                                                                                                                                                                                                                                                                                         |
| Plant Capacity (MWe):                      | 1,320                                                                                                                                                                                                                                                                                                                                                    |
| Report Reference:                          | Stevens, D. and B. Finlayson. 1978. Mortality of Young Striped<br>Bass Entrained at two Power Plants in the Sacramento-San Joaquin<br>Delta, California, pp. 57-69 <u>in</u> : <i>Fourth National Workshop on</i><br><i>Entrainment and Impingement</i> (L. Jensen, ed.). EA Commu-<br>nications, a Division of Ecological Analysts, Inc., Melville, NY. |
| Water Body:                                | Suisun Bay, San Joaquin Delta, California                                                                                                                                                                                                                                                                                                                |
| Sampling frequency/dates:                  | Weekly during 28 April-10 July 1976                                                                                                                                                                                                                                                                                                                      |
| Cooling Water Flow (M <sup>3</sup> /min.): | 2,712                                                                                                                                                                                                                                                                                                                                                    |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                                                                                                                                                                                                                             |
| Sampling Gear:                             | 0.75-m dia. conical plankton nets with 505-[ mesh netting, fished from a boat at mid-depth                                                                                                                                                                                                                                                               |
| Type of Survival Test(s):                  | Initial survival, striped bass larvae                                                                                                                                                                                                                                                                                                                    |
| Results Summary:                           |                                                                                                                                                                                                                                                                                                                                                          |

| Period        | Mean<br><u>Length (mm)</u> | Discharge<br><u>Temperature (°C)</u> | Number<br>Tested<br>(discharge) | Initial<br><u>Survival (%)</u> |
|---------------|----------------------------|--------------------------------------|---------------------------------|--------------------------------|
| 25 May-4 June | 12.8                       | 27-29                                | 36                              | 20.5                           |
| 25 May-4 June | 12.8                       | 30-32                                | 29                              | 53.8                           |
| 5 June-8 July | 21.6                       | 27-29                                | 47                              | 93.5                           |
| 5 June-8 July | 21.6                       | 30-32                                | 45                              | 90.3                           |
| 5 June-8 July | 21.6                       | 33-35                                | 55                              | 33.3                           |
| 5 June-8 July | 21.6                       | 36-37                                | 54                              | 11.8                           |

Note: Survival calculated from author's data by dividing initial proportion alive in discharge samples by initial proportion alive in intake samples.

**Remarks:** Based on the 5 June-8 July data, survival clearly decreased with increasing discharge temperature. The generally lower survival during 25 May-4 June may have been related to the smaller size of the larvae during that period.

Entrainment Survival Summaries

Table 3-3

#### Example Entrainment Survival Study Summary: Protrero Power Plant

| ENTRAINM                                   | ENT SURVIVAL STUDY SUMMARY SHEET                                                                                                                                                                                                                                                                             |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Station:                             | Protrero Power Plant                                                                                                                                                                                                                                                                                         |
| Owner:                                     | Pacific Gas and Electric Company                                                                                                                                                                                                                                                                             |
| Plant Capacity (MWe):                      | 332                                                                                                                                                                                                                                                                                                          |
| Report Reference:                          | Ecological Analysts, Inc. 1980. Protrero Power Plant Cooling<br>Water Intake Structures 316(b) Demonstration. Prepared for<br>[owner].                                                                                                                                                                       |
| Water Body:                                | San Francisco Bay                                                                                                                                                                                                                                                                                            |
| Sampling frequency/dates:                  | Daily during 15-, 22-25, and 27 January 1979                                                                                                                                                                                                                                                                 |
| Cooling Water Flow (M <sup>3</sup> /min.): | 1,008                                                                                                                                                                                                                                                                                                        |
| Sample Location(s):                        | Condenser cooling-water intake and discharge (Unit 3)                                                                                                                                                                                                                                                        |
| Sampling Gear:                             | Recessed-impeller pump/larva table                                                                                                                                                                                                                                                                           |
| Type of Survival Test(s):                  | Initial and latent (extended) 96-hr. tests                                                                                                                                                                                                                                                                   |
| Results Summary:                           | Over a 10-day period, 546 Pacific herring larvae were collected at<br>the intake and 716 at the discharge over a consistent 18-19°C<br>discharge temperature range. Based on initial survival of 73.7%, and<br>96-hr extended survival of 94.9%, total entrainment survival was<br>calculated as 70 percent. |
| Remarks:                                   | Latent survival did not differ significantly between the intake and discharge, or among several length classes evaluated.                                                                                                                                                                                    |
|                                            |                                                                                                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                                                                                                                                              |

#### Table 3-4

Example Entrainment Survival Study Summary: Bowline Point Generating Station

| ENTRAINMI                                  | ENT SURVIVAL STUDY SUMMARY SHEET                                                                                                                                                  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Station:                             | Bowline Point Generating Station                                                                                                                                                  |
| Owner:                                     | Orange and Rockland Utilities, Inc.                                                                                                                                               |
| Plant Capacity (MWe):                      | 620                                                                                                                                                                               |
| Report Reference:                          | Ecological Analysts, Inc. 1979. <i>Bowline Point Generating Station</i><br><i>Entrainment Abundance and Survival Studies: 1978 Annual</i><br><i>Report.</i> Prepared for [owner]. |
| Water Body:                                | Hudson River                                                                                                                                                                      |
| Sampling frequency/dates:                  | 3 days per week during 13 March-6 October 1978                                                                                                                                    |
| Cooling Water Flow (M <sup>3</sup> /min.): | 1,422                                                                                                                                                                             |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                                                      |
| Sampling Gear:                             | Pump/larva table                                                                                                                                                                  |
| Type of Survival Test(s):                  | Initial and latent (extended) and 96-hr. tests                                                                                                                                    |
|                                            |                                                                                                                                                                                   |

**Results Summary:** 

|                    |            | No. Tested  |         | Survival (%) |       |  |  |
|--------------------|------------|-------------|---------|--------------|-------|--|--|
| Species            | Life Stage | (discharge) | Initial | Extended     | Total |  |  |
| Striped bass       | YSL        | 82          | 100.0   | 84.1         | 84.1  |  |  |
| Striped bass       | PYSL       | 392         | 100.0   | 100.0        | 100.0 |  |  |
| Striped bass       | PYSL       | 24          | 100.0   | 100.0        | 100.0 |  |  |
| White perch        | PYSL       | 265         | 50.3    | 60.8         | 30.6  |  |  |
| Atlantic tomcod    | PYSL       | 54          | 100.0   | 100.0        | 100.0 |  |  |
| Gammarus sp.       |            | 4,563       | 100.0   | 92.3         | 92.3  |  |  |
| Neomysis americana | —          | 2,185       | 100.0   | 70.0         | 70.0  |  |  |

Note: YSL=yolk sac larvae; PYSL= post-yolk sac larvae

**Remarks:** Data are from three different discharges. Data from all discharge temperatures combined. Some of the white perch mortality was related to mechanical effects, i.e., the number of circulating-water pumps operating and whether throttled or full-flow modes were used.

#### 3.3 Entrainment Survival Results

The data in Appendix A are from 36 reports covering 21 power plants. Approximately 50 different species and taxa groups are represented in the entrainment survival data. Over half of the study reports are for Hudson River power plants, and consequently, striped bass, white perch, clupeids (herring), and estuarine macroinvertebrates are most prominently represented.

The key data from the Appendix A summaries were compiled in Table 3-5. The survival data are quite variable, as would be expected, because of different species, power plants (i.e. discharge temperatures, biocide use), habitats, temperature regimes, and sampling techniques. Nonetheless, some patterns can be seen in Table 3-5, such as decreasing survival with increasing discharge temperatures (discussed in next section), and generally lower survival of clupeids (i.e., herring) and anchovies. To further synthesize the entrainment survival data, Figure 3-1 was prepared for the more common species or taxa groups in the database. The variability in the combined data is obvious, but nonetheless, certain observations are apparent. Mean survival values from most species and taxa groups exceed 50 percent. Several taxa, i.e., freshwater (drifting) macroinvertebrates, the freshwater catostomids (suckers), and the estuarine/marine spot (croaker family) had means exceeding 75 percent entrainment survival. Estuarine macroinvertebrates also exhibited high entrainment survival, with a mean of 70 percent. Striped bass, white perch, and Atlantic tomcod, all important in the Hudson River, exceeded 50 percent mean entrainment survival. The clupeids and (bay) anchovy were notably low, with mean survival values around 25 percent. The latter species are relatively fragile, as evidenced by reported difficulties in sampling and handling intake samples at a number of power plants.

The fundamentally important conclusion that can be drawn from Table 3-5 and Figure 3-1 is that assuming 100 percent mortality or loss of entrained organisms cannot be supported by available data. Survival is often quite high, and assuming otherwise would lead to erroneous assessment of entrainment impacts.

One question that must be addressed concerns why survival may be high for a given species at one time, yet low at another time. While the studies reviewed show that many species are capable of high entrainment survival, the error bars in Figure 3-1 indicate that high survival is not always achieved. Factors affecting survival are discussed in Section 4.

#### Table 3-5 Compilation of Survival Data from Appendix A Summaries

| Species/<br>Taxa | Life<br>Stage | Plant          | Year    | Summary<br>Table | Discharge<br>Temperature<br>(°C) | #<br>Tested | Type<br>Survival | %<br>Survival |
|------------------|---------------|----------------|---------|------------------|----------------------------------|-------------|------------------|---------------|
| striped bass     | larvae        | Pittsburg      | 1976    | A-26             | 27-29                            | 36          | Initial          | 20.5          |
| striped bass     | larvae        | Pittsburg      | 1976    | A-26             | 30-32                            | 29          | Initial          | 53.8          |
| striped bass     | larvae        | Pittsburg      | 1976    | A-26             | 27-29                            | 47          | Initial          | 93.5          |
| striped bass     | larvae        | Pittsburg      | 1976    | A-26             | 30-32                            | 45          | Initial          | 90.3          |
| striped bass     | larvae        | Pittsburg      | 1976    | A-26             | 33-35                            | 55          | Initial          | 33.3          |
| striped bass     | larvae        | Pittsburg      | 1976    | A-26             | 36-37                            | 54          | Initial          | 11.8          |
| striped bass     | larvae        | Pittsburg      | 1978/79 | A-27             | <30                              | -           | Total            | 60.8          |
| striped bass     | larvae        | Pittsburg      | 1978/79 | A-27             | 30.0-31.9                        | -           | Total            | 42.4          |
| striped bass     | larvae        | Pittsburg      | 1978/79 | A-27             | 32.0-33.9                        | -           | Total            | 19.1          |
| striped bass     | PYSL          | Bowline Pt.    | 1975    | A-3              |                                  | 111         | Total            | 70.4          |
| striped bass     | PYSL          | Bowline Pt.    | 1977    | A-4              | 20.0-29.0                        |             | Initial          | 97.0          |
| striped bass     | PYSL          | Bowline Pt.    | 1977    | A-4              | 30.0-32.9                        | -           | Initial          | 100.0         |
| striped bass     | PYSL          | Bowline Pt.    | 1977    | A-4              | 33.0-35.9                        | -           | Initial          | 41.0          |
| striped bass     | juvenile      | Bowline Pt.    | 1977    | A-4              | 20.0-29.0                        | -           | Initial          | 90.0          |
| striped bass     | juvenile      | Bowline Pt.    | 1977    | A-4              | 30.0-32.9                        | -           | Initial          | 90.0          |
| striped bass     | juvenile      | Bowline Pt.    | 1977    | A-4              | 33.0-35.9                        | -           | Initial          | 43.0          |
| striped bass     | YSL           | Bowline Pt.    | 1978    | A-5              | _                                | 82          | Total            | 84.1          |
| striped bass     | PYSL          | Bowline Pt.    | 1978    | A-5              | -                                | 392         | Total            | 100.0         |
| striped bass     | PYSL          | Bowline Pt.    | 1978    | A-5              |                                  | 24          | Total            | 100.0         |
| striped bass     | PYSL          | Bowline Pt.    | 1979    | A-6              | -                                | 104         | Total            | 41.9          |
| striped bass     | PYSL          | Bowline Pt.    | 1979    | A-6              | -                                | 51          | Total            | 23.6          |
| striped bass     | PYSL          | Roseton        | 1975    | A-32             | -                                | 172         | Total            | 37.5          |
| striped bass     | PYSL          | Roseton        | 1976    | A-33             | 24.0-30.5                        | 23          | Initial          | 58.0          |
| striped bass     | PYSL          | Roseton        | 1976    | A-33             | 30.6-37.0                        | 57          | Initial          | 18.9          |
| striped bass     | juvenile      | Roseton        | 1976    | A-33             | 30.6-37.0                        | 10          | Initial          | 80.0          |
| striped bass     | PYSL          | Roseton        | 1977    | A-34             | 24.0-29.9                        | 400         | Initial          | 58.0          |
| striped bass     | PYSL          | Roseton        | 1977    | A-34             | 30.0-32.9                        | 325         | Initial          | 32.0          |
| striped bass     | PYSL          | Roseton        | 1977    | A-34             | 33.0-36.0                        | 40          | Initial          | 6.0           |
| striped bass     | juvenile      | Roseton        | 1977    | A-34             | 24.0-29.0                        | 12          | Initial          | 100.0         |
| striped bass     | PYSL          | Roseton        | 1978    | A-35             | -                                | 211         | Total            | 46.3          |
| striped bass     | YSL           | Roseton        | 1980    | A-36             |                                  | -           | Initial          | 87.8          |
| striped bass     | PYSL          | Roseton        | 1980    | A-36             | -                                | 1.00        | Initial          | 88.2          |
| striped bass     | juvenile      | Roseton        | 1980    | A-36             | -                                | -           | Total            | 69.0          |
| striped bass     | larvae        | Contra Costa   | 1976    | A-11             | 19.0-29.0                        | 73          | Initial          | 95.0          |
| striped bass     | larvae        | Contra Costa   | 1976    | A-11             | 30.0-32.0                        | 92          | Initial          | 57.5          |
| striped bass     | larvae        | Contra Costa   | 1976    | A-11             | 33.0-34.0                        | 12          | Initial          | 0.0           |
| striped bass     | larvae        | Contra Costa   | 1976    | A-11             | 24.0-29.0                        | 6           | Initial          | 31.5          |
| striped bass     | larvae        | Contra Costa   | 1976    | A-11             | 30.0-32.0                        | 95          | Initial          | 88.9          |
| striped bass     | larvae        | Contra Costa   | 1976    | A-11             | 33.0-35.0                        | 37          | Initial          | 14.8          |
| striped bass     | larvae        | Contra Costa   | 1976    | A-11             | 36.0-38.0                        | 14          | Initial          | 25.9          |
| striped bass     | PYSL          | Danskammer Pt. | 1975    | A-12             | -                                | 61          | Initial          | 95.1          |
| striped bass     | YSL           | Indian Pt.     | 1977    | A-16             | 26.0-29.0                        | 18          | Initial          | 63.0          |
| striped bass     | PYSL          | Indian Pt.     | 1977    | A-16             | 26.0-29.0                        | 221         | Initial          | 85.0          |

#### Entrainment Survival Summaries

| Species/<br>Taxa | Life<br>Stage | Plant          | Year | Summary<br>Table | Discharge<br>Temperature<br>(°C) | #<br>Tested | Type<br>Survival | %<br>Survival |
|------------------|---------------|----------------|------|------------------|----------------------------------|-------------|------------------|---------------|
| striped bass     | PYSL          | Indian Pt.     | 1977 | A-16             | 30.0-32.9                        | 19          | Initial          | 87.0          |
| striped bass     | PYSL          | Indian Pt.     | 1978 | A-17             | -                                | 36          | Total            | 0.0           |
| striped bass     | YSL           | Indian Pt.     | 1978 | A-17             |                                  | 39          | Total            | 0.0           |
| striped bass     | PYSL          | Indian Pt.     | 1978 | A-17             | -                                | 46          | Total            | 0.0           |
| striped bass     | PYSL          | Indian Pt.     | 1978 | A-17             |                                  | 237         | Total            | 63.6          |
| striped bass     | PYSL          | Indian Pt.     | 1978 | A-17             | -                                | 232         | Total            | 81.8          |
| striped bass     | eggs          | Indian Pt.     | 1979 | A-18             | 24.0-28.0                        | -           | Total            | 73.6          |
| striped bass     | YSL           | Indian Pt.     | 1979 | A-18             | <30.0                            | -           | Initial          | 58.6          |
| striped bass     | YSL           | Indian Pt.     | 1979 | A-18             | 30.0-32.9                        | ι÷.         | Initial          | 75.0          |
| striped bass     | PYSL          | Indian Pt.     | 1979 | A-18             | <30.0                            | -           | Initial          | 63.0          |
| striped bass     | PYSL          | Indian Pt.     | 1979 | A-18             | 30.0-32.9                        | -           | Initial          | 70.1          |
| striped bass     | eggs          | Indian Pt.     | 1980 | A-19             | 24.0-31.0                        | 147         | Total            | 57.5          |
| striped bass     | YSL           | Indian Pt.     | 1980 | A-19             | <29.0                            | 21          | Initial          | 66.7          |
| striped bass     | YSL           | Indian Pt.     | 1980 | A-19             | 30.0-32.0                        | 16          | Initial          | 56.2          |
| striped bass     | PYSL          | Indian Pt.     | 1980 | A-19             | <29.0                            | 31          | Initial          | 74.2          |
| striped bass     | PYSL          | Indian Pt.     | 1980 | A-19             | 30.0-32.0                        | 16          | Initial          | 81.2          |
| striped bass     | PYSL          | Indian Pt.     | 1980 | A-19             | >33.0                            | 160         | Initial          | 55.0          |
| striped bass     | YSL           | Indian Pt.     | 1988 | A-21             | -                                | 312         | Total            | 60.0          |
| striped bass     | PYSL          | Indian Pt.     | 1988 | A-21             |                                  | 2,398       | Total            | 79.0          |
| white perch      | PYSL          | Bowline Pt.    | 1975 | A-3              | 4                                | 168         | Total            | 100.0         |
| white perch      | PYSL          | Bowline Pt.    | 1977 | A-4              | 20.0-29.0                        | -           | Initial          | 62.0          |
| white perch      | PYSL          | Bowline Pt.    | 1977 | A-4              | 30.0-32.9                        | ÷           | Initial          | 16.0          |
| white perch      | PYSL          | Bowline Pt.    | 1977 | A-4              | 33.0-35.9                        | -           | Initial          | 48.0          |
| white perch      | PYSL          | Bowline Pt.    | 1978 | A-5              |                                  | 265         | Total            | 30.6          |
| white perch      | PYSL          | Bowline Pt.    | 1979 | A-6              |                                  | 112         | Total            | 31.5          |
| white perch      | PYSL          | Roseton        | 1975 | A-32             |                                  | 97          | Initial          | 40.8          |
| white perch      | PYSL          | Roseton        | 1976 | A-33             | 24.0-30.5                        | 57          | Initial          | 79.2          |
| white perch      | PYSL          | Roseton        | 1976 | A-33             | 30.6-37.0                        | 292         | Initial          | 11.3          |
| white perch      | juvenile      | Roseton        | 1976 | A-33             | 30.6-37.0                        | 25          | Initial          | 59.6          |
| white perch      | PYSL          | Roseton        | 1977 | A-34             | 24.0-29.0                        | 155         | Initial          | 52.0          |
| white perch      | PYSL          | Roseton        | 1977 | A-34             | 30.0-32.9                        | 78          | Initial          | 45.0          |
| white perch      | PYSL          | Roseton        | 1977 | A-34             | 33.0-36.0                        | 33          | Initial          | 0.0           |
| white perch      | PYSL          | Roseton        | 1978 | A-35             | -                                | 459         | Total            | 55.8          |
| white perch      | PYSL          | Roseton        | 1978 | A-35             | _                                | 17          | Total            | 96.0          |
| white perch      | juvenile      | Roseton        | 1978 | A-35             | -                                | 17          | Total            | 55.1          |
| white perch      | PYSL          | Roseton        | 1980 | A-36             | -                                | -           | Initial          | 67.3          |
| white perch      | iuvenile      | Roseton        | 1980 | A-36             | -                                | -           | Initial          | 100.0         |
| white perch      | PYSL          | Danskammer Pt. | 1975 | A-12             | _                                | 55          | Initial          | 100.0         |
| white perch      | PYSL          | Indian Pt.     | 1977 | A-16             | 26.0-29.9                        | 32          | Initial          | 73.0          |
| white perch      | PYSL          | Indian Pt.     | 1977 | A-15             | 30.0-32.9                        | 12          | Initial          | 89.0          |
| white perch      | PYSL          | Indian Pt.     | 1978 | A-17             |                                  | 35          | Total            | 0.0           |
| white perch      | PYSL          | Indian Pt.     | 1978 | A-17             |                                  | 33          | Total            | 0.0           |
| white perch      | PYSL          | Indian Pt.     | 1978 | A-17             | -                                | 64          | Total            | 58.3          |
| white perch      | PYSL          | Indian Pt.     | 1978 | A-17             |                                  | 64          | Total            | 25.0          |
| white perch      | PYSL          | Indian Pt.     | 1979 | A-18             | <30.0                            |             | Initial          | 32.0          |
| white perch      | PYSL          | Indian Pt.     | 1979 | A-18             | 30,0-32,9                        | -           | Initial          | 28.9          |
| Species/<br>Taxa  | Life<br>Stage   | Plant          | Year    | Summary<br>Table | Discharge<br>Temperature<br>(°C) | #<br>Tested | Type<br>Survival | %<br>Survival |
|-------------------|-----------------|----------------|---------|------------------|----------------------------------|-------------|------------------|---------------|
| white perch       | PYSL            | Indian Pt.     | 1980    | A-19             | <29.0                            | 49          | Initial          | 89.8          |
| white perch       | PYSL            | Indian Pt.     | 1980    | A-19             | >33.0                            | 117         | Initial          | 49.6          |
| white perch       | PYSL            | Indian Pt.     | 1988    | A-21             | -                                | 341         | Total            | 38.0          |
| Morone sp.        | PYSL            | Bowline Pt.    | 1975    | A-3              | -                                | 279         | Total            | 100.0         |
| white bass        | postlarvae      | Monroe         | 1982    | A-23             | -                                | 28          | Initial          | 92.9          |
| clupeids          | PYSL            | Bowline Pt.    | 1977    | A-4              | 20.0-29.9                        | -           | Initial          | 51.0          |
| clupeids          | PYSL            | Bowline Pt.    | 1979    | A-6              | -                                | 52          | Initial          | 57.7          |
| clupeids          | PYSL            | Bowline Pt.    | 1979    | A-6              |                                  | 40          | Initial          | 57.8          |
| clupeids          | PYSL            | Roseton        | 1975    | A-32             | -                                | 833         | Initial          | 40.0          |
| clupeids          | juvenile        | Roseton        | 1975    | A-32             |                                  | 243         | Initial          | 44.8          |
| clupeids          | PYSL            | Roseton        | 1976    | A-33             | 24.0-30.5                        | 167         | Initial          | 59.2          |
| clupeids          | PYSL            | Roseton        | 1976    | A-33             | 30.6-37.0                        | 478         | Initial          | 10.2          |
| clupeids          | juvenile        | Roseton        | 1976    | A-33             | 24.0-37.0                        | 57          | Initial          | 16.2          |
| clupeids          | PYSL            | Roseton        | 1977    | A-34             | 24.0-29.9                        | 874         | Initial          | 19.0          |
| clupeids          | PYSL            | Roseton        | 1977    | A-34             | 30.0-32.9                        | 389         | Initial          | 11.0          |
| clupeids          | PYSL            | Roseton        | 1977    | A-34             | 33.0-36.0                        | 81          | Initial          | 0.0           |
| clupeids          | juvenile        | Roseton        | 1977    | A-34             | 24.0-29.9                        | 14          | Initial          | 24.0          |
| clupeids          | juvenile        | Roseton        | 1977    | A-34             | 30.0-32.9                        | 22          | Initial          | 0.0           |
| clupeids          | juvenile        | Roseton        | 1977    | A-34             | 33.0-36.0                        | 51          | Initial          | 0.0           |
| clupeids          | PYSL            | Roseton        | 1978    | A-35             |                                  | 1,089       | Total            | 0.0           |
| clupeids          | PYSL            | Roseton        | 1978    | A-35             | -                                | 43          | Total            | 0.0           |
| clupeids          | PYSL            | Roseton        | 1980    | A-36             | -                                | -           | Initial          | 22.7          |
| clupeids          | juvenile        | Roseton        | 1980    | A-36             | -                                |             | Initial          | 0.0           |
| clupeids          | PYSL            | Danskammer Pt. | 1975    | A-12             | -                                | 326         | Initial          | 55.6          |
| clupeids          | juvenile        | Danskammer Pt. | 1975    | A-12             | -                                | 65          | Initial          | 81.5          |
| clupeids          | PYSL            | Indian Pt.     | 1977    | A-16             | 26.0-29.9                        | 27          | Initial          | 40.0          |
| clupeids          | PYSL            | Indian Pt.     | 1978    | A-17             | -                                | 192         | Total            | 0.0           |
| clupeids          | PYSL            | Indian Pt.     | 1978    | A-17             | -                                | 145         | Initial          | 14.3          |
| clupeids          | PYSL            | Indian Pt.     | 1978    | A-17             |                                  | 170         | Initial          | 16.7          |
| clupeids          | PYSL            | Indian Pt.     | 1978    | A-17             | -                                | 92          | Initial          | 16.7          |
| clupeids          | PYSL            | Indian Pt.     | 1979    | A-18             | <30.0                            | -           | Initial          | 30.5          |
| clupeids          | PYSL            | Indian Pt.     | 1979    | A-18             | 30.0-32.9                        | -           | Initial          | 22.2          |
| clupeids          | PYSL            | Indian Pt.     | 1980    | A-19             | <29.0                            | 13          | Initial          | 61.5          |
| clupeids          | PYSL            | Indian Pt.     | 1988    | A-21             | -                                | 195         | Total            | 22.0          |
| clupeids          | larvae          | Protrero       | 1979    | A-29             | 18.0-19.0                        | 716         | Total            | 70.0          |
| clupeids          | PYSL            | Conn. Yankee   | 1970-72 | A-10             | -                                | 230         | Initial          | 29.5          |
| clupeids          | PYSL            | Conn. Yankee   | 1970-72 | A-10             | -                                | 227         | Initial          | 23.9          |
| clupeids          | PYSL            | Conn. Yankee   | 1970-72 | A-10             | 28.0-29.0                        | 458         | Initial          | 25.9          |
| clupeids          | PYSL            | Conn. Yankee   | 1970-72 | A-10             | 33.5                             | 257         | Initial          | 12.1          |
| clupeids          | PYSL            | Conn. Yankee   | 1970-72 | A-10             | 35.0                             | 1,061       | Initial          | 0.0           |
| clupeids          | eggs            | Ginna          | 1980    | A-15             | -                                | -           | Total            | 16.0          |
| clupeids          | prolarvae       | Monroe         | 1982    | A-23             | -                                | 184         | Initial          | 1.2           |
| clupeids          | prolarvae       | Monroe         | 1982    | A-23             | -                                | 457         | Total            | 15.3          |
| clupeids          | postlarvae      | Monroe         | 1982    | A-23             | -                                | 808         | Total            | 37.9          |
| clupeids          | juvenile        | Monroe         | 1982    | A-23             | -                                | 18          | Total            | 25.0          |
| Atlantic menhaden | larvae/iuvenile | Indian River   | 1975-76 | A-22             | <25.0                            | -           | Total            | 96.8          |

3-11

| Species/<br>Taxa   | Life<br>Stage   | Plant          | Year    | Summary<br>Table | Discharge<br>Temperature<br>(°C) | #<br>Tested   | Type<br>Survival | %<br>Survival |
|--------------------|-----------------|----------------|---------|------------------|----------------------------------|---------------|------------------|---------------|
| Atlantic menhaden  | larvae/juvenile | Indian River   | 1975-76 | A-22             | 25.0-30.0                        | -             | Total            | 55.0          |
| Atlantic menhaden  | larvae/juvenile | Indian River   | 1975-76 | A-22             | 30.0-35.0                        |               | Total            | 24.0          |
| Atlantic menhaden  | larvae/juvenile | Indian River   | 1975-76 | A-22             | >35.0                            | -             | Total            | 0.0           |
| Atlantic tomcod    | YSL             | Bowline Pt.    | 1977    | A-4              | 5.5-13.9                         | $\rightarrow$ | Initial          | 84.0          |
| Atlantic tomcod    | YSL             | Bowline Pt.    | 1977    | A-4              | 14.0-17.9                        | -             | Initial          | 85.0          |
| Atlantic tomcod    | PYSL            | Bowline Pt.    | 1978    | A-5              | -                                | 54            | Total            | 100.0         |
| Atlantic tomcod    | YSL             | Roseton        | 1977    | A-34             | 7.0-17.0                         | 1,345         | Initial          | 41.0          |
| Atlantic tomcod    | YSL             | Roseton        | 1978    | A-35             |                                  | 13            | Total            | 30.8          |
| Atlantic tomcod    | YSL             | Roseton        | 1978    | A-35             | -                                | 16            | Total            | 66.7          |
| Atlantic tomcod    | PYSL            | Roseton        | 1978    | A-35             |                                  | 64            | Total            | 38.9          |
| Atlantic tomcod    | larvae          | Indian Pt.     | 1979    | A-18             | 12.0-15.9                        |               | Initial          | 63.8          |
| Atlantic tomcod    | larvae          | Indian Pt.     | 1979    | A-18             | 16.0-17.9                        |               | Initial          | 51.8          |
| Atlantic tomcod    | larvae          | Indian Pt.     | 1979    | A-18             | 18.0-19.9                        |               | Initial          | 29.3          |
| Atlantic tomcod    | larvae          | Indian Pt.     | 1979    | A-18             | 20.0-21.9                        | $\rightarrow$ | Initial          | 11.4          |
| Atlantic tomcod    | PYSL            | Indian Pt.     | 1980    | A-19             | <26.0                            | 162           | Initial          | 87.7          |
| Atlantic tomcod    | juvenile        | Indian Pt.     | 1980    | A-18             | >27.0                            | 25            | Initial          | 48.0          |
| Cyprinidae         | PYSL            | Roseton        | 1975    | A-32             | —                                | 40            | Total            | 100.0         |
| Cyprinidae         | PYSL            | Roseton        | 1976    | A-33             | 24.0-37.0                        | 16            | Initial          | 69.1          |
| Cyprinidae         | PYSL            | Danskammer Pt. | 1975    | A-12             | -                                | 12            | Total            | 34.8          |
| Cyprinidae         | larvae/juvenile | Quad Cities    | 1978    | A-30             | 30.5-31.2                        | 100           | Initial          | 53.0          |
| Cyprinidae         | larvae/juvenile | Quad Cities    | 1978    | A-30             | 32.5-33.0                        | 34            | Initial          | 62.8          |
| Cyprinidae         | larvae/juvenile | Quad Cities    | 1978    | A-30             | 28.0-34.3                        | 31            | Initial          | 40.6          |
| Cyprinidae         | larvae/juvenile | Quad Cities    | 1978    | A-29             | 38.0-39.0                        | 142           | Initial          | 7.3           |
| Cyprinidae         | larvae          | Quad Cities    | 1984    | A-31             | 30.0                             | 60            | Initial          | 97.1          |
| Cyprinidae         | larvae          | Quad Cities    | 1984    | A-31             | 33.5                             | 36            | Initial          | 91.9          |
| Cyprinidae         | YSL             | Cayuga         | 1979    | A-9              | 26.0-31.9                        | 25            | Initial          | 85.7          |
| Cyprinidae         | YSL             | Cayuga         | 1979    | A-9              | 32.0-36.0                        | 70            | Initial          | 25.4          |
| Cyprinidae         | PYSL            | Cayuga         | 1979    | A-9              | 26.0-31.9                        | 60            | Initial          | 85.1          |
| Cyprinidae         | PYSL            | Cayuga         | 1979    | A-9              | 32.0-36.0                        | 37            | Initial          | 73.5          |
| Cyprinidae         | PYSL            | Monroe         | 1982    | A-23             | -                                | 16            | Total            | 75.0          |
| tessellated darter | PYSL            | Roseton        | 1975    | A-32             | $\rightarrow$                    | 46            | Total            | 100.0         |
| Percidae           | YSL             | Cayuga         | 1979    | A-9              | 26.0-31.9                        | 41            | Initial          | 59.4          |
| Percidae           | YSL             | Cayuga         | 1979    | A-9              | 32.0-36.0                        | 12            | Initial          | 19.4          |
| Percidae           | larvae/juvenile | Bergum         | 1976    | A-2              | 16.7-24.6                        | 115           | Initial          | 40.0          |
| Percidae           | larvae/juvenile | Bergum         | 1976    | A-2              | 16.7-24.6                        | 78            | Initial          | 65.0          |
| Percidae           | larvae/juvenile | Bergum         | 1976    | A-2              | 16.7-24.6                        | 112           | Initial          | 39.0          |
| Percidae           | larvae/juvenile | Bergum         | 1976    | A-2              | 16.7-24.6                        | 86            | Initial          | 72.0          |
| Percidae           | larvae/juvenile | Bergum         | 1976    | A-2              | 16.7-24.6                        | 258           | Initial          | 82.0          |
| Percidae           | larvae/juvenile | Bergum         | 1976    | A-2              | 16.7-24.6                        | 177           | Total            | 69.0          |
| yellow perch       | prolarvae       | Monroe         | 1982    | A-23             | -                                | 550           | Total            | 2.6           |
| yellow perch       | postlarvae      | Monroe         | 1982    | A-23             | -                                | 42            | Initial          | 2.7           |
| anchovy            | PYSL            | Danskammer Pt. | 1975    | A-12             | -                                | 11            | Initial          | 27.3          |
| anchovy            | PYSL            | Indian Pt.     | 1977    | A-16             | 30.0-32.9                        | 230           | Initial          | 36.0          |
| anchovy            | PYSL            | Indian Pt.     | 1977    | A-16             | 33.0-33.9                        | 91            | Initial          | 18.0          |
| anchovy            | PYSL            | Indian Pt.     | 1978    | A-17             | >32.9                            | 222           | Initial          | 0.0           |
| anchovy            | PYSL            | Indian Pt.     | 1978    | A-17             | >32.9                            | 188           | Initial          | 0.0           |

| Species/<br>Taxa   | Life<br>Stage   | Plant          | Year    | Summary<br>Table | Discharge<br>Temperature<br>(°C) | #<br>Tested | Type<br>Survival | %<br>Survival |
|--------------------|-----------------|----------------|---------|------------------|----------------------------------|-------------|------------------|---------------|
| anchovy            | PYSL            | Indian Pt.     | 1979    | A-18             | <30.0                            | 1           | Initial          | 7.0           |
| anchovy            | PYSL            | Indian Pt.     | 1979    | A-18             | 30.0-32.9                        | -           | Initial          | 2.8           |
| anchovy            | PYSL            | Indian Pt.     | 1980    | A-19             | <29.0                            | 24          | Initial          | 4.0           |
| anchovy            | PYSL            | Indian Pt.     | 1980    | A-19             | >33.0                            | 556         | Initial          | 1.6           |
| anchovy            | PYSL            | Indian Pt.     | 1985    | A-20             |                                  | 274         | Initial          | 24.3          |
| anchovy            | PYSL            | Indian Pt.     | 1988    | A-21             |                                  | 6,929       | Initial          | 25.0          |
| anchovy            | eggs            | Oyster Creek   | 1984-85 | A-25             | <27.0                            | -           | Total            | 82.5          |
| anchovy            | eggs            | Oyster Creek   | 1984-85 | A-25             | 32.0                             | -           | Total            | 39.8          |
| anchovy            | eggs            | Oyster Creek   | 1984-85 | A-25             | >33.0                            | $\in$       | Total            | 16.7          |
| anchovy            | larvae          | Oyster Creek   | 1984-85 | A-25             | 25.9-27.2                        | -           | Initial          | 68.0          |
| anchovy            | larvae          | Oyster Creek   | 1984-85 | A-25             | 30.2-35.0                        | -           | Initial          | 67.6          |
| anchovy            | larvae          | Oyster Creek   | 1984-85 | A-25             | >35.0                            | -           | Initial          | 0.1           |
| anchovy            | larvae/juvenile | Calvert Cliffs | 1979    | A-8              |                                  | 726         | Total            | 5.4           |
| anchovy            | larvae/juvenile | Calvert Cliffs | 1980    | A-8              | <del></del> .                    | 970         | Total            | 2.9           |
| anchovy            | larvae/juvenile | Indian River   | 1975-76 | A-22             | <25.0                            |             | Total            | 79.0          |
| anchovy            | larvae/juvenile | Indian River   | 1975-76 | A-22             | 25.0-30.0                        | -           | Total            | 23.0          |
| anchovy            | larvae/juvenile | Indian River   | 1975-76 | A-22             | 30.0-35.0                        | ÷.          | Total            | 0.0           |
| anchovy            | larvae/juvenile | Indian River   | 1975-76 | A-22             | >35.0                            | -           | Total            | 0.0           |
| freshwater drum    | larvae/juvenile | Quad Cities    | 1978    | A-30             | 30.5-31.2                        | 134         | Initial          | 61.9          |
| freshwater drum    | larvae/juvenile | Quad Cities    | 1978    | A-30             | 32.5-33.0                        | 254         | Initial          | 30.4          |
| freshwater drum    | larvae/juvenile | Quad Cities    | 1978    | A-30             | 28.0-34.0                        | 354         | Initial          | 31.7          |
| freshwater drum    | larvae/juvenile | Quad Cities    | 1978    | A-30             | 38.0-39.0                        | 174         | Initial          | 2.4           |
| freshwater drum    | larvae          | Quad Cities    | 1984    | A-31             | 33.5                             | 57          | Initial          | 62.8          |
| freshwater drum    | larvae          | Fort Calhoun   | 1977    | A-13             | 29.0-37.0                        | -           | Initial          | 19.3          |
| freshwater drum    | prolarvae       | Monroe         | 1982    | A-23             | -                                | 33          | Initial          | 100.0         |
| freshwater drum    | postlarvae      | Monroe         | 1982    | A-23             |                                  | 32          | Initial          | 93.8          |
| buffalo sp.        | larvae          | Quad Cities    | 1984    | A-31             | 30.0                             | 40          | Initial          | 93.9          |
| Catostomidae       | YSL             | Cayuga         | 1979    | A-9              | 26.0-31.9                        | 131         | Initial          | 88.1          |
| Catostomidae       | YSL             | Cayuga         | 1979    | A-9              | 32.0-36.0                        | 175         | Initial          | 86.6          |
| Catostomidae       | PYSL            | Cayuga         | 1979    | A-9              | 26.0-31.9                        | 213         | Initial          | 91.2          |
| Catostomidae       | PYSL            | Cayuga         | 1979    | A-9              | 32.0-36.0                        | 130         | Initial          | 98.4          |
| winter flounder    | larvae          | Oyster Creek   | 1984-85 | A-25             | 13.5-14.8                        | -           | Total            | 83.5          |
| winter flounder    | larvae          | Oyster Creek   | 1984-85 | A-25             | 18.3-20.3                        | -           | Total            | 14.8          |
| winter flounder    | PYSL            | Port Jefferson | 1978    | A-28             |                                  | 23          | Total            | 64.9          |
| winter flounder    | PYSL            | Northport      | 1980    | A-24             | -                                | 17          | Total            | 9.6           |
| sand lance         | PYSL            | Port Jefferson | 1978    | A-28             | 12.0-18.0                        | 166         | Total            | 24.5          |
| sand lance         | PYSL            | Port Jefferson | 1978    | A-28             | 12.0-18.0                        | 25          | Total            | 85.5          |
| sand lance         | PYSL            | Northport      | 1980    | A-24             | -                                | 782         | Total            | 1.8           |
| sculpin            | PYSL            | Port Jefferson | 1978    | A-28             | 12.0-18.0                        | 17          | Total            | 75.0          |
| American eel       | juvenile        | Port Jefferson | 1978    | A-28             | 12.0-18.0                        | 71          | Total            | 100.0         |
| American eel       | juvenile        | Port Jefferson | 1978    | A-28             | 12.0-18.0                        | 25          | Total            | 100.0         |
| fourbeard rockling | eggs            | Port Jefferson | 1978    | A-28             | 12.0-18.0                        | 102         | Total            | 100.0         |
| fourbeard rockling | eggs            | Port Jefferson | 1978    | A-28             | 12.0-18.0                        | 42          | Total            | 73.1          |
| Lepomis sp.        | larvae          | Braidwood      | 1988    | A-7              | -                                | 75          | Initial          | 100.0         |
| naked goby         | larvae          | Calvert Cliffs | 1979    | A-8              | -                                | 1,112       | Total            | 87.7          |
| naked goby         | larvae          | Calvert Cliffs | 1980    | A-8              | -                                | 170         | Total            | 98.0          |

| Species/<br>Taxa         | Life<br>Stage     | Plant          | Year    | Summary<br>Table | Discharge<br>Temperature<br>(°C) | #<br>Tested | Type<br>Survival | %<br>Survival |
|--------------------------|-------------------|----------------|---------|------------------|----------------------------------|-------------|------------------|---------------|
| blenny                   | larvae            | Calvert Cliffs | 1979    | A-8              |                                  | 148         | Total            | 36.9          |
| blenny                   | larvae            | Calvert Cliffs | 1980    | A-8              | -                                | 37          | Total            | 79.0          |
| spot                     | juvenile          | Calvert Cliffs | 1979    | A-8              | -                                | 51          | Total            | 100.0         |
| spot                     | juvenile          | Calvert Cliffs | 1980    | A-8              | -                                | 108         | Total            | 100.0         |
| spot                     | larvae/juvenile   | Indian River   | 1975-76 | A-22             | <25.0                            | -           | Total            | 100.0         |
| spot                     | larvae/juvenile   | Indian River   | 1975-76 | A-22             | 25.0-30.0                        | -           | Total            | 81.0          |
| spot                     | larvae/juvenile   | Indian River   | 1975-76 | A-22             | 30.0-35.0                        | -           | Total            | 53.0          |
| spot                     | larvae/juvenile   | Indian River   | 1975-76 | A-22             | >35.0                            | -           | Total            | 25.0          |
| Atlantic croaker         | larvae/juvenile   | Indian River   | 1975-76 | A-22             | <25.0                            | -           | Total            | 84.3          |
| Atlantic croaker         | larvae/juvenile   | Indian River   | 1975-76 | A-22             | 25.0-30.0                        | -           | Total            | 34.0          |
| Atlantic croaker         | larvae/juvenile   | Indian River   | 1975-76 | A-22             | 30.0-35.0                        | -           | Total            | 11.0          |
| Atlantic croaker         | larvae/juvenile   | Indian River   | 1975-76 | A-22             | >35.0                            | -           | Total            | 0.0           |
| rainbow smelt            | PYSL              | Ginna          | 1980    | A-15             | -                                | -           | Initial          | 0.0           |
| smelt                    | larvae/juvenile   | Bergum         | 1976    | A-2              | 16.7-24.6                        | 20          | Initial          | 10.0          |
| smelt                    | larvae/juvenile   | Bergum         | 1976    | A-2              | 16.7-24.6                        | 47          | Initial          | 17.0          |
| smelt                    | larvae/juvenile   | Bergum         | 1976    | A-2              | 16.7-24.6                        | 87          | Initial          | 17.0          |
| smelt                    | larvae/juvenile   | Bergum         | 1976    | A-2              | 16.7-24.6                        | 32          | Initial          | 41.0          |
| smelt                    | larvae/juvenile   | Bergum         | 1976    | A-2              | 16.7-24.6                        | 97          | Initial          | 34.0          |
| smelt                    | larvae/juvenile   | Bergum         | 1976    | A-2              | 16.7-24.6                        | 39          | Total            | 23.0          |
| northern pipefish        | juvenile          | Northport      | 1980    | A-24             |                                  | 24          | Total            | 51.0          |
| Atlantic silverside      | larvae/juvenile   | Indian River   | 1975-76 | A-22             | <25.0                            | -           | Total            | 100.0         |
| Atlantic silverside      | larvae/juvenile   | Indian River   | 1975-76 | A-22             | 25.0-30.0                        | -           | Total            | 100.0         |
| Atlantic silverside      | larvae/juvenile   | Indian River   | 1975-76 | A-22             | 30.0-35.0                        | -           | Total            | 48.0          |
| Atlantic silverside      | larvae/juvenile   | Indian River   | 1975-76 | A-22             | >35.0                            | ÷.          | Total            | 0.0           |
| "fish larvae"            | larvae            | Anclote        | 1995    | A-1              | -                                | 331         | Total            | 27.2          |
| "fish larvae"            | larvae            | Anclote        | 1995    | A-1              |                                  | 143         | Total            | 62.2          |
| "fish juveniles"         | juvenile          | Anclote        | 1995    | A-1              | -                                | 200         | Total            | 64.0          |
| "fish juveniles"*        | juvenile          | Anclote        | 1995    | A-1              |                                  | 144         | Total            | 69.6          |
| Monoculodes<br>edwardsi  | -                 | Bowline Pt.    | 1975    | A-3              | -                                | -           | Total            | 98.6          |
| Gammarus daiberi         | -                 | Bowline Pt.    | 1975    | A-3              | -                                | -           | Total            | 94.8          |
| Gammarus daiberi         |                   | Roseton        | 1975    | A-32             | -                                | -           | Total            | 87.8          |
| Gammarus daiberi         | -                 | Roseton        | 1976    | A-33             | 11.3-29.2                        | 202         | Total            | 76.7          |
| Gammarus<br>mucronatus   | ÷.                | Calvert Cliffs | 1978–80 | A-8              | 77                               | 231         | Total            | 70.0          |
| Corophium sp.            | ÷                 | Calvert Cliffs | 1978-80 | A-8              | -                                | 3,363       | Total            | 65.0          |
| Gammarus sp.             |                   | Bowline Pt.    | 1978    | A-5              |                                  | 4,563       | Total            | 92.3          |
| Gammaridean<br>amphipods | -                 | Pittsburg      | 1978–79 | A-27             | <30.0                            | -           | Total            | 99.6          |
| Gammaridean<br>amphipods |                   | Pittsburg      | 1978–79 | A-27             | 30.0-31.9                        | -           | Total            | 100.0         |
| Gammaridean<br>amphipods | -                 | Pittsburg      | 1978–79 | A-27             | 32.0-33.9                        | -           | Total            | 41.3          |
| Gammaridean<br>amphipods | -                 | Pittsburg      | 1978–79 | A-27             | >33.9                            | -           | Total            | 21.4          |
| amphipods                | -                 | Anclote        | 1995    | A-1              | -                                | 2,632       | Total            | 48.5          |
| amphipods                | $\leftrightarrow$ | Anclote        | 1995    | A-1              | $\rightarrow$                    | 2,030       | Total            | 72.9          |
| Edotea triloba           | -                 | Bowline Pt.    | 1975    | A-3              | -                                | -           | Total            | 100.0         |

| Species/<br>Taxa          | Life<br>Stage | Plant          | Year    | Summary<br>Table | Discharge<br>Temperature<br>(°C) | #<br>Tested   | Type<br>Survival | %<br>Survival |
|---------------------------|---------------|----------------|---------|------------------|----------------------------------|---------------|------------------|---------------|
| Neomysis americana        |               | Bowline Pt.    | 1975    | A-3              | ()                               | -             | Initial          | 100.0         |
| Neomysis americana        | -             | Bowline Pt.    | 1978    | A-5              |                                  | 2,185         | Total            | 70.0          |
| Neomysis americana        | -             | Calvert Cliffs | 1979-80 | A-8              | -                                | 18,841        | Total            | 79.0          |
| Neomysis americana        | -             | Indian River   | 1975-76 | A-22             | <25.0                            | -             | Total            | 93.5          |
| Neomysis americana        | -             | Indian River   | 1975-76 | A-22             | 25.0-30.0                        | _             | Total            | 87.0          |
| Neomysis americana        | -             | Indian River   | 1975-76 | A-22             | 30.0-35.0                        | -             | Total            | 37.0          |
| Neomysis americana        | 1             | Indian River   | 1975-76 | A-22             | >35.0                            |               | Total            | 28.0          |
| Neomysis mercedis         | -             | Pittsburg      | 1978-79 | A-27             | <30.0                            | -             | Total            | 89.8          |
| Neomysis mercedis         | 100           | Pittsburg      | 1978-79 | A-27             | 30.0-31.9                        | -             | Total            | 28.5          |
| Neomysis mercedis         | -             | Pittsburg      | 1978-79 | A-27             | 32.0-33.9                        | -             | Total            | 0.0           |
| Neomysis mercedis         | -             | Pittsburg      | 1978-79 | A-27             | >33.9                            | -             | Total            | 0.0           |
| Chaoborus<br>punctipennis | -             | Bowline Pt.    | 1975    | A-3              | 1 <del></del>                    | -             | Total            | 92.4          |
| Chaoborus<br>punctipennis | -             | Roseton        | 1975    | A-32             | -                                | -             | Total            | 98.1          |
| Chaoborus<br>punctipennis | -             | Roseton        | 1976    | A-33             | <30.0                            | 62            | Total            | 86.1          |
| Chaoborus<br>punctipennis | -             | Roseton        | 1976    | A-33             | >30.0                            | 120           | Total            | 96.1          |
| Crangon<br>septemspinosa  | -             | Indian River   | 1975–76 | A-22             | <25.0                            |               | Total            | 95.0          |
| Crangon<br>septemspinosa  |               | Indian River   | 1975–76 | A-22             | 25.0-30.0                        | $\rightarrow$ | Total            | 56.0          |
| Crangon<br>septemspinosa  | $\rightarrow$ | Indian River   | 1975–76 | A-22             | 30.0-35.0                        | -             | Total            | 33.0          |
| Crangon<br>septemspinosa  | -             | Indian River   | 1975–76 | A-22             | >35.0                            | -             | Total            | 9.0           |
| Nereis succinea           | -             | Calvert Cliffs | 1979-80 | A-8              |                                  | 2,348         | Total            | 89.0          |
| Scolecolepides viridis    |               | Calvert Cliffs | 1979-80 | A-8              | 1.1.1                            | 2,650         | Total            | 100.0         |
| chaetognaths              | -             | Anclote        | 1995    | A-1              |                                  | 495           | Total            | 67.1          |
| chaetognaths              | 124           | Anclote        | 1995    | A-1              |                                  | 1,432         | Total            | 72.4          |
| Caridean shrimp           | -             | Anclote        | 1995    | A-1              | -                                | 1,026         | Total            | 63.8          |
| Caridean shrimp           |               | Anclote        | 1995    | A-1              |                                  | 740           | Total            | 80.5          |
| Penaeid shrimp            | -             | Anclote        | 1995    | A-1              | -                                | 212           | Total            | 66.0          |
| Penaeid shrimp            | $\rightarrow$ | Anclote        | 1995    | A-1              | -                                | 202           | Total            | 75.1          |
| Ephemeroptera             | -             | Fort Calhoun   | 1973-77 | A-14             | up to 37.0 C                     | 2,220         | Initial          | 91.7          |
| Hydropsychidae            |               | Fort Calhoun   | 1973-77 | A-14             | up to 37.0 C                     | 4,964         | Initial          | 91.7          |
| other Trichoptera         | -             | Fort Calhoun   | 1973-77 | A-14             | up to 37.0 C                     | 872           | Initial          | 92.5          |
| Chrionomidae              | -             | Fort Calhoun   | 1973-77 | A-14             | up to 37.0 C                     | 2,925         | Initial          | 83.7          |
| other Diptera             | -             | Fort Calhoun   | 1973-77 | A-14             | up to 37.0 C                     | 380           | Initial          | 87.1          |

\* = all organisms below this point are macroinvertebrates PYSL = post-yolk sac larvae YSL = yolk sac larvae - = data not available or readily extractable Notes: \*



Figure 3-1 Survival Data (Mean 1 S.D.) for Key Species/Groups from Table 3-5.

# **4** FACTORS AFFECTING ENTRAINMENT SURVIVAL

### 4.1 Species Entrained

Key factors that influence the probability that an entrained organism will survive are illustrated in Figure 4-1. The first of these, "species entrained," has already been discussed to some extent in Section 3. Referring to Figure 3-1, it is clear that, with all other factors equal, the probability of survival of catostomids is markedly greater than that of anchovies. Similarly, striped bass exhibit higher survival than clupeids over all conditions. Figure 3-1 illustrates considerable variability within a species or group. Survival of a species may vary over a considerable range, depending on factors such as discharge temperature, but the range is unique to the species. Consequently, for a given set of conditions, probability of survival depends on which species is entrained. It is also clear from Figure 3-1 that except for clupeids and anchovy, average survival for all other species/taxa is  $\geq$ 50 percent.



Figure 4-1 Factors Affecting Entrainment Survival.

### 4.2 Size of Entrained Species

A number of studies examined the effect of the size of entrained fish larvae on survival. Although some reports, such as for the Pittsburg and Protrero Power Plants in 1978–79 (Summary A-27 and A-29), reported no relationship between larval size and survival, a number

4-1

#### Factors Affecting Entrainment Survival

of other studies did. A consistent relationship of increasing survival with increasing length of larval striped bass, white perch, and clupeids was shown at Hudson River power plants. This relationship is typified by the plot (Figure 4-2) of survival vs. length of striped bass larvae at the Roseton Generating Station (EA 1983) (Summary A-36). Data are illustrated for several different sampling gear at both intake and discharge locations. Similar relationships were noted for white perch. Cluepid survival also increased with increasing larval length, but exhibited an abrupt decrease in survival at about 24 mm at Roseton Generating Station and at 14 mm at Monroe Power Plant (EA 1982) (Summary A-23).



#### Figure 4-2

Initial Survival as a Function of Length for Striped Bass Collected at Five Stations During Entrainment Survival Sampling at the Roseton Generating Station, 26 May–31 July 1980. [From EA 1983] Whereas increasing survival of larger, hardier specimens may seem intuitively obvious, there are implications for impact assessment. As indicated by EA (1981a), the high survival of the larger, late post-yolk sac larvae and juvenile striped bass occurs at the time that the year class strength is set in the Hudson River population. Thus, sensitivity to entrainment is the least during a critical biological period for the species. Impact assessment is discussed further in Section 5.

## 4.3 Biocide Use

The use of chemical biocides such as chlorine can affect survival of entrained organisms. EA (1982) reported lower survival of clupeid and yellow perch larvae at the Monroe Power Plant (A-23) when residual chlorine concentrations in cooling water were  $\geq 0.1$  mg/L. Although chemical stressors are commonly listed as one of three factors influencing entrainment survival (Schubel and Marcy 1978; Muessig et al. 1988; Mayhew et al. 2000), they are seldom implicated as having a marked impact on overall entrainment survival. Biocide treatments typically are intermittent and of short duration. Marcy (1973) reported chlorination at the Connecticut Yankee Station of 10 minutes per unit per day. A similar schedule was reported for the Monroe Power Plant (EA 1982). Muessig et al. (1988) stated that "biocides generally are not used to control fouling organisms in the cooling systems of Hudson River power plants during the period when entrainable fish are abundant." Therefore, although survival can be significantly reduced during biocide application, the very short duration of, and sometimes absence of application of biocides indicate that biocides represent a negligible influence on overall entrainment survival for many power plants. However, there are some generating units permitted for continuous biocide application, and in these cases entrainment survival would be negligible.

## 4.4 Mechanical Effects

Mechanical effects on organisms transiting cooling-water pumps and condensers include shear and buffeting from turbulent flow, rapid acceleration and deceleration, pressure increases and drops, and abrasion from contact with screens, pump impellers, and condenser tubes (Kedl and Coutant 1976; Marcy et al. 1978). Largely due to the work of Marcy (1971, 1973), early investigators thought that mechanical damage was the greatest contributor to entrainmentpassage mortality. Marcy attributed 80 percent of entrainment mortality at the Connecticut Yankee Station to mechanical damage (A-10). Subsequent laboratory-simulation studies, reviewed by Jinks et al. (1981), began to generate contrary conclusions regarding mechanical damage. Studies at New York University demonstrated little mortality of striped bass eggs and larvae from pressure changes typical of power-plant cooling systems. Kedl and Coutant (1976) tested striped bass and bluegill larvae in a condenser-tube simulator and reported mortalities immediately after passage of <5 percent. Cada et al. (1981) also conducted simulation studies where the effects of pipe and condenser passage and pump passage could be assessed separately. With the exception of carp, they reported very low mortality of bluegill larvae and juveniles of channel catfish, mosquitofish, and largemouth bass due to either pipe/condenser or pump passage.

Whereas the simulation studies provided valuable information on mechanical effects, and suggested a greater resiliency of young fish to mechanical stresses than previously thought, they were limited by their artificiality. By the late 1970s and early 1980s, a number of entrainment-

#### Factors Affecting Entrainment Survival

survival studies had been completed at existing power plants that permitted more realistic assessments of mechanical effects of entrainment. The most consistent observation from these studies was that survival decreased with increasing discharge temperatures. Based on field observations, and also laboratory thermal tolerance studies (EA 1978a), discharge temperatures below 30°C were considered to have little or no effect on survival. Consequently, any mortality measured when discharge temperatures were <30°C was ascribed to mechanical damage—assuming thermal and mechanical stresses were independent.

On occasion, there were opportunities to measure entrainment survival when generating units were off, but circulating-water pumps were running, i.e., there was no thermal addition. For example, two such studies were done at the Bowline Point plant in 1978 and 1979 (EA 1979b, 1981a) (A-5, A-6). In 1978, initial entrainment survival with no thermal addition was measured at 90 and 95 percent for post-yolk sac larval white perch and striped bass, respectively. Consequently, mortality due to mechanical effects was negligible. Similar studies at Bowline Point in 1979 showed lower survival. Initial entrainment survival was 56–60, 43.3–94.1, and 30–57.7, depending on discharge sampling location, for striped bass, white perch, and clupeids, respectively. Twenty-four hour extended survival was lower than initial survival for all taxa. Mechanical effects were obviously more prominent in 1979. The authors attributed this to the smaller size of the larvae entrained in 1979 relative to 1978.

Jinks et al. (1981) reviewed a number of entrainment-survival studies done largely in the absence of thermal effects. Of 40 survival estimates reported to include no thermal influence, 33 were greater than 50 percent survival and 21 were 75 percent survival or higher. Consequently, the corresponding mechanical contribution to mortality was usually less that 50 percent, and frequently less than 25 percent.

In summary, although there often is a mechanical component of entrainment mortality, it is typically a much less important determinant of entrainment survival than thermal stress from high discharge temperatures, as discussed below.

### 4.5 Discharge-Temperature Effects

The above-mentioned relationship of entrainment survival to discharge temperature is illustrated in Figure 4-3. The plotted data are mean survival values in each temperature range based on the data in Table 3-5. The data clearly corroborate the results of laboratory thermal-tolerance studies (e.g., EA 1978a) that identified upper thermal tolerance thresholds between 30 and 32°C for common Hudson River species. Based on Figure 4-3, striped bass appear to be more resistant to temperatures in the threshold region, but survival drops markedly at discharge temperatures above 33°C.

Figure 4-3 also illustrates the effect of species on entrainment survival, discussed above in Subsection 4.1. Under the best of circumstances, i.e., with discharge temperatures less than 30°C, survival recorded for the relatively delicate clupeids and anchovies is notably lower than that of striped bass, white perch, or mysid shrimp.

Factors Affecting Entrainment Survival





Discharge temperature and the other factors that affect entrainment survival have been thus far discussed in a largely experimental context. That is, a certain set of circumstances were encountered in a given study, e.g., discharge temperatures >33°C and availability of white perch post-yolk sac larvae in entrainment samples. Samples were taken, survival was measured, and the results reported. These data alone are insufficient for impact assessment. Temperatures will change within and among years, spawning location and timing will vary, and other factors will vary among power plants and years. The implications of this are discussed in Section 5.0.

Port Authority 036592

# **5** APPLICATION OF ENTRAINMENT SURVIVAL DATA

## 5.1 Existing Facilities

Jinks et al. (1978) described a predictive model for assessing entrainment survival of Hudson River striped bass. Their model (Figure 5-1) incorporated three key components: (1) exposure, (2) mortality, and (3) involvement. Exposure was in terms of thermal conditions, i.e., if a larva was entrained, what temperature would it be subjected to and for how long? The mortality component consisted of mechanical and thermal effects. All of the forgoing discussions in the present document have dealt with the first two model components, i.e., what is the discharge temperature and what is the measured or predicted probability of survival (or mortality)? Knowing what the discharge temperature is and, consequently, the probability of entrainment survival, is not enough to predict the environmental impact of entrainment. That is where the third component of the model, "involvement," applies. This is where the seasonal and diel occurrence and abundance of entrainable organisms is integrated with the exposure and survival/mortality estimates to predict the overall survival or loss of entrained organisms in a season.





#### Application of Entrainment Survival Data

Seasonal occurrence and abundance of entrainable forms, and the timing thereof, varies depending on a number of factors such as ambient water temperature and salinity. It can happen, as at the Roseton Generating Station on the Hudson River in 1975 (A-32), that the entrainment season, or period of occurrence of entrainable striped bass and white perch, was largely over before the discharge temperature exceeded 30°C (EA 1978b). EA (1981a), in their discussion of entrainment abundance and survival at the Bowline Point Station on the Hudson River, indicated that "the peak period for the most abundant species and life stages typically occurs well before the discharge temperatures reach the lab predicted TL50s (median tolerance limit) for these taxa." The effect of seasonal variation in environmental conditions was reflected in the survival of striped bass and white perch larvae at Indian Point Station in 1977 and 1978 (EA 1979c) (A-16, A-17). The lower survival measured in 1978 was attributed to higher discharge temperatures (30–32.9°C) compared to 1977 (<30°C). Diel generating cycles at some plants can also influence entrainment survival. Jinks et al. (1978) pointed out that at the Roseton Station, minimal entrainment of striped bass larvae occurs in the afternoon when generating load (and consequently discharge temperature-related mortality factors) is highest. The highest entrainment is in the early morning hours when mortality factors are lowest.

The integration of exposure, mortality, and involvement has been done at a number of power plants to estimate actual entrainment losses on a seasonal and annual basis. Based on a two-year study at the Indian River Power Plant (EA 1978c) (A-22), the overall percentage of entrained organisms that survived entrainment during the study period ranged from less than 10 percent for bay anchovy to >70 percent for Atlantic croaker, 50 percent for Atlantic silverside, and >90 percent for Atlantic menhaden and spot. Corresponding estimates for the sand shrimp *Crangon septemspinosa* and mysid *Neomysis americana* were nearly 60 and 90 percent, respectively.

EA (1981b) utilized measured survival data for *Neomysis mercedis* and striped bass larvae to underpin extensive impact modeling at the Pittsburg Power Plant (A-27). Conditional mortality rates (the fractional reduction in year-class strength due to entrainment) were calculated for both taxa, and equivalent adult loss estimates were made for striped bass. Similar impact assessment modeling was conducted for the Protrero Power Plant (EA 1980) based on the entrainment survival data in Table A-29 of this document. For the Oyster Creek Nuclear Generating Station, EA (1986) used the entrainment survival data in Table A-25 (this document), in conjunction with 5 prior years of entrainment abundance and discharge temperature data, to estimate annual survival of winter flounder and bay anchovy in those prior years.

Much of the entrainment survival data for Hudson River power plants in Appendix A were employed by EPA consultants in conducting impact-assessment modeling in support of the 1977–1980 power plant adjudicatory hearings. Boreman and Goodyear (1988) summarized estimates of entrainment mortality presented to the EPA in 1979. These authors used the empirical transport model (ETM) to generate estimates of conditional entrainment mortality, the fractional reduction in year-class strength due to entrainment (assuming other sources of mortality are density-independent). The "f-factors" used by Boreman and Goodyear represented mortality due to plant passage as determined via (1) in-plant sampling with nets and larva tables (data summarized in this document) and (2) regression-model estimates of mortality based on laboratory thermal-tolerance studies. This analysis highlighted the importance of unbiased entrainment survival estimates; the conditional mortality rate is particular sensitive to the survival data. The above synopsis of the use and application of entrainment survival data establishes the importance of such data in power plant impact analysis. Although EPA consultants initially were reluctant to accept the entrainment survival estimates (and resulting f-factors) generated by utility consultants on the Hudson River (Englert and Boreman 1988), the data eventually were accepted, largely due to improvements in entrainment-survival sampling techniques described by Muessig et al. (1988).

It must be emphasized that the measurement of entrainment abundance and survival does not constitute impact assessment. These are only interim steps in a process that culminates with a determination of whether or not entrainment causes adverse environmental impact. Entrainment abundance and survival data must be put in context with the species population in the waterbody. In all of the studies examined for purposes of this analysis, the assessment of entrainment survival has been part of a process the goal of which is to determine the risk to the *population*— not individuals within the population. There are many methods available with which to address population risks, as described in EPRI (1999).

### 5.2 Proposed Facilities

Whereas the entrainment data gathered for individual plants can and have been used in assessing impacts of entrainment at existing facilities, the accumulated 30-year database could also be of value as an environmental screening tool for proposed new facilities and for existing facilities where such studies have not been performed. Typically, environmental data are compiled during the plant siting process, and these data could be screened against the entrainment survival database to provide a qualitative prediction of the potential for entrainment impacts at the new facility. By reviewing the pre-operational environmental data and proposed plant-operating specifications in light of the factors that affect entrainment survival (Figure 4-1, this document), a qualitative estimate of potential entrainment impacts could be made. The pre-operational environmental data would provide answers to the questions:

- What species of ichthyoplankton and macroinvertebrates are common in the receiving waters?
- What are the size and densities of entrainable forms?

Plant-design specifications would answer:

- What type, frequency, and concentration of biocide, if any, are proposed?
- What type of circulating-water pumps is in the design?
- What are anticipated cooling-water flow rates?
- What is the design temperature rise across the condenser(s)?

When these questions are answered and related to the information in the entrainment survival database, the nature of potential future entrainment impacts could be evaluated. Ideally, the entrainment database could be consulted in the design phase to identify operating specifications such as cooling-water flow and predicted discharge temperatures that would minimize entrainment effects.

### Application of Entrainment Survival Data

There is the potential, perhaps in a future project, to move from a qualitative screening tool to a quantitative predictive model. By merging the survival data and associated specific plant-operating characteristics from existing studies, and applying appropriate statistical treatments, an effective predictive model could result. This would allow assessment of entrainment effects not only for proposed facilities, but also for existing facilities that have not had prior entrainment evaluations.

# **6** REFERENCES

- Boreman, J. and C. Goodyear. 1988. Estimates of entrainment mortality for striped bass and other fish species inhabiting the Hudson River estuary, pp. 152–160. In Science, Law, and Hudson River Power Plants: A Case Study in Environmental Impact Assessment, edited by L. Barnthouse, R. Klauda, D. Vaughan, and R. Kendall. American Fisheries Society Monograph 4. Bethesda, MD.
- Cada, G., J. Suffern, K. Deva Kumar, and J. Solomon. 1981. Investigations of entrainment mortality among larvae and juvenile fishes using a power plant simulator, pp. 111–122. In *Issues Associated with Impact Assessment: Proceedings of the Fifth National Workshop on Entrainment and Impingement*, edited by L. Jensen. Sparks, MD:Ecological Analysts, Inc.
- EA Engineering, Science, and Technology, Inc. (EA) 1986. Entrainment and Impingement Studies at Oyster Creek Nuclear Generating Station 1984–1985. Prepared for GPU Nuclear Corporation. Sparks, MD:EA.
- Ecological Analysts, Inc. (EA). 1978a. Hudson River Thermal Effects Studies for Representative Important Species. Final Report. Prepared for Central Hudson Gas & Electric Corporation; Consolidated Edison Company of New York, Inc.; and Orange and Rockland Utilities, Inc. Middletown, NY:EA.
- Ecological Analysts, Inc. (EA). 1978b. Roseton Generating Station Entrainment Survival Studies 1976 Annual Report. Prepared for Central Hudson Gas & Electric Corporation. Middletown, NY:EA.
- Ecological Analysts, Inc. (EA). 1978c. Impact of the Cooling Water Intake at the Indian River Power Plant: A § 316(b) Evaluation. Prepared for Delmarva Power & Light Co. Towson, MD:EA.
- 7. Ecological Analysts, Inc. (EA). 1979a. An Assessment of the Potential for Ichthyoplankton Entrainment Survival at the Muskingum River Plant. Prepared for American Electric Power Company, Canton, OH.. Middletown, NY:EA.
- 8. Ecological Analysts, Inc. (EA). 1979b. *Bowline Point Generating Station Entrainment Abundance and Survival Studies 1978 Annual Report*. Prepared for Orange and Rockland Utilities, Inc. Middletown, NY:EA.
- 9. Ecological Analysts, Inc. (EA). 1979c. *Indian Point Generating Station Entrainment Survival and Related Studies 1978 Annual Report*. Prepared for Consolidated Edison Company of New York, Inc. and Power Authority of the State of New York. Middletown, NY:EA.

6-1

References

- 10. Ecological Analysts, Inc. (EA). 1980. Protrero Power Plant Cooling Water Intake Structures 316(b) Demonstration. Prepared for Pacific Gas and Electric Company. Concord, CA:EA.
- Ecological Analysts, Inc. (EA). 1981a. Bowline Point Generating Station Entrainment Abundance and Survival Studies, 1979 Annual Report with Overview of 1975–1979 Studies. Prepared for Orange and Rockland Utilities, Inc., Pearl River, NY. Middletown, NY:EA.
- 12. Ecological Analysts, Inc. (EA). 1981b. *Pittsburg Power Plant Cooling Water Intake Structures 316(b) Demonstration*. Prepared for Pacific Gas and Electric Company. Concord, CA:EA.
- 13. Ecological Analysts, Inc. (EA). 1982. Entrainment Survival Studies at the Monroe Power Plant 1982. Prepared for the Detroit Edison Company, Detroit, MI. Northbrook, IL:EA.
- Ecological Analysts, Inc. (EA). 1983. Roseton Generating Station Entrainment Survival Studies 1980 Annual Report. Prepared for Central Hudson Gas & Electric Corporation, Poughkeepsie, NY. Middletown, NY:EA.
- 15. Englert, T. and J. Boreman. 1988. Historical review of entrainment impact estimates and the factors influencing them, pp. 143–151. In *Science, Law, and Hudson River Power Plants: A Case Study in Environmental Impact Assessment*, edited by L. Barnthouse, R. Klauda, D. Vaughn, and R. Kendall. American Fisheries Society Monograph 4. Bethesda, MD.
- 16. EPRI. 1999. Catalog of Assessment Methods for Evaluating the Effects of Power Plant Operations on Aquatic Communities. Palo Alto, CA:EPRI. TR-112013.
- Hadderingh, R. 1978. Mortality of young fish in the cooling water system of Bergum power station. *Proceedings of the International Association of Theoretical and Applied Limnology* 20:347–352.
- Hess, K., M. Sissenwine, and S. Saila. 1975. Simulating the impact of the entrainment of winter flounder larvae, pp. 1–29. In *Fisheries and Energy Production: A Symposium*, edited by S. Saila. Lexington, MA:Lexington Books.
- 19. Hocutt, C., J. Stauffer, Jr., J. Edinger, L. Hall, Jr., and R. Morgan II, eds. 1980. Power Plants Effects on Fish and Shellfish Behavior. NY:Academic Press.
- 20. Jensen, L., ed. 1978. Fourth National Workshop on Entrainment and Impingement. Melville, NY:EA Communications, a Division of Ecological Analysts, Inc.
- 21. Jinks, S., T. Cannon, D. Latimer, L. Claflin, and G. Laurer. 1978. An approach to the analysis of striped bass entrainment survival at Hudson River power plants, pp. 343–350. In *Fourth National Workshop on Entrainment and Impingement*, edited by L. Jensen. Melville, NY:EA Communications, a Division of Ecological Analysts, Inc.
- 22. Jinks, S., G. Lauer, and M. Loftus. 1981. Advances in techniques for assessment of ichthyoplankton entrainment survival, pp. 91–110. In *Issues Associated with Impact*

Assessment: Proceedings of the Fifth National Workshop on Entrainment and Impingement, edited by L. Jensen. Sparks, MD:Ecological Analysts, Inc.

- 23. Kedl, R. and C. Coutant. 1976. Survival of juvenile fishes receiving thermal and mechanical stresses in a simulated power-plant condenser, pp. 394–400. In *Thermal Ecology II*, edited by G. Esch and R. McFarlane. Presented at symposium held at Savannah River Ecology Laboratory, April 2–5, 1975. ERDA Symposium Series, CONF-750425.
- 24. Langford, T. 1983. *Electricity Generation and the Ecology of Natural Waters*. Liverpool, UK:Liverpool University Press.
- 25. Marcy, B. Jr. 1971. Survival of young fish in the discharge canal of a nuclear power plant. J. Fish. Res. Bd. Canada 28:1057–1060.
- 26. Marcy, B. Jr. 1973. Vulnerability and survival of young Connecticut River fish entrained at a nuclear power plant. J. Fish. Res. Bd. Canada 30:1195–1203.
- Marcy, B. Jr., A. Beck, and R. Ulanowicz. 1978. Effects and impacts of physical stress on entrained organisms, pp. 135–188. In *Power Plant Entrainment: A Biological Assessment*, edited by J. Schubel and B. Marcy Jr. NY:Academic Press.
- Mayhew, D., L. Jensen, D. Hanson, and P. Muessig. 2000. A comparative review of entrainment survival studies at power plants in estuarine environments. In *Environmental Science & Policy* 3:S295-S301.
- 29. McGroddy, P. and R. Wyman. 1977. Efficiency of nets and a new device for sampling living fish larvae. J. Fish. Res. Bd. Canada 34:571–574.
- Muessig, P., J. Young, D. Vaughn, and B. Smith. 1988. Advances in field and analytical methods for estimating entrainment mortality factors, pp. 124–132. In *Science, Law, and Hudson River Power Plants: A Case Study in Environmental Impact Assessment*, edited by L. Barnthouse, R. Klauda, D. Vaughn, and R. Kendall. American Fisheries Society Monograph 4. Bethesda, MD.
- Schubel, J. and B. Marcy, Jr. 1978. Power Plant Entrainment, A Biological Assessment. NY:Academic Press.
- 32. Spigarelli, S., A. Jensen, and M. Thommes. 1981. An Assessment of the Impacts of Water Intakes on Alewife, Rainbow Smelt, and Yellow Perch Populations in Lake Michigan. Argonne National Laboratory, Argonne, IL (ANL/ES-109) and U.S. Environmental Protection Agency, Chicago, IL (EPA-905/3-81-001).



# **A** ENTRAINMENT SURVIVAL SUMMARY SHEETS

Port Authority 036601

### Table A-1

| Entrainment Survival Study | Summary, Anclote | Power Plant, | 1995 |
|----------------------------|------------------|--------------|------|
|----------------------------|------------------|--------------|------|

| Owner:                                                                                                                                               |                                                                                                    | Florida                                                                              | Power Corpo                                                                                                                       | ration                                                                                                       |                                                                                                |                                                                                           |                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------|--|
| Plant Capacity                                                                                                                                       | (MWe):                                                                                             | 1,112                                                                                |                                                                                                                                   |                                                                                                              |                                                                                                |                                                                                           |                          |  |
| Report Referen                                                                                                                                       | ce:                                                                                                | CCI Env<br>Study, A<br>Prepared                                                      | vironmental S<br>Inclote Power<br>d for [owner]                                                                                   | Services, Inc.<br>Plant, Pasco                                                                               | 1996. Zoopla<br>o County, Flo                                                                  | nkton Entrainm<br>rida. CCI, Palm                                                         | ent Surviv<br>netto, FL. |  |
| Water Body:                                                                                                                                          |                                                                                                    | Anclote                                                                              | Anclote River, FL                                                                                                                 |                                                                                                              |                                                                                                |                                                                                           |                          |  |
| Sampling frequ                                                                                                                                       | ency/dates:                                                                                        | dates: Daily during 25–29 Sept., 9–11 Oct., and 1–2 Nov. 1995                        |                                                                                                                                   |                                                                                                              |                                                                                                |                                                                                           |                          |  |
| Cooling Water                                                                                                                                        | Flow (M <sup>3</sup> /min.)                                                                        | Not prov                                                                             | vided in repor                                                                                                                    | t                                                                                                            |                                                                                                |                                                                                           |                          |  |
| Sample Locatio                                                                                                                                       | n(s):                                                                                              | Intake c                                                                             | anal; condens                                                                                                                     | er discharge                                                                                                 | flume; discha                                                                                  | rge canal point-                                                                          | -of-discha               |  |
| Sampling Gear:                                                                                                                                       |                                                                                                    | 1.0-m di                                                                             | 1.0-m diameter conical plankton net with 400 $\mu$ -mesh netting                                                                  |                                                                                                              |                                                                                                |                                                                                           |                          |  |
| deployed from a                                                                                                                                      | 2.5.1                                                                                              |                                                                                      |                                                                                                                                   |                                                                                                              |                                                                                                |                                                                                           |                          |  |
| deproyed nom a                                                                                                                                       | boat                                                                                               |                                                                                      |                                                                                                                                   |                                                                                                              |                                                                                                |                                                                                           |                          |  |
| Type of Surviva                                                                                                                                      | boat<br>Il Test(s):                                                                                | Initial a                                                                            | nd extended 9                                                                                                                     | 96-hr. tests                                                                                                 |                                                                                                |                                                                                           |                          |  |
| Type of Surviva<br>Results Summa                                                                                                                     | boat<br>Il Test(s):<br>ry:                                                                         | Initial a                                                                            | nd extended 9                                                                                                                     | 96-hr. tests                                                                                                 |                                                                                                |                                                                                           |                          |  |
| Type of Surviva<br>Results Summa                                                                                                                     | boat<br>Il Test(s):<br>ry:                                                                         | Initial a                                                                            | nd extended 9<br>Total Entrair                                                                                                    | 96-hr. tests<br>nment Surviv:                                                                                | al                                                                                             |                                                                                           |                          |  |
| Type of Surviva<br>Results Summa                                                                                                                     | boat<br>Il Test(s):<br>ry:                                                                         | Initial a                                                                            | nd extended 9<br><u>Total Entrair</u><br><u>Condenser</u>                                                                         | 96-hr. tests<br>ament Surviva<br>Discharge                                                                   | al<br><u>Point-of-</u>                                                                         | Discharge                                                                                 |                          |  |
| Type of Surviva<br>Results Summa<br>Species Group                                                                                                    | boat<br>Il Test(s):<br>ry:<br>Intake %<br><u>Survival</u>                                          | Initial an<br>Number<br><u>Tested</u>                                                | nd extended 9<br>Total Entrain<br><u>Condenser</u><br>%<br><u>Survival</u>                                                        | 96-hr. tests<br>ament Surviva<br>Discharge<br>Number<br><u>Tested</u>                                        | al<br><u>Point-of-</u><br>%<br><u>Survival</u>                                                 | <u>Discharge</u><br>Number<br><u>Tested</u>                                               |                          |  |
| Type of Surviva<br>Results Summa<br>Species Group<br>Fish larvae                                                                                     | boat<br>Il Test(s):<br>ry:<br>Intake %<br><u>Survival</u><br>64.1                                  | Initial an<br>Number<br><u>Tested</u><br>109                                         | nd extended 9<br>Total Entrair<br><u>Condenser</u><br>%<br><u>Survival</u><br>27.2                                                | 96-hr. tests<br>ament Surviva<br>Discharge<br>Number<br><u>Tested</u><br>331                                 | al<br><u>Point-of-</u><br>%<br><u>Survival</u><br>62.2                                         | <u>Discharge</u><br>Number<br><u>Tested</u><br>143                                        |                          |  |
| Type of Surviva<br>Results Summa<br>Species Group<br>Fish larvae<br>Fish juveniles                                                                   | boat<br>Il Test(s):<br>ry:<br>Intake %<br><u>Survival</u><br>64.1<br>78.3                          | Initial an<br>Number<br><u>Tested</u><br>109<br>140                                  | nd extended 9<br>Total Entrain<br><u>Condenser</u><br>%<br><u>Survival</u><br>27.2<br>64.0                                        | 96-hr. tests<br>ament Surviva<br>Discharge<br>Number<br><u>Tested</u><br>331<br>200                          | al<br><u>Point-of-</u><br>%<br><u>Survival</u><br>62.2<br>69.6                                 | Discharge<br>Number<br><u>Tested</u><br>143<br>144                                        |                          |  |
| Type of Surviva<br>Results Summa<br>Species Group<br>Fish larvae<br>Fish juveniles<br>Amphipods                                                      | boat<br>Il Test(s):<br>ry:<br>Intake %<br><u>Survival</u><br>64.1<br>78.3<br>72.9                  | Initial an<br>Number<br><u>Tested</u><br>109<br>140<br>5,185                         | nd extended 9<br>Total Entrain<br><u>Condenser</u><br>%<br><u>Survival</u><br>27.2<br>64.0<br>48.5                                | off-hr. tests<br>ment Surviva<br>Discharge<br>Number<br><u>Tested</u><br>331<br>200<br>2,632                 | al<br><u>Point-of-</u><br>%<br><u>Survival</u><br>62.2<br>69.6<br>72.9                         | Discharge<br>Number<br><u>Tested</u><br>143<br>144<br>2,030                               |                          |  |
| Type of Surviva<br>Results Summa<br>Species Group<br>Fish larvae<br>Fish juveniles<br>Amphipods<br>Chaetognaths                                      | boat<br>Il Test(s):<br>ry:<br>Intake %<br>Survival<br>64.1<br>78.3<br>72.9<br>44.0                 | Initial an<br>Number<br><u>Tested</u><br>109<br>140<br>5,185<br>1,549                | Total Entrain<br>Condenser<br>%<br>Survival<br>27.2<br>64.0<br>48.5<br>67.1                                                       | off-hr. tests<br>ment Surviva<br>Discharge<br>Number<br><u>Tested</u><br>331<br>200<br>2,632<br>495          | al<br><u>Point-of-</u><br>%<br><u>Survival</u><br>62.2<br>69.6<br>72.9<br>72.4                 | <u>Discharge</u><br>Number<br><u>Tested</u><br>143<br>144<br>2,030<br>1,432               |                          |  |
| Type of Surviva<br>Results Summa<br>Species Group<br>Fish larvae<br>Fish juveniles<br>Amphipods<br>Chaetognaths<br>Caridean shrimp                   | boat<br>Il Test(s):<br>ry:<br>Intake %<br><u>Survival</u><br>64.1<br>78.3<br>72.9<br>44.0<br>72.4  | Initial an<br>Number<br><u>Tested</u><br>109<br>140<br>5,185<br>1,549<br>2,728       | Total Entrain<br><u>Condenser</u><br>%<br><u>Survival</u><br>27.2<br>64.0<br>48.5<br>67.1<br>63.8                                 | off-hr. tests<br>ment Surviva<br>Discharge<br>Number<br><u>Tested</u><br>331<br>200<br>2,632<br>495<br>1,026 | al<br><u>Point-of-</u><br><u>%</u><br><u>Survival</u><br>62.2<br>69.6<br>72.9<br>72.4<br>80.5  | <u>Discharge</u><br>Number<br><u>Tested</u><br>143<br>144<br>2,030<br>1,432<br>740        |                          |  |
| Type of Surviva<br>Results Summa<br>Species Group<br>Fish larvae<br>Fish juveniles<br>Amphipods<br>Chaetognaths<br>Caridean shrimp<br>Penaeid shrimp | boat<br>Il Test(s):<br>ry:<br>Intake %<br>Survival<br>64.1<br>78.3<br>72.9<br>44.0<br>72.4<br>77.3 | Initial an<br>Number<br><u>Tested</u><br>109<br>140<br>5,185<br>1,549<br>2,728<br>58 | nd extended 9<br><u>Total Entrain</u><br><u>Condenser</u><br>%<br><u>Survival</u><br>27.2<br>64.0<br>48.5<br>67.1<br>63.8<br>66.0 | P6-hr. tests<br>ment Surviva<br>Discharge<br>Number<br>Tested<br>331<br>200<br>2,632<br>495<br>1,026<br>212  | al<br><u>Point-of-</u><br>%<br><u>Survival</u><br>62.2<br>69.6<br>72.9<br>72.4<br>80.5<br>75.1 | <u>Discharge</u><br>Number<br><u>Tested</u><br>143<br>144<br>2,030<br>1,432<br>740<br>202 |                          |  |

dilution-pump entrainment was less stressful than condenser entrainment.

| Power Plant:                               | Bergum Power Station                                                                                                                                                                              |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Not reported                                                                                                                                                                                      |
| Plant Capacity (MWe):                      | 640                                                                                                                                                                                               |
| Report Reference:                          | Hadderingh, R.H. 1978. Mortality of young fish in the cooling water system of Bergum power station. <i>Proceedings International Association of Theoretical and Applied Limnology</i> 20:347–352. |
| Water Body:                                | Bergumereer (Netherlands lake)                                                                                                                                                                    |
| Sampling frequency/dates:                  | 6 days during 27 April–1 June 1976                                                                                                                                                                |
| Cooling Water Flow (M <sup>3</sup> /min.): | 1,667                                                                                                                                                                                             |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                                                                      |
| Sampling Gear:                             | 0.5-m diameter conical plankton net with 500 $\mu$ -mesh netting                                                                                                                                  |
| Type of Survival Test(s):                  | Initial and (limited) 24-hr. extended survival (see remarks)                                                                                                                                      |

# Table A-2 Entrainment Survival Study Summary, Bergum Power Station, 1976

**Results Summary:** 

| Species                 | Date   | Life Stage       | Number<br>Tested<br><u>Discharge</u> | Initial<br><u>Survival (%)</u> | Extended<br>Survival (%) | Total<br>Entrainment<br><u>Survival (%)</u> |
|-------------------------|--------|------------------|--------------------------------------|--------------------------------|--------------------------|---------------------------------------------|
| Smelt <sup>(a)</sup>    | 27–Apr | larvae/juveniles | 20                                   | 10                             | nd                       | 10                                          |
| Smelt                   | 3–May  | larvae/juveniles | 47                                   | 17                             | nd                       | 17                                          |
| Smelt                   | 10–May | larvae/juveniles | 87                                   | 17                             | nd                       | 17                                          |
| Smelt                   | 25–May | larvae/juveniles | 32                                   | 41                             | nd                       | 41                                          |
| Smelt                   | 31–May | larvae/juveniles | 97                                   | 34                             | nd                       | 34                                          |
| Smelt                   | 1–Jun  | larvae/juveniles | 39                                   | 46                             | 50 <sup>(e)</sup>        | 23                                          |
| Percidae <sup>(b)</sup> | 27–Apr | larvae/juveniles | 115                                  | 40                             | nd                       | 40                                          |
| Percidae                | 3–May  | larvae/juveniles | 78                                   | 65                             | nd                       | 65                                          |
| Percidae                | 10–May | larvae/juveniles | 112                                  | 39                             | nd                       | 39                                          |
| Percidae                | 25-May | larvae/juveniles | 86                                   | 72                             | nd                       | 72                                          |
| Percidae                | 31–May | larvae/juveniles | 258                                  | 82                             | nd                       | 82                                          |
| Percidae                | 1–Jun  | larvae/juveniles | 177                                  | 73                             | 95 <sup>(e)</sup>        | 69                                          |
|                         |        |                  |                                      |                                |                          |                                             |

<sup>(a)</sup>Osmerus eperlanus <sup>(b)</sup>Stizostedion lucioperca, Perca fluviatilis, and Gymnocephalus cernua

<sup>(e)</sup>discharge extended survival apparently not corrected for intake extended survival; nd=not determined

**Remarks:** Survival increased with increasing size of larvae/juveniles as season progressed. Discharge temperatures ranged from 16.7 to 24.6°C over the study period.

### Table A-3

| Entrainment Survival Stud | y Summary, | <b>Bowline Point</b> | Generating | Station, | 1975 |
|---------------------------|------------|----------------------|------------|----------|------|
|---------------------------|------------|----------------------|------------|----------|------|

| Power Plant:                               | Bowline Point Generating Station                                                                                                                             |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Orange and Rockland Utilities, Inc.                                                                                                                          |
| Plant Capacity (MWe):                      | 1,240 (Units 1&2 combined)                                                                                                                                   |
| Report Reference:                          | Ecological Analysts, Inc. 1976. Bowline Point Generating Station<br>Entrainment Survival and Abundance Studies, 1975 Annual Report. Prepared<br>for [owner]. |
| Water Body:                                | Hudson River                                                                                                                                                 |
| Sampling frequency/dates:                  | 4 days per week during 3-23 June and then 1-2 days per week through July 1975                                                                                |
| Cooling Water Flow (M <sup>3</sup> /min.): | 2,904 (Units 1&2 combined)                                                                                                                                   |
| Sample Location(s):                        | Condenser cooling-water Intake/Discharge                                                                                                                     |
| Sampling Gear:                             | Pump/larva table                                                                                                                                             |
| Type of Survival Test(s):                  | Initial and extended 96-Hour Tests                                                                                                                           |
| <b>Results Summary:</b>                    |                                                                                                                                                              |

| Species                | Life Stage | Number<br>Tested<br>(Discharge) | Initial<br><u>Survival (%)</u> | Extended<br>(96 hr)<br><u>Survival (%)</u> | Total<br>Entrainment<br><u>Survival (%)</u> |
|------------------------|------------|---------------------------------|--------------------------------|--------------------------------------------|---------------------------------------------|
| Striped Bass           | PYSL       | 111                             | 91.4                           | 77.0                                       | 70.4                                        |
| White Perch            | PYSL       | 168                             | 100.0                          | 100.0                                      | 100.0                                       |
| Morone Spp.            | PYSL       | 279                             | 100.0                          | 100.0                                      | 100.0                                       |
| Monoculodes edwardsi   |            | -                               | 98.6                           | 100.0                                      | 98.6                                        |
| Gammarus daiberi       |            |                                 | 100.0                          | 94.8                                       | 94.8                                        |
| Edotea triloba         |            | -                               | 100.0                          | 100.0                                      | 100.0                                       |
| Neomysis americana     |            |                                 | 100.0                          | (a)                                        | (a)                                         |
| Chaoborus punctipennis |            |                                 | 92.4                           | 100.0                                      | 92.4                                        |

Note: PYSL= post yolk sac larvae. Macroinvertebrate counts not provided.

(a)Extended survival zero at 96 hrs. for both intake and discharge; regression slopes did not differ, so likely sampling/holding effects. Actual total entrainment survival was probably quite high.

**Remarks:** The mortality rate of the entrained organisms appears not to be significantly different than the mortality rate of the control (intake) organisms. An increase in mortality rate resulting from entrainment through the power plant was therefore not distinguishable from the mortality rate caused by the collection, handling, and holding procedures. Data are insufficient to allow interpretation of temperature effects with any reasonable degree of confidence.

### Table A-4 Entrainment Survival Study Summary, Bowline Point Generating Station, 1977

| Power Plant:                               | Bowline Point Generating Station                                                                                                                    |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Orange and Rockland Utilities, Inc.                                                                                                                 |
| Plant Capacity (MWe):                      | 1,200 (Units 1&2 combined)                                                                                                                          |
| Report Reference:                          | Ecological Analysts, Inc. 1978. Bowline Point Generating Station<br>Entrainment Survival, 1977 Annual Interpretive Report. Prepared for<br>[owner]. |
| Water Body:                                | Hudson River                                                                                                                                        |
| Sampling frequency/dates:                  | 5 days per week during 3 June-15 July 1977                                                                                                          |
| Cooling Water Flow (M <sup>3</sup> /min.): | 2,904 (Units 1&2 combined)                                                                                                                          |
| Sample Location(s):                        | Condenser cooling-water Intake/Discharge                                                                                                            |
| Sampling Gear:                             | Pump/larva table                                                                                                                                    |
| Type of Survival Test(s):                  | Initial and extended 96-Hour Tests                                                                                                                  |
|                                            |                                                                                                                                                     |

**Results Summary:** 

| Species         | Life Stage | Discharge<br><u>Temperature (°C)</u>  | Initial Entrainment<br>Survival (%) |
|-----------------|------------|---------------------------------------|-------------------------------------|
| Striped Bass    | PYSL       | 20.0-29.9                             | 97                                  |
| Striped Bass    | PYSL       | 30.0-32.9                             | 100                                 |
| Striped Bass    | PYSL       | 33.0-35.9                             | 41                                  |
| Striped Bass    | Juvenile   | 20.0-29.9                             | 90                                  |
| Striped Bass    | Juvenile   | 30.0-32.9                             | 90                                  |
| Striped Bass    | Juvenile   | 33.0-35.9                             | 43                                  |
| White Perch     | PYSL       | 20.0-29.9                             | 62                                  |
| White Perch     | PYSL       | 30.0-32.9                             | 16                                  |
| White Perch     | PYSL       | 33.0-35.9                             | 48                                  |
| Clupeids        | PYSL       | 20.0-29.9                             | 51                                  |
| Atlantic Tomcod | YSL        | 5.5-13.9                              | 84                                  |
| Atlantic Tomcod | YSL        | 14.0-17.9                             | 85                                  |
| CARL COLOR      | - 13 Child | A second site of a second site is not |                                     |

Note: YSL= yolk sac larvae; PYSL= post-yolk sac larvae

**Remarks:** For most taxa where at least 10 specimens were tested, extended survival was very high, between 95 and 100%; therefore, initial survival data were used as the best estimate of total entrainment survival. No significant effects of thermal exposure on survival were observed at discharge temperatures up to 33°C. Decreased survival was noted above 33°C for striped bass and white perch. Entrainment survival data taken from table 4-19 in report. The rapid mortality of bay anchovy following collection at both intake and discharge made quantification of total entrainment effects difficult.

### Table A-5

| Entrainment Survival Study Summar | y, Bowline Point Generating Station, 1978 |
|-----------------------------------|-------------------------------------------|
|-----------------------------------|-------------------------------------------|

| Power Plant:                               | Bowline Point Generating Station                                                                                                                          |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Orange and Rockland Utilities, Inc.                                                                                                                       |
| Plant Capacity (MWe):                      | 620                                                                                                                                                       |
| Report Reference:                          | Ecological Analysts, Inc. 1979. Bowline Point Generating Station Entrainment<br>Abundance and Survival Studies: 1978 Annual Report. Prepared for [owner]. |
| Water Body:                                | Hudson River                                                                                                                                              |
| Sampling frequency/dates:                  | 3-5 days per week during 13 March-16 October 1978                                                                                                         |
| Cooling Water Flow (M <sup>3</sup> /min.): | 1,422                                                                                                                                                     |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                              |
| Sampling Gear:                             | Pump/larva table                                                                                                                                          |
| Type of Survival Test(s):                  | Initial and extended 96-hr. tests                                                                                                                         |
| Results Summary:                           |                                                                                                                                                           |

| A                  |            | No. Tested  |         | Survival (%) | )     |
|--------------------|------------|-------------|---------|--------------|-------|
| Species            | Life Stage | (discharge) | Initial | Extended     | Total |
| Striped bass       | YSL        | 82          | 100.0   | 72.0         | 72.0  |
| Striped bass       | PYSL       | 392         | 100.0   | 100.0        | 100.0 |
| Striped bass       | PYSL       | 24          | 100.0   | 100.0        | 100.0 |
| White perch        | PYSL       | 265         | 50.3    | 61.3         | 30.8  |
| Atlantic tomcod    | PYSL       | 54          | 100.0   | 99.0         | 99.0  |
| Gammarus sp.       | -          | 4,563       | 100.0   | 92.3         | 92.3  |
| Neomysis americana |            | 2,185       | 100.0   | 70.0         | 70.0  |

**Remarks:** Data are from three different discharges. Data from all discharge temperatures combined. Some of the white perch and Atlantic tomcod mortality was related to mechanical effects, i.e., the number of circulating-water pumps operating and whether throttled or full-flow modes were used.

# Table A-6 Entrainment Survival Study Summary, Bowline Point Generating Station, 1979

| Power Plant:                               | Bowline Point Generating Station                                                                                                                                                                |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Orange and Rockland Utilities, Inc.                                                                                                                                                             |
| Plant Capacity (MWe):                      | 620                                                                                                                                                                                             |
| Report Reference:                          | Ecological Analysts, Inc. 1980. Bowline Point Generating Station<br>Entrainment Abundance and Survival Studies: 1979 Annual Report with<br>Overview of 1975-1979 Studies. Prepared for [owner]. |
| Water Body:                                | Hudson River                                                                                                                                                                                    |
| Sampling frequency/dates:                  | 3-5 days per week during 23 May-27 June 1979                                                                                                                                                    |
| Cooling Water Flow (M <sup>3</sup> /min.): | 1,422                                                                                                                                                                                           |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                                                                    |
| Sampling Gear:                             | Pump/larva table, rear-draw plankton flume, and pumpless plankton flume                                                                                                                         |
| Type of Survival Test(s):                  | Initial and extended 96-hr. tests                                                                                                                                                               |
| <b>Results Summary:</b>                    |                                                                                                                                                                                                 |

. .....

|                 |            | Number Tested |         | Survival (%) |       |
|-----------------|------------|---------------|---------|--------------|-------|
| Species         | Life Stage | (discharge)   | Initial | Extended     | Total |
| Striped bass(a) | PYSL       | 104           | 60.0    | 69.8         | 41.9  |
| Striped bass(b) | PYSL       | 51            | 56.0    | 42.1         | 23.6  |
| White perch(a)  | PYSL       | 112           | 43.3    | 72.7         | 31.5  |
| Clupeids(a)     | PYSL       | 52            | 57.7    | (c)          | (c)   |
| Clupeids(b)     | PYSL       | 40            | 57.8    | (c)          | (c)   |

Note: PYSL=post-yolk sac larvae; (a)=intake and discharge standpipe sampled with pump/larva table;

(b)=intake and diffuser discharge sampled with rear-draw flume and pumpless flume, respectively;

(c)=24-hr survival zero or nearly so in both intake and discharge samples.

**Remarks:** Although 96-hr extended observations were carried out, all extended effects appeared by 24 hours, therefore extended survival was based on the 24-hr observations. Some indication of decreasing survival with higher discharge temperatures was indicated, however few data were recorded for discharge temperatures greater than 30°C. Survival of striped bass and white perch increased with size.

### Table A-7

| Entrainment Survival Study | Summary, Braidwood | Nuclear Station, | 1988 |
|----------------------------|--------------------|------------------|------|
|----------------------------|--------------------|------------------|------|

| Power Plant:                               | Braidwood Nuclear Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Commonwealth Edison Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Plant Capacity (MWe):                      | 2,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Report Reference:                          | EA Science and Technology, Inc. 1990. Results of Entrainment and Impingement Studies Conducted at the Braidwood Nuclear Station and the Adjacent Kankakee River. Prepared for [owner].                                                                                                                                                                                                                                                                                                                        |
| Water Body:                                | Kankakee River, Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sampling frequency/dates:                  | 1, 7, and 21 June 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cooling Water Flow (M <sup>3</sup> /min.): | 189 (makeup water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sampling Gear:                             | 1-m dia. conical plankton net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Type of Survival Test(s):                  | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Results Summary:                           | Only <i>Lepomis</i> sp. larvae were collected in sufficient numbers at the discharge to determine initial survival (all dates combined). Sixty of 75 specimens collected at the discharge were alive, therefore the survival proportion was calculated as 80 percent. The corresponding value for the intake was 78 percent. Correcting the discharge survival for the control (intake) survival (80/78) yields an (initial) entrainment survival value of 102.6%, set to the maximum possible value of 100%. |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Table A-8 Entrainment Survival Study Summary, Calvert Cliffs Nuclear Power Plant, 1978–1980

| Power Plant:                               | Calvert Cliffs Nuclear Power Plant                                                                                                                                   |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Baltimore Gas & Electric Company                                                                                                                                     |
| Plant Capacity (MWe):                      | >1,000                                                                                                                                                               |
| Report Reference:                          | Ecological Analysts, Inc. 1981. Entrainment Abundance and Viability<br>Studies, Calvert Cliffs Nuclear Power Plant, Final Report 1978-1980.<br>Prepared for [owner]. |
| Water Body:                                | Chesapeake Bay                                                                                                                                                       |
| Sampling frequency/dates:                  | Once per month during fall and winter and weekly during spring and summer, April 1978–September 1980                                                                 |
| Cooling Water Flow (M <sup>3</sup> /min.): | ~9,000                                                                                                                                                               |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                                         |
| Sampling Gear:                             | Pump/larva table                                                                                                                                                     |
| Type of Survival Test(s):                  | Initial and extended 48 and 88-hr. periods                                                                                                                           |
| <b>Results Summary:</b>                    |                                                                                                                                                                      |

|                              |                  | Number |            | Survival (%) |          |       |
|------------------------------|------------------|--------|------------|--------------|----------|-------|
| Species                      | Life Stage       | Tested | Study Year | Initial      | Extended | Total |
| Bay anchovy                  | Larvae/juveniles | 726    | 1979       | 35.1         | 15.4     | 5.4   |
| Bay anchovy                  | Larvae/juveniles | 970    | 1980       | 28.0         | 10.4     | 2.9   |
| Naked goby                   | Larvae           | 1,112  | 1979       | 73.1         | (a)      | 87.7  |
| Naked goby                   | Larvae           | 170    | 1980       | 100.0        | 98.0     | 98.0  |
| Blenny                       | Larvae           | 148    | 1979       | 72.0         | 51.3     | 36.9  |
| Blenny                       | Larvae           | 37     | 1980       | 81.1         | 97.4     | 79.0  |
| Spot                         | Juveniles        | 51     | 1979       | 84.9         | (a)      | 100.0 |
| Spot                         | Juveniles        | 108    | 1980       | 100.0        | 100.0    | 100.0 |
| Neomysis americana           |                  | 18,841 | 1979/1980  | NA           | NA       | 79.0  |
| Corophium sp.                | _                | 3,363  | 1979/1980  | NA           | NA       | 65.0  |
| Gammarus mucronatus          |                  | 231    | 1979/1980  | NA           | NA       | 70.0  |
| Nereis succinea              |                  | 2,348  | 1979/1980  | NA           | NA       | 89.0  |
| Scolecolepides viridis       |                  | 2,650  | 1979/1980  | NA           | NA       | 100.0 |
| and the second second second |                  |        |            |              |          |       |

NA=not available;

(a)=cannot calculate

**Remarks:** 

For a given test of fish larvae/juveniles, initial and total survival were integrated in the same continuous set of observations, i.e., extended survival was not isolated from initial survival. For the above table, extended survival was calculated by dividing total by initial survival.

### Table A-9 Entrainment Survival Study Summary, Cayuga Generating Plant, 1979

| Power Plant:      |                             | Cayuga Generating Plant                                                                                                   |                               |                                   |
|-------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|
| Owner:            |                             | Public Service of Indiana (Cinergy Corp.)                                                                                 |                               |                                   |
| Plant Capacity (N | MWe):                       | 1,000                                                                                                                     |                               |                                   |
| Report Reference  | 2:                          | Ecological Analysts, Inc. 1980. Entrainment Survival Studies at the Cayug<br>Generating Plant 1979. Prepared for [owner]. |                               |                                   |
| Water Body:       |                             | Wabash River, Indiana                                                                                                     |                               |                                   |
| Sampling freque   | ncy/dates:                  | Daily during 17-31 May and 8-22 June 1979                                                                                 |                               |                                   |
| Cooling Water F   | low (M <sup>3</sup> /min.): | 2.014                                                                                                                     |                               |                                   |
| Sample Location   | (s):                        | Condenser cooling                                                                                                         | -water intake and dis         | scharge                           |
| Sampling Gear:    |                             | Pump/larva table                                                                                                          |                               |                                   |
| Type of Survival  | Test(s):                    | Initial and extende                                                                                                       | d 48-hr. tests                |                                   |
| Results Summary   | v:                          |                                                                                                                           |                               |                                   |
| Taxon             | Life Stage                  | Number Tested<br>(Discharge)                                                                                              | Discharge<br>Temperature (°C) | Total Entrainment<br>Survival (%) |
| Catastomidae      | YSL                         | 131                                                                                                                       | 26.0-31.9                     | 88.1                              |
| Catastomidae      | YSL                         | 175                                                                                                                       | 32.0-36.0                     | 86.6                              |
| Catastomidae      | YSL                         | 306                                                                                                                       | All temps.                    | 87.2                              |
| Catastomidae      | PYSL                        | 213                                                                                                                       | 26.0-31.9                     | 91.2                              |
| Catastomidae      | PYSL                        | 130                                                                                                                       | 32.0-36.0                     | 98.4                              |
| Catastomidae      | PYSL                        | 343                                                                                                                       | All temps.                    | 93.9                              |
| Cyprinidae        | YSL                         | 25                                                                                                                        | 26.0-31.9                     | 85.7                              |
| Cyprinidae        | YSL                         | 70                                                                                                                        | 32.0-36.0                     | 25.4                              |
| Cyprinidae        | YSL                         | 95                                                                                                                        | All temps.                    | 41.3                              |
| Cyprinidae        | PYSL                        | 60                                                                                                                        | 26.0-31.9                     | 85.1                              |
| Cyprinidae        | PYSL                        | 37                                                                                                                        | 32.0-36.0                     | 73.5                              |
| Cyprinidae        | PYSL                        | 97                                                                                                                        | All temps.                    | 80.6                              |
| Percidae          | YSL                         | 41                                                                                                                        | 26.0-31.9                     | 59.4                              |
| Percidae          | YSL                         | 12                                                                                                                        | 32.0-36.0                     | 19.4                              |
|                   |                             |                                                                                                                           |                               |                                   |

**Remarks:** Because extended (48-hr) survival differed little between intake and discharge samples, initial entrainment survival (discharge survival/intake survival) was used as estimate of total entrainment survival. Effects of circulating-water pump operation also were evaluated. At lower discharge temperatures, survival decreased as the number of operating pumps increased. At higher discharge temperatures, survival generally increased as the number of pumps operating increased. Collection of larvae from the trimming (cooling tower) discharge revealed high incidence of damaged specimens and very low survival (<1.0%).

# Table A-10Entrainment Survival Study Summary, Connecticut Yankee Atomic Power Plant, 1970,1971 and 1972

| Power Plant:                                                       | Connecti                                                                                                                                                 | cut Yankee Atomic Power Plant                                                                                                                                                                    |                                                                                                                                                                                             |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                                             | Connecti                                                                                                                                                 | cut Yankee Atomic Power Com                                                                                                                                                                      | pany                                                                                                                                                                                        |
| Plant Capacity (MWe)                                               | : 600                                                                                                                                                    |                                                                                                                                                                                                  |                                                                                                                                                                                             |
| Report Reference:                                                  | Marcy, B<br>nuclear p                                                                                                                                    | C., Jr. 1971. Survival of young ower plant. J. Fish. Res. Bd. Car                                                                                                                                | fish in the discharge canal of a <i>nada</i> 28:1057-1060.                                                                                                                                  |
|                                                                    | Mrcy, B.<br>fish entra<br>1203.                                                                                                                          | C., Jr. 1973. Vulnerability and su ined at a nuclear power plant. <i>J</i> .                                                                                                                     | urvival of young Connecticut River<br>Fish. Res. Bd. Canada 30:1195-                                                                                                                        |
| Water Body:                                                        | Connecti                                                                                                                                                 | cut River                                                                                                                                                                                        |                                                                                                                                                                                             |
| Sampling frequency/da                                              | ates: 30 June-2                                                                                                                                          | 29 July 1970 (6 days); June 1971                                                                                                                                                                 | (2 days); June-July 1972 (4 days)                                                                                                                                                           |
| Cooling Water Flow (I                                              | M <sup>3</sup> /min.): 1,500                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                             |
| Sample Location(s):                                                | Intake; di                                                                                                                                               | scharge canal                                                                                                                                                                                    |                                                                                                                                                                                             |
| Sampling Gear:                                                     | 0.5-m dia                                                                                                                                                | meter conical plankton net with                                                                                                                                                                  | 390 -mesh netting                                                                                                                                                                           |
| Type of Survival Test(                                             | s): Initial su                                                                                                                                           | rvival                                                                                                                                                                                           |                                                                                                                                                                                             |
| Results Summary:                                                   |                                                                                                                                                          |                                                                                                                                                                                                  |                                                                                                                                                                                             |
| Date                                                               | Number<br>Tested<br>(discharge)                                                                                                                          | Condition                                                                                                                                                                                        | Initial Survival (%)                                                                                                                                                                        |
| June-July 1972                                                     | 230                                                                                                                                                      | Mechanical (no heat)                                                                                                                                                                             | 13.2–29.5                                                                                                                                                                                   |
| 13-14 July 1972                                                    | 227                                                                                                                                                      | Biocide (no heat)                                                                                                                                                                                | 19.2–23.9                                                                                                                                                                                   |
| 30 June 1970; 2 June 19                                            | 71 458                                                                                                                                                   | Discharge temp.=28–29°C                                                                                                                                                                          | 24.1-25.9                                                                                                                                                                                   |
| 2 July 1970                                                        | 257                                                                                                                                                      | Discharge temp.=33.5°C                                                                                                                                                                           | 12.1                                                                                                                                                                                        |
| 6 July 1970 and 24 June<br>1971                                    | 1,061                                                                                                                                                    | Discharge temp.=35.0°C                                                                                                                                                                           | 0                                                                                                                                                                                           |
| Remarks: Nearly<br>herrin<br>canal.<br>initial<br>by the<br>mortal | 98% of larvae tested<br>g). Discharge collecti<br>Because dead larvae<br>survival was calculat<br>density in intake sam<br>lity to mechanical efficiency | d were post-yolk sac larvae of clu<br>ons were made at four points thr<br>were not reliably collected in the<br>ed by dividing the density (no./M<br>nples. Based on results, author at<br>ects. | upeids (alewife and blueback<br>oughout the 1.4 mile long discharge<br>e discharge (attributed to settling),<br>$\Lambda^3$ ) of larvae in discharge samples<br>tributed 80% of entrainment |

# Table A-11 Entrainment Survival Study Summary, Contra Costa Power Plant, 1976

| Power Plant:                               | Contra Costa Power Plant                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Pacific Gas and Electric Company                                                                                                                                                                                                                                                                                                               |
| Plant Capacity (MWe):                      | 1,260                                                                                                                                                                                                                                                                                                                                          |
| Report Reference:                          | Stevens, D. and B. Finlayson. 1978. Mortality of Young Striped Bass<br>Entrained at two Power Plants in the Sacramento-San Joaquin Delta,<br>California, pp. 57-69 in: <i>Fourth National Workshop on Entrainment and</i><br><i>Impingement</i> (L. Jensen, ed.). EA Communications, a Division of Ecological<br>Analysts, Inc., Melville, NY. |
| Water Body:                                | San Joaquin River, California                                                                                                                                                                                                                                                                                                                  |
| Sampling frequency/dates:                  | Weekly during 28 April-10 July 1976                                                                                                                                                                                                                                                                                                            |
| Cooling Water Flow (M <sup>3</sup> /min.): | 2,718                                                                                                                                                                                                                                                                                                                                          |
| Sample Location(s):                        | Units 1-5 and 6-7 discharges, and Units 6-7 intake                                                                                                                                                                                                                                                                                             |
| Sampling Gear:                             | 0.75-m dia. conical plankton nets with 505- $\mu$ mesh netting, fished from a boat at mid-depth                                                                                                                                                                                                                                                |
| Type of Survival Test(s):                  | Initial survival, striped bass larvae                                                                                                                                                                                                                                                                                                          |
| <b>Results Summary:</b>                    |                                                                                                                                                                                                                                                                                                                                                |
|                                            | Number                                                                                                                                                                                                                                                                                                                                         |

| Period         | Mean<br><u>Length (mm)</u> | Discharge<br><u>Temperature (°C)</u> | Tested<br>(discharge) | Initial<br><u>Survival (%)</u> |
|----------------|----------------------------|--------------------------------------|-----------------------|--------------------------------|
| 1-10 June      | 9.0                        | 19-29                                | 73                    | 95.0                           |
| 1-10 June      | 9.0                        | 30-32                                | 92                    | 57.5                           |
| 1-10 June      | 9.0                        | 33-34                                | 12                    | 0.0                            |
| 14 June-9 July | 16.0                       | 24-29                                | 6                     | 31.5                           |
| 14 June-9 July | 16.0                       | 30-32                                | 95                    | 88.9                           |
| 14 June-9 July | 16.0                       | 33-35                                | 37                    | 14.8                           |
| 14 June-9 July | 16.0                       | 36-38                                | 14                    | 25.9                           |
|                |                            |                                      |                       |                                |

Note: Survival calculated from author's data by dividing initial proportion alive in discharge samples by initial proportion alive in intake samples.

**Remarks:** 

Survival decreased with increasing discharge temperature. The threshold for increasing mortality was in the 30-32°C range.

## Table A-12

| Entrainment Survival Stud | y Summary, | Danskammer | Point | Generating | Station, | 1975 |
|---------------------------|------------|------------|-------|------------|----------|------|
|---------------------------|------------|------------|-------|------------|----------|------|

| Power Plant:          |                             | Danskammer Po                                         | oint Generating S                                       | Station                           |                                               |
|-----------------------|-----------------------------|-------------------------------------------------------|---------------------------------------------------------|-----------------------------------|-----------------------------------------------|
| Owner:                |                             | Central Hudson                                        | Gas & Electric (                                        | Corporation                       |                                               |
| Plant Capacity (      | MWe):                       | 1,200                                                 |                                                         |                                   |                                               |
| Report Referenc       | e:                          | Ecological Anal<br>Impingement an<br>Prepared for [ov | ysts, Inc. 1976. <i>I</i><br>d Entrainment St<br>vner]. | Danskammer Po<br>urvival Studies, | int Generating Station<br>1975 Annual Report. |
| Water Body:           |                             | Hudson River                                          |                                                         |                                   |                                               |
| Sampling freque       | ncy/dates:                  | 4 days per week<br>May-18 Noveml                      | during 9 June-7<br>ber 1975                             | July and 2 days                   | per week otherwise, 29                        |
| Cooling Water F       | low (M <sup>3</sup> /min.): | Not provided in                                       | report                                                  |                                   |                                               |
| Sample Location       | (s):                        | Condenser cooli                                       | ng-water intake                                         | and discharge                     |                                               |
| Sampling Gear:        |                             | Recessed impell                                       | er pump/larva ta                                        | ble                               |                                               |
| Type of Survival      | Test(s):                    | Initial and exten                                     | ded 96-hr. tests                                        |                                   |                                               |
| <b>Results Summar</b> | y:                          |                                                       |                                                         |                                   |                                               |
| Species               | Life<br><u>Stage</u>        | Number Tested<br>(discharge)                          | Initial<br><u>Survival (%)</u>                          | Extended<br>Survival (%)          | Total<br>Entrainment<br><u>Survival (%)</u>   |
| Striped Bass          | PYSL                        | 61                                                    | 95.1                                                    | (a)                               | (a)                                           |

| · · · · · · · · · · · · · · · · · · · |           |     |       |       |      |
|---------------------------------------|-----------|-----|-------|-------|------|
| Clupeids                              | PYSL      | 326 | 55.6  | (a)   | (a)  |
| Clupeids                              | Juveniles | 65  | 81.5  | (a)   | (a)  |
| White perch                           | PYSL      | 55  | 100.0 | (a)   | (a)  |
| Cyprinidae                            | PYSL      | 12  | 52.4  | 100.0 | 34.8 |
| Bay anchovy                           | PYSL      | 11  | 27.3  | (a)   | (a)  |
| NT . DITOT                            |           |     |       |       |      |

Note: PYSL = post-yolk sac larvae (a) = poor to no extended survival in either intake or discharge.

Remarks: Data based on Table 4.3-2 from report.

## Table A-13

| Entrainment Surviva | I Study Sumr | mary, Fort Calhou | n Nuclear Statio | n, 1977 |
|---------------------|--------------|-------------------|------------------|---------|
|---------------------|--------------|-------------------|------------------|---------|

| Fort Calhoun Nuclear Station                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Omaha Public Power District                                                                                                                                                                                                                                                                                                                   |
| 481                                                                                                                                                                                                                                                                                                                                           |
| King, R. 1978. Entrainment of Missouri River Fish Larvae through Fort<br>Calhoun Station, pp. 45-56 <u>in</u> : <i>Fourth National Workshop on Entrainment</i><br><i>and Impingement</i> (L. Jensen, ed.). EA Communications, a Division of<br>Ecological Analysts, Inc., Melville, NY.                                                       |
| Missouri River                                                                                                                                                                                                                                                                                                                                |
| Weekly during 1 June-13 July 1977                                                                                                                                                                                                                                                                                                             |
| 1,363                                                                                                                                                                                                                                                                                                                                         |
| Condenser cooling-water intake and discharge                                                                                                                                                                                                                                                                                                  |
| 0.75-m dia. conical plankton nets with 571- $\mu$ mesh netting, affixed to a boat (intake) and to a frame at end of discharge tunnel                                                                                                                                                                                                          |
| Initial survival                                                                                                                                                                                                                                                                                                                              |
| Over 7 weekly sampling dates, initial survival of freshwater drum ranged from 5.8 to 40.5% (unweighted mean=19.3%). Corresponding survival data for "total larvae" (primarily freshwater drum, Catostomidae, and gizzard shad) were 8.4 to 80.6% (unweighted mean=32.6%). Intake survival averaged 6.2-times greater than discharge survival. |
| one in 1974-1976 also, but those data are not presented here because "prior to<br>rtalities were generally similar to or greater than mortalities recorded from the<br>ze-related mortality was not evident. Discharge temperatures ranged from 29 to                                                                                         |
|                                                                                                                                                                                                                                                                                                                                               |

| Table A-14                                                                  |  |
|-----------------------------------------------------------------------------|--|
| Entrainment Survival Study Summary, Fort Calhoun Nuclear Station, 1973–1977 |  |

| Power Plant:                                               |                                                        | Fort Cal                                            | houn Nuclear Station                                                                                                                                                                                                                      |
|------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                                     |                                                        | Omaha I                                             | Public Power District                                                                                                                                                                                                                     |
| Plant Capacity                                             | (MWe):                                                 | 481                                                 |                                                                                                                                                                                                                                           |
| Report Referen                                             | ice:                                                   | Carter, S<br>pp. 155-<br>(L. Jense<br>Melville      | 5. 1978. Macroinvertebrate Entrainment Study at Fort Calhoun Station.<br>169 <u>in</u> : <i>Fourth National Workshop on Entrainment and Impingement</i><br>en, ed.). EA Communications, a Division of Ecological Analysts, Inc.,<br>, NY. |
| Water Body:                                                |                                                        | Missouri                                            | i River                                                                                                                                                                                                                                   |
| Sampling frequ                                             | ency/dates:                                            | 2 times p                                           | per month during October 1973-June 1977                                                                                                                                                                                                   |
| Cooling Water                                              | Flow (M <sup>3</sup> /min                              | .): 1,363                                           |                                                                                                                                                                                                                                           |
| Sample Locatio                                             | on(s):                                                 | Condens                                             | er cooling-water intake and discharge                                                                                                                                                                                                     |
| Sampling Gear                                              |                                                        | 0.75-m c                                            | lia. conical plankton nets with 571- $\mu$ mesh netting, affixed to a boat                                                                                                                                                                |
| Type of Surviv                                             | al Test(s):                                            | Initial su                                          | rvival                                                                                                                                                                                                                                    |
| Results Summa                                              | ry:                                                    |                                                     |                                                                                                                                                                                                                                           |
| Macroinvertebra                                            | te Group                                               | Number<br>Tested<br>(discharge)                     | Initial<br>Survival (%)                                                                                                                                                                                                                   |
| Ephemeroptera                                              |                                                        | 2,220                                               | 91.7                                                                                                                                                                                                                                      |
| Hydropsychidae                                             |                                                        | 4,964                                               | 91.7                                                                                                                                                                                                                                      |
| Other Trichopter                                           | 'a                                                     | 872                                                 | 92.5                                                                                                                                                                                                                                      |
| Chironomidae                                               |                                                        | 2,925                                               | 83.7                                                                                                                                                                                                                                      |
| Other Diptera                                              |                                                        | 380                                                 | 87.1                                                                                                                                                                                                                                      |
| Note: Initial surv<br>converting morta<br>dividing dischar | vival calculated<br>ality proportion<br>ge survival by | d from the auth<br>ns to survival<br>intake surviva | hor's data by<br>proportions and<br>il.                                                                                                                                                                                                   |
|                                                            | Thermal tole                                           | rance limits of                                     | f most macroinvertebrates were apparently not exceeded during study                                                                                                                                                                       |

## Table A-15

| Entrainment Survival S | Study Summary, G | Sinna Generating | Station, 1980 |
|------------------------|------------------|------------------|---------------|
|------------------------|------------------|------------------|---------------|

|                      |                                                                              | Ginna Generating Station                                                                                                                                                                                                                                    |
|----------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:               |                                                                              | Rochester Gas & Electric Corporation                                                                                                                                                                                                                        |
| Plant Capacity       | (MWe):                                                                       | 517                                                                                                                                                                                                                                                         |
| Report Referen       | ice:                                                                         | Ecological Analysts, Inc. 1981. <i>Entrainment Survival Studies</i> . Prepared for Empire State Electric Energy Research Corporation (ESEERCO).                                                                                                             |
| Water Body:          |                                                                              | Lake Ontario                                                                                                                                                                                                                                                |
| Sampling frequ       | ency/dates:                                                                  | 10 days during 11-24 June and 10 days during 8-21 August 1980                                                                                                                                                                                               |
| <b>Cooling Water</b> | Flow (M <sup>3</sup> /min.):                                                 | 1,514                                                                                                                                                                                                                                                       |
| Sample Locatio       | on(s):                                                                       | Condenser cooling-water intake and discharge                                                                                                                                                                                                                |
| Sampling Gear        | •                                                                            | Recessed-impeller pump/larva table; floating rear-draw larva flume                                                                                                                                                                                          |
| Type of Surviv       | al Test(s):                                                                  | Initial and extended 96-hr. tests                                                                                                                                                                                                                           |
| Results Summa        | ury:                                                                         | Rainbow smelt PYSL initial entrainment survival was zero.                                                                                                                                                                                                   |
|                      |                                                                              | Initial survival of alewife eggs from the discharge was 62.5 percent.<br>Extended survival of alewife eggs from the discharge was 19.4 percent after 4 days, and 16 percent after 8 days.                                                                   |
| Remarks:             | Weather and phy<br>have affected res<br>percent extended<br>entrainment surv | vsical nature of intake and discharge presented sampling difficulties that may<br>sults. Intake survival of alewife eggs was poor, 16.3 percent initial, and 8.2<br>I. Sampling was directed more at gear development that actual determination of<br>ival. |
| Table A-16                                                              |    |
|-------------------------------------------------------------------------|----|
| Entrainment Survival Study Summary, Indian Point Generating Station, 19 | 77 |

| Power Plant:                               | Indian Point Generating Station                                                                                                                  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Consolidated Edison Company of New York, Inc.                                                                                                    |
|                                            | Power Authority of the State of New York                                                                                                         |
| Plant Capacity (MWe):                      | 1,838 (Units 2 and 3 combined)                                                                                                                   |
| Report Reference:                          | Ecological Analysts, Inc. Indian Point Generating Station Entrainment<br>Survival and Related Studies, 1977 Annual Report. Prepared for [owner]. |
| Water Body:                                | Hudson River                                                                                                                                     |
| Sampling frequency/dates:                  | 2 days per week during 1 June-15 July 1977                                                                                                       |
| Cooling Water Flow (M <sup>3</sup> /min.): | 6,588 (Units 2 and 3 combined)                                                                                                                   |
| Sample Location(s):                        | Unit 2 and 3 intake; Unit 3 discharge, Combined discharge                                                                                        |
| Sampling Gear:                             | Pump/larva table                                                                                                                                 |
| Type of Test(s):                           | Initial and extended 96-hr. tests                                                                                                                |
|                                            |                                                                                                                                                  |

**Results Summary:** 

| Species      | Life Stage | Number<br><u>Tested (Disch.)</u> | Discharge<br>Temperature (°C) | Initial<br>Entrainment<br><u>Survival (%)</u> |
|--------------|------------|----------------------------------|-------------------------------|-----------------------------------------------|
| Striped bass | YSL        | 18                               | 26.0-29.9                     | 63                                            |
| Striped bass | PYSL       | 221                              | 26.0-29.9                     | 85                                            |
| Striped bass | PYSL       | 19                               | 30.0-32.9                     | 87                                            |
| White perch  | PYSL       | 32                               | 26.0-29.9                     | 73                                            |
| White perch  | PYSL       | 12                               | 30.0-32.9                     | 89                                            |
| Bay anchovy  | PYSL       | 230                              | 30.0-32.9                     | 36                                            |
| Bay anchovy  | PYSL       | 91                               | 33.0-33.9                     | 18                                            |
| Clupeids     | PYSL       | 27                               | 26.0-29.9                     | 40                                            |
|              |            |                                  |                               |                                               |

Note: YSL=yolk sac larvae; PYSL=post-yolk sac larvae.

**Remarks:** The entrainment survival was taken from table 4-10 in report. Because extended survival of striped bass and white perch was similar between intake and discharge samples, initial survival was judged to be best estimate of total entrainment survival. Initial survival also was used for bay anchovy and clupeids because of die offs in the extended tests of both intake and discharge samples.

## Table A-17

| Entrainment Survival Study | Summary, Indian | Point Generating Station, | 1978 |
|----------------------------|-----------------|---------------------------|------|
|----------------------------|-----------------|---------------------------|------|

| Power Plant:       |                                                | Indian Point Generating Station                                                                                                                    |                         |                |                                      |  |  |
|--------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|--------------------------------------|--|--|
| Owner:             |                                                | Consolidated Ed                                                                                                                                    | lison Company of        | New York, Inc. |                                      |  |  |
|                    |                                                | Power Authority                                                                                                                                    | of the State of No      | ew York        |                                      |  |  |
| Plant Capacity (M  | Capacity (MWe): 1,838 (Units 2 and 3 combined) |                                                                                                                                                    |                         |                |                                      |  |  |
| Report Reference:  |                                                | Ecological Analysts, Inc. 1979 Indian Point Generating Station Entrainment Survival and Related Studies, 1978 Annual Report. Prepared for [owner]. |                         |                |                                      |  |  |
| Water Body:        |                                                | Hudson River                                                                                                                                       |                         |                |                                      |  |  |
| Sampling frequenc  | y/dates:                                       | 2 days per week                                                                                                                                    | during 1 May-12         | July 1978      |                                      |  |  |
| Cooling Water Flor | w (M <sup>3</sup> /min.):                      | 6,586 (Units 2 a                                                                                                                                   | nd 3 combined)          |                |                                      |  |  |
| Sample Location(s) | ):                                             | Unit 2 and 3 intake; Unit 2 and 3 discharge, Combined discharge                                                                                    |                         |                |                                      |  |  |
| Sampling Gear:     |                                                | Pump/larva table                                                                                                                                   | 2                       |                |                                      |  |  |
| Type of Test(s):   |                                                | Initial and exten                                                                                                                                  | ded 96-hr. tests        |                |                                      |  |  |
| Results Summary:   |                                                |                                                                                                                                                    |                         |                |                                      |  |  |
| Species            | Life                                           | Number<br>Tested<br>(Discharge)                                                                                                                    | Initial<br>Survival (%) | Extended       | Total<br>Entrainment<br>Survival (%) |  |  |
| Striped bass(a)    | PSYL                                           | <u>(Discharge)</u><br>36                                                                                                                           | 13.0                    | 0.0            | 0.0                                  |  |  |
| White perch(a)     | PSYL                                           | 35                                                                                                                                                 | 0.0                     | na             | 0.0                                  |  |  |
| Clupeids(a)        | PSYL                                           | 192                                                                                                                                                | 13.3                    | 0.0            | 0.0                                  |  |  |
|                    |                                                |                                                                                                                                                    |                         |                |                                      |  |  |

| Clupeids(a)     | PSYL   | 192 | 13.3 | 0.0     | 0.0  |
|-----------------|--------|-----|------|---------|------|
| Striped bass(b) | YSL    | 39  | 0,0  | na      | 0.0  |
| Striped bass(b) | PSYL   | 46  | 0.0  | na      | 0.0  |
| White perch(b)  | PSYL   | 33  | 0.0  | na      | 0.0  |
| Clupeids(b)     | PSYL   | 145 | 14.3 | no test |      |
| Striped bass(c) | PSYL   | 237 | 58.3 | 100.0   | 63.6 |
| Striped bass(c) | PSYL   | 232 | 68.8 | 100.0   | 81.8 |
| White perch(c)  | PSYL   | 64  | 70.8 | 82.3    | 58.3 |
| White perch(c)  | PSYL   | 64  | 58.3 | 42.9    | 25.0 |
| Clupeids(c)     | PSYL   | 170 | 16.7 | (d)     |      |
| Clupeids(c)     | PSYL   | 92  | 16.7 | (d)     |      |
| Anchovies(c)    | PSYL   | 222 | 0.0  | na      | 0.0  |
| Anchovies(c)    | PSYL   | 188 | 0.0  | na      | 0.0  |
| NI . TIOT II    | 1 DUGI |     |      |         |      |

Note: YSL=yolk sac larvae, PYSL=post-yolk sac larvae; (a)=Unit 3 intake and discharge sampling, 1 May-7 June; (b)=sampling at combined Unit 2 and 3 intakes, and the combined discharge of Units 2 and 3, 30 May-7 June; (c)=sampling at Unit 2 intake and discharge, 12-June-12 July; (d)=no extended survival at either intake or discharge; na=not applicable

**Remarks:** With the exceptions of anchovies (>32.9°C), most collections were made when discharge temperatures were 30-32.9°C. Reason for marked differences in survival between early and later studies unknown.

| Table A-18                                                              |     |
|-------------------------------------------------------------------------|-----|
| Entrainment Survival Study Summary, Indian Point Generating Station, 19 | 979 |

| Power Plant:                               | Indian Point Generating Station                                                                                                                                                                           |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Consolidated Edison Company of New York, Inc.<br>Power Authority of the State of New York                                                                                                                 |
| Plant Capacity (MWe):                      | 1,838 (Units 2 and 3 combined)                                                                                                                                                                            |
| Report Reference:                          | Ecological Analysts, Inc. 1981. Indian Point Generating Station Entrainment<br>Survival and Related Studies, 1979 Annual Report. Prepared for [owner].                                                    |
| Water Body:                                | Hudson River                                                                                                                                                                                              |
| Sampling frequency/dates:                  | Daily during 12-15 and 19-22 March 1979; twice per week during 30 April-<br>14 August 1979                                                                                                                |
| Cooling Water Flow (M <sup>3</sup> /min.): | 6,400 (Units 2 and 3 combined)                                                                                                                                                                            |
| Sample Location(s):                        | Unit 2 and 3 intake; discharge                                                                                                                                                                            |
| Sampling Gear:                             | Pump/larva table (March Atlantic tomcod sampling); during April–August<br>sampling, a rear-draw plankton flume was used at the Unit 3 intake, and a<br>floating, pumpless plankton flume at the discharge |
| Type of Survival Test(s):                  | Initial and extended 96-hr. tests                                                                                                                                                                         |

**Results Summary:** 

| Species         | Life Stage | Discharge<br>Temperature (°C) | Initial<br>Entrainment<br>Survival (%) |
|-----------------|------------|-------------------------------|----------------------------------------|
| Atlantic tomcod | Larvae     | 12.0-15.9                     | 63.8                                   |
| Atlantic tomcod | Larvae     | 16.0-17.9                     | 51.8                                   |
| Atlantic tomcod | Larvae     | 18.0-19.9                     | 29.3                                   |
| Atlantic tomcod | Larvae     | 20.0-21.9                     | 11.4                                   |
| Striped bass    | Eggs       | 24.0-28.0                     | 73.6                                   |
| Striped bass    | YSL        | <30.0                         | 58.6                                   |
| Striped bass    | YSL        | 30.0-32.9                     | 75.0                                   |
| Striped bass    | PYSL       | <30.0                         | 63.0                                   |
| Striped bass    | PYSL       | 30.0-32.9                     | 70.1                                   |
| White perch     | PYSL       | <30.0                         | 32.0                                   |
| White perch     | PYSL       | 30.0-32.9                     | 28.9                                   |
| Clupeids        | PYSL       | <30.0                         | 30.5                                   |
| Clupeids        | PYSL       | 30.0-32.9                     | 22.2                                   |
| Anchovies       | PYSL       | <30.0                         | 7.0                                    |
| Anchovies       | PYSL       | 30.0-32.9                     | 2.8                                    |
| N WOT II I      | DUCT       | 11                            |                                        |

Note: YSL=yolk sac larvae; PYSL=post-yolk sac larvae

**Remarks:** Except for tomcod (intake corrected initial survival) and striped bass eggs (total entrainment survival), entrainment survival based on initial discharge survival (uncorrected for intake survival) as conservative estimate—due to differential sampling stress between rear-draw and pumpless flume.

## Table A-19

| Entrainment | Survival | Study | Summary. | Indian | Point | Generating | Station. | 1980 |
|-------------|----------|-------|----------|--------|-------|------------|----------|------|
|             |          |       |          |        |       |            |          |      |

| Power Plant:                               | Indian Point Generating Station                                                                                                                        |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Consolidated Edison Company of New York, Inc.<br>Power Authority of the State of New York                                                              |
| Plant Capacity (MWe):                      | 1,838 (Units 2 and 3 combined)                                                                                                                         |
| Report Reference:                          | Ecological Analysts, Inc. 1982. Indian Point Generating Station Entrainment<br>Survival and Related Studies, 1980 Annual Report. Prepared for [owner]. |
| Water Body:                                | Hudson River                                                                                                                                           |
| Sampling frequency/dates:                  | 4 days per week during 30 April-10 July 1980                                                                                                           |
| Cooling Water Flow (M <sup>3</sup> /min.): | 6,400 (Units 2 and 3 combined)                                                                                                                         |
| Sample Location(s):                        | Unit 3 intake; discharge                                                                                                                               |
| Sampling Gear:                             | Rear-draw plankton sampling flume (intake)<br>Pumpless plankton sampling flume (discharge)                                                             |
| Type of Survival Test(s):                  | Initial and extended 96-hr. tests                                                                                                                      |

Type of Survival Test(s):

**Results Summary:** 

| Species         | Life<br><u>Stage</u> | Number<br>Tested<br>(discharge) | Discharge<br><u>Temperature (°C)</u> | Initial<br><u>Survival (%)</u> |
|-----------------|----------------------|---------------------------------|--------------------------------------|--------------------------------|
| Atlantic tomcod | PYSL                 | 162                             | <26                                  | 87.7                           |
| Atlantic tomcod | Juvenile             | 25                              | >27                                  | 48.0                           |
| Striped bass    | Eggs                 | 147                             | 24-31                                | 57.5(a)                        |
| Striped bass    | YSL                  | 21                              | <29                                  | 66.7                           |
| Striped bass    | YSL                  | 16                              | 30-32                                | 56.2                           |
| Striped bass    | PSYL                 | 31                              | <29                                  | 74.2                           |
| Striped bass    | PSYL                 | 16                              | 30-32                                | 81.2                           |
| Striped bass    | PSYL                 | 160                             | >33                                  | 55.0                           |
| White perch     | PSYL                 | 49                              | <29                                  | 89.8                           |
| White perch     | PSYL                 | 117                             | >33                                  | 49.6                           |
| Clupeids        | PSYL                 | 13                              | <29                                  | 61.5                           |
| Anchovies       | PSYL                 | 24                              | <29                                  | 4.0                            |
| Anchovies       | PSYL                 | 556                             | >33                                  | 1.6                            |

Note: YSL=yolk sac larvae; PSYL=post-yolk sac larvae; (a)=96-hr extended survival based on hatching success

**Remarks:** Extended survival at the discharge (not available by temperature category) was 95-100% of intake survival for most species; therefore initial survival was judged an appropriate estimate of total entrainment survival. For the tomcod, extended survival at the discharge (55.8%) was lower than at the intake (80%), suggesting an extended effect of entrainment. Overall results gave higher survival than previous studies at Indian Point, attributable to advances in sampling gear development.

| Table A-20                                                                |   |
|---------------------------------------------------------------------------|---|
| Entrainment Survival Study Summary, Indian Point Generating Station, 1985 | 5 |

| Indian Point Generating Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Consolidated Edison Company of New York, Inc.<br>Power Authority of the State of New York<br>Jointly funded by: Central Hudson Gas and Electric Corp.<br>Niagara Mohawk Power Corporation<br>Orange and Rockland Utilities, Inc.                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 1,838 (Units 2 and 3 combined)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| EA Science and Technology 1986, Indian Point Generating Station<br>Entrainment Survival Study 1985 Annual Report, Prepared for [owner].                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Hudson River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Daily during 27 May-29 June 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 6,360 (Units 2 and 3 combined)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Unit 2 intake, unit 2 discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Net/Barrel Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Sample sizes were adequate only for calculation of entrainment survival for post-yolk sac larval bay anchovy. Based on collection of 106 larvae from the intake, and 274 larvae from the discharge, initial survival was calculated as 24.3 %. Neither intake nor discharge specimens survived the 48-hr extended survival period, therefore, total entrainment survival could not be calculated. The best case estimate would be 24.3%, but it was very likely lower, possibly approaching zero. Discharge temperatures during the study period ranged from 26.6 to 30.3°C. |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |

## Table A-21

| Entrainment Survival Study Su | ummary, Indian Point | Generating Station, 1988 |
|-------------------------------|----------------------|--------------------------|
|-------------------------------|----------------------|--------------------------|

| Power Plant:                               | Indian Point Generating Station                                                                                  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Consolidated Edison Company of New York, Inc.<br>Power Authority of the State of New York                        |
| Plant Capacity (MWe):                      | 1,838 (Units 2 and 3 combined)                                                                                   |
| Report Reference:                          | Ecological Analysts, Inc. Indian Point Generating Station 1988 Entrainment Survival Study. Prepared for [owner]. |
| Water Body:                                | Hudson River                                                                                                     |
| Sampling frequency/dates:                  | 3 days per week during 23 May-30 June 1988                                                                       |
| Cooling Water Flow (M <sup>3</sup> /min.): | 6,360 (Units 2 and 3 combined)                                                                                   |
| Sample Location(s):                        | Unit 3 intake, Combined unit 2 & 3 discharge                                                                     |
| Sampling Gear:                             | Rear-draw sampling flumes                                                                                        |
| Type of Test(s):                           | Initial and extended 24-hr. tests                                                                                |
| D                                          |                                                                                                                  |

**Results Summary:** 

| Species      | Life Stage | Number<br>Tested<br><u>Discharge</u> | Initial<br><u>Survival (%)</u> | Extended<br>Survival (%) | Total<br>Entrainment<br><u>Survival (%)</u> |
|--------------|------------|--------------------------------------|--------------------------------|--------------------------|---------------------------------------------|
| Bay anchovy  | PYSL       | 6,929                                | 25.0                           | (a)                      | (a)                                         |
| Striped bass | YSL        | 312                                  | 72.0                           | 83.3                     | 60.0                                        |
| Striped bass | PYSL       | 2,398                                | 76.0                           | 100.0                    | 79.0                                        |
| White perch  | PYSL       | 341                                  | 45.0                           | 84.4                     | 38.0                                        |
| Alosa spp.   | PYSL       | 195                                  | 53.0                           | 41.5                     | 22.0                                        |

Note: YSL=yolk sac larva; PYSL=post-yolk sac larvae; (a)=no survival after 24 hours in either intake or discharge samples.

**Remarks:** The entrainment survival data were taken from table 4-6 in report. Extended survival was not calculated separately. For both the intake and discharge, the number surviving after 24 hrs was divided by the total number collected, thus automatically integrating initial and extended survival. The resulting discharge value was divided by the intake value to calculate total entrainment survival. For this summary, extended survival was calculated by dividing total entrainment (24-hr) survival by initial survival.

# Table A-22Entrainment Survival Study Summary, Indian River Power Plant, 1975–1976

| Power Plant:                               | Indian River Power Plant                                                                                                                         |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Delmarva Power & Light Co. (now Conectiv)                                                                                                        |
| Plant Capacity (MWe):                      | 758                                                                                                                                              |
| Report Reference:                          | Ecological Analysts, Inc. 1978. Impact of the Cooling Water Intake at the Indian River Power Plant: a § 316(b) Evaluation. Prepared for [owner]. |
| Water Body:                                | Indian River Estuary, Delaware                                                                                                                   |
| Sampling frequency/dates:                  | 1-2 days per month during 21 July 1975-13 December 1976                                                                                          |
| Cooling Water Flow (M <sup>3</sup> /min.): | 989                                                                                                                                              |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                     |
| Sampling Gear:                             | 0.5-m diameter conical plankton net with 0.5mm mesh                                                                                              |
| Type of Survival Test(s):                  | Initial and extended 96-hr. tests                                                                                                                |
| <b>Results Summary:</b>                    |                                                                                                                                                  |

### Total Entrainment Survival (%) by Discharge Temperature Range

|                       | Life         | Discharge Temperature (°C) |              |       |               |   |
|-----------------------|--------------|----------------------------|--------------|-------|---------------|---|
| Species               | Stage        | <u>&lt;25</u>              | <u>25-30</u> | 30-35 | <u>&gt;35</u> | ľ |
| Bay anchovy           | entrainable* | 50.0-100.0                 | 23.0         | 0.0   | 0.0           |   |
| Atlantic croaker      | entrainable* | 57.0-100.0                 | 34.0         | 11.0  | 0.0           |   |
| Spot                  | entrainable* | 100.0                      | 81.0         | 53.0  | 25.0          |   |
| Atlantic menhaden     | entrainable* | 87.0-100.0                 | 55.0         | 24.0  | 0.0           |   |
| Atlantic silverside   | entrainable* | 100.0                      | 100.0        | 48.0  | 0.0           |   |
| Neomysis americana    | entrainable  | 90.0–97.0                  | 87.0         | 37.0  | 28.0          |   |
| Crangon septemspinosa | entrainable  | 80.0-100.0                 | 56.0         | 33.0  | 9.0           |   |

\*primarily larvae; some juveniles

**Remarks:** 

Bay anchovy data beset by significant mortality in control samples. Survival in temperature ranges determined by linear regression.

## Table A-23

Entrainment Survival Study Summary, Monroe Power Plant, 1982

| Power Plant:                               | Monroe Power Plant                                                                                                     |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | The Detroit Edison Company                                                                                             |
| Plant Capacity (MWe):                      | 3,000                                                                                                                  |
| Report Reference:                          | Ecological Analysts, Inc. 1982. Entrainment Survival Studies at the Monroe Power Plant 1982. Prepared for [owner].     |
| Water Body:                                | Raisin River, Western Lake Erie                                                                                        |
| Sampling frequency/dates:                  | 4 days per week during the first 8 weeks, and 2 days per week during the last 2 weeks, 4-14 May and 24 May-8 July 1982 |
| Cooling Water Flow (M <sup>3</sup> /min.): | 5,302                                                                                                                  |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                           |
| Sampling Gear:                             | Rear-draw larva table (Barrel Sampler)                                                                                 |
| Type of Survival Test(s):                  | Initial and extended 48-hr. tests                                                                                      |
| Results Summary:                           |                                                                                                                        |

| Taxon           | Life Stage | Number<br>Tested<br>(discharge) | Total*<br>Entrainment<br><u>Survival (%)</u> |
|-----------------|------------|---------------------------------|----------------------------------------------|
| Clupeidae       | Prolarvae  | 184                             | 1.2(a)                                       |
| Clupeidae       | Prolarvae  | 457                             | 15.3(b)                                      |
| Clupeidae       | Postlarvae | 808                             | 37.9(b)                                      |
| Clupeidae       | Juveniles  | 18                              | 25(b)                                        |
| Cyprinidae      | Postlarvae | 16                              | 75(c)                                        |
| White bass      | Postlarvae | 28                              | 92.9(a)                                      |
| Yellow perch    | Prolarvae  | 550                             | 2.6(b)                                       |
| Yellow perch    | Postlarvae | 42                              | 2.7(a)                                       |
| Freshwater drum | Prolarvae  | 33                              | 100(a)                                       |
| Freshwater drum | Postlarvae | 32                              | 93.8(a)                                      |

\*Total Entrainment Survival based on comparison of extended survival between intake and discharge, i.e.: (a)=initial survival; (b)=3-hr extended survival; (c)=24-hr extended survival.

**Remarks:** 

Daily discharge temperatures were primarily between 29 and 31°C. Survival of yellow perch and clupeids decreased with increasing discharge temperature. Younger clupeids (prolarvae) had lower survival. Total residual chlorine at  $\geq 0.1$  mg/L reduced survival of clupeid and yellow perch larvae. The number of circulating-water pumps operating did not affect survival.

| Table A-24                                                           |    |
|----------------------------------------------------------------------|----|
| Entrainment Survival Study Summary, Northport Generating Station, 19 | 80 |

| Power Plant:                               | Northport Generating Station                                                                                                                    |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Long Island Lighting Company                                                                                                                    |
| Plant Capacity (MWe):                      | 1,500                                                                                                                                           |
| Report Reference:                          | Ecological Analysts, Inc. 1981. <i>Entrainment Survival Studies</i> . Prepared for Empire State Electric Energy Research Corporation (ESEERCO). |
| Water Body:                                | Long Island Sound                                                                                                                               |
| Sampling frequency/dates:                  | 10 days during 10-22 April and 10 days during 10-23 July 1980                                                                                   |
| Cooling Water Flow (M <sup>3</sup> /min.): | 3,465                                                                                                                                           |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                    |
| Sampling Gear:                             | Floating rear-draw larva flume                                                                                                                  |
| Type of Survival Test(s):                  | Initial and extended 48-hr. tests                                                                                                               |
| <b>Results Summary:</b>                    |                                                                                                                                                 |

|                     |            | Number                |         | Survival (%) |       |  |
|---------------------|------------|-----------------------|---------|--------------|-------|--|
| Taxon               | Life Stage | Tested<br>(discharge) | Initial | Extended     | Total |  |
| American sand lance | PYSL       | 782                   | 25.3    | 7.1          | 1.8   |  |
| Winter flounder     | PSYL       | 17                    | 41.7    | 23.0         | 9.6   |  |
| Northern pipefish   | Juvenile   | 24                    | 55.0    | 92.6         | 51.0  |  |

Note:PYSL=post yolk-sac larvae

**Remarks:** 

American sand lance PYSL collected at the discharge were significantly larger than those collected at the intake, possibly due to vertical stratification of different larval sizes in the intake.

#### Table A-25 Entrainment Survival Study Summary, Oyster Creek Nuclear Generating Station, 1984– 1985

| Power Plant:                               | Oyster Creek Nuclear Generating Station                                                                                                                             |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | GPU Nuclear Corporation                                                                                                                                             |
| Plant Capacity (MWe):                      | 630                                                                                                                                                                 |
| Report Reference:                          | EA Engineering, Science, and Technology, Inc. 1986. Entrainment and Impingement Studies at Oyster Creek Nuclear Generating Station 1984-1985. Prepared for [owner]. |
| Water Body:                                | Barnegat Bay, New Jersey                                                                                                                                            |
| Sampling frequency/dates:                  | Weekly during February-March and May-August 1985                                                                                                                    |
| Cooling Water Flow (M <sup>3</sup> /min.): | Not provided in report                                                                                                                                              |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                                        |
| Sampling Gear:                             | Rear-draw plankton sampling flume (barrel sampler)                                                                                                                  |
| Type of Survival Test(s):                  | Initial and extended 96-hr. tests                                                                                                                                   |
| <b>Results Summary:</b>                    |                                                                                                                                                                     |

|                 | T . C        | Number      | D' 1                   |         | Survival (%) | <u> </u>      |
|-----------------|--------------|-------------|------------------------|---------|--------------|---------------|
| Species         | <u>Stage</u> | (discharge) | <u>Temperature(°C)</u> | Initial | Extended     | Total         |
| Bay anchovy     | Eggs         | *           | <27                    | 81.2    | 97.1         | 82.5          |
| Bay anchovy     | Eggs         | *           | 32                     | 50.6    | 78.7         | 39.8          |
| Bay anchovy     | Eggs         | *           | >33                    | 42.7    | 31.3         | 16.7          |
| Bay anchovy     | Larvae       | **          | 25.9-27.2              | 68.0    |              |               |
| Bay anchovy     | Larvae       | **          | 30.2-35.0              | 67.6    |              |               |
| Bay anchovy     | Larvae       | **          | >35                    | 0.1     |              | $\rightarrow$ |
| Winter flounder | Larvae       | ***         | 13.5-14.8              | 93.9    | 88.7         | 83.5          |
| Winter flounder | Larvae       | ***         | 18.3-20.3              | 66.5    | 19.7         | 14.8          |

Note: \*=10,007, \*\*=3,474, and \*\*\*=1,906 over all temperature ranges.

**Remarks:** Bay anchovy larvae data were initial survival only. Virtually all specimens held for 96 hours died. Holding system problems were implicated. Survival of all taxa decreased with increasing discharge temperature. The relationship of winter flounder larvae survival and delta-T was highly significant. Data in above table are arithmetic means of survival data within temperature groups.

| Table A-26                                |                               |
|-------------------------------------------|-------------------------------|
| <b>Entrainment Survival Study Summary</b> | , Pittsburg Power Plant, 1976 |

| Power Plant:                               | Pittsburg Power Plant                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Pacific Gas and Electric Company                                                                                                                                                                                                                                                                                                                       |
| Plant Capacity (MWe):                      | 1,320                                                                                                                                                                                                                                                                                                                                                  |
| Report Reference:                          | Stevens, D. and B. Finlayson. 1978. Mortality of Young Striped Bass<br>Entrained at two Power Plants in the Sacramento-San Joaquin Delta,<br>California, pp. 57-69 <u>in</u> : <i>Fourth National Workshop on Entrainment and</i><br><i>Impingement</i> (L. Jensen, ed.). EA Communications, a Division of Ecological<br>Analysts, Inc., Melville, NY. |
| Water Body:                                | Suisun Bay, San Joaquin Delta, California                                                                                                                                                                                                                                                                                                              |
| Sampling frequency/dates:                  | Weekly during 28 April–10 July 1976                                                                                                                                                                                                                                                                                                                    |
| Cooling Water Flow (M <sup>3</sup> /min.): | 2,712                                                                                                                                                                                                                                                                                                                                                  |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                                                                                                                                                                                                                                           |
| Sampling Gear:                             | 0.75-m dia. conical plankton nets with 505- $\mu$ mesh netting, fished from a boat at mid-depth                                                                                                                                                                                                                                                        |
| Type of Survival Test(s):                  | Initial survival, striped bass larvae                                                                                                                                                                                                                                                                                                                  |
| <b>Results Summary:</b>                    |                                                                                                                                                                                                                                                                                                                                                        |

| Period        | Mean<br><u>Length (mm)</u> | Discharge<br><u>Temperature (°C)</u> | Number<br>Tested<br><u>(discharge)</u> | Initial<br><u>Survival (%)</u> |
|---------------|----------------------------|--------------------------------------|----------------------------------------|--------------------------------|
| 25 May-4 June | 12.8                       | 27–29                                | 36                                     | 20.5                           |
| 25 May-4 June | 12.8                       | 30-32                                | 29                                     | 53.8                           |
| 5 June-8 July | 21.6                       | 27–29                                | 47                                     | 93.5                           |
| 5 June-8 July | 21.6                       | 30-32                                | 45                                     | 90.3                           |
| 5 June-8 July | 21.6                       | 33-35                                | 55                                     | 33.3                           |
| 5 June-8 July | 21.6                       | 36-37                                | 54                                     | 11.8                           |

Note: Survival calculated from author's data by dividing initial proportion alive in discharge samples by initial proportion alive in intake samples.

Remarks:

Based on the 5 June-8 July data, survival clearly decreased with increasing discharge temperature. The generally lower survival during 15 May–4 June may have been related to the smaller size of the larvae during that period.

## Table A-27

| Entrainment Survival Stud | Summary, | Pittsburg | Power Plant, | 1978-1979 |
|---------------------------|----------|-----------|--------------|-----------|
|---------------------------|----------|-----------|--------------|-----------|

| Power Plant:                               | Pittsburg Power Plant                                                                                                                     |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Pacific Gas and Electric Company                                                                                                          |
| Plant Capacity (MWe):                      | 1,320                                                                                                                                     |
| Report Reference:                          | Ecological Analysts, Inc. 1981. <i>Pittsburg Power Plant Cooling Water Intake Structures 316(b) Demonstration</i> . Prepared for [owner]. |
| Water Body:                                | Suisun Bay, San Joaquin Delta, California                                                                                                 |
| Sampling frequency/dates:                  | Daily during May-July 1978 and May-June 1979 (striped bass) and                                                                           |
|                                            | July 1978-April 1979 (Neomysis mercedis and amphipods)                                                                                    |
| Cooling Water Flow (M <sup>3</sup> /min.): | 2,712                                                                                                                                     |
| Sample Location(s):                        | Condenser cooling-water intake and discharge, Units 5 & 6                                                                                 |
| Sampling Gear:                             | Recessed-impeller pump/larva table                                                                                                        |
| Type of Survival Test(s):                  | Initial and extended 96*-hr. tests                                                                                                        |
| <b>Results Summary:</b>                    |                                                                                                                                           |

| Species               | Discharge<br><u>Temperature (°C)</u> | Total Entrainment<br>Survival (%) |
|-----------------------|--------------------------------------|-----------------------------------|
| Striped bass larvae   | <30                                  | 60.8                              |
| Striped bass larvae   | 30.0-31.9                            | 42.4                              |
| Striped bass larvae   | 32.0-33.9                            | 19.1                              |
| Neomysis mercedis     | <30                                  | 89.8                              |
| Neomysis mercedis     | 30.0-31.9                            | 28.5                              |
| Neomysis mercedis     | 32.0-33.9                            | 0.0                               |
| Neomysis mercedis     | <u>≥</u> 34                          | 0.0                               |
| Gammaridean amphipods | <30                                  | 99.6                              |
| Gammaridean amphipods | 30.0-31.9                            | 100.0                             |
| Gammaridean amphipods | 32.0-33.9                            | 41.3                              |
| Gammaridean amphipods | <u>≥</u> 34                          | 21.4                              |

Remarks:

Total entrainment survival estimates based on 12-hr. extended observations; beyond 12 hours, mortality did not differ between intake and discharge\*. Initial and extended survival estimates not broken out separately. Mortality of striped bass larvae varied among length groups with no apparent trends, and was greater during recirculation (data include both recirculation and non-recirculation samples.

# Table A-28 Entrainment Survival Study Summary, Port Jefferson Generating Station, 1978

| Power Plant:              | Port Jefferson Generating Station                                                                             |
|---------------------------|---------------------------------------------------------------------------------------------------------------|
| Owner:                    | Long Island Lighting Company                                                                                  |
| Plant Capacity (MWe):     | 490 (Units1, 2, 3, and 4 combined)                                                                            |
| Report Reference:         | Ecological Analysts, Inc. Port Jefferson Generating Station Entrainment Survival Study, Prepared for [owner]. |
| Water Body:               | Port Jefferson Harbor, Long Island Sound                                                                      |
| Sampling frequency/dates: | Daily during 21-26 April 1978                                                                                 |
| Sample Location(s):       | Cooling Water Unit 4 Intake/ Unit 3 & 4 combined Discharge                                                    |
| Sampling Gear:            | Pump/Larval table                                                                                             |
| Type of Test(s):          | Initial and extended 96-hr. tests                                                                             |
| <b>Results Summary:</b>   |                                                                                                               |
|                           |                                                                                                               |

| Species            | Life Stage | Number<br>Tested<br>(discharge) | Initial<br><u>Survival (%)</u> | Extended<br>Survival (%) | Total<br>Entrainment<br><u>Survival (%)</u> |
|--------------------|------------|---------------------------------|--------------------------------|--------------------------|---------------------------------------------|
| Winter flounder    | PYSL       | 23                              | 100.0                          | 64.9                     | 64.9                                        |
| Sand lance         | PYSL       | 166                             | 27.0(a)                        | 90.9                     | 24.5                                        |
| Sand lance         | PYSL       | 25                              | 93.0                           | 90.9                     | 85.5(c)                                     |
| Sculpin            | PYSL       | 17                              | 100.0                          | 75.0                     | 75.0                                        |
| American eel       | Juveniles  | 71                              | 100.0(a)                       | 100.0                    | 100.0                                       |
| American eel       | Juveniles  | 25                              | 100.0                          | 100.0                    | 100.0(c)                                    |
| Fourbeard rockling | Eggs       | 102                             | (b)                            | 100.0                    | 100.0                                       |
| Fourbeard rockling | Eggs       | 42                              | (b)                            | 73.1                     | 73.1(c)                                     |

Note: PYSL=post-yolk sac larvae; (a)=Intake samples taken at pump heads of 18-19 ft. were not used in the calculation of survival; (b)=equal initial live-dead ratios were assumed between intake and discharge since egg viability could not be determined until several days after collection; (c)=samples collected with Homelite pump; all others collected with Marlow submersible pump.

**Remarks:** 

The entrainment survival data was taken from Tables 2 and 4 in report. Intake temperatures ranged from 7-9°C and discharge temperatures ranged from 12-18°C.

# Table A-29

| Owner:Pacific Gas and Electric CompanyPlant Capacity (MWe):332Report Reference:Ecological Analysts, Inc. 1980. Protrero Power Plant Cooling Water Intak<br>Structures 316(b) Demonstration. Prepared for [owner].Water Body:San Francisco BaySampling frequency/dates:Daily during 15–20, 22–25, and 27 January 1979Cooling Water Flow (M'/min):1,008Sampling Gear:Condenser cooling-water intake and discharge (Unit 3)Sampling Gear:Recessed-impeller pump/larva tableType of Survival Test(s):Initial and extended 96-hr. testsResults Summary:Over a 10-day period, 546 Pacific herring larvae were collected at the intak<br>and 716 at the discharge over a consistent 18–19°C discharge temperature<br>range. Based on initial survival of 73.7%, and 96-hr extended survival of<br>94.9%, total entrainment survival was calculated as 70 percent.Remarks:Extended survi                                                                                                                                                                                              |                                            | Protrero Power Plant                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plant Capacity (MWe):       332         Report Reference:       Ecological Analysts, Inc. 1980. Protrero Power Plant Cooling Water Intak<br>Structures 316(h) Demonstration. Prepared for [owner].         Water Body:       San Francisco Bay         Sampling frequency/dates:       Daily during 15–20, 22–25, and 27 January 1979         Cooling Water Flow (M <sup>3</sup> /min.):       1,008         Sampling Gear:       Recessed-impeller pump/larva table         Type of Survival Test(s):       Initial and extended 96-hr. tests         Results Summary:       Over a 10-day period, 546 Pacific herring larvae were collected at the intak<br>and 716 at the discharge over a consistent 18–19°C discharge temperature<br>range. Based on initial survival of 37.37%, and 96-hr extended survival of<br>94.9%, total entrainment survival was calculated as 70 percent.         Remarks:       Extended survival did not differ significantly between the intake and discharge, or among<br>several length classes evaluated.                                 | Owner:                                     | Pacific Gas and Electric Company                                                                                                                                                                                                                                                                          |
| Report Reference:       Ecological Analysts, Inc. 1980, Protrero Power Plant Cooling Water Intak Structures 316(b) Demonstration. Prepared for [owner].         Water Body:       San Francisco Bay         Sampling frequency/dates:       Daily during 15–20, 22–25, and 27 January 1979         Cooling Water Flow (M <sup>1</sup> /min.):       1,008         Sample Location(s):       Condenser cooling-water intake and discharge (Unit 3)         Sampling Gear:       Recessed-impeller pump/larva table         Type of Survival Test(s):       Initial and extended 96-hr. tests         Results Summary:       Over a 10-day period, 546 Pacific herring larvae were collected at the intak and 716 at the discharge over a consistent 18–19°C discharge temperature range. Based on initial survival of 73.7%, and 96-hr extended survival of 94.9%, total entrainment survival was calculated as 70 percent.         Remarks:       Extended survival did not differ significantly between the intake and discharge, or among several length classes evaluated. | Plant Capacity (MWe):                      | 332                                                                                                                                                                                                                                                                                                       |
| Water Body:San Francisco BaySampling frequency/dates:Daily during 15–20, 22–25, and 27 January 1979Cooling Water Flow (M <sup>3</sup> /min.):1,008Sample Location(s):Condenser cooling-water intake and discharge (Unit 3)Sampling Gear:Recessed-impeller pump/larva tableType of Survival Test(s):Initial and extended 96-hr. testsResults Summary:Over a 10-day period, 546 Pacific herring larvae were collected at the intak<br>and 716 at the discharge over a consistent 18–19°C discharge temperature<br>range. Based on initial survival of 73.7%, and 96-hr extended survival of<br>94.9%, total entrainment survival was calculated as 70 percent.Remarks:Extended survival did not differ significantly between the intake and discharge, or among<br>several length classes evaluated.                                                                                                                                                                                                                                                                            | Report Reference:                          | Ecological Analysts, Inc. 1980. Protrero Power Plant Cooling Water Intake<br>Structures 316(b) Demonstration. Prepared for [owner].                                                                                                                                                                       |
| Sampling frequency/dates:       Daily during 15–20, 22–25, and 27 January 1979         Cooling Water Flow (M*/min.):       1,008         Sample Location(s):       Condenser cooling-water intake and discharge (Unit 3)         Sampling Gear:       Recessed-impeller pump/larva table         Type of Survival Test(s):       Initial and extended 96-hr. tests         Results Summary:       Over a 10-day period, 546 Pacific herring larvae were collected at the intak and 716 at the discharge over a consistent 18–19°C discharge temperature range. Based on initial survival of 73.7%, and 96-hr extended survival of 94.9%, total entrainment survival was calculated as 70 percent.         Remarks:       Extended survival did not differ significantly between the intake and discharge, or among several length classes evaluated.                                                                                                                                                                                                                          | Water Body:                                | San Francisco Bay                                                                                                                                                                                                                                                                                         |
| Cooling Water Flow (M³/min.):       1,008         Sample Location(s):       Condenser cooling-water intake and discharge (Unit 3)         Sampling Gear:       Recessed-impeller pump/larva table         Type of Survival Test(s):       Initial and extended 96-hr. tests         Results Summary:       Over a 10-day period, 546 Pacific herring larvae were collected at the intak and 716 at the discharge over a consistent 18–19°C discharge temperature range. Based on initial survival of 73.7%, and 96-hr extended survival of 94.9%, total entrainment survival was calculated as 70 percent.         Remarks:       Extended survival did not differ significantly between the intake and discharge, or among several length classes evaluated.                                                                                                                                                                                                                                                                                                                 | Sampling frequency/dates:                  | Daily during 15-20, 22-25, and 27 January 1979                                                                                                                                                                                                                                                            |
| Sample Location(s):       Condenser cooling-water intake and discharge (Unit 3)         Sampling Gear:       Recessed-impeller pump/larva table         Type of Survival Test(s):       Initial and extended 96-hr. tests         Results Summary:       Over a 10-day period, 546 Pacific herring larvae were collected at the intak and 716 at the discharge over a consistent 18–19°C discharge temperature range. Based on initial survival of 73.7%, and 96-hr extended survival of 94.9%, total entrainment survival was calculated as 70 percent.         Remarks:       Extended survival did not differ significantly between the intake and discharge, or among several length classes evaluated.                                                                                                                                                                                                                                                                                                                                                                   | Cooling Water Flow (M <sup>3</sup> /min.): | 1,008                                                                                                                                                                                                                                                                                                     |
| Sampling Gear:       Recessed-impeller pump/larva table         Type of Survival Test(s):       Initial and extended 96-hr. tests         Results Summary:       Over a 10-day period, 546 Pacific herring larvae were collected at the intak and 716 at the discharge over a consistent 18–19°C discharge temperature range. Based on initial survival of 73.7%, and 96-hr extended survival of 94.9%, total entrainment survival was calculated as 70 percent.         Remarks:       Extended survival did not differ significantly between the intake and discharge, or among several length classes evaluated.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Location(s):                        | Condenser cooling-water intake and discharge (Unit 3)                                                                                                                                                                                                                                                     |
| Type of Survival Test(s):       Initial and extended 96-hr. tests         Results Summary:       Over a 10-day period, 546 Pacific herring larvae were collected at the intak and 716 at the discharge over a consistent 18–19°C discharge temperature range. Based on initial survival of 73.7%, and 96-hr extended survival of 94.9%, total entrainment survival was calculated as 70 percent.         Remarks:       Extended survival did not differ significantly between the intake and discharge, or among several length classes evaluated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampling Gear:                             | Recessed-impeller pump/larva table                                                                                                                                                                                                                                                                        |
| Results Summary:       Over a 10-day period, 546 Pacific herring larvae were collected at the intak and 716 at the discharge over a consistent 18–19°C discharge temperature range. Based on initial survival of 73.7%, and 96-hr extended survival of 94.9%, total entrainment survival was calculated as 70 percent.         Remarks:       Extended survival did not differ significantly between the intake and discharge, or among several length classes evaluated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Type of Survival Test(s):                  | Initial and extended 96-hr. tests                                                                                                                                                                                                                                                                         |
| Remarks: Extended survival did not differ significantly between the intake and discharge, or among several length classes evaluated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Results Summary:                           | Over a 10-day period, 546 Pacific herring larvae were collected at the intake<br>and 716 at the discharge over a consistent 18–19°C discharge temperature<br>range. Based on initial survival of 73.7%, and 96-hr extended survival of<br>94.9%, total entrainment survival was calculated as 70 percent. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | several length cla                         | asses evaluated.                                                                                                                                                                                                                                                                                          |

| Table A-30                          |                             |
|-------------------------------------|-----------------------------|
| Entrainment Survival Study Summary, | , Quad Cities Station, 1978 |

| Power Plant:                               | Quad Cities Station                                                                                                                      |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Commonwealth Edison Company                                                                                                              |
| Plant Capacity (MWe):                      | 1,242                                                                                                                                    |
| Report Reference:                          | Hazelton Environmental Sciences, Inc. 1978. The Survival of Entrained Ichthyoplankton at Quad-Cities Station 1978. Prepared for [owner]. |
| Water Body:                                | Mississippi River, Illinois                                                                                                              |
| Sampling frequency/dates:                  | Daily during 19-23 and 26-28 June 1978                                                                                                   |
| Cooling Water Flow (M <sup>3</sup> /min.): | 3,793                                                                                                                                    |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                             |
| Sampling Gear:                             | 0.75-m dia. conical plankton net towed from boat (No. 0 mesh)                                                                            |
| Type of Survival Test(s):                  | Initial                                                                                                                                  |
| <b>Results Summary:</b>                    |                                                                                                                                          |

Mumbar

| Species               | Life Stage       | Tested<br>(discharge) | Temperature<br>(°C) | Initial<br><u>Survival (%)</u> |
|-----------------------|------------------|-----------------------|---------------------|--------------------------------|
| Freshwater drum       | Larvae/Juveniles | 134                   | 30.5-31.2           | 61.9                           |
| Freshwater drum       | Larvae/Juveniles | 254                   | 32.5-33.0           | 30.4                           |
| Freshwater drum       | Larvae/Juveniles | 354                   | 28.0-34.0           | 31.7                           |
| Freshwater drum       | Larvae/Juveniles | 174                   | 38.0-39.0           | 2.4                            |
| Cyprinidae (non-carp) | Larvae/Juveniles | 100                   | 30.5-31.2           | 53                             |
| Cyprinidae (non-carp) | Larvae/Juveniles | 34                    | 32.5-33.0           | 62.8                           |
| Cyprinidae (non-carp) | Larvae/Juveniles | 31                    | 28.0-34.0           | 40.6                           |
| Cyprinidae (non-carp) | Larvae/Juveniles | 142                   | 38.0-39.0           | 7.3                            |

Remarks:

Above survival data based on including both opaque and transparent larvae in the "dead" category. Removing opaque (presumably dead prior to sampling) from analysis increased survival estimates. Extended (24-hr.) survival was observed for 226 "total ichthyoplankton" from the intake and 64 from the discharge at two temperature ranges. Extended survival was 45.5% at 28.0–33.0°C-discharge temperature, and 5.0% at discharge temperature of 38.0–39.0°C.

Dicaharga

# Table A-31

| Entrainment Surviva | I Study | Summary, | Quad | Cities | Station, | 1984 |
|---------------------|---------|----------|------|--------|----------|------|
|---------------------|---------|----------|------|--------|----------|------|

| Power Plant:                               | Quad Cities Station                                                                                                          |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Commonwealth Edison Company                                                                                                  |
| Plant Capacity (MWe):                      | 1,242                                                                                                                        |
| Report Reference:                          | Lawler, Matusky & Skelly Engineers, Inc. 1985. <i>Quad-Cities Aquatic Program, 1984 Annual Report.</i> Prepared for [owner]. |
| Water Body:                                | Mississippi River, Illinois                                                                                                  |
| Sampling frequency/dates:                  | Weekly during 25 April-27 June 1984                                                                                          |
| Cooling Water Flow (M <sup>3</sup> /min.): | 3,793                                                                                                                        |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                 |
| Sampling Gear:                             | 0.75-m dia. conical plankton net towed from boat (No. 0 mesh)                                                                |
| Type of Survival Test(s):                  | Initial                                                                                                                      |
| <b>Results Summary:</b>                    |                                                                                                                              |

| Species         | Life Stage | Number<br>Tested<br>(discharge) | Discharge<br>Temperature<br>( <u>°C)</u> | Initial<br><u>Survival (%)</u> |
|-----------------|------------|---------------------------------|------------------------------------------|--------------------------------|
| Buffalo sp.     | Larvae     | 40                              | 30                                       | 93.9                           |
| Carp            | Larvae     | 60                              | 30                                       | 97.1                           |
| Carp            | Larvae     | 36                              | 33.5                                     | 91.9                           |
| Freshwater drum | Larvae     | 57                              | 33.5                                     | 62.8                           |

Dead larvae that were opaque were not counted in this analysis. They were presumed to have been dead prior to collection. Overall, 3,967 larvae were collected in intake and discharge combined, and 2,979 of these, or 75.1 % were "dead opaque." The initial survival of 93.9 % for Buffalo sp. was calculated as a weighted mean for two sampling dates from this study.

Remarks:

| Table A-32                                                          |   |
|---------------------------------------------------------------------|---|
| Entrainment Survival Study Summary, Roseton Generating Station, 197 | 5 |

| Power Plant:                              | Roset                                     | Roseton Generating Station                                                                                                                       |                                |                          |                                             |  |  |  |  |
|-------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|---------------------------------------------|--|--|--|--|
| Owner:                                    | Centr                                     | al Hudson Gas &                                                                                                                                  | z Electric Corpora             | ation                    |                                             |  |  |  |  |
| Plant Capacity (MWe):                     | 1,200                                     |                                                                                                                                                  |                                |                          |                                             |  |  |  |  |
| Report Reference:                         | Ecolo<br>Entra                            | Ecological Analysts, Inc. 1976. Roseton Generating Station Impingement and<br>Entrainment Survival Studies, Annual Report. Prepared for [owner]. |                                |                          |                                             |  |  |  |  |
| Water Body:                               | Hudso                                     | on River                                                                                                                                         |                                |                          |                                             |  |  |  |  |
| Sampling frequency/dates:                 | 4 day:<br>Nove                            | 4 days per week during29 May-7 July and 2 days per week during 8 July-18<br>November 1975                                                        |                                |                          |                                             |  |  |  |  |
| Cooling Water Flow (M <sup>3</sup> /min.) | : 2,460                                   | 2,460                                                                                                                                            |                                |                          |                                             |  |  |  |  |
| Sample Location(s):                       | Conde                                     | Condenser cooling-water intake and discharge                                                                                                     |                                |                          |                                             |  |  |  |  |
| Sampling Gear:                            | Reces                                     | Recessed impeller pump/larva table                                                                                                               |                                |                          |                                             |  |  |  |  |
| Type of Survival Test(s):                 | Initial                                   | Initial and extended 96-hr. tests                                                                                                                |                                |                          |                                             |  |  |  |  |
| <b>Results Summary:</b>                   |                                           |                                                                                                                                                  |                                |                          |                                             |  |  |  |  |
| Species                                   | Life<br>Stage                             | Number<br>Tested<br><u>(discharge)</u>                                                                                                           | Initial<br><u>Survival (%)</u> | Extended<br>Survival (%) | Total<br>Entrainment<br><u>Survival (%)</u> |  |  |  |  |
|                                           | <ol> <li>Zh. / J. Mark. 20, 19</li> </ol> | 444                                                                                                                                              |                                |                          |                                             |  |  |  |  |

| Species                | Stage     | (discharge)  | Survival (%) | Survival (%) | Survival (%) |
|------------------------|-----------|--------------|--------------|--------------|--------------|
| Striped Bass           | PYSL      | 172          | 75.6         | 49.6         | 37.5         |
| Clupeids               | PYSL      | 833          | 40.0         | (a)          | (a)          |
| Clupeids               | Juveniles | 243          | 44.8         | (a)          | (a)          |
| White perch            | PYSL      | 97           | 40.8         | (a)          | (a)          |
| Cyprinidae             | PYSL      | 40           | 100.0        | 100.0        | 100.0        |
| Tessellated darter     | PYSL      | 46           | 100.0        | 100.0        | 100.0        |
| Gammarus daiberi       |           | not provided | 99.0         | 88.6         | 87.8         |
| Chaoborus punctipennis |           | not provided | 98.1         | 100.0        | 98.1         |
|                        |           |              |              |              |              |

Note: PYSL = post-yolk sac larvae (a)=zero extended survival in both intake and discharge samples, suggesting sampling stress.

### Table A-33

| Entrainment Survival Study | / Summary, | Roseton | Generating | Station, | 1976 |
|----------------------------|------------|---------|------------|----------|------|
|----------------------------|------------|---------|------------|----------|------|

| Power Plant:                               | Roseton Generating Station                                                                                                            |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Central Hudson Gas & Electric Corporation                                                                                             |
| Plant Capacity (MWe):                      | 1,200                                                                                                                                 |
| Report Reference:                          | Ecological Analysts, Inc. 1978. Roseton Generating Station Entrainment<br>Survival Studies, 1976 Annual Report. Prepared for [owner]. |
| Water Body:                                | Hudson River                                                                                                                          |
| Sampling frequency/dates:                  | 4 days per week during mid-June through July 1976                                                                                     |
| Cooling Water Flow (M <sup>3</sup> /min.): | 2,426                                                                                                                                 |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                          |
| Sampling Gear:                             | Recessed impeller pump/larva table                                                                                                    |
| Type of Survival Test(s):                  | Initial and extended 96-hr. tests                                                                                                     |
| <b>Results Summary:</b>                    |                                                                                                                                       |

|                                          |            | NO.         | Discharge                   | Survival (%) |             |           |  |
|------------------------------------------|------------|-------------|-----------------------------|--------------|-------------|-----------|--|
| Species                                  | Life Stage | (discharge) | <u>1 emperature</u><br>(°C) | Initial      | Extended    | Total     |  |
| Striped bass                             | PYSL       | 23          | 24.0-30.5                   | 58           |             | -         |  |
| Striped bass                             | PYSL       | 57          | 30.6-37.0                   | 18.9         |             |           |  |
| Striped bass                             | Juveniles  | 10          | 30.6-37.0                   | 80           |             |           |  |
| White perch                              | PYSL       | 57          | 24.0-30.5                   | 79.2         |             |           |  |
| White perch                              | PYSL       | 292         | 30.6-37.0                   | 11.3         |             |           |  |
| White perch                              | Juveniles  | 25          | 30.6-37.0                   | 59.6         |             | _         |  |
| Clupeids                                 | PYSL       | 167         | 24.0-30.5                   | 59.2         |             | -         |  |
| Clupeids                                 | PYSL       | 478         | 30.6-37.0                   | 10.2         |             | -         |  |
| Clupeids                                 | Juveniles  | 57          | 24.0-37.0                   | 16.2         | ·           | -         |  |
| Cyprininds                               | PYSL       | 16          | 24.0-37.0                   | 69.1         | -           | -         |  |
| Gammarus daiberi <sup>(1975)</sup>       |            | 167         | <30.0                       | 92.0-96.6    | 81.9-100.0  | 75.3–99.6 |  |
| Gammarus daiberi <sup>(1975)</sup>       |            | 477         | >30.0                       | 68.3-99.0    | 55.8-90.6   | 38.1-90.6 |  |
| Gammarus daiberi <sup>(1976)</sup>       |            | 202         | 11.3-29.2                   | 87.8-91.3    | 73.4-97.5   | 64.4-89.0 |  |
| Chaoborus punctipennis <sup>(1975)</sup> |            | 162         | <30.0                       | 96.6–97.4    | 92.3-100.0  | 89.2-97.4 |  |
| Chaoborus punctipennis <sup>(1975)</sup> | -          | 477         | >30.0                       | 83.8-98.6    | 69.8-100.0  | 58.5-98.6 |  |
| Chaoborus punctipennis <sup>(1976)</sup> | 1          | 62          | <30.0                       | 90.0-97.0    | 83.4-100.0  | 75.1-97.0 |  |
| Chaoborus punctipennis <sup>(1976)</sup> | -          | 120         | >30.0                       | 95.6-96.5    | 100.0-100.0 | 95.6-96.5 |  |

Note: PYSL= post-yolk sac larvae.

Because of smaller sample sizes, extended survival was calculated on pooled data for striped bass and white perch (*Morone* sp.) for PYSL and juveniles, and also for clupeids. Extended survival was similar (and low--<20%) at intake and discharge for *Morone* sp., similar and relatively high for *Morone* juveniles, and zero at both intake and discharge for clupeids.

**Remarks:** 

| Table A-34                                                      |      |
|-----------------------------------------------------------------|------|
| Entrainment Survival Study Summary, Roseton Generating Station, | 1977 |

| Power Plant:                               | Roseton Generating Station                                                                                                         |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Owner:                                     | Central Hudson Gas & Electric Corporation                                                                                          |
| Plant Capacity (MWe):                      | 1,200                                                                                                                              |
| Report Reference:                          | Ecological Analysts, Inc. 1978. Roseton Generating Station Entrainment Survival Studies, 1977 Annual Report. Prepared for [owner]. |
| Water Body:                                | Hudson River                                                                                                                       |
| Sampling frequency/dates:                  | 4 days per week during 3-17 March and 31 May-14 July 1977                                                                          |
| Cooling Water Flow (M <sup>3</sup> /min.): | 2,426                                                                                                                              |
| Sample Location(s):                        | Condenser cooling-water intake and discharge                                                                                       |
| Sampling Gear:                             | Recessed impeller pump/larva table                                                                                                 |
| Type of Survival Test(s):                  | Initial and extended 24 and 96-hr. tests                                                                                           |
| <b>Results Summary:</b>                    |                                                                                                                                    |

Number Life Tested Discharge Initial Species Stage (discharge) Temperature (°C) Survival (%) PYSL 400 Striped bass 24.0-29.9 58 Striped bass PYSL 325 30.0-32.9 32 Striped bass PYSL 40 33.0-36.0 6 Striped bass Juveniles 12 24.0-29.9 100 White perch PYSL 155 24.0-29.9 52 White perch PYSL 78 30.0-32.9 45 0 White perch PYSL 33 33.0-36.0 PYSL Clupeids 874 24.0-29.9 19 Clupeids PYSL 389 30.0-32.9 11 Clupeids PYSL 81 33.0-36.0 0 Clupeids Juveniles 14 24.0-29.9 24 Clupeids Juveniles 22 30.0-32.9 0 51 33.0-36.0 0 Clupeids Juveniles Atlantic tomcod YSL 1.345 7.0-17.0 41

Note: YSL=yolk sac larvae; PYSL=post-yolk sac larvae

**Remarks:** 

Initial survival estimates were compared to discharge temperature, and found to decrease with increasing temperature. Extended survival did not differ between intake and discharge for white perch and clupeids. However, intake/discharge differences in extended survival for striped bass larvae and juveniles, and Atlantic tomcod larvae were significant. Consequently, total entrainment survival of these taxa would be somewhat less than reflected in the initial survival estimates. Survival increased with an increase in the number of circulating-water pumps operating. Survival of striped bass, white perch, and clupeids increased with increasing larval lengths.

## Table A-35

| Entrainment Survival Study | Summary, | Roseton | Generating | Station, | 1978 |
|----------------------------|----------|---------|------------|----------|------|
|----------------------------|----------|---------|------------|----------|------|

| - may a first second | a second and a second sec |                                                            |                               |                                 |                                 |                                |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------|---------------------------------|---------------------------------|--------------------------------|
| Power Plant:                                                                                                    | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Roseton Generating Station                                 |                               |                                 |                                 |                                |
| Owner:                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Central Hud                                                | lson Gas & E                  | lectric Corpor                  | ration                          |                                |
| Plant Capacity                                                                                                  | (MWe):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,200                                                      |                               |                                 |                                 |                                |
| Report Reference:                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ecological A<br>Survival Stu                               | Analysts, Inc<br>dies, 1978 A | . 1980. Roseta<br>nnual Report. | on Generating<br>Prepared for [ | Station Entrainmer<br>[owner]. |
| Water Body:                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hudson River                                               |                               |                                 |                                 |                                |
| Sampling freq                                                                                                   | uency/dates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 days per week during 13-23 March and 6 June-13 July 1978 |                               |                                 |                                 |                                |
| Cooling Water Flow (M <sup>3</sup> /min.):                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,426                                                      |                               |                                 |                                 |                                |
| Sample Location(s):                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Condenser cooling-water intake and discharge               |                               |                                 |                                 |                                |
| Sampling Gear:                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recessed impeller pump/larva table                         |                               |                                 |                                 |                                |
| Type of Survival Test(s):                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Initial and e                                              | xtended 24 a                  | nd 96-hr. tests                 |                                 |                                |
| Results Summ                                                                                                    | ary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                               |                                 |                                 |                                |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number                                                     | Survival (%)                  |                                 |                                 |                                |
| Species                                                                                                         | Life Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tested<br>(Disch.)                                         | Initial                       | Extended                        | Total                           |                                |
| Striped bass                                                                                                    | PYSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 211                                                        | 46.3                          | 100.0                           | 46.3(a)                         |                                |
| White perch                                                                                                     | PYSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 459                                                        | 58.1                          | 96.0                            | 55.8(a)                         |                                |
| White perch                                                                                                     | PYSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                                                         | 100.0                         | 96.0                            | 96.0(b)                         |                                |
| White perch                                                                                                     | Juveniles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                         | 88.3                          | 62.4                            | 55.1(b)                         |                                |

| White perch     | Juveniles | 17    | 88.3 | 62.4  | 55.1(b) |
|-----------------|-----------|-------|------|-------|---------|
| Clupeids        | PYSL      | 1,089 | 21.0 | 0.0   | 0.0(a)  |
| Clupeids        | PYSL      | 43    | 17.8 | 0.0   | 0.0(b)  |
| Atlantic tomcod | YSL       | 13    | 30.8 | 100.0 | 30.8(a) |
| Atlantic tomcod | YSL       | 16    | 66.7 | 100.0 | 66.7(b) |
| Atlantic tomcod | PYSL      | 64    | 38.9 | 100.0 | 38.9(a) |

Note: PYSL=post-yolk sac larvae: (a)=one unit, 2-pump operation, (b)=two unit, 3-pump operation.

**Remarks:** The entrainment data showed that survival increased with increase in fish length and decreased with increase in discharge temperature exposure.

| Table A-36                                                          |   |
|---------------------------------------------------------------------|---|
| Entrainment Survival Study Summary, Roseton Generating Station, 198 | 0 |

| Power Plant:Roseton Generating StationOwner:Central Hudson Gas & Electric CorporationPlant Capacity (MWe):1,200Report Reference:Ecological Analysts, Inc. 1983. Roseton Generating Station Entrainmen<br>Survival Studies, 1980 Annual Report. Prepared for [owner].Water Body:Hudson RiverSampling frequency/dates:4 days per week during 26 May–31 July 1980Cooling Water Flow (M <sup>2</sup> /min.):2,460Sample Location(s):Condenser cooling-water intake and dischargeSampling Gear:Recessed impeller pump/larva table and Plankton FlumeType of Survival Test(s):Initial and extended 48-hr. testsResults Summary:LifeEntrainmentSpeciesStageStriped BassYSL87.8Striped BassJuveniles70.6White perchPYSL97.822.7ClupeidsJuveniles100.0ClupeidsPYSL97.897.997.90.0Note: YSL = yolk sac larvae; PYSL = post-yolk sac<br>larvae (a) = Data are initial survival because either<br>extended survival did not differ significantly between<br>intake and discharge usrviles. Data97.1097.997.1097.097.1197.097.1297.197.1397.197.1497.197.1597.197.1597.197.1697.197.1797.197.1797.197.1697.197.1797.1                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                               |                                                                                                                                                                        |                                                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Owner:Central Hudson Gas & Electric CorporationPlant Capacity (MWe):1,200Report Reference:Ecological Analysts, Inc. 1983. Roseton Generating Station Entrainmen<br>Survival Studies, 1980 Annual Report. Prepared for [owner].Water Body:Hudson RiverSampling frequency/dates:4 days per week during 26 May–31 July 1980Cooling Water Flow (M'/min.):2,460Sample Location(s):Condenser cooling-water intake and dischargeSampling Gear:Recessed impeller pump/larva table and Plankton FlumeType of Survival Test(s):Initial and extended 48-hr. testsResults Summary:LifeStriped BassYSLStriped BassPYSLStriped BassPYSLStriped BassPYSLOutonClupeidsJuveniles100.0ClupeidsPYSLOuton0.0Note: YSL = yolk sac larvae; PYSL = post-yolk sac<br>larvae (a) = Data are initial survival because either<br>extended survival did not differ significantly between<br>intake and discharge (striped bass juveniles and white<br>pereh PYSL), or was higher in the discharge samples<br>(clupeids and striped bass YSL/YSL). Extended<br>survival and triped bass YSL/YSL). Extended<br>survival striped bass YSL/YSL). Extended<br>survival to the ischarge samples<br>(clupeids and striped bass YSL/YSL). Extended<br>survival prevent pure huveniles. Data                                                                                                                                                                                    | Power Plant:                                                                                                                                                  |                                                                                                                                                                        | Roseton Generating Station                                                                                                                       |  |  |
| Plant Capacity (MWe):       1,200         Report Reference:       Ecological Analysts, Inc. 1983. Roseton Generating Station Entrainmen Survival Studies, 1980 Annual Report. Prepared for [owner].         Water Body:       Hudson River         Sampling frequency/dates:       4 days per week during 26 May–31 July 1980         Cooling Water Flow (M <sup>3</sup> /min.):       2,460         Sample Location(s):       Condenser cooling-water intake and discharge         Sampling Gear:       Recessed impeller pump/larva table and Plankton Flume         Type of Survival Test(s):       Initial and extended 48-hr. tests         Results Summary:       Striped Bass         Striped Bass       YSL       87.8         Striped Bass       PYSL       87.8         Striped Bass       Juveniles       70.6         White perch       PYSL       87.3         Striped Bass       Juveniles       100.0         Clupeids       PYSL       22.7         Clupeids       Juveniles       0.0         Note: YSL = yolk sac larvae; PYSL = post-yolk sac larvae (a) = Data are initial survival because either extended survival did not differ significantly between intake and discharge (striped bass juveniles and white perch PYSL), or was higher in the discharge samples (clupeids and striped bass YSL/PYSL). Extended survival not reported for white perch juveniles. Data                                              | Owner:                                                                                                                                                        |                                                                                                                                                                        | Central Hudson Gas & Electric Corporation                                                                                                        |  |  |
| Report Reference:       Ecological Analysts, Inc. 1983. Roseton Generating Station Entrainmen Survival Studies, 1980 Annual Report. Prepared for [owner].         Water Body:       Hudson River         Sampling frequency/dates:       4 days per week during 26 May–31 July 1980         Cooling Water Flow (M <sup>2</sup> /min):       2,460         Sample Location(s):       Condenser cooling-water intake and discharge         Sampling Gear:       Recessed impeller pump/larva table and Plankton Flume         Type of Survival Test(s):       Initial and extended 48-hr. tests         Results Summary:       Initial and extended 48-hr. tests         Striped Bass       YSL       87.8         Striped Bass       YSL       87.8         Striped Bass       Juveniles       70.6         White perch       PYSL       67.3         White perch       Juveniles       0.0         Note: YSL = yolk sac larvae; PYSL = post-yolk sac larvae (a) = Data are initial survival because either extended survival diot offfer significantly between intake and discharge survival between intake and striped bass YSL/PYSL). Extended survival not reported for white perch juveniles. Data | Plant Capacity                                                                                                                                                | (MWe):                                                                                                                                                                 | 1,200                                                                                                                                            |  |  |
| Water Body:Hudson RiverSampling frequery/ates:4 days per week during 26 May–31 July 1980Cooling Water Flw (M³/min):2,460Sample Location(s):Condenser cooling-water intake and dischargeSampling Gear:Recessed impeller pump/larva table and Plankton FlumeType of Survival Test(s):Initial and extended 48-hr. testsResults Summary:Survival (V6) (a)Striped BassYSLStriped BassPYSLStriped BassPYSLStriped BassJuvenilesJuveniles100.0ClupeidsPYSL0.022.7ClupeidsJuveniles0.0100.0Striped Basr Larvae; PYSL22.7ClupeidsPYSL0.0secause eitherstrive (a) = Data art initial survival because eitherextended survival did not differ significantly betweenintake and discharge; VSL/PYSL), Extendedsurvival not reported for white perchPYSL), or was higher in the discharge samplesclupeids and striped bass YSL/PYSL), Extendedsurvival not reported for white perchPYSL)Striped Bass Striped bass YSL/PYSL)Striped Bass Striped bass YSL/PYSLS                                                                                                                                                                                                   | Report Referen                                                                                                                                                | ce:                                                                                                                                                                    | Ecological Analysts, Inc. 1983. Roseton Generating Station Entrainment<br>Survival Studies, 1980 Annual Report. Prepared for [owner].            |  |  |
| Sampling frequency/dates:4 days per week during 26 May–31 July 1980Cooling Water Five (M <sup>1</sup> /min.):2,460Sample Location(s):Condenser cooling-water intake and dischargeSampling Gear:Recessed impeller pump/larva table and Plankton FlumeType of Survival Test(s):Initial and extended 48-hr. testsResults Summary:LifeSpeciesStageStriped BassYSL88.2Striped BassJuveniles70.6White perchPYSL67.3White perchJuveniles100.0ClupeidsPYSL0.0Not: YSL = yolk sac larvae; PYSL = post-yolk sac<br>larvae (a) = Data ar initial survival because either<br>extended survival did not differ significantly between<br>intake and discharge (striped bass JUVENI). Extended<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water Body:                                                                                                                                                   |                                                                                                                                                                        | Hudson River                                                                                                                                     |  |  |
| Cooling Water Flow (M³/min.):2,460Sample Location(s):Condenser cooling-water intake and dischargeSampling Gear:Recessed impeller pump/larva table and Plankton FlumeType of Survival Test(s):Initial and extended 48-hr. testsResults Summary:StageSurvival (%b)(a)Striped BassYSLStriped BassPYSLStriped BassJuvenilesJuveniles70.6White perchPYSLOuto:StripeSurvival0.0ClupeidsPYSLStore Striped BassJuvenilesJuveniles0.0Stripe BassYSLStripe BassJuvenilesJuveniles0.0StripeidesStore StripeidesStripeidesStore StripeidesStripeid                                                                                                                                                                                                                                                                                                                                                                                                                 | Sampling frequ                                                                                                                                                | ency/dates:                                                                                                                                                            | 4 days per week during 26 May-31 July 1980                                                                                                       |  |  |
| Sample Location(s):Condenser cooling-water intake and dischargeSampling Gear:Recessed impeller pump/larva table and Plankton FlumeType of Survival Test(s):Initial and extended 48-hr. testsResults Summary:Initial and extended 48-hr. testsSpeciesStageSurvival (%) (a)Striped BassYSL87.8Striped BassPYSL88.2Striped BassJuveniles70.6White perchPYSL67.3White perchJuveniles100.0ClupeidsPYSL22.7ClupeidsJuveniles0.0Note: YSL = yolk sac larvae; PYSL = post-yolk sacarvae; and discharge (striped bass juveniles and white perch PYSL), or was higher in the discharge samples (clupeids and striped bass ySL/PYSL). Extended survival not reported for white perch juveniles. Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cooling Water                                                                                                                                                 | Flow (M <sup>3</sup> /min.):                                                                                                                                           | 2,460                                                                                                                                            |  |  |
| Sampling Gear:Recessed impeller pump/larva table and Plankton FlumeType of Survival Test(s):Initial and extended 48-hr. testsResults Summary:Initial and extended 48-hr. testsSpeciesStageSurvival (%) (a)Striped BassYSL87.8Striped BassPYSL88.2Striped BassJuveniles70.6White perchPYSL67.3White perchPYSL22.7ClupeidsPYSL22.7ClupeidsJuveniles0.0Note: YSL = yolk sac larvae; PYSL = post-yolk sacarvae (a) = Data are initial survival because either<br>extended survival did not differ significantly between<br>intake and discharge (striped bass juveniles and white<br>perch PYSL), or was higher in the discharge samples<br>(clupeids and striped bass ySL/PYSL). Extended<br>survival not reported for white perch juveniles, Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Locatio                                                                                                                                                | n(s):                                                                                                                                                                  | Condenser cooling-water intake and discharge                                                                                                     |  |  |
| Type of Survival Test(s):Initial and extended 48-hr. testsResults Summary:LifeEntrainmentSpeciesStageSurvival (%) (a)Striped BassYSL87.8Striped BassPYSL88.2Striped BassJuveniles70.6White perchPYSL67.3White perchJuveniles100.0ClupeidsPYSL22.7ClupeidsJuveniles0.0Note: YSL = yolk sac larvae; PYSL = post-yolk saclarvae (a) = Data are initial survival because eitherextended survival did not differ significantly betweenintake and discharge (striped bass juveniles and whiteperch PYSL), or was higher in the discharge samples(clupeids and striped bass YSL/PYSL). Extendedsurvival not reported for white perch juveniles. DataData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampling Gear                                                                                                                                                 |                                                                                                                                                                        | Recessed impeller pump/larva table and Plankton Flume                                                                                            |  |  |
| Results Summary:Life EntrainmentSpeciesStageSurvival (%) (a)Striped BassYSL87.8Striped BassPYSL88.2Striped BassJuveniles70.6White perchPYSL67.3White perchJuveniles100.0ClupeidsPYSL22.7ClupeidsJuveniles0.0Note: YSL = yolk sac larvae; PYSL = post-yolk saclarvae (a) = Data are initial survival because eitherextended survival did not differ significantly betweenintake and discharge (striped bass juveniles and whiteperch PYSL), or was higher in the discharge samples(clupeids and striped bass YSL/PYSL). Extendedsurvival not reported for white perch juveniles. DataData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Type of Surviva                                                                                                                                               | al Test(s):                                                                                                                                                            | Initial and extended 48-hr. tests                                                                                                                |  |  |
| LifeEntrainmentSpeciesStageSurvival (%) (a)Striped BassYSL $87.8$ Striped BassPYSL $88.2$ Striped BassJuveniles $70.6$ White perchPYSL $67.3$ White perchJuveniles $100.0$ ClupeidsPYSL $22.7$ ClupeidsJuveniles $0.0$ Note: YSL = yolk sac larvae; PYSL = post-yolk saclarvae (a) = Data are initial survival because eitherextended survival did not differ significantly betweenintake and discharge (striped bass juveniles and whiteperch PYSL), or was higher in the discharge samples(clupeids and striped bass YSL/PYSL). Extendedsurvival not reported for white perch juveniles. Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Results Summa</b>                                                                                                                                          | ry:                                                                                                                                                                    |                                                                                                                                                  |  |  |
| Striped BassYSL87.8Striped BassPYSL88.2Striped BassJuveniles70.6White perchPYSL67.3White perchJuveniles100.0ClupeidsPYSL22.7ClupeidsJuveniles0.0Note: YSL = yolk sac larvae; PYSL = post-yolk saclarvae (a) = Data are initial survival because either<br>extended survival did not differ significantly between<br>intake and discharge (striped bass juveniles and white<br>perch PYSL), or was higher in the discharge samples<br>(clupeids and striped bass YSL/PYSL). Extended<br>survival not reported for white perch juveniles. Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Species                                                                                                                                                       | Life<br><u>Stage</u>                                                                                                                                                   | Entrainment<br>Survival (%) (a)                                                                                                                  |  |  |
| Striped BassPYSL88.2Striped BassJuveniles70.6White perchPYSL67.3White perchJuveniles100.0ClupeidsPYSL22.7ClupeidsJuveniles0.0Note: YSL = yolk sac larvae; PYSL = post-yolk saclarvae (a) = Data are initial survival because eitherextended survival did not differ significantly betweenintake and discharge (striped bass juveniles and whiteperch PYSL), or was higher in the discharge samples(clupeids and striped bass YSL/PYSL). Extendedsurvival not reported for white perch juveniles. DataData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Striped Bass                                                                                                                                                  | YSL                                                                                                                                                                    | 87.8                                                                                                                                             |  |  |
| Striped BassJuveniles70.6White perchPYSL67.3White perchJuveniles100.0ClupeidsPYSL22.7ClupeidsJuveniles0.0Note: YSL = yolk sac larvae; PYSL = post-yolk saclarvae (a) = Data are initial survival because eitherextended survival did not differ significantly betweenintake and discharge (striped bass juveniles and whiteperch PYSL), or was higher in the discharge samples(clupeids and striped bass YSL/PYSL). Extendedsurvival not reported for white perch juveniles. DataData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Striped Bass                                                                                                                                                  | PYSL                                                                                                                                                                   | 88.2                                                                                                                                             |  |  |
| White perchPYSL $67.3$ White perchJuveniles $100.0$ ClupeidsPYSL $22.7$ ClupeidsJuveniles $0.0$ Note: YSL = yolk sac larvae; PYSL = post-yolk saclarvae (a) = Data are initial survival because eitherextended survival did not differ significantly betweenintake and discharge (striped bass juveniles and whiteperch PYSL), or was higher in the discharge samples(clupeids and striped bass YSL/PYSL). Extendedsurvival not reported for white perch juveniles. Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Striped Bass                                                                                                                                                  | Juveniles                                                                                                                                                              | 70.6                                                                                                                                             |  |  |
| White perchJuveniles100.0ClupeidsPYSL22.7ClupeidsJuveniles0.0Note: YSL = yolk sac larvae; PYSL = post-yolk saclarvae (a) = Data are initial survival because eitherlarvae (a) = Data are initial survival because eitherextended survival did not differ significantly betweenintake and discharge (striped bass juveniles and whiteperch PYSL), or was higher in the discharge samples(clupeids and striped bass YSL/PYSL). Extendedsurvival not reported for white perch juveniles. Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | White perch                                                                                                                                                   | PYSL                                                                                                                                                                   | 67.3                                                                                                                                             |  |  |
| ClupeidsPYSL22.7ClupeidsJuveniles0.0Note: YSL = yolk sac larvae; PYSL = post-yolk sac<br>larvae (a) = Data are initial survival because either<br>extended survival did not differ significantly between<br>intake and discharge (striped bass juveniles and white<br>perch PYSL), or was higher in the discharge samples<br>(clupeids and striped bass YSL/PYSL). Extended<br>survival not reported for white perch juveniles. Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | White perch                                                                                                                                                   | Juveniles                                                                                                                                                              | 100.0                                                                                                                                            |  |  |
| ClupeidsJuveniles0.0Note: YSL = yolk sac larvae; PYSL = post-yolk sac<br>larvae (a) = Data are initial survival because either<br>extended survival did not differ significantly between<br>intake and discharge (striped bass juveniles and white<br>perch PYSL), or was higher in the discharge samples<br>(clupeids and striped bass YSL/PYSL). Extended<br>survival not reported for white perch juveniles. Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Clupeids                                                                                                                                                      | PYSL                                                                                                                                                                   | 22.7                                                                                                                                             |  |  |
| Note: YSL = yolk sac larvae; PYSL = post-yolk sac<br>larvae (a) = Data are initial survival because either<br>extended survival did not differ significantly between<br>intake and discharge (striped bass juveniles and white<br>perch PYSL), or was higher in the discharge samples<br>(clupeids and striped bass YSL/PYSL). Extended<br>survival not reported for white perch juveniles. Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clupeids                                                                                                                                                      | Juveniles                                                                                                                                                              | 0.0                                                                                                                                              |  |  |
| from pump/larva table only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Note: YSL = yol<br>larvae (a) = Data<br>extended surviva<br>intake and discha<br>perch PYSL), or<br>(clupeids and str<br>survival not repo<br>from pump/larva | k sac larvae; PYS<br>are initial surviva<br>Il did not differ sig<br>arge (striped bass<br>was higher in the<br>iped bass YSL/PY<br>orted for white per<br>table only. | L = post-yolk sac<br>I because either<br>gnificantly between<br>juveniles and white<br>discharge samples<br>'SL). Extended<br>ch juveniles. Data |  |  |

**Remarks:** 

Results indicate that initial survival was generally higher for the plankton (pumpless) flume which may be related to the lack of pump-induced stress with the flume or higher flow rates associated with pump collection. However, entrainment survival estimates could not be based on the flume because of problems sampling the intake. Survival increased with length of striped bass and white perch larvae. With the exception of striped bass juveniles, initial survival was judged the best estimate of total entrainment survival. Data taken from table 4-4 in the report.

Port Authority 036638



### Target:

Section 316(a) and (b) Fish Protection Issues

#### About EPRI

EPRI creates science and technology solutions for the global energy and energy services industry. U.S. electric utilities established the Electric Power Research Institute in 1973 as a nonprofit research consortium for the benefit of utility members, their customers, and society. Now known simply as EPRI, the company provides a wide range of innovative products and services to more than 1000 energyrelated organizations in 40 countries. EPRI's multidisciplinary team of scientists and engineers draws on a worldwide network of technical and business expertise to help solve today's toughest energy and environmental problems. EPRI. Electrify the World

© 2000 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power Research Institute and EPRI are registered service marks of the Electric Power Research Institute, Inc. EPRI. ELECTRIFY THE WORLD is a service mark of the Electric Power Research Institute, Inc.

R Printed on recycled paper in the United States of America

1000757

EPRI • 3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 • USA 800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com