Jon Niermann, *Chairman*Emily Lindley, *Commissioner*Bobby Janecka, *Commissioner*Toby Baker, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

July 16, 2020

MR SEAN STRAWBRIDGE
CHIEF EXECUTIVE OFFICER
PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY
PO BOX 1541
CORPUS CHRISTI TX 78403-1541

Re: Permit Application

Permit Number: 159254

Port of Corpus Christi Authority of Nueces County Port of Corpus Christi Authority Bulk Dock 3 Layberth

Corpus Christi, Nueces County

Regulated Entity Number: RN104989116 Customer Reference Number: CN600885248

Dear Mr. Strawbridge:

The Texas Commission on Environmental Quality (TCEQ) has made a preliminary decision on the above-referenced application. In accordance with Title 30 Texas Administrative Code § 39.419(b), you are now required to publish Notice of Application and Preliminary Decision. You must provide a copy of this preliminary decision letter with the draft permit at the public place referenced in the public notice.

If you have any questions, please call Ms. Laura Gibson, P.E. at (512) 239-2175, or write to the TCEQ, Office of Air, Air Permits Division, MC-163, P.O. Box 13087, Austin, Texas 78711-3087.

Sincerely.

Daniel Guthrie, Manager

Daniel Suthine

Energy New Source Review Permits Section

Air Permits Division

Enclosure

cc: Sarah Garza, Port of Corpus Christi Authority

Joe Ibanez, TRICORD Consulting, LLC, Frisco Air Section Manager, Region 14 - Corpus Christi

Project Number: 309311

Special Conditions

Permit Number 159254

- 1. This permit covers only those sources of emissions listed in the attached table entitled "Emission Sources Maximum Allowable Emission Rates" (MAERT), and those sources are limited to the emission limits and other conditions specified in that table.
- 2. Non-fugitive emissions from relief valves, safety valves, or rupture discs of gases containing volatile organic compounds (VOC) at a concentration of greater than 1 weight percent are not authorized by this permit unless authorized on the MAERT. Any releases directly to atmosphere from relief valves, safety valves, or rupture discs of gases containing VOC at a concentration greater than 1 weight percent are not consistent with good practice for minimizing emissions.

Federal Applicability

- 3. These facilities shall comply with all applicable requirements of the U.S. Environmental Protection Agency (EPA) regulations on National Emission Standards for Hazardous Air Pollutants for Source Categories in 40 CFR Part 63:
 - A. Subpart A, General Provisions,
 - B. Subpart Y, Marine Tank Vessel Loading Operations.

Loading Operations

4. Loading operations are limited to the liquids identified below at the rates indicated. Each loading EPN: RCLOAD, SDBLOAD, OBLOAD, SLOAD may load up to the hourly limit shown below.

Liquid	Gallons per Hour	Thousand Gallons (Mgal) per rolling 12 months
Gasoline	351,000	
Crude Oil (RVP 5)	351,000	1 205 020
Jet Fuel	351,000	1,395,030
Diesel	351,000	
Methyl-tert-butyl- ether (MTBE)	52,650	114,975

- A. All loading shall be submerged or bottom loaded and rolling 12-month rack throughput records shall be updated on a monthly basis for each product loaded. The rolling 12-month rack throughput shall be the sum of throughputs from all 4 product loading liquids (Gasoline, Crude Oil, Jet Fuel and Diesel), and this throughput total shall be compared to above combined limit to ensure compliance. If the combined rolling 12-month throughput exceeds the above limit, annual emission calculations using actual throughputs and those methods represented in the Permit application received by TCEQ November 22, 2019 shall be kept demonstrating compliance with Controlled Loading Annual Emission Cap in the MAERT.
- B. All lines and connectors shall be visually inspected for any defects prior to hookup. Lines and connectors that are visibly damaged shall be removed from service. Operations shall cease immediately upon detection of any liquid leaking from the lines or connections.

C. Gasoline, MTBE, and Crude Oil loading emissions shall be vented to a Vapor Combustion Unit (VCU) for 99% control.

Railcar Leak Testing

- 5. In order to ensure 100% capture efficiency during railcar loading, the following requirements must be met:
 - A. Each railcar to be loaded shall be pressure certified in accordance with all applicable Department of Transportation (DOT) testing requirements or equivalent. The holder of this permit shall not allow a railcar to be loaded unless it has passed the DOT testing or equivalent. A record of the date on which the testing was performed shall be maintained for each railcar and shall be sufficient evidence that the testing was performed.
 - B. Hard-piped or bolted connections, dry lock design hard piped loading arms, and/or pressure-rated chemical transfer hoses shall be used for all pressurized loading operations.
 - C. Each railcar to be loaded shall be designed to handle a pressure of 15 psi gauge or greater.
 - D. Each railcar to be loaded shall not be equipped with a spew gauge.

Vacuum Loading at Inland Shallow Draft Barges

6. A blower system shall be installed to produce a vacuum in the inland barges during all loading operations. A pressure/vacuum gauge shall be installed on the suction side of the loading rack blower system adjacent to the barge being loaded to verify a vacuum in that vessel. Loading shall not occur unless there is a vacuum of at least 1.5-inch water column being maintained by the vacuum-assist vapor collection system when loading barges. The vacuum shall be recorded every 15 minutes during loading.

Marine Loading (99%)

- 7. The following additional requirements apply to loading of a volatile organic compound (VOC) which has a vapor pressure equal to or greater than 0.5 pounds per square inch absolute(psia) under actual storage conditions onto inerted marine vessels (ships and ocean going barges).
 - A. Before loading, the owner or operator of the marine terminal shall verify that the marine vessel has passed an annual vapor tightness test as specified in 40 CFR§63.565(c) (September 19, 1995) or 40 CFR §61.304(f) (October 17, 2000) within the previous twelve months, and received a recent, completed Standard Tanker Chartering Questionnaire form (Q88) or equivalent.
 - B. The pressure at the vapor collection connection of an inerted marine vessel must be maintained such that the pressure in a vessel's cargo tanks do not go below 0.2 pounds per square inch gauge (psig) or exceed 80% of the lowest setting of any of the vessel's pressure relief valves. The lowest vessel cargo tank or vent header pressure relief valve setting for the vessel being loaded shall be recorded. Pressure shall be continuously monitored while the vessel is being loaded. Pressure shall be recorded at fifteen-minute intervals.
 - C. VOC loading rates shall be recorded during loading. The loading rate must not exceed the maximum permitted loading rate.

- D. During loading, the owner or operator of the marine terminal or of the marine vessel shall conduct audio, olfactory, and visual (AVO) checks for leaks within the first hour of loading and once every 8 hours thereafter for on-shore equipment and onboard the ship.
 - (1) If a liquid leak is detected during loading and cannot be repaired immediately (for example, by tightening a bolt or packing gland), then the loading operation shall cease until the leak is repaired.
 - (2) If a vapor leak is detected by sight, sound, smell, or hydrocarbon gas analyzer during the loading operation, then a "first attempt" shall be made to repair the leak. Loading operations need not be ceased if the first attempt to repair the leak is not successful provided that the first attempt effort is documented by the owner or operator of the marine vessel and a copy of the repair log is made available to a representative of the marine terminal.
 - (3) If the attempt to repair the leak is not successful and loading continues, emissions from the loading operation for that ship shall be calculated assuming a collection efficiency of 95%.

The date and time of each inspection shall be noted in the operator's log or equivalent. Records shall be maintained at the plant site of all repairs and replacements made due to leaks. These records shall be made available to representatives of the Texas Commission on Environmental Quality upon request.

Vapor Combustors BACT Conditions

- 8. Vapor Combustors (EPNs VCU-1, VCU-2) shall be designed and operated in accordance with the following requirements:
 - A. The vapor combustor unit shall each achieve 99% control of the waste gas directed to it. This shall be ensured by maintaining the temperature in, or immediately downstream of, the combustion chamber above 1400°F prior to the initial stack test performed in accordance with Special Condition 12. Following the completion of that stack test, the six-minute average temperature shall be maintained above the minimum one-hour average temperature maintained during the last satisfactory stack test.
 - B. The temperature measurement device shall reduce the temperature readings to an averaging period of 6 minutes or less and record it at that frequency. The temperature monitor shall be installed, calibrated or have a calibration check performed at least annually, and maintained according to the manufacturer's specifications. The device shall have an accuracy of the greater of ±2 percent of the temperature being measured expressed in degrees Celsius or ±2.5°C.
 - C. Quality assured (or valid) data must be generated when the VCU is operating except during the performance of a daily zero and span check. Loss of valid data due to periods of monitor break down, out-of-control operation (producing inaccurate data), repair, maintenance, or calibration may be exempted provided it does not exceed 5 percent of the time (in minutes) that the VCU operated over the previous rolling 12-month period. The measurements missed shall be estimated using engineering judgment and the methods used recorded.

The vapor combustor shall be operated with no visible emissions and have a constant pilot flame during all times waste gas could be directed to it. The pilot flame shall be continuously monitored by a thermocouple or an infrared monitor. The time, date, and duration of any loss of pilot flame shall be recorded. Each monitoring device shall be accurate to, and shall be

calibrated or have a calibration check performed at a frequency in accordance with, the manufacturer's specifications.

Opacity / Visible Emissions Limitations

- 9. During normal operations, opacity of emissions from sources authorized by this permit shall not exceed 5 percent averaged over a six-minute period. During periods of startup, shutdown or maintenance, the opacity from the stacks shall not exceed 15 percent over a six-minute period. The permit holder shall demonstrate compliance with this Special Condition in accordance with the following procedures:
 - A. Visible emission observations shall be conducted and recorded at least once during each calendar quarter while the facility is in operation, unless the emission unit is not operating for the entire calendar quarter.
 - B. Continuous demonstration of compliance with this special condition can be demonstrated by conducting and recording visible emissions observations during normal operations. This determination shall be made by first observing for visible emissions while each facility is in operation. Observations shall be made at least 15 feet and no more than 0.25 mile from the emission point(s). Up to three emissions points may be read concurrently, provided that all three emissions points are within a 70 degree viewing sector or angle in front of the observer such that the proper sun position (at the observer's back) can be maintained for all three emission points. A certified opacity reader is not required for these visible emission observations.
 - C. If visible emissions are observed from an emission point, then opacity shall be determined and documented within 24 hours for that emission point using Title 40 Code of Federal Regulations Part 60 (40 CFR Part 60), Appendix A, Reference Method 9. Contributions from uncombined water shall not be included in determining compliance with this condition.
 - D. If the opacity limits of this Special Condition are exceeded, corrective action to eliminate the source of visible emissions shall be taken promptly and documented within one week of first observation.
 - E. Visible emissions or opacity observations for any source authorized by this permit shall be made upon demand of a representative of the TCEQ or any air pollution control program with jurisdiction. When such observations are required, the methods used and the observation period duration shall be as specified in this Special Condition unless otherwise specified by the person requiring the observation to be conducted.

Vapor Combustor Stack Sampling

10. The permit holder shall perform stack sampling and other testing as required to establish the actual pattern and quantities of air contaminants being emitted into the atmosphere from the vapor combustors (EPNs VCU-1, VCU-2) to demonstrate acceptable VOC destruction removal efficiency and compliance with the MAERT. The permit holder is responsible for providing sampling and testing facilities and conducting the sampling and testing operations at its expense. Sampling shall be conducted in accordance with the appropriate procedures of the Texas Commission on Environmental Quality (TCEQ) Sampling Procedures Manual and the U.S. Environmental Protection Agency (EPA) Reference Methods.

Requests to waive testing for any pollutant specified in this condition shall be submitted to the TCEQ Office of Air, Air Permits Division. Test waivers and alternate/equivalent procedure proposals for Title 40 Code of Federal Regulation Part 60 (40 CFR Part 60) testing which must have EPA approval shall be submitted to the TCEQ Regional Director.

- A. The appropriate TCEQ Regional Office shall be notified not less than 45 days prior to sampling. The notice shall include:
 - (1) Proposed date for pretest meeting.
 - (2) Date sampling will occur.
 - (3) Name of firm conducting sampling.
 - (4) Type of sampling equipment to be used.
 - (5) Method or procedure to be used in sampling.
 - (6) Description of any proposed deviation from the sampling procedures specified in this permit or TCEQ/EPA sampling procedures.
 - (7) Procedure/parameters to be used to determine worst case emissions.

The purpose of the pretest meeting is to review the necessary sampling and testing procedures, to provide the proper data forms for recording pertinent data, and to review the format procedures for the test reports. The TCEQ Regional Director must approve any deviation from specified sampling procedures.

- B. Air contaminants emitted from the vapor combustors (EPNs VCU-1 and VCU-2) to be tested for include (but are not limited to) VOC, NO_x, and CO.
- C. Sampling shall occur within 60 days after achieving the maximum operating rate, but no later than 180 days after initial start-up of the facilities and at such other times as may be required by the TCEQ Executive Director. Requests for additional time to perform sampling shall be submitted to the appropriate regional office.
- D. The facility being sampled shall operate at maximum loading of materials with the highest VOC content during stack emission testing. These conditions/parameters and any other primary operating parameters that affect the emission rate shall be monitored and recorded during the stack test. Any additional parameters shall be determined at the pretest meeting and shall be stated in the sampling report. Permit conditions and parameter limits may be waived during stack testing performed under this condition if the proposed condition/parameter range is identified in the test notice specified in paragraph A and accepted by the TCEQ Regional Office. Permit allowable emissions and emission control requirements are not waived and still apply during stack testing periods.

During subsequent operations, if the VOC content of the material is greater than that recorded during the test period, stack sampling shall be performed at the new operating conditions within 120 days. This sampling may be waived by the TCEQ Air Section Manager for the region.

E. Copies of the final sampling report shall be forwarded to the offices below within 60 days after sampling is completed. Sampling reports shall comply with the attached provisions entitled "Chapter 14, Contents of Sampling Reports" of the TCEQ Sampling Procedures Manual. The reports shall be distributed as follows:

One copy to the appropriate TCEQ Regional Office.

- One copy to each local air pollution control program.
- F. Sampling ports and platform(s) shall be incorporated into the design of vapor combustors (EPNs VCU-1 and VCU-2) according to the specifications set forth in the attachment entitled "Chapter 2, Guidelines For Stack Sampling Facilities" of the Texas Commission on Environmental Quality (TCEQ) Sampling Procedures Manual. Alternate sampling facility designs must be submitted for approval to the TCEQ Regional Director.

Vapor Combustor Pilot/Assist Gas Sulfur Condition

11. Fuel gas combusted at this facility shall be sweet natural gas containing no more than 0.2 grains of total sulfur per 100 dry standard cubic feet.

Recordkeeping

- 12. The following records (written or electronic) shall be maintained by the holder of this permit in a form suitable for inspection for a period of five years after collection and shall be made available upon request to representatives of the TCEQ, EPA, or any local air pollution control program having jurisdiction:
 - A. A copy of this permit.
 - B. Permit application received by TCEQ November 22, 2019, and subsequent applications and representations submitted to the TCEQ.
 - C. Records sufficient to show compliance with loading limits in Special Condition No. 4.
 - D. Records of line / connector leak checks, railcar leak testing, barge vacuum pressure readings, marine loading vapor recovery connection pressure readings, marine loading AVO inspections, marine loading leak repairs and replacements, and VCU pilot flame monitoring as specified in above special conditions.
 - E. A complete copy of the testing reports and records of initial performance testing (stack sampling) completed to demonstrate initial compliance of VCUs and reports and records for any subsequent stack sampling.
 - F. Records of visible emissions, opacity observations, and any corrective actions taken to demonstrate compliance with Special Condition No. 11.
 - G. Records of natural gas fuel sulfur content based on receipts or chemical analyses as required by Special Condition No. 13.
- 13. The following facilities are authorized by permits by rule (PBR) under 30 TAC Chapter 106. The authorization is listed here for reference purposes only. This list is not intended to be all inclusive and can be altered without modifications to the permit.

Authorization	Facilities	
§ 106.263 (effective 11/01/2001)	MSS	

Date: xxxxxx

Emission Sources - Maximum Allowable Emission Rates

Permit Number 159254

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1) Source Name (2)		Air Contonin and Name (2)	Emission Rates		
Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	lbs/hour	TPY (4)	
RCLOAD	Railcar Loading Fugitives	VOC	15.38		
SBDLOAD	Shallow Draft Barge Loading Fugitives	VOC	12.81	See Loading Fugitives	
OBLOAD	Ocean Barge Loading Fugitives	VOC	22.53	Annual Cap	
SLOAD	Ship Loading Fugitives	voc	9.01		
VCU-1	Railcar VCU	VOC	27.03		
		NOx	7.35		
	`	co	14.67		
		SO ₂	19.74		
		PM	0.40		
		PM ₁₀	0.40		
	PM _{2.5}	0.40			
		H ₂ S	0.11	See Controlled	
VCU-2	Marine Vessel VCU	VOC	22.53	Loading Annual Cap	
		NOx	6.13		
		СО	12.23		
		SO ₂	16.45		
		PM	0.33		
		PM ₁₀	0.33		
		PM _{2.5}	0.33		
		H ₂ S	0.09		
RCLOAD, SBDLOAD, OBLOAD, SLOAD	Loading Fugitives Annual Cap from all loading points (6)	VOC	See RCLOAD, SBDLOAD, OBLOAD, SLOAD	40.04	
	1	<u>l</u>	1	<u> </u>	

Project Number: 309311

Emission Sources - Maximum Allowable Emission Rates

Foots at an Bata (A)	0	A:- 0 (0)	Emission I	Rates
Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	lbs/hour	TPY (4)
VCU-1, VCU-2	Controlled Loading Annual Cap from all	VOC		48.05
	controlled loading	NO _x		13.25
	points (6)	СО		26.44
		SO ₂		15.00
		РМ	See VCU-1, VCU-2	0.72
		PM ₁₀		0.72
		PM _{2.5}		0.72
		H ₂ S		0.08
FUG	Fugitive Piping Components (5)	VOC	2.24	9.82

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

 $\begin{array}{ccc} \text{CO} & - \text{ carbon monoxide} \\ \text{H}_2 \text{S} & - \text{ hydrogen sulfide} \\ \end{array}$

(4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.

(5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

(6) Annual caps are not per included EPN but the sum of all included EPNs.

Date:	XXXXXX	

NSR Application for Bulk Dock 3 Expansion Project

October 2019

Port of Corpus Christi Authority of Nueces County

Port of Corpus Christi Authority 202 Bulk Materials Dock Road Corpus Christi, Texas 78402

4760 Preston Rd. Suite 244-193 Frisco, Texas 75034 Phone and Fax: (888) 900-0746

TABLE OF CONTENTS

1	Intr	oduction	1-1
	1.1	Facility Information	1-1
	1.2	Purpose of Request	1-1
	1.3	Federal New Source Review Permitting Applicability	1-1
	1.4	Permit Application Forms and Tables	1-2
	1.5	Application Fees and Professional Engineer Certification	1-2
2	Proc	cess Description	2-1
	2.1	Bulk Dock 3 Expansion Project Operations	2-1
	2.2	PBR Consolidation	2-1
3	Emi	ssion Calculation Methodology	3-1
	3.1	Loading Operations – Uncaptured Fugitive Emissions	3-1
	3.2	Loading Operations - Vapor Combustion Unit	3-1
	3.3	Equipment Leak Fugitives	3-2
4	Best	Available Control Technology	4-1
5	Reg	ulatory Applicability	5-1
LIST	OF F	FIGURES	
Figui	e 1-1:	: Facility Plot Plan	1-3
Figu	e 1-2	: Facility Aerial Map	1-4
Figui	re 2-1:	: Process Flow Diagram - Bulk Dock 3 Project	2-2
LIST	OF A	APPENDICES	
Appe	endix	A TCEQ Administrative Forms and Tables	
Арре	endix	B TCEQ Technical Tables	
Арре	endix	C Detailed Emission Rate Calculations	
Арре	endix	D PBR 148696 Incorporation	
Appe	endix	E Air Quality Analysis Summary	

1

INTRODUCTION

Port of Corpus Christi Authority of Nueces County (PCCA) hereby requests an initial case-by-case New Source Review (NSR) permit under Title 30 of the Texas Administrative Code (30 TAC) Chapter 116 Subchapter B. The purpose of the project is to authorize an expansion of the PCCA's existing Bulk Dock 3 loading operations, including an increase in gasoline and diesel loading throughputs and to add crude oil, liquified petroleum gas (LPG), and jet fuel loading capabilities. This planned expansion is in response to new contracts with third party vendors interested in using the port to transfer more petroleum products. This project is herein referred to as the "Bulk Dock 3 Expansion Project". As part of this project, PCCA will consolidate via incorporation, the existing Permit by Rule (PBR) Registration No. 148696 which authorizes PCCA's existing Bulk Dock 3 loading operations.

1.1 Facility Information

PCCA owns and operates a bulk material handling facility located in Nueces County, Texas. PCCA has been assigned the Texas Commission on Environmental Quality (TCEQ) Customer Number CN600885248. The Regulated Entity Number for the site is RN104989116. The facility is located at 202 Bulk Materials Dock Road, Corpus Christi, Texas. The Standard Industrial Classification (SIC) Code for the facility is 4491.

The loading location is shown on the plot plan provided in **Figure 1-1** and includes the site orientation and scale. **Figure 1-2** is an aerial map showing the location of the project operations.

1.2 Purpose of Request

PCCA is requesting a new case-by-case NSR permit under 30 TAC Chapter 116 Subchapter B to authorize emissions associated with the planned Bulk Dock 3 Expansion Project. With this project, PCCA is planning to increase authorized marine vessel and railcar loading throughputs of gasoline and diesel and to authorize marine vessel and railcar loading of crude oil, LPG, and jet fuel. The loading operations will include two vapor combustion units (VCUs) for emission controls and new fugitive piping components, including pumps, valves and flanges.

A more detailed description of the project is provided in **Section 2** of this permit application.

1.3 Federal New Source Review Permitting Applicability

Nueces County is designated as an attainment or unclassified area for all criteria air pollutants; therefore, PCCA projects are not subject to non-attainment NSR permitting requirements. However, PCCA projects do need to be evaluated for purposes of the Prevention of Significant Deterioration (PSD) major NSR permit program. PCCA is a minor source as defined within the PSD program.

The Bulk Dock 3 Expansion Project will include the addition of new emission sources. As a result of these physical changes, there will be increases in allowable emissions of multiple criteria pollutants. However, as demonstrated in Table 1-1, the project emissions are less than the associated PSD major source thresholds; therefore, this project does not trigger major NSR.

Table 1-1
PSD Applicability Evaluation Summary

Pollutant	Project Increases Only (tpy)	PSD Major Source Threshold (tpy)	Is Netting Required? (Yes/No)	PSD Net Emissions Increases (tpy)	Is PSD Review Required? (Yes/No)
NOx	14.44	250	No		No
СО	28.84	250	No		No
VOC	97.93	250	No		No
SO ₂	0.06	250	No		No
H ₂ S	0.00	10	No		No
PM	0.78	250	No		No
PM ₁₀	0.78	250	No		No
PM2.5	0.78	250	No		No

Detailed project emissions calculations are provided in **Appendix C**.

1.4 Permit Application Forms and Tables

The following TCEQ administrative forms and tables are included in **Appendix A**:

• Form PI-1, General Application v 3.3

The following TCEQ technical table is included in **Appendix B**:

• Table 2: Material Balance

1.5 Application Fees and Professional Engineer Certification

The permit application fee was calculated per the TCEQ NSR permit guidance (see **Estimated Capital Cost and Fee Verification** in **Appendix A**) and was paid online, concurrent with this application submittal. The estimated capital cost of the project is less than \$2 million; therefore, a Professional Engineer Certification is not required.

Figure 1-1 Facility Plot Plan

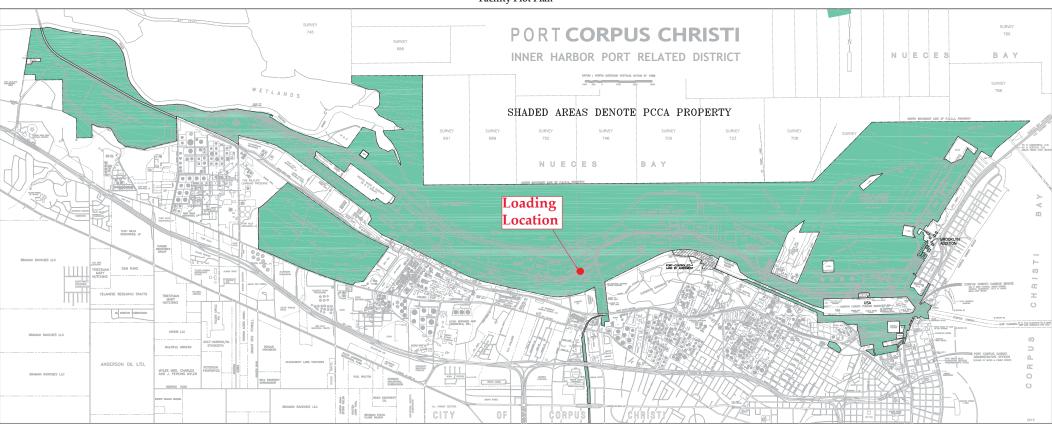


Figure 1-2: Facility Aerial Map

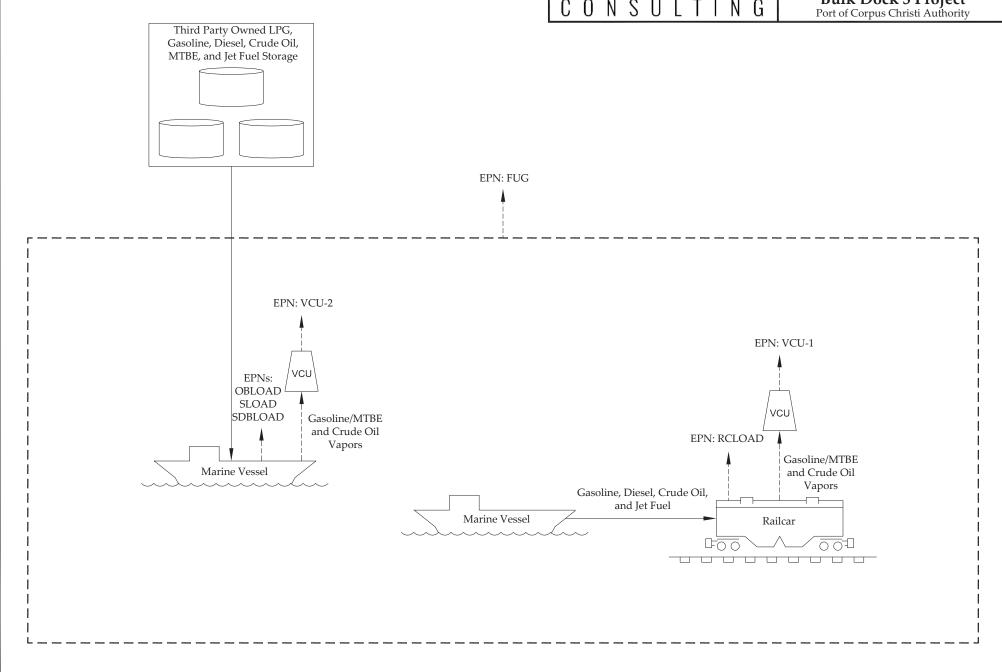
PROCESS DESCRIPTION

2.1 Bulk Dock 3 Expansion Project Operations

PCCA plans to authorize the following primary operations in this permit application:

- 1. Loading of gasoline, gasoline additive (methyl-tert-butyl-ether [MTBE]), crude oil, diesel, jet fuel, and LPG from marine vessels directly into railcars. The gasoline/gasoline additive and crude oil railcar loading operations will be controlled by a VCU (emission point numbers [EPNs]: RCLOAD and VCU-1, respectively). The diesel and jet fuel operations are uncontrolled (EPN: RCLOAD). The MTBE will be routed from a storage tank offsite and inline mixed with the gasoline prior to loading into the railcars. LPG loading will be conducted under pressure, and there will be no emissions of LPG from loading during routine operations.
- 2. Loading of gasoline, gasoline additive (MTBE), crude oil, diesel, jet fuel, and LPG from storage tanks into marine vessels. The storage tanks are not owned and operated by PCCA and are authorized by the TCEQ under a separate air permit. The gasoline/gasoline additive and crude oil loading operations will be controlled by a VCU (EPNs: OBLOAD, SLOAD, SDBLOAD, and VCU-2). The diesel and jet fuel loading operations are uncontrolled (EPN: OBLOAD, SLOAD, and SDBLOAD). LPG loading will be conducted under pressure, and there will be no emissions of LPG from loading during routine operations. Marine vessels may include shallow draft barges (i.e. inland barges), ocean barges, and ships. The MTBE will be routed from a storage tank offsite and in-line mixed with the gasoline prior to loading into the marine vessels. In addition to the primary operations described above, the loading activities will also include other emissions from ancillary equipment and piping, including valves, flanges, and pumps.

A process flow diagram (PFD) is provided as Figure 2-1 on the following page.


2.2 PBR Consolidation

PCCA is hereby consolidating via incorporation, PBR Registration 148696 into this NSR application. The purpose of the PBR was to register activities and associated emissions from marine vessel and railcar loading operations. For continuity and consistency purposes, PCCA is re-calculating the emissions associated with the PBR as part of the total project operations emissions provided in **Appendix C** of the application. After the PBR was approved by the TCEQ in November 2017, PCCA engaged in discussions with several third parties to potentially expand the Bulk Dock 3 loading operations and add additional material loading operations. Emissions from the new loading rates and the number of different materials do not qualify for PBR, which is why PCCA is authorizing the proposed expansion project under a case-by-case Chapter 116 Subchapter B NSR permit.

A copy of the PBR issuance letter is included in **Appendix D**.

Figure 2-1
Process Flow Diagram
Bulk Dock 3 Project
Port of Corpus Christi Authority

EMISSION CALCULATION METODOLOGY

This section describes the emission calculation methodologies used to calculate the proposed hourly and annual pollutant emission rates from the activities associated with this permit application. Detailed calculations are provided in **Appendix C**.

3.1 Loading Operations – Uncaptured Fugitive Emissions

Uncaptured fugitive emissions from loading of gasoline, crude oil, MTBE, diesel, and jet fuel are calculated using Equation 1 from the United States Environmental Protection Agency's (U.S. EPA's) AP-42 Section 5.2. Gasoline, gasoline/MTBE, and crude oil loading will be controlled by a VCU with 99% destruction efficiency, per TCEQ best available control technology (BACT) for vapor combustors. Railcar loading of gasoline and crude oil uses a capture efficiency of 100% for annually pressure-tested railcars that use hard-piped or bolted connections, consistent with TCEQ - established Tier 1 BACT. The gasoline, gasoline/MTBE, and crude oil marine vessel loading operations use the following capture efficiencies:

- Shallow draft barges: 100%, consistent with vacuum loading for inland barges, as specified in the TCEQ Air Permit Technical Guidance for Chemical Sources: Loading Operations (October 2000).
- Ships: 99%, consistent with Air Permits Division "Marine Loading Collection Efficiency Guidance" (September 21, 2016) for marine loading operations with no additional testing requirements.
- Ocean barges: 99%, consistent with Air Permits Division "Marine Loading Collection Efficiency Guidance" (September 21, 2016) for marine loading operations with no additional testing requirements.

Diesel and jet fuel marine vessel and railcar loading are uncontrolled. LPG railcar and marine vessel loading are conducted under pressure; therefore, there are no emissions associated with the activities other than from equipment leak fugitives. Detailed emissions calculations are provided in **Table C-2** in **Appendix C**.

3.2 Loading Operations - Vapor Combustion Unit

Captured Loading Emissions

Volatile organic compound (VOC) emissions from the VCU from combusting captured vapors are estimated based on a 99% VOC destruction efficiency, which is consistent with TCEQ-established BACT for VCUs. Emissions of carbon monoxide (CO) and nitrogen oxides (NOx) are based on emission factors from the TCEQ Guidance Document for Flares and Vapor Oxidizers (October 2000). Particulate matter (PM) and sulfur dioxide (SO₂) emissions are based on U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2 (July 1998).

Pilot and Supplemental Fuel Gas Vapors

Emissions of CO and NO_x from the combustion of pilot and assist gas are estimated using emission factors from the TCEQ Guidance Document for Flares and Vapor Oxidizers (October 2000). VOC,

PM, and SO₂ emissions from pilot and assist gas combustion are estimated based on the emission factors from U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2 (July 1998).

Emission calculations for the VCUs are presented in Table C-3 and C-4 in Appendix C.

3.3 Equipment Leak Fugitives

Emissions from piping components associated with the loading operations are estimated based on the Petroleum Marketing Terminal Emission Factors from the TCEQ's Air Permit Technical Guidance for Chemical Sources, Fugitive Guidance (June 2018).

Emission calculations for fugitive piping components are provided in Table C-5 in Appendix C.

4

BEST AVAILABLE CONTROL TECNOLOGY

BACT is addressed in Form PI-1 General Application BACT table in **Appendix A**.

5

REGULATORY APPLICABILITY

Pursuant to TCEQ 30 TAC §116.111, PCCA will meet all rules and regulations of the TCEQ and the intent of the Texas Clean Air Act (TCAA) for the emission sources and activities addressed in this permit application, as follows:

- §116.111(a)(1) A completed Form PI-1 has been signed by an authorized representative of PCCA and is included in **Appendix A**.
- §116.111(a)(2)(A) through (L) These items are addressed individually below.
- §116.111(b) PCCA will comply with applicable 30 TAC 39 and 30 TAC 55 public notice and public participation requirements for this permit application.

General Application Requirements - §116.111(a)(2)(A)

The emissions associated with the units described in this permit application will comply with all applicable air quality rules and regulations and with the intent of the Texas Clean Air Act (TCAA), including protection of the health and the physical property of the people, as required by 30 TAC §116.111(a)(2)(A)(i). Following is a summary of rules and regulations as they apply to the proposed project:

- 30 TAC Chapter 101 General Rules: PCCA will operate on-site facilities in accordance with the General Rules relating to circumvention, nuisance, traffic hazard, sampling, sampling ports, emissions inventory requirements, and sampling procedures and terminology. PCCA will also comply with any applicable U.S.EPA Standards, the National Primary and Secondary Air Quality Standards, inspection fees, emissions fees, and all other applicable General Rules.
- <u>30 TAC Chapter 111 Visible Emissions and Particulate Matter</u>: The loading activities may result in visible emissions, but not in excess of the opacity limits specified in §111.111. The VCUs will comply with the allowable PM emission rates specified in §111.151 (PM calculations are provided in appendices).
- <u>30 TAC Chapter 112 Sulfur Compounds</u>: For Nueces County, the net ground level concentration of sulfur dioxide (SO₂) is limited to 0.4 ppm_v averaged over any 30-minute period. There are no emissions of SO₂ or hydrogen sulfide (H₂S) requested as part of this permit application.
- 30 TAC Chapter 113 Toxic Materials: PCCA will comply with applicable requirements of 40 CFR Part 63, specifically Subpart Y for "Marine Vessel Loading Operations", which has been incorporated into Subchapter C of Chapter 113. Accordingly, PCCA will also comply with the General Provisions of Part 63 contained in 40 CFR Part 63 Subpart A.
- <u>30 TAC Chapter 114 Motor Vehicles</u>: There are no motor vehicles specifically associated with the proposed project. To the extent that motor vehicles are owned by PCCA, the company will continue to comply with applicable requirements in 30 TAC §114.20.

- 30 TAC Chapter 115 Volatile Organic Compounds: PCCA is located in Nueces County which is subject to the provisions of this chapter. PCCA will comply with all applicable requirements under 30 TAC Chapter 115.
- <u>30 TAC Chapter 116 Permits for New Construction or Modification</u>: This permit application is submitted to comply with Chapter 116 permitting requirements.
- <u>30 TAC Chapter 117 Nitrogen Compounds</u>: The requirements of Chapter 117 are not applicable to sources in Nueces County. Therefore, this rule does not apply.
- <u>30 TAC Chapter 118 Air Pollution Episodes</u>: Nueces County is not a designated county under Chapter 118. Therefore, this rule does not apply.
- <u>30 TAC Chapter 122 Federal Operating Permits (FOPs)</u>: PCCA is a minor source under the Federal Operating Permit (FOP) program.

Emissions Measurement - §116.111(a)(2)(B)

Emissions will be sampled upon request of the TCEQ.

Best Available Control Technology - §116.111(a)(2)(C)

Section 4 of this application presents a discussion of BACT for the allowable emission increases associated with this application.

New Source Performance Standards (NSPS) - §116.111(a)(2)(D)

There are no New Source Performance Standards (NSPS) that apply to the Bulk Dock 3 Expansion Project.

Maximum Achievable Control Technology (MACT) - §116.111(a)(2)(F)

PCCA will comply with applicable requirements of 40 CFR Part 63, specifically Subpart Y for "Marine Vessel Loading Operations". Accordingly, PCCA will also comply with the General Provisions of Part 63 contained in 40 CFR Part 63 Subpart A.

Performance Demonstration - §116.111(a)(2)(G)

The sources and activities to be permitted as part of the requested permit are expected to perform as represented in this application.

Non-attainment NSR Review §116.111(a)(2)(H)

The site is not located in a non-attainment county. Therefore, the site is not subject to an NSR non-attainment review.

Prevention of Significant Deterioration (PSD) - §116.111(a)(2)(I)

The emission sources and pollutants were evaluated to determine whether PSD permitting review is required based on estimating the proposed emission rate increases of criteria pollutants. This evaluation resulted in the conclusion that the proposed project is not subject to PSD permitting requirements for any criteria pollutants.

Air Dispersion Modeling - §116.111(a)(2)(J)

An qualitative air dispersion modeling summary is provided in **Appendix** E. The TCEQ's Electronic Modeling Evaluation Workbook (EMEW) and supporting files were submitted concurrent with the application.

FCAA §112(b) Hazardous Air Pollutants - §116.111(a)(2)(K)

The proposed amendment will not include any new construction or reconstruction to any existing equipment subject to the Federal Clean Air Act (FCAA) §112(g).

Mass Cap and Trade Allowances - §116.111(a)(2)(L)

The facility is not subject to the Mass Emissions Cap and Trade Program under 30 TAC Chapter 101, Subchapter H, Division 3.

TCEQ ADMINISTRATIVE FORMS AND TABLES

Form PI-1 General Application v 3.3 is included in this appendix.

Date: 10/15/2019 Permit #: TBD Company: PORT OF CORPUS CHRISTI **AUTHORITY OF NUECES COUNTY**

I. Applicant Information I acknowledge that I am submitting an authorized TCEQ application workbook and any necessary attachments. Except for inputting the requested data and adjusting row height, I I agree have not changed the TCEQ application workbook in any way, including but not limited to changing formulas, formatting, content, or protections. A. Company Information Port Of Corpus Christi Authority of Nueces County Company or Legal Name: Permits are issued to either the facility owner or operator, commonly referred to as the applicant or permit holder. List the legal name of the company, corporation, partnership, or person who is applying for the permit. We will verify the legal name with the Texas Secretary of State at (512) 463-5555 or at: www.sos.state.tx.us Texas Secretary of State Charter/Registration N/A Number (if given): B. Company Official Contact Information: must not be a consultant Prefix (Mr., Ms., Dr., etc.): Mr. First Name: Sean Last Name: Strawbridge Title: Chief Exective Officer PO Box 1541 Mailing Address: Address Line 2: Citv: Corpus Christi State: Texas ZIP Code: 78403 Telephone Number: (361) 882-5633 Fax Number: (361) 881-5161 Email Address: Sstrawbridge@pocca.com C. Technical Contact Information: This person must have the authority to make binding agreements and representations on behalf of the applicant and may be a consultant. Additional technical contact(s) can be provided in a cover letter. Prefix (Mr., Ms., Dr., etc.): Ms. First Name: Sarah Last Name: Garza Title: Director of Environmental Planning & Compliance Company or Legal Name: Port Of Corpus Christi Authority of Nueces County Mailing Address: PO Box 1541 Address Line 2: City: Corpus Christi State: Texas 78403 ZIP Code: Telephone Number: (361) 885-6163 Fax Number: (361) 881-5161 Email Address: Sarah@pocca.com

D. Assigned Numbers

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

The CN and RN below are assigned when a Core Data Form is initially submitted to the Central Registry. The RN is also assigned if the agency has conducted an investigation or if the agency has issued an enforcement action. If these numbers have not yet been assigned, leave these questions blank and include a Core Data Form with your application submittal. See Section VI.B. below for additional information.

Enter the CN. The CN is a unique number given to each business, governmental body, association, individual, or other entity that owns, operates, is responsible for, or is affiliated with a regulated entity.	CN600885248
Enter the RN. The RN is a unique agency assigned number given to each person, organization, place, or thing that is of environmental interest to us and where regulated activities will occur. The RN replaces existing air account numbers. The RN for portable units is assigned to the unit itself, and that same RN should be used when applying for authorization at a different location.	RN104989116

II. Delinquent Fees and Penalties		
Does the applicant have unpaid delinquent fees and/or penalties owed to the TCEQ?		
This form will not be processed until all delinquent fees and/or penalties owed to the TCEQ or the		
Office of the Attorney General on behalf of the TCEQ are paid in accordance with the Delinquent Fee	No	
and Penalty Protocol. For more information regarding Delinquent Fees and Penalties, go to the TCEQ		
Web site at:		

www.tceq.texas.gov/agency/financial/fees/delin

III. Permit Information

A. Permit and Action Type (multiple may be selected, leave no blanks)

Additional information regarding the different NSR authorizations can be found at: www.tceg.texas.gov/permitting/air/guidance/authorize.html

Select from the drop-down the type of action being requested for each permit type. If that permit type does not apply, you MUST select "Not applicable".

Provide all assigned permit numbers relevant for the project. Leave blank if the permit number has not yet been assigned.

Permit Type	Action Type Requested (do not leave blank)	Permit Number (if assigned)
Minor NSR (can be a Title V major source): Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Relocation/Alteration, Change of Location, Alteration, Extension to Start of Construction	Initial	
Special Permit: Not applicable, Amendment, Renewal, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	
De Minimis: Not applicable, Initial	Not applicable	
Flexible: Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

			AUTHORITT OF	NUECES COUNT
PSD: Not applicable, Initial, Major Modification	Not applicable			
Nonattainment: <i>Not applicable, Initial, Major</i> <i>Modification</i>	Not applicable			
HAP Major Source [FCAA § 112(g)]: <i>Not</i> applicable, <i>Initial, Major Modification</i>	Not applicable			
PAL: Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Alteration	Not applicable			
GHG PSD: Not applicable, Initial, Major Modification, Voluntary Update	Not applicable			
B. MSS Activities				
How are/will MSS activities for sources associated with this project be authorized?	Permit by Rule			
List the permit number, registration number, and/or PBR number.		106	.263	
C. Consolidating NSR Permits				
Will this permit be consolidated into another NSR pe	ermit with this act	ion?		No
Will NSR permits be consolidated into this permit wi	th this action?			No
D. Incorporation of Standard Permits, Standard I	Exemptions, and	d/or Permits By	Rule (PBR)	
To ensure protectiveness, previously issued authori	,	•	•	,
including those for MSS, are incorporated into a per	•	•		
and/or amendment, consolidation (in some cases) n	nay be voluntary	and referencing is	s mandatory. Mo	re guidance
regarding incorporation can be found at:				
www.tceq.texas.gov/assets/public/permitting/air/me		df		
Are there any standard permits, standard exemptions, or PBRs to		No		
be incorporated by reference?				
Are there any PBR, standard exemptions, or standa	•			
associated to be incorporated by consolidation? Not				
calculations, a BACT analysis, and an impacts analy	<i>*</i>	Yes		
attached to this application at the time of submittal for authorization to be incorporated by consolidation.	or arry			
• • •				
If yes, list any PBR, standard exemptions, or standa	ird permits that	PBR 148696		
need to be consolidated:				
If yes, are emission calculations, BACT analysis, and an impacts				
analysis included for each authorization to be consolidated? If any		Yes		
required information is not provided, the authorization will be incorporated by reference.				
E. Associated Federal Operating Permits	ita anaratina na	mit (SOB) or ac	noral aparating	
Is this facility located at a site required to obtain a si permit (GOP)?	ite operating per	mit (SOF) of ge	nerai operating	No

IV. Facility Location and General Information		
A. Location		
County: Enter the county where the facility is physically located.	Nueces	
TCEQ Region	Region 14	

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI

	General	AUTHORITY OF NUECES COUNTY
County attainment status as of April 30, 2019	attainment or unclassified fo	
Street Address:	202 Bulk Materials Dock Roa	•
City: If the address is not located in a city, then enter the city or town closest to the facility, even if it is not in the same county as the facility.		
ZIP Code: Include the ZIP Code of the physical facility site, not the ZIP Code of the applicant's mailing address.	78402	
Site Location Description: If there is no street address, provide written driving directions to the site. Identify the location by distance and direction from well-known landmarks such as major highway intersections.		
Use USGS maps, county maps prepared by the Tex such as Google Earth to find the latitude and longitu		tion, or an online software application
Latitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address or the destination point of the driving directions. Latitude is the angular distance of a location north of the equator and will always be between 25 and 37 degrees north (N) in Texas.	027:49:04	
Longitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address or the destination point of the driving directions. Longitude is the angular distance of a location west of the prime meridian and will always be between 93 and 107 degrees west (W) in Texas.		
Is this a project for a lead smelter, concrete crushing facility?	g facility, and/or a hazardous	waste management No
B. General Information	T	
Site Name:	Bulk Dock 3	
Area Name: Must indicate the general type of operation, process, equipment or facility. Include numerical designations, if appropriate. Examples are Sulfuric Acid Plant and No. 5 Steam Boiler. Vague names such as Chemical Plant are not acceptable.	Bulk Dock 3 Loading Operat	ions
Are there any schools located within 3,000 feet of the site boundary?	No	
C. Portable Facility		
Permanent or portable facility?	Permanent	
D. Industry Type	I	
Principal Company Product/Business: A list of SIC codes can be found at:	Marine Cargo Handling	
https://www.naics.com/sic-codes-industry-drilldown/		
Principal SIC code:	4491	
NAICS codes and conversions between NAICS and	SIC Codes are available at:	

Date: 10/15/2019 Permit #: TBD

Company: PORT OF CORPUS CHRISTI General **AUTHORITY OF NUECES COUNTY**

www.census.gov/eos/www/naics/									
Principal NAICS code:		488320							
E. State Senator and Representative for this site									
This information can be found at (n	ote, the site is no	t compatible to Internet Explorer):							
https://wrm.capitol.texas.gov/									
State Senator:		Juan Hinojosa							
District:		20							
State Representative: Abel Herrero									
District: 34									
	V. P	roject Information							
A. Description									
Provide a brief description of the									
project that is requested. (Limited	The purpose of t	the project is to authorize an expansion of the PCC	A's existing Bulk						
to 500 characters).	Dock 3 loading of	pperations, including an increase in gasoline and di	esel loading						
	throughputs and	to add crude oil, LPG, and jet fuel loading capabili	ties.						
B. Project Timing									
Authorization must be obtained for	many projects be	fore beginning construction. Construction is broadl	y interpreted as						
anything other than site clearance o	or site preparation	n. Enter the date as "Month Date, Year" (e.g. July 4	, 1776).						
Projected Start of Construction:	Upon Issuance								
Projected Start of Operation:	Upon Issuance								
C. Enforcement Projects									
Is this application in response to or related to an agency investigation notice of violation or									
enforcement action?									
D. Operating Schedule									
Will sources in this project be authorized to operate 8760 hours per year? Yes									
		pplication Materials							
		operation procedures contained in the permit appl	ication shall be						
conditions upon which the permit is	•	§ 116.116)							
A. Confidential Application Mate									
Is confidential information submitted with this application?									
B. Is the Core Data Form (Form 1			No						
https://www.tceq.texas.gov/permitti	ng/central_registı	ry/guidance.html							
C. Is a current area map attached	Yes								
Is the area map a current map with	a true north arrov	w, an accurate scale, the entire plant property, the							
		phical features including, but not limited to,	Voc						
		s such as buildings, residences, schools, parks,	Yes						
hospitals, day care centers, and ch	nospitals, day care centers, and churches?								
Does the map show a 3,000-foot radius from the property boundary?									
D. Is a plot plan attached?			Yes						
Does your plot plan clearly show a north arrow, an accurate scale, all property lines, all emission									
points, buildings, tanks, process ve	ssels, other proc	ess equipment, and two bench mark locations?	Yes						

Page 5 Version 3.3

Date: 10/15/2019 Permit #: TBD

Company: PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY

Does your plot plan identify all emission points on the affected property, including all emission points authorized by other air authorizations, construction permits, PBRs, special permits, and standard permits? Did you include a table of emission points indicating the authorization type and authorization identifier, such as a permit number, registration number, or rule citation under which each emission point is currently authorized? E. Is a process flow diagram attached? Is the process flow diagram sufficiently descriptive so the permit reviewer can determine the raw materials to be used in the process; all major processing steps and major equipment items; individual emission points associated with each process step; the location and identification of all emission abatement devices; and the location and identification of all waste streams (including wastewater streams that may have associated air emissions)? F. Is a process description attached? Does the process description emphasize where the emissions are generated, why the emissions must be generated, what air pollution controls are used (including process design features that minimize emissions), and where the emissions enter the atmosphere? Does the process description also explain how the facility or facilities will be operating when the maximum possible emissions are produced? G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can	
such as a permit number, registration number, or rule citation under which each emission point is currently authorized? E. Is a process flow diagram attached? Is the process flow diagram sufficiently descriptive so the permit reviewer can determine the raw materials to be used in the process; all major processing steps and major equipment items; individual emission points associated with each process step; the location and identification of all emission abatement devices; and the location and identification of all waste streams (including wastewater streams that may have associated air emissions)? F. Is a process description attached? Does the process description emphasize where the emissions are generated, why the emissions must be generated, what air pollution controls are used (including process design features that minimize emissions), and where the emissions enter the atmosphere? Does the process description also explain how the facility or facilities will be operating when the maximum possible emissions are produced? G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can	
Is the process flow diagram sufficiently descriptive so the permit reviewer can determine the raw materials to be used in the process; all major processing steps and major equipment items; individual emission points associated with each process step; the location and identification of all emission abatement devices; and the location and identification of all waste streams (including wastewater streams that may have associated air emissions)? F. Is a process description attached? Does the process description emphasize where the emissions are generated, why the emissions must be generated, what air pollution controls are used (including process design features that minimize emissions), and where the emissions enter the atmosphere? Does the process description also explain how the facility or facilities will be operating when the maximum possible emissions are produced? G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can	
materials to be used in the process; all major processing steps and major equipment items; individual emission points associated with each process step; the location and identification of all emission abatement devices; and the location and identification of all waste streams (including wastewater streams that may have associated air emissions)? F. Is a process description attached? Does the process description emphasize where the emissions are generated, why the emissions must be generated, what air pollution controls are used (including process design features that minimize emissions), and where the emissions enter the atmosphere? Does the process description also explain how the facility or facilities will be operating when the maximum possible emissions are produced? G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can	
Does the process description emphasize where the emissions are generated, why the emissions must be generated, what air pollution controls are used (including process design features that minimize emissions), and where the emissions enter the atmosphere? Does the process description also explain how the facility or facilities will be operating when the maximum possible emissions are produced? G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can	
be generated, what air pollution controls are used (including process design features that minimize emissions), and where the emissions enter the atmosphere? Does the process description also explain how the facility or facilities will be operating when the maximum possible emissions are produced? G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can	
maximum possible emissions are produced? G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can	
or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can	
be emailed with the submittal of this application workbook.	
Are maximum hourly (lb/hr) and maximum annual (tpy) emission rates attached? Emission rates should be reflective of the hours of operation.	
Are emission rates for planned MSS facilities and related activities attached? N/A	
H. Is a material balance (Table 2, Form 10155) attached?	
Table 2 (Form 10155), entitled Material Balance: A material balance representation may be required for all applications to confirm technical emissions information. Typically this is required for refining and chemical manufacturing processes involving reactions, separations, and blending. It may also be requested by the permit reviewer for other applications. Table 2 should represent the total material balance; that is, all streams into the system and all streams out. Additional sheets may be attached if necessary. Complex material balances may be presented on spreadsheets or indicated using process flow diagrams. All materials in the process should be addressed whether or not they directly result in the emission of an air contaminant. All production rates must be based on maximum operating conditions.	
I. Is a list of MSS activities attached?	
J. Is a discussion of state regulatory requirements attached, addressing 30 TAC Chapters 101,	
111, 112, 113, 115, and 117?	
111, 112, 113, 115, and 117? For all applicable chapters, does the discussion include how the facility will comply with the requirements of the chapter? Yes	
For all applicable chapters, does the discussion include how the facility will comply with the	

VII. Signature

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

The owner or operator of the facility must apply for authority to construct. The appropriate company official (owner, plant manager, president, vice president, or environmental director) must sign all copies of the application. The applicant's consultant cannot sign the application. **Important Note: Signatures must be original in ink, not reproduced by photocopy, fax, or other means, and must be received before any permit is issued.**

The signature below confirms that I have knowledge of the facts included in this application and that these facts are true and correct to the best of my knowledge and belief. I further state that to the best of my knowledge and belief, the project for which application is made will not in any way violate any provision of the Texas Water Code (TWC), Chapter 7; the Texas Health and Safety Code, Chapter 382; the Texas Clean Air Act (TCAA); the air quality rules of the Texas Commission on Environmental Quality; or any local governmental ordinance or resolution enacted pursuant to the TCAA. I further state that I understand my signature indicates that this application meets all applicable nonattainment, prevention of significant deterioration, or major source of hazardous air pollutant permitting requirements. The signature further signifies awareness that intentionally or knowingly making or causing to be made false material statements or representations in the application is a criminal offense subject to criminal penalties.

Name:	Sean Strawbridge
Signature:	
	Original signature is required.
Date:	N/A - Signed via ePermits

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

I. NSR Minor Permits								
E. Concrete Batch Plants Only								
Is this a project for a concrete batch plant?								
VII. Federal Regulatory Questions								
Indicate if any of the following requ	irements apply to the proposed facility. Note that some federal regu	lations apply to						
minor sources. Enter all applicable	Subparts.							
A. Title 40 CFR Part 60								
Do NSPS subpart(s) apply to a	Nie							
facility in this application?	No							
B. Title 40 CFR Part 61								
Do NESHAP subpart(s) apply to a	Nia							
facility in this application?	No							
C. Title 40 CFR Part 63								
Do MACT subpart(s) apply to a	V ₂ a							
facility in this application?	Yes							
List applicable subparts you will								
demonstrate compliance with (e.g.	A, Y							
Subpart VVVV)								
	VIII. Emissions Review							
A. Impacts Analysis								
	ase in off-property concentrations of air contaminants requires an a	•						
	regarding the air quality impacts demonstration must be provided							
• • • • • • • • • • • • • • • • • • •	vith all state and federal requirements. Detailed requirements for the	e information						
necessary to make the demonstrat	ion are listed on the Impacts sheet of this workbook.							
Does this project require an impact	s analysis?	Yes						
B. Disaster Review								
If the proposed facility will handle s	ufficient quantities of certain chemicals which, if released accidenta	ally, would cause						
	mmediately dangerous to life and health, a disaster review analysis	•						
as part of the application. Contact the appropriate NSR permitting section for assistance at (512) 239-1250. Additional								
Guidance can be found at:								
www.tceq.texas.gov/permitting/air/nav/air_docs_newsource.html□								
Does this application involve any air contaminants for which a disaster review is required? No								
C. Air Pollutant Watch List								
Certain areas of the state have cor	ncentrations of specific pollutants that are of concern. The TCEQ ha	as designated						
these portions of the state as watch	n list areas. Location of a facility in a watch list area could result in a	additional						
	ected air pollutant(s) or additional permit requirements. The location	ı of the areas						
and pollutants of interest can be fo	und at:							
www.tceq.texas.gov/toxicology/apw	vl/apwl.html							
Is the proposed facility located in a	watch list area?	No						
-	D. Mass Emissions Cap and Trade							
Is this facility located at a site within	n the Houston/Galveston nonattainment area (Brazoria, Chambers,	No						
Fort Rend Galveston Harris Liber	ty Montgomery and Waller Counties)?	No						

Texas Commission on Environmental Quality Form PI-1 General Application Unit Types - Emission Rates

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

Permit primary industry (must be selected for workbook to function)

Chemical / Energy

Action Requested (only 1 action per FIN)	Include these emissions in annual (tpy) summary?	Facility ID Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Current Short- Term (lb/hr)	Current Long- Term (tpy)	Consolidated Current Long- Term (tpy)	Proposed Short-Term (lb/hr)	Proposed Long Term (tpy)	Short-Term Difference (lb/hr)	Long-Term Difference (tpy	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Unit Type Notes (only if "other" unit type in Column O)
New/Modified	No	RCLOAD	RCLOAD	Railcar Loading Fugitives	VOC				15.38		15.38	0	Loading: Railcar	
New/Modified	No	SDBLOAD	SBDLOAD	Shallow Draft Barge Loading Fugitives	VOC				12.81		12.81	0	Loading: Marine Vessel	
New/Modified	No	OBLOAD	OBLOAD	Ocean Barge Loading Fugitives	VOC				22.53		22.53	0	Loading: Marine Vessel	
New/Modified	No	SLOAD	SLOAD	Ship Loading Fugitives	VOC				9.01		9.01	0	Loading: Marine Vessel	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	VOC				27.03		27.03	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	NOx				7.35		7.35	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	CO				14.67		14.67	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	SO2				0.03		0.03	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	PM				0.4		0.4	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	PM10				0.4		0.4	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	PM2.5				0.4		0.4	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	VOC				22.53		22.53	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	NOx				6.13		6.13	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	CO				12.23		12.23	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	SO2				0.03		0.03	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	PM				0.33		0.33	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	PM10				0.33		0.33	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	PM2.5				0.33		0.33	0	Control: Vapor Combustor	
New/Modified	Yes	LDFUG	LDFUG	Loading Fugitives	VOC					43.86	0	43.86	Other	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	VOC					52.63	0	52.63	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	J	NOx					14.44	0	14.44	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL		CO					28.84	0	28.84	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	SO2					0.06	0	0.06	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	PM					0.78	0	0.78	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	PM10					0.78	0	0.78	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	PM2.5					0.78	0	0.78	Control: Vapor Combustor	
New/Modified	Yes	FUG	FUG	Fugitive Piping Components	VOC				0.33	1.45	0.33	1.45	Fugitives: Piping and Equipment Leak	

Texas Commission on Environmental Quality Form PI-1 General Application Stack Parameters

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

Emission Point Discharge Parameters												
	Included in	UTM Coordinates Zone	East (Meters)		Building			_	Temperature (°F)	Fugitives - Length (ft)	Fugitives -	Fugitives - Axis Degrees
RCLOAD	Yes											
SBDLOAD	Yes											
OBLOAD	Yes											
SLOAD	Yes											
VCU-1	Yes											
VCU-2	Yes											
LDFUG	Yes											
LDCNTRL	Yes											
FUG	Yes											

Texas Commission on Environmental Quality Form PI-1 General Application Public Notice

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

	7.01.101.11.1 01.11.02.02.0 000111.1
I. Public Notice App	licability
A. Application Type	
Is this an application for an initial permit?	Yes

B. Project Increases and Public Notice Thresholds (for Initial and Amendment Projects)

Permit #: TBD Company: PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY

Date: 10/15/2019

Pollutant			Proposed Long- Term (tpy)		
VOC			97.94		
PM			0.78		
PM ₁₀			0.78		
PM _{2.5}			0.78		
NO_x			14.44		
CO			28.84		
SO ₂			0.06		
Pb			0.00		
* Notice is required for PM, PM10, and PM2.5 if one of these pollutants is above the threshold.					

^{**} Notice of a GHG action is determined by action type. Initial and major modification always require notice. Voluntary updates require a consolidated notice if there is a change to BACT. Project emission increases of CO2e (CO2 equivalent) are not relevant for determining public notice of GHG permit actions.

C. Is public notice required for this project as represented in this workbook?

Yes

If no, proceed to Section III Small Business Classification.

Note: public notice applicability for this project may change throughout the technical review.

D. Are any HAPs to be authorized/re-authorized with this project? The category "HAPs" must be specifically listed in the public notice if the project authorizes (reauthorizes for renewals) any HAP pollutants.

Ν	(

II. Public Notice Information

Complete this section if public notice is required (determined in the above section) or if you are not sure if public notice is required.

A. Contact Information

Enter the contact information for the **person responsible for publishing.** This is a designated representative who is responsible for ensuring public notice is properly published in the appropriate newspaper and signs are posted at the facility site. This person will be contacted directly when the TCEQ is ready to authorize public notice for the application.

Prefix (Mr., Ms., Dr., etc.):	Ms.
First Name:	Sarah
Last Name:	Garza
Title:	Director of Environmental Planning & Compliance
Company Name:	Port Of Corpus Christi Authority of Nueces County
Mailing Address:	PO Box 1541
Address Line 2:	
City:	Corpus Christi
State:	Texas
ZIP Code:	78403
Telephone Number:	(361) 885-6163
Fax Number:	(361) 881-5161
Email Address:	Sarah@pocca.com
Untar the contact information for th	Table in Contact. This is the placement of monacountative who will be listed in the mobile matical

Enter the contact information for the **Technical Contact**. This is the designated representative who will be listed in the public notice as a contact for additional information.

Prefix (Mr., Ms., Dr., etc.):	Ms.
First Name:	Sarah
Last Name:	Garza
Title:	Director of Environmental Planning & Compliance
Company Name:	Port Of Corpus Christi Authority of Nueces County
Mailing Address:	PO Box 1541

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

Address Line 2:	
City:	Corpus Christi
State:	Texas
ZIP Code:	78403
Telephone Number:	(361) 885-6163
Fax Number:	(361) 881-5161
Email Address:	Sarah@pocca.com

B. Public place

Place a copy of the full application (including all of this workbook and all attachments) at a public place in the county where the facilities are or will be located. You must state where in the county the application will be available for public review and comment. The location must be a public place and described in the notice. A public place is a location which is owned and operated by public funds (such as libraries, county courthouses, city halls) and cannot be a commercial enterprise. You are required to pre-arrange this availability with the public place indicated below. The application must remain available from the first day of publication through the designated comment period.

If this is an application for a PSD, nonattainment, or FCAA §112(g) permit, the public place must have internet access available for the public as required in 30 TAC § 39.411(f)(3).

If the application is submitted to the agency with information marked as Confidential, you are required to indicate which specific portions of the application are not being made available to the public. These portions of the application must be accompanied with the following statement: Any request for portions of this application that are marked as confidential must be submitted in writing, pursuant to the Public Information Act, to the TCEQ Public Information Coordinator, MC 197, P.O. Box 13087, Austin, Texas 78711-3087.

Name of Public Place:	TCEQ Region 14 Office	TCEQ Region 14 Office		
Physical Address:	6300 Ocean Dr, Unit 5839			
Address Line 2:				
City:	Corpus Christi			
ZIP Code:	78412			
County:	Nueces			
Has the public place granted authorization to place the application for public viewing and copying?		Yes		

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

C. Alternate Language Publication

In some cases, public notice in an alternate language is required. If an elementary or middle school nearest to the facility is in a school district required by the Texas Education Code to have a bilingual program, a bilingual notice will be required. If there is no bilingual program required in the school nearest the facility, but children who would normally attend those schools are eligible to attend bilingual programs elsewhere in the school district, the bilingual notice will also be required. If it is determined that alternate language notice is required, you are responsible for ensuring that the publication in the alternate language is complete and accurate in that language.

In that language.	
Is a bilingual program required by the Texas Education Code in the School District?	Yes
Are the children who attend either the elementary school or the middle school closest to your facility eligible to be enrolled in a bilingual program provided by the district?	Yes
If yes to either question above, list which language(s) are required by the bilingual program?	Spanish

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

III. Small Business Classification		
omplete this section to determine small business classification. If a small business requests a permit, agency rules (30 TAC § 9.603(f)(1)(A)) allow for alternative public notification requirements if all of the following criteria are met. If these requirements are net, public notice does not have to include publication of the prominent (12 square inch) newspaper notice.		
Noes the company (including parent companies and subsidiary companies) have fewer than 100 employees or less than \$6 million in annual gross receipts?		
Small business classification:	No	

Texas Commission on Environmental Quality Form PI-1 General Application Federal Applicability

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

7.0				
I. County Classification				
No				
Nueces				
of te the				
pe located in an area that is in attainment or unclassified for all tainment review is not required.				

II. PSD and GHG PSD Applicability Summary					
Is netting required for the PSD analysis for th	No				
Pollutant	Project Increase	Threshold	PSD Review Required?		
CO	28.84	250	No		
NO _x	14.44	250	No		
РМ	0.78	250	No		
PM ₁₀	0.78	250	No		
PM _{2.5}	0.78	250	No		
SO ₂	0.06	250	No		
Ozone (as VOC)	97.94	250	No		
Ozone (as NOx)	0	100	No		
Pb	0	100	No		
H ₂ S	0	10	No		
TRS	0	10	No		
Reduced sulfur compounds (including H ₂ S)	0	10	No		
H ₂ SO ₄	0	7	No		
Fluoride (excluding HF)	0	3	No		
CO2e	0	75000	No		

Is netting required for the nonattainment analysis for this project?	No

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI

AUTHORITY		OF NUECES COUNTY		
I. General Information - Non-Renewal				
Is this project for new facilities controlled and operated directly by the federal government? (30 TAC § 116.141(b)(1) and 30 TAC § 116.163(a))		No		
A fee of \$75,000 shall be required if no estimate of capital project copermit application. (30 TAC § 116.141(d)) Select "yes" here to use t sections II and III.	No			
Select Application Type	Minor Application			

II. Direct Costs - Non-Renewal					
Type of Cost	Amount				
Process and control equipment not previously owned by the applicant and not currently authorized under this chapter.	\$289,742.48				
Auxiliary equipment, including exhaust hoods, ducting, fans, pumps, piping, conveyors, stacks, storage tanks, waste disposal facilities, and air pollution control equipment specifically needed to meet permit and regulation requirements.	\$697,046.75				
Freight charges.	\$0.00				
Site preparation, including demolition, construction of fences, outdoor lighting, road, and parking areas.	\$78,309.60				
Installation, including foundations, erection of supporting structures, enclosures or weather protection, insulation and painting, utilities and connections, process integration, and process control equipment.	\$0.00				
Auxiliary buildings, including materials storage, employee facilities, and changes to existing structures.	\$636,940.50				
Ambient air monitoring network.	\$0.00				
Sub-Total:	\$1,702,039.33				

III. Indirect Costs - Non-Renewal						
Type of Cost	Amount					
Final engineering design and supervision, and administrative overhead.	\$0.00					
Construction expense, including construction liaison, securing local building permits, insurance, temporary construction facilities, and construction clean-up.	\$235,500.00					
Contractor's fee and overhead.	\$0.00					
Sub-Total:	\$235,500.00					

IV. Calculations - Non-Renewal

For GHG permits: A single PSD fee (calculated on the capital cost of the project per 30 TAC § 116.163) will be required for all of the associated permitting actions for a GHG PSD project. Other NSR permit fees related to the project that have already been remitted to the TCEQ can be subtracted when determining the appropriate fee to submit with the GHG PSD application. Identify these other fees in the GHG PSD permit application.

Fees

Date: 10/15/2019 Permit #: TBD Company: PORT OF CORPUS CHRISTI **AUTHORITY OF NUECES COUNTY**

In signing the "General" sheet with this fee worksheet attached, I certify that the total estimated capital cost of the project as defined in 30 TAC §116.141 is equal to or less than the above figure. I further state that I have read and understand Texas Water Code § 7.179, which defines Criminal Offenses for certain violations, including intentionally or knowingly making, or causing to be made, false material statements or representations.

Estimated Capital Cost	Minor Application Fee	
Less than \$300,000	\$900 (minimum fee)	
\$300,000 - \$7,500,000	N/A	
\$300,000 - \$25,000,000	0.30% of capital cost	
Greater than \$7,500,000	N/A	
Greater than \$25,000,000	\$75,000 (maximum fee)	

Your estimated capital cost:	\$1,937,539.33	x 0.30% =
Permit Application Fee:		\$5,812.62

VI. Total Fees				
Note: fees can be paid together with one payment or as two separate payments.				
Non-Renewal Fee \$5,				
Total	\$5,812.62			

VII. Payment Information				
A. Payment One (required)				
Was the fee paid online?	No			
Enter the fee amount:	\$5,812.62			
Enter the check, money order, ePay Voucher, or other transaction				
number:				
Enter the Company name as it appears on the check:				
C. Total Paid	\$5,812.62			

VIII. Professional Engineer Seal Requirement					
Is the estimated capital cost of the project above \$2 million?	No				
Is the application required to be submitted under the seal of a Texas licensed P.E.?	No				
Note: an electronic PE seal is acceptable.					

Texas Commission on Environmental Quality Form PI-1 General Application Impacts

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUFCES COUNTY

AUTHORITY OF NUECES COU						
Pollutant	Does this pollutant require PSD review?	How will you demonstrate that this project meets all applicable requirements?	Notes			
VOC	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).			
PM ₁₀	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).			
PM _{2.5}	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).			
NO _x	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).			
со	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).			
SO ₂	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).			
Pb	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).			

Texas Commission on Environmental Quality Form PI-1 General Application BACT

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
RCLOAD	Loading: Railcar	voc	Specify option: 1. VOC vp < 0.5 psia: submerged or bottom loading. No splash loading. 2. VOC ≥ 0.5 psia: Route to VOC control device and meet the specific control device requirements. 100% collection efficiency of pressure-rated cars ensured by Department of Transportation Testing. Hard piped or bolted connections, dry lock design. Hard piping loading arms and/or pressure-rated chemical transfer hoses.	Yes	Applicable Option(s): 1. VOC vp < 0.5 psia: submerged or bottom loading. No splash loadingand 2. VOC ≥ 0.5 psia: Route to VOC control device and meet the specific control device requirements. 100% collection efficiency of pressure-rated cars ensured by Department of Transportation Testing. Hard piped or bolted connections, dry lock design. Hard piping loading arms and/or pressure-rated chemical transfer hoses.
		MSS	Same as normal operation BACT requirements.	Yes	
SDBLOAD	Loading: Marine Vessel	VOC	VOC >= 0.5 psia: Route to VOC control device and meet the specific control device requirements. Vessel leak testing: the marine vessel must pass an annual vapor tightness test as specified in 40 CFR §63.565(c) or 40 CFR §61.304(f). During loading of inerted marine vessels, the owner or operator of the marine terminal or of the marine vessel shall conduct AVO checks for leaks once every 8 hours for onshore equipment and on board the vessel. The pressure at the vapor collection connection and the loading rate must be monitored and recorded. See Marine Terminal Guidance dated September 21, 2016 for emission factors for ship-side emissions. Federal Coast Guard Regulation require ocean-going vessels to be inerted. Therefore, ocean-going vessels cannot use vacuum loading.		Shallow draft barge loading of material with VOC VP greater than 0.5 psia (e.g., gasoline) will be conducted using vacuum loading, which is associated with a 100% collection efficiency.
		MSS	Same as normal operation BACT requirements.	Yes	
OBLOAD	Loading: Marine Vessel	VOC	VOC >= 0.5 psia: Route to VOC control device and meet the specific control device requirements. Vessel leak testing: the marine vessel must pass an annual vapor tightness test as specified in 40 CFR §63.565(c) or 40 CFR §61.304(f). During loading of inerted marine vessels, the owner or operator of the marine terminal or of the marine vessel shall conduct AVO checks for leaks once every 8 hours for onshore equipment and on board the vessel. The pressure at the vapor collection connection and the loading rate must be monitored and recorded. See Marine Terminal Guidance dated September 21, 2016 for emission factors for ship-side emissions. Federal Coast Guard Regulation require ocean-going vessels to be inerted. Therefore, ocean-going vessels cannot use vacuum loading.		
		MSS	Same as normal operation BACT requirements.	Yes	
SLOAD	Loading: Marine Vessel	VOC	VOC >= 0.5 psia: Route to VOC control device and meet the specific control device requirements. Vessel leak testing: the marine vessel must pass an annual vapor tightness test as specified in 40 CFR §63.565(c) or 40 CFR §61.304(f). During loading of inerted marine vessels, the owner or operator of the marine terminal or of the marine vessel shall conduct AVO checks for leaks once every 8 hours for onshore equipment and on board the vessel. The pressure at the vapor collection connection and the loading rate must be monitored and recorded. See Marine Terminal Guidance dated September 21, 2016 for emission factors for ship-side emissions. Federal Coast Guard Regulation require ocean-going vessels to be inerted. Therefore, ocean-going vessels cannot use vacuum loading.		
		MSS	Same as normal operation BACT requirements.	Yes	

Texas Commission on Environmental Quality Form PI-1 General Application BACT

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
VCU-1	Control: Vapor Combustor	VOC	99% destruction efficiency. Monitor temperature. Perform initial test.	Yes	
		MSS	Same as normal operation BACT requirements.	Yes	
VCU-2	Control: Vapor Combustor	VOC	99% destruction efficiency. Monitor temperature. Perform initial test.	Yes	
		MSS	Same as normal operation BACT requirements.	Yes	
LDFUG	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD	VOC	See additional notes:	Yes	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD
		мѕѕ	See additional notes:	Yes	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD
LDCNTRL	Control: Vapor Combustor	VOC	99% destruction efficiency. Monitor temperature. Perform initial test.	Yes	
		MSS	Same as normal operation BACT requirements.	Yes	
FUG	Fugitives: Piping and Equipment Leak		Specify which is applicable: 1. Uncontrolled VOC emissions < 10 tpy: none 2. 10 tpy < uncontrolled VOC emissions < 25 tpy: 28M leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vp < 0.002 psia: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen cyanide and mercaptans only): AVO inspection twice per shift. Appropriate credit for AVO program.	Yes	Applicable Option(s): 1. Uncontrolled VOC emissions < 10 tpy: none Note: Emissions calculations include credit for a 28PET montioring program.
		MSS	Same as normal operation BACT requirements.	Yes	

Texas Commission on Environmental Quality Form PI-1 General Application Monitoring

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

FIN	Unit Type	Pollutant	Minimum Monitoring Requirements	Confirm	Additional Notes for Monitoring
RCLOAD	Loading: Railcar	VOC	Temperature and Hourly volume loaded for each product. Observation for connection leaks. Where vapor routed to control copy of annual vapor tightness certification. Vacuum monitoring for 100% capture, not required for pressure vessel loading.	Yes	
SDBLOAD	Loading: Marine Vessel	VOC	Temperature and Hourly volume loaded for each product. Observation for connection leaks Where vapor routed to control, copy of annual vessel vapor tightness certification. Where 99% or greater capture claimed AVO check of vessel tanks for leaks and pressure monitoring of cargo tank. Vacuum monitoring for 100% capture, not required for pressure vessel loading. Ship loading testing required for non vacuum >99% capture claims.	Yes	
OBLOAD	Loading: Marine Vessel	VOC	Temperature and Hourly volume loaded for each product. Observation for connection leaks Where vapor routed to control, copy of annual vessel vapor tightness certification. Where 99% or greater capture claimed AVO check of vessel tanks for leaks and pressure monitoring of cargo tank. Vacuum monitoring for 100% capture, not required for pressure vessel loading. Ship loading testing required for non vacuum >99% capture claims.	Yes	
SLOAD	Loading: Marine Vessel	VOC	Temperature and Hourly volume loaded for each product. Observation for connection leaks Where vapor routed to control, copy of annual vessel vapor tightness certification. Where 99% or greater capture claimed AVO check of vessel tanks for leaks and pressure monitoring of cargo tank. Vacuum monitoring for 100% capture, not required for pressure vessel loading. Ship loading testing required for non vacuum >99% capture claims.	Yes	
VCU-1	Control: Vapor Combustor	VOC	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.	Yes	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.
VCU-2	Control: Vapor Combustor	VOC	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.	Yes	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.
LDFUG	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD	voc	See additional notes:	Yes	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD
LDCNTRL	Control: Vapor Combustor	voc	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.	Yes	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.

Texas Commission on Environmental Quality Form PI-1 General Application Monitoring

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

FIN	Unit Type	Pollutant	Minimum Monitoring Requirements	Confirm	Additional Notes for Monitoring
FUG	Fugitives: Piping and Equipment Leak	VOC	Use EPA Method 21 to monitor for leaks from seals on pumps, compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action taken.	Yes	Monthly AVO inspections will be conducted on fugitive piping components. Because site-wide VOC emissions from fugitive piping components are less than 10 tons per year (tpy), no TCEQ Leak Detection and Repair Program (LDAR) needs to be established.

Texas Commission on Environmental Quality Form PI-1 General Application Materials

Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

Date: 10/15/2019

	AUTHORITY OF	NOECES COOP
Item	How submitted	Date submitted
A. Administrative Information		
Form PI-1 General Application	STEERS	10/15/2019
Hard copy of the General sheet with original (ink) signature	Not applicable	
Professional Engineer Seal	Not applicable	
B. General Information		
Core Data Form	Not applicable	
Area map	STEERS	10/15/2019
Plot plan	STEERS	10/15/2019
Process description	STEERS	10/15/2019
Process flow diagram	STEERS	10/15/2019
List of MSS activities	Not applicable	
State regulatory requirements discussion	STEERS	10/15/2019
C. Federal Applicability		
Summary and Project emission increase determination - Tables 1F and 2F	STEERS	10/15/2019
Netting analysis (if required) - Tables 3F and 4F as needed	Not applicable	
D. Technical Information		
BACT discussion, if additional details are attached	STEERS	10/15/2019
Monitoring information, if additional details are attached	STEERS	10/15/2019
Material Balance (if applicable)	STEERS	10/15/2019
Calculations	STEERS	10/15/2019
E. Impacts Analysis		
Qualitative impacts analysis	STEERS	10/15/2019
MERA analysis	STEERS	10/15/2019
Electronic Modeling Evaluation Workbook: SCREEN3	Not applicable	
Electronic Modeling Evaluation Workbook: NonSCREEN3	STEERS	10/15/2019
PSD modeling protocol	Not applicable	
F. Additional Attachments		
Permit Fee Verification	STEERS	10/15/2019
Table 2: Material Balance	STEERS	10/15/2019
Emission Calculations Tables C-1 through C-5	STEERS	10/15/2019
PBR 148696 Incorporation	STEERS	10/15/2019

APPENDIX B

TCEQ TECNICAL TABLES

The TCEQ's Table 2: Material Balance is included in this appendix.

Texas Commission on Environmental Quality Table 2 Material Balance

This material balance table is used to quantify possible emissions of air contaminants and special emphasis should be placed on potential air contaminants, for example: If feed contains sulfur, show distribution to all products. Please relate each material (or group of materials) listed to its respective location in the process flow diagram by assigning emission point numbers (taken from the flow diagram) to each material.

List every material involved in each of the following groups	Emission Point No. from Flow Diagram	Process Rate ¹² Check appropriate column at right to indicate process rate method.	Measurement	Estimation	Calculation
Raw Materials - Input	RCLOAD, SDBLOAD, OBLOAD, SLOAD, VCU-1, VCU-2, FUG	Gasoline: 100,000 BPD Crude Oil: 100,000 BPD Jet Fuel: 100,000 BPD Diesel: 100,000 BPD MTBE: 7,500 BPD LPG: 100,000 BPD		X	
Fuels - Input	VCU-1, VCU-2	See Tables C-3 and C-4		X	
Products and By-Products - Output	RCLOAD, SDBLOAD, OBLOAD, SLOAD, VCU-1, VCU-2, FUG	Gasoline: 100,000 BPD Crude Oil: 100,000 BPD Jet Fuel: 100,000 BPD Diesel: 100,000 BPD MTBE: 7,500 BPD LPG: 100,000 BPD		X	
Solid Wastes - Output				X	
Liquid Wastes - Output				X	

¹ Specify the process rate of the facility using conventional engineering units (e.g., bbl/d, lb/yr, SCFM), and indicate the units next to each number. Standard Conditions: are 68°F 14.7 psia (30 Texas Administrative Code, Section 101.1(99).

² Process rates are intended to be daily average throughputs and should not be considered short-term limitations.

List every material involved in each of the following groups	Emission Point No. from Flow Diagram	Process Rate ³⁴ Check appropriate column at right to indicate process rate method.	Measurement	Estimation	Calculation
Airborne Waste (Solid) - Output	RCLOAD, SDBLOAD, OBLOAD, SLOAD, VCU-1, VCU-2, FUG	See Table 1(a)			X
Airborne Wastes (Gaseous) - Output		See Table 1(a)			X

³ Specify the process rate of the facility using conventional engineering units (e.g., bbl/d, lb/yr, SCFM), and indicate the units next to each number. Standard Conditions: are 68°F 14.7 psia (30 Texas Administrative Code, Section 101.1(99).

⁴ Process rates are intended to be daily average throughputs and should not be considered short-term limitations.

DETAILED EMISSION RATE CALCULATIONS

The following attachments are included in this appendix in the following order:

- Table C-1: Bulk Dock 3 Emission Rate Summary and PSD Evaluation;
- Table C-2: Loading Fugitive Emission Calculations;
- Table C-3: Railcar Loading Vapor Combustor Emission Calculations;
- Table C-4: Marine Loading Vapor Combustor Emission Calculations; and
- Table C-5: Fugitive Piping Component Emission Calculations.

Table C-1
Bulk Dock 3 Emission Rate Summary and PSD Evaluation
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

EPN	Description				Criter	ia Pollutan	t Emission	Rates				Reference
		V	OC	N	NO _X		СО		PM/PM ₁₀ /PM _{2.5}		SO ₂	
		Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	
		(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
RCLOAD	Railcar Loading Fugitives	15.38										C-2
SDBLOAD	Shallow Draft Barge Loading Fugitives	12.81						-				C-2
OBLOAD	Ocean Barge Loading Fugitives	22.53										C-2
SLOAD	Ship Loading Fugitives	9.01										C-2
VCU-1	Railcar VCU	27.03		7.35		14.67		0.40		0.03		C-3
VCU-2	Marine Vessel VCU	22.53		6.13		12.23		0.33		0.03		C-4
LDFUG	Loading Fugitives		43.86									Note (1)
LDCNTRL	Controlled Loading		52.63		14.44		28.84		0.78		0.06	Note (1)
FUG	Fugitive Piping Components	0.33	1.45									C-5
	Total Project Emissions		97.93		14.44		28.84		0.78		0.06	Sum
	PSD Significance Level		250.00		250.00	-	250.00	-	250.00		250.00	
	Triggers Further Review?		No		No		No		No		No	

Notes

1) Total annual emissions from the loading operations are based on the maximum emissions from the different loading scenarios.

Table C-2
Loading Fugitive Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Temperature and Material Data

Material	Max Ldg Temp ¹ (F)	Avg Ldg Temp ¹ (F)	Maximum VP ^{2,3,4} (psia)	Avg. Ann. VP ^{2,3,4} (psia)	Vapor MW ⁶ (lb/lbmole)
Gasoline (RVP 7.8)	95	N/A	7.60	N/A	68
Gasoline (RVP 11)	N/A	72.05	N/A	7.23	65
Crude Oil (RVP 5)	95	72.05	5.47	3.62	50
Jet Fuel	95	72.05	0.03	0.01	130
Diesel	95	72.05	0.019	0.010	130
MTBE	95	72.05	4.12	2.37	88

Table C-2
Loading Fugitive Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Fugitive Loading Emission Calculations

Loading Facility	EPN	Product		Annual			urly	Capture	U	Loading	Emissions	to Control
		Loaded	Product	Saturation	Emission	Maximum	Emission	Efficiency		on Rates		
			Loaded	Factor ^{7,8}	Factor ⁸	Ldg Rate ¹¹	Factor ⁹		By Facilit	ty/Product	By Facilit	ty/Product
			(Mgal/yr)	(dim'less)	(lb/Mgal)	(gal/hr)	(lb/Mgal)	(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Railcar Loading	RCLOAD	Gasoline	1,533,000	0.6	6.65	351,000	6.97	100%	-0-	-0-	2,445.48	5,094.05
Railcar Loading	RCLOAD	Crude Oil (RVP 5)	1,533,000	0.6	2.54	351,000	3.68	100%	-0-	-0-	1,293.14	1,949.34
Railcar Loading	RCLOAD	Jet Fuel	1,533,000	0.6	0.02	351,000	0.04	0%	15.38	16.56	-0-	-0-
Railcar Loading	RCLOAD	Diesel	1,533,000	0.6	0.02	351,000	0.03	0%	11.69	13.47	-0-	-0-
Railcar Loading	RCLOAD	MTBE	114,975	0.6	2.94	52,650	4.90	100%	-0-	-0-	257.73	168.91
								TOTAL ¹⁰	15.38	16.56		
Shallow Draft Barge Loading	SDBLOAD	Gasoline	1,533,000	0.5	5.54	351,000	5.81	100%	-0-	-0-	2,037.90	4,245.04
Shallow Draft Barge Loading	SDBLOAD	Crude Oil (RVP 5)	1,533,000	0.5	2.12	351,000	3.07	100%	-0-	-0-	1,077.61	1,624.45
Shallow Draft Barge Loading	SDBLOAD	Jet Fuel	1,533,000	0.5	0.02	351,000	0.04	0%	12.81	13.80	-0-	-0-
Shallow Draft Barge Loading	SDBLOAD	Diesel	1,533,000	0.5	0.01	351,000	0.03	0%	9.74	11.23	-0-	-0-
Shallow Draft Barge Loading	SDBLOAD	MTBE	114,975	0.5	2.45	52,650	4.08	100%	-0-	-0-	214.78	140.76
								TOTAL ¹⁰	12.81	13.80		
Ocean Barge Loading	OBLOAD	Gasoline	1,533,000	0.5	5.54	351,000	5.81	99%	20.38	42.45	2,017.52	4,202.59
Ocean Barge Loading	OBLOAD	Crude Oil (RVP 5)	1,533,000	0.5	2.12	351,000	3.07	99%	10.78	16.24	1,066.84	1,608.21
Ocean Barge Loading	OBLOAD	Jet Fuel	1,533,000	0.5	0.02	351,000	0.04	0%	12.81	13.80	-0-	-0-
Ocean Barge Loading	OBLOAD	Diesel	1,533,000	0.5	0.01	351,000	0.03	0%	9.74	11.23	-0-	-0-
Ocean Barge Loading	OBLOAD	MTBE	114,975	0.5	2.45	52,650	4.08	99%	2.15	1.41	212.63	139.35
								TOTAL ¹⁰	22.53	43.86		
Ship Loading	SLOAD	Gasoline	1,533,000	0.2	2.22	351,000	2.32	99%	8.15	16.98	807.01	1,681.04
Ship Loading	SLOAD	Crude Oil (RVP 5)	1,533,000	0.2	0.85	351,000	1.23	99%	4.31	6.50	426.74	643.28
Ship Loading	SLOAD	Jet Fuel	1,533,000	0.2	0.01	351,000	0.01	0%	5.13	5.52	-0-	-0-
Ship Loading	SLOAD	Diesel	1,533,000	0.2	0.01	351,000	0.01	0%	3.90	4.49	-0-	-0-
Ship Loading	SLOAD	MTBE	114,975	0.2	0.98	52,650	1.63	99%	0.86	0.56	85.05	55.74
								TOTAL ¹⁰	9.01	17.54		

Page 2 of 3

Table C-2

Loading Fugitive Emission Calculations Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

NOTES:

- 1. Maximum hourly temperature based on TCEQ guidance for loading operations. Average annual temperature based on daily average ambient temperature for Corpus Christi from AP-42 Chapter 7.1.
- 2. Gasoline uses RVP 7.8 for summer gasoline and maximum vapor pressure, and RVP 11 for average annual vapor pressure. RVP is converted to TVP using AP-42 Chapter 7.1, Figure 7.1-14b and a slope of 3.
- 3. Diesel true vapor pressure is interpolated based on AP-42 Chapter 7.1, Table 7.1-2
- 4. Crude Oil uses RVP 5 for crude oil. RVP is converted to TVP using AP-42 Chapter 7.1, Figure 7.1-13b.
- 5. Vapor pressure for MTBE uses Antoine's Equation.
- 6. Molecular weights for all materials based on AP-42 Chapter 7.1, Table 7.1-2.
- 7. Based on Submerged Loading: Dedicated Normal Service
- 8. Based on Submerged Loading: Barges and Submerged Loading: Ships
- 9. Emission Factors were determined by use of the equations in AP-42, 5th Ed., 1/95, Section 5.2 (Transportation & Marketing of Petroleum Liquids).
- 10. Totals for each loading scenario are based on maximum of each material on a short-term basis and annual basis. The MTBE rate is added to the gasoline rate for the maximimum loading rate scenario.
- 11.Maximum loading rate for MTBE is based on 15% of gasoline short-term loading.

Example Calculations

Diesel Emission Factor (Short-Term)

(12.46) * (0.60) * (0.02 psia) * (130) / ((459.67 + (95 deg F)) = 0.03 lb/Mgal

Fugitive Emissions:

Hourly Emission Rate - EPN RCLOAD Diesel

(351,000 gal/hr) / (1,000 gal/Mgal) * (0.033 lb/Mgal) * (1 - 0.00 %) = 11.69 lb/hr

Annual Emission Rate - EPN RCLOAD Diesel

(1,533,000 Mgal/yr) * (0.0176 lb/Mgal) / (2000 lb/ton) * (1 - 0.00 %) = 13.47 tpy

Page 3 of 3

Table C-3
Railcar Loading Vapor Combustor Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

<u>Vapor Combustion Emission Calculations (See Table C-2 for details on the data provided below).</u>

Loading Facility	FIN	Product	Maximum VOC	Average VOC	Heat Content ⁽¹⁾	Maximum	Average
		Loaded	Vapors to VCU	Vapors to VCU		Vapors to VCU	Vapors to VCU
			(lb/hr)	(tpy)	(Btu/lb)	(MMBtu/hr)	MMBtu/yr
Railcar Loading	RCLOAD	Gasoline	2,445.48	5,094.05	20,007	48.93	203,833.28
Railcar Loading	RCLOAD	MTBE	257.73	168.91	16,319	4.21	5,512.83
Railcar Loading	RCLOAD	Crude Oil (RVP 5)	1,293.14	1,949.34	19,580	25.32	76,336.26
Vapor Combustion Unit ⁽²⁾	VCU-1	Total	2,703.21	5,262.96		53.13	209,346.11

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	99	%	27.03	52.63	Vendor Guarantee/BACT
MTBE	99	%	2.58	1.69	Vendor Guarantee/BACT
NO_X	0.138	lb/MMBtu	7.33	14.44	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
CO	0.2755	lb/MMBtu	14.64	28.84	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMBtu	0.40	0.78	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO ₂	0.0006	lb/MMBtu	0.03	0.06	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2

Natural Gas Assist and Pilots (3)

Maximum	Average	Heat Value	Maximum	Average
(scfh)	(scfh)	(Btu/scf)	(MMBtu/hr)	(MMBtu/hr)
108	108	1020	0.11	0.11

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	0.0054	lb/MMBtu	<0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
NO _X	0.138	lb/MMbtu	0.02	<0.01	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
CO	0.2755	lb/MMbtu	0.03	< 0.01	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMbtu	<0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO ₂	0.0006	lb/MMbtu	<0.01	<0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2

Table C-3

Railcar Loading Vapor Combustor Emission Calculations Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

<u>Total result from Vapor Combustion Unit (EPN: VCU-1)</u>

Pollutant ⁽⁴⁾	(lb/hr)	(tpy)
VOC	27.03	52.63
MTBE	2.58	1.69
NO _X	7.35	14.44
СО	14.67	28.84
PM/PM ₁₀ /PM _{2.5}	0.40	0.78
SO ₂	0.03	0.06

NOTES:

- 1. Typical higher heating values for gasoline and crude oil from "GREET, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET 1.8d.1 (August 2010)
- 2. Flowrates to the VCU are based on the maximum of the material and loading type (gasoline and MTBE are summed together since they will be in-line mixed prior to loading).
- 3. Pilot/assist gas data based on vendor specifications.
- 4. VOC includes MTBE.

Example Calculations

VCU Hourly VOC Emission Rate

(2,703.21 lb/hr) * (100% - 99%) = 27.03 lb/hr

VCU Annual VOC Emission Rate

(5,262.96 tpy) * (100% - 99%) = 52.63 tpy

VCU Hourly NO_x Emission Rate

(53.13 MMBtu/hr) * 0.138 lb NOX/MMBtu = 7.33 lb/hr

VCU Annual NO_x Emission Rate

(209,346.11 MMBtu/yr) * 0.138 lb NOX/MMBtu / 2,000 lb/ton = 14.44 tpy

Table C-4
Marine Loading Vapor Combustor Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

<u>Vapor Combustion Emission Calculations (See Table C-2 for details on the data provided below).</u>

Loading Facility	FIN	Product	Maximum VOC	Average VOC	Heat Content ⁽¹⁾	Maximum	Average
		Loaded	Vapors to VCU	Vapors to VCU		Vapors to VCU	Vapors to VCU
			(lb/hr)	(tpy)	(Btu/lb)	(MMBtu/hr)	MMBtu/yr
Shallow Draft Barge Loading	SDBLOAD	Gasoline	2,037.90	4,245.04	20,007	40.77	169,861.07
Shallow Draft Barge Loading	SDBLOAD	Crude Oil (RVP 5)	1,077.61	1,624.45	19,580	21.10	63,613.55
Shallow Draft Barge Loading	SDBLOAD	MTBE	214.78	140.76	16,319	3.50	4,594.02
Ocean Barge Loading	OBLOAD	Gasoline	2,017.52	4,202.59	20,007	40.36	168,162.46
Ocean Barge Loading	OBLOAD	Crude Oil (RVP 5)	1,066.84	1,608.21	19,580	20.89	62,977.42
Ocean Barge Loading	OBLOAD	MTBE	212.63	139.35	16,319	3.47	4,548.08
Ship Loading	SLOAD	Gasoline	807.01	1,681.04	20,007	16.15	67,264.98
Ship Loading	SLOAD	Crude Oil (RVP 5)	426.74	643.28	19,580	8.36	25,190.97
Ship Loading	SLOAD	MTBE	85.05	55.74	16,319	1.39	1,819.23
Vapor Combustion Unit ⁽²⁾	VCU-2	Total	2,252.68	4,385.80		44.28	174,455.09

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	99	%	22.53	43.86	Vendor Guarantee/BACT
MTBE	99	%	2.15	3.36	Vendor Guarantee/BACT
NO_X	0.138	lb/MMBtu	6.11	12.04	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
CO	0.2755	lb/MMBtu	12.20	24.03	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMBtu	0.33	0.65	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO ₂	0.0006	lb/MMBtu	0.03	0.05	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2

Natural Gas Assist and Pilots (3)

Maximum	Average	Heat Value	Maximum	Average
(scfh)	(scfh)	(Btu/scf)	(MMBtu/hr)	(MMBtu/hr)
108	108	1020	0.11	0.11

Table C-4
Marine Loading Vapor Combustor Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	0.0054	lb/MMBtu	<0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
NO_X	0.138	lb/MMbtu	0.02	< 0.01	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
CO	0.2755	lb/MMbtu	0.03	<0.01	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMbtu	<0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO ₂	0.0006	lb/MMbtu	<0.01	<0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2

Total result from Vapor Combustion Unit (EPN: VCU-2)

Pollutant ⁽⁴⁾	(lb/hr)	(tpy)
VOC	22.53	43.86
MTBE	2.15	3.36
NO _X	6.13	12.04
CO	12.23	24.03
PM/PM ₁₀ /PM _{2.5}	0.33	0.65
SO ₂	0.03	0.05

NOTES:

- 1. Typical higher heating values for gasoline and crude oil from "GREET, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET 1.8d.1 (August 2010)
- 2. Flowrates to the VCU are based on the maximum of the material and loading type (gasoline and MTBE are summed together since they will be in-line mixed prior to loading).
- 3. Pilot/assist gas data based on vendor specifications.
- 4. VOC includes MTBE.

Table C-4

Marine Loading Vapor Combustor Emission Calculations Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Example Calculations

VCU Hourly VOC Emission Rate

(2,252.68 lb/hr) * (100% - 99%) = 22.53 lb/hr

VCU Annual VOC Emission Rate

(4,385.80 tpy) * (100% - 99%) = 43.86 tpy

VCU Hourly NO_x Emission Rate

(44.28 MMBtu/hr) * 0.138 lb NOX/MMBtu = 6.11 lb/hr

VCU Annual NO_x Emission Rate

(174,455.09 MMBtu/yr) * 0.138 lb NOX/MMBtu / 2,000 lb/ton = 12.04 tpy

Table C-5
Fugitive Piping Component Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Component Type	Service	No. of Components	Petroleum Marketing Terminal Emission Factor (1)	Calculated Emission Rates (2)	
			lb/hr-component	lb/hr	tpy
Valves	Gas/Vapor	248	0.0000287	0.007	0.031
Valves	Light Liquid	1054	0.0000948	0.100	0.438
Valves	Heavy Liquid	654	0.0000948	0.062	0.272
Flanges/Connectors	Gas/Vapor	620	0.0000926	0.057	0.251
Flanges/Connectors	Light Liquid	2635	0.00001762	0.046	0.203
Flanges/Connectors	Heavy Liquid	1635	0.0000176	0.029	0.126
Pumps	Light Liquid	18	0.001190	0.021	0.094
Pumps	Heavy Liquid	0	0.00119	-0-	-0-
Other	Gas/Vapor	4	0.000265	0.001	0.005
Other	Light/Heavy Liquid	22	0.000287	0.006	0.028
				0.330	1.447

Notes:

- (1) Factors based on TCEQ's Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives (June 2018). Control efficiencies for monthly AVO inspections are included in the emission factors.
- (2) Sample Calculations Fugitive Emissions (Valves) 248 components * 0.0000287 lb/hr-component = 0.007 lb/hr 0.007 lb/hr * 0.007
- (3) "Other" includes any components other than fittings, pumps, and valves, as per Note 9 in the table for "Facility/Compound Specific Fugitive Emission Factors", as referenced in the guidance document described in (1) above.

APPENDIX D

PBR 148696 INCORPORATION

The PBR 148696 issuance letter is included in this appendix.

Bryan W. Shaw, Ph.D., P.E., *Chairman*Toby Baker, *Commissioner*Jon Niermann, *Commissioner*Richard A. Hyde, P.E., *Executive Director*

Emissions associated with the PBR were re-calculated as part of this NSR application.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

November 10, 2017

MR JOHN P LARUE
EXECUTIVE DIRECTOR
PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY
PO BOX 1541
CORPUS CHRISTI TX 78403-1541

Permit by Rule Registration Number: 148696 Port of Corpus Christi Authority of Nueces County Port of Corpus Christi Authority Bulk Dock 3 Layberth

Corpus Christi, Nueces County

Regulated Entity Number: RN104989116
Customer Reference Number: CN600885248

This is in response to your certification Form PI-7 CERT regarding the Port of Corpus Christi Authority Bulk Dock 3 Layberth located at 202 Bulk Materials Dock Rd, Corpus Christi, Nueces County.

Port of Corpus Christi Authority of Nueces County has certified the emissions under Title 30 Texas Administrative Code (TAC) § 106.261 and § 106.472. For rule information see: www.tceq.texas.gov/permitting/air/nav/numerical_index.html

The company is also reminded that these facilities may be subject to and must comply with other state and federal air quality requirements.

If you need further information or have questions, please contact Mr. Guillermo Reyes, P.E. at (512) 239-5716 or write to the Texas Commission on Environmental Quality (TCEQ), Office of Air, Air Permits Division, MC-163, P.O. Box 13087, Austin, Texas 78711-3087.

This action is taken under the authority delegated by the Executive Director of the TCEQ.

Sincerely,

Samuel Short, Manager Rule Registrations Section Air Permits Division

cc: Air Section Manager, Region 14 - Corpus Christi

Project Number: 275832

Emission Sources - Certified Emission Rates

Registration Number 148696

This table lists the certified emission rates and all sources of air contaminants on the applicant's property covered by this registration. The emission rates shown are those derived from information submitted as part of the registration for PBR.

														SCHEDULE:
8,760		Hours/Year			Weeks/Year	W		Week	Days/Week		У	Hours/Day		MAXIMUM OPERATING
				<0.01		<0.01		3.09		1.55		9.94		TOTAL EMISSIONS (TPY):
				<0.01	<0.01	<0.01	<0.01	0.13	0.03	0.07	0.02	<0.01	<0.01	VCU/ VCU Pilot Gas
												1.06	5.83	Loading
													1	Loading
												0.89	5.62	DMVLOAD/ Diesel Marine
				<0.01	<0.01	<0.01	<0.01	1.34	1.65	0.67	0.83	2.38	2.93	VCU/ Gasoline Marine Vessel Controlled Loading Emissions
														Vessel Uncaptured Loading Emissions
												2.40	2.96	GMVLOAD/ Gasoline Marine
				<0.01	<0.01	<0.01	<0.01	1.62	3.11	0.81	1.56	2.88	5.54	VCU/ Gasoline Railcar Loading
tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	
ìľ	Other	SO ₂	S	2.5	PM _{2.5}	PM ₁₀	PN	0	co)x	NOx	VOC	V	EPN / Emission Source
														ESTIMATED EMISSIONS

Emissions associated with the PBR were re-calculated as part of this NSR application.

APPENDIX E

AIR QUALITY ANALYSIS SUMMARY

A qualitative summary of the modeling results is included in this appendix.

Table 1 Air Quality Analysis Summary Port of Corpus Christi Authority Air Quality Analysis

The PCCA initial permit application update project triggers an AQA evaluation of National Ambient Air Quality Standards (NAAQS), State Property Line (SPL), and Health Effects Review (HER) for several pollutants and averaging periods. A summary of the required AQAs for these pollutants and averaging periods and the level at which modeling was performed is provided in Table 1 below.

Pollutant	Averaging Period(s)	Federal PSD Review	Minor NAAQS Review	State Property Line	State Effects Review
Oxides of Nitrogen (NO _X)	1-hr, Annual	Not Required	Passes CIM		
Carbon Monoxide (CO)	1-hr, 8-hr	Not Required	Passes SIL		
Coarse Particulates (PM_{10})	24-hr	Not Required	Passes SIL		
Fine Particulates (PM _{2.5})	24-hr	Not Required	Passes CIM		
Fine Particulates (PM _{2.5})	Annual	Not Required	Passes SIL		
Sulfur Dioxide (SO ₂)	1-hr, 3-hr, 24-hr, Annual	Not Required	Passes SIL	Passes Project- Level ⁽¹⁾	
Crude Oil	1-hr, Annual ⁽²⁾	1	1	1	Passes MERA Step 4
Heavy Petroleum Distillates (HPD)	1-hr, Annual ⁽²⁾		1	1-	Passes MERA Step 7
Light Petroleum Distillates (LPD)	1-hr, Annual ⁽²⁾				Passes MERA Step 4
Methyl Tert-Buytl Ether (MTBE)	1-hr, Annual ⁽²⁾				Passes MERA Step 4

Notes:

- 1. The state standard for SO_2 is based on a 30-minute averaging time. In accordance with TCEQ guidance, the 1-hour averaging time is used given that the shortest averaging time for the preferred models typically used for regulatory demonstrations is the 1-hour averaging time.
- 2. The long-term ESLs for all modeled Health Effects Review pollutants were greater than or equal to 10% of the short-term ESLs; therefore, no annual HER was performed.

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

Acknowle	Select from the drop down:	
I acknowledge that I am submitting an au Evaluation Workbook and any necessary requested data, I have not changed the Townshook in any way, including but not licontent, or protections.	attachments. Except for inputting the CEQ Electronic Modeling Evaluation imited to changing formulas, formatting,	l agree
Data Type:	ministrative Information: Facility Information:	
Data Type.	l acinty information.	
Project Number (6 digits):		
Permit Number: TBD		
Regulated Entity ID (9 digits): 104989116		
Facility Name: Port of Corpus Christi Authority Bulk Dock 3 Laybert		k 3 Layberth
Facility Address: 202 Bulk Materials Dock Rd, Corpus Christi T		isti TX 78402
Facility County (select one): Nueces		
Company Name: Port of Corpus Christi Authority of Nueces County		s County
Company Contact Name: Ms. Sarah Garza		
Company Contact Number: 361-885-6163		
Company Contact Email: sarah@pocca.com		
Modeling Company Name, as applicable: TRICORD Consulting, LLC		
Modeling Contact Name: Mr. Anthony Anders		
Modeling Contact Number: 832-714-1418		
Modeling Contact Email: Anthony.Anders@TRICORDconsulting.com		om
New/Existing Site (select one): Existing Site		
Modeling Date (MM/DD/YYYY):	9/5/2019	
Datum Used (select one):	NAD 83	
UTM Zone (select one):	14	

Sheet Instructions: Indicate in the Table of Contents which sections are applicable and included for this modeling demonstration. Select "X" from the drop down if the item below is included in the workbook. Note: This workbook is only for the following air dispersion models: AERSCREEN, ISC/ISCPrime, and/or AERMOD. If SCREEN3 is used, please use the separate Electronic Modeling Evaluation Workbook (EMEW) for SCREEN3 workbook.

	Table of Contents:	
Section:	Sheet Title (Click to jump to specific sheet):	Select an X from the dropdown menu if included:
1	General	X
2	Model Options	X
3	Building Downwash	X
4	Flare Source Parameters	
5	Point Source Parameters	X
6	Area Source Parameters	X
7	Volume Source Calculations	
8	Volume Source Parameters	
9	Point and Flare Source Emissions	X
10	Area Source Emissions	X
11	Volume Source Emissions	
12	Speciated Emissions	X
13	Intermittent Sources	
14	Modeling Scenarios	
15	Monitor Calculations	X
16	Background Justification	X
17	Secondary Formation of PM2.5	X
18	NAAQS/State Property Line (SPL) Modeling Results	X
19	Unit Impact Multipliers	
20	Health Effects Modeling Results	X
21	Modeling File Names	X
22	Speciated Chemicals	

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

Included Attachments Instructions: The following are attachments that must be included with any modeling analysis. If providing the plot plan and area map with the permit application, ensure there is also a copy with the EMEW. The copy can be electronic.	Select an X from the dropdown menu if included:
Plot Plan:	
Instructions: Mark all that apply in the attached plot plan. For larger properties or dense	e source areas provide
multiple zoomed in plot plans that are legible.	o ocuroc arcac, provido
Property/Fence Lines all visible and marked.	X
North arrow included.	X
Clearly marked scale.	X
All sources and buildings are clearly labeled.	X
Area Map:	
Instructions: Mark all that apply in the attached area map.	
Annotate schools within 3,000ft of source's nearest property line.	
All property lines are included.	X
Non-industrial receptors are identified.	X
Additional Attachments (as applicable):	Select an X from the
Note: These are just a few examples of attachments that may need to be included.	dropdown menu if
There may be others depending on the scope of the modeling analysis.	included:
Processed Met Data Information	
Excel spreadsheet of processed meteorology data.	
Meteorological Files (all input and outputs).	
Source Group Descriptions	
Description of modeling source groups (could be in a tabulated format).	X
Modeling Techniques and Scenarios Provide all justification and discussion on modeling scenarios used for the modeling and boxes are examples of approaches that should be provided but is not all inclusive.	nalyses. The following
Discussion on modeling techniques not discussed in workbook.	
Justification for exceedance refinements, as applicable.	
Discussion and images for worst-case determination, as applicable.	X
Single Property Line Designation, as applicable	_
Include Agreement, Order, and map defining each petitioner.	
Post Processing using Unit Impact Multipliers (UIMs)	
Include documentation on any calculations used with the UIMs (i.e., Step 3 of the MERA).	
Tier 3 NO ₂ analysis	
If OLM or PVMRM are used, provide all justification and documentation on using this a	pproach.
Description of model setup.	
Description and justification of model options selected (i.e., NO_2 to NO_x in-stack ratios)	
Other Attachments	
Provide a list in the box below of additional attachments being provided that are not list	ted above:

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

Date: September 2019

. Project Information

A. Project Overview: In the box below, give a brief Project Overview. To type or insert text in box, double click in the box below. *Please limit your response to 2000 characters.*

PCCA is requesting a new case-by-case NSR permit under 30 TAC Chapter 116 Subchapter B to authorize emissions associated with the planned Bulk Dock 3 Expansion Project. With this project, PCCA is planning to increase authorized marine vessel and railcar loading throughputs of gasoline and diesel and to authorize marine vessel and railcar loading of crude oil, dieselLPG, and jet fuel. The loading operations will include two vapor combustion units (VCUs) for emission controls and new fugitive piping components, including pumps, valves and flanges.

II. Air Dispersion Modeling Preliminary Information

Instructions: Fill in the information below based on your modeling setup. The selections chosen in this sheet will carry throughout the sheet and workbook. Based on selections below, only portions of the sheet and workbook will be available. Therefore, it is vital the sheet and workbook are filled out in order, do NOT skip around.

For larger text boxes, double click to type or insert text.

A. Type of	Model Used: Select "X" in all that apply
	AERSCREEN X AERMOD
18081	Enter in all applicable Model Version(s).
B. Building	Downwash
Yes	Is downwash applicable? (Select "Yes" or "No")
04274	Enter BPIP version (AERMOD and ISCPrime only).
C. Type of	Analyses: (Select "X" in all that apply)
*PSD project	cts should submit a protocol and not utilize this form.
X	Minor NSR NAAQS X State Property Line
X	Health Effects

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

D. Constituents Evaluating: (Select "X" in all that apply)				
NAAQS: List all pollutants that require an modeling review. (Select "X" in all that apply)				
X	SO ₂		X	PM ₁₀
Χ	CO		Χ	PM _{2.5}
	Pb		X	NO_2
Both		Identify which averaging periods are being evaluated for NO ₂ .		
Tier 2: ARM 2		Identify the 1-hr NO_2 tier used for the AERMOD or AERSCREEN analyses.		
Tier 2: 0.9		Identify the annual NO_2 tier used for the AERMOD or AERSCREEN analyses.		
State Property Line: List all pollutants that require an modeling review. (Select "X" in all that apply)				
	H ₂ S		Χ	SO ₂
	H ₂ SO ₄			-
Health Effects: Fill in the Speciated Emissions sheet with all applicable pollutants, CAS numbers, and ESLs.				

Date: September 2019 Permit #: TBD Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

•	•	Selected and this project is using AERMOD or
, , , , , , , , , , , , , , , , , , , ,	erv, morado trio popuration dood	. Coloct X III the Box to coloct an option.
	Urban	
Χ	Rural	
Provide any	/ additional justification on the d	ispersion option selected above:
A land-use demonstration the terrain.	analysis has been performed ar ions for this facility using the Au The result of the Auer land-use	nd presented in previous modeling er land-use procedure and general knowledge of e analysis clearly indicates rural land type and the "No Urban Area" was selected for modeling.
section belo	DW.	AERSCREEN or AERMOD is used, fill out the
Select basis	s for surface roughness:	AERSURFACE
Calaat IIVII ii		vana astavajas
X	n one of the three surface rough	
^	Low	Medium
If you are us	sing AERSURFACE, please cor	High
13016		Version Number
651320.8		
1	Center UTM Easting (meters) Study Radius (km)	Center UTM Northing (meters)
No	Airport? (Select Yes or No)	
No	Continuous Snow Cover (Selectives of No)	et Vec er No
	Surface Moisture (Select Wet,	,
Average No	Arid Region? (Select Yes or No	3 ,
140	default	Month/Season Assignment
	uciauit	wonth/Season Assignment

Date: September 2019
Permit #: TBD

	rological Data:		
If AERMO	DD and/or ISC/ISCPrime are selec		
12924		Surface Sta	
12924		Upper Air S	
13.4	Meters (m)		e Elevation (AERMOD only)
16216		AERMET V	ersion Number
Yes	Was TCEQ pre-processed data used?	1 Year	Years used
	ter the year(s) selected for this m	neteorologica	l data:
201	2 1 Year		
Provide a	ny other justification for Meteorolo	ogical Data, a	as applicable.

Permit #: TBD

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

1 . R	ece	ntor	Grid:
'		P	O

For AERMOD or ISC/ISCPrime, fill in the following information on your modeled receptor grid. Note: Receptor grid resolution (tight, fine, medium, coarse) are based on recommended receptor grid spacing per the AQMG, if something outside of this is used, fully describe it below.

25 Me	eters (m)	Tight Receptor Spacing					
100 Me	eters (m)	Tight Receptor Distance					
100 Me	eters (m)	Fine Receptor Spacing					
1000 Me	eters (m)	Fine Receptor Distance					
500 Me	eters (m)	Medium Receptor Spacing					
5000 Me	eters (m)	Medium Receptor Distance					
1000 Me	eters (m)	Coarse Receptor Spacing					
10000 Meters (m) Coarse Receptor Distance							
Describe any other receptor grid designs (over water, GLC _{ni} , SPLD etc.):							

For MERA crude oil, LPD, and MTBE analyses, all receptors were conservatively considered non-industrial.

For MERA HPD, the worst-case non-industrial receptor was placed at 652400.00 m E, 3077000.00 m N. See Attachment 2B for the worst-case non-industrial receptor demonstration.

_	_		
	Гer	ro	n.
		171	

X	Elevated	
18081		AERMAP Version

For additional justification on terrain selection, fill in the box below:

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Downwash Type	Modeled Building ID	Tank Diameter (m)	Number of Tiers	Maximum Height (m)	Tier 1 Height (m)
Building	BLDG1		1	3	3
Building	BLDG2		1	3	3
Building	BLDG3		1	3	3
Tank	T1	3.5	1	7	7
Tank	T2	3.5	1	7	7
Tank	Т3	3.5	1	7	7
Tank	T4	3.5	1	7	7
Tank	T5	3.5	1	7	7
Tank	T6	3.5	1	7	7
Tank	T7	3.5	1	7	7
Tank	T8	3.5	1	7	7

Date: September 2019

		Modeling	Easting:	Northing:	Base Elevation	Height	Exit Temperature	Exit Velocity	Heat Release	Molecular	Gross Heat Release or g	Net Heat Release or q _n	Effective Diamete
EPN	Model ID	Scenario	X [m]	Y [m]	[m]	[m]	[K]	[m/s]	(MMBtu/hr)	Weight	(cal/s)	(cal/s)	or D (meters)
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0

Date: September 2019 Permit #: TBD

Permit #: TBD Company Name: Port of Corpus Christi Authority of Nueces County **General Information**

			Easting:	Northing:	Base		Exit	Exit			Gross Heat	Net Heat	
		Modeling	Edourig.	rtorumig.	Elevation	Height	Temperature	Velocity	Heat Release	Molecular		Release or q_{n}	Effective Diameter
EPN	Model ID	Scenario	X [m]	Y [m]	[m]	[m]	[K]	[m/s]	(MMBtu/hr)	Weight	(cal/s)	(cal/s)	or D (meters)
		0001101110	7. []	. []	[]	[]			(**************************************		` ´		
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0
							1273.00	20.00			0	0	0

Date: September 2019

EPN	Model ID	Modeling Scenario	Northing: Y [m]	Base Elevation [m]	Height [m]	Exit Temperature [K]	Exit Velocity [m/s]	Heat Release (MMBtu/hr)	Molecular Weight	Gross Heat Release or q (cal/s)	Net Heat Release or q _n (cal/s)	Effective Diameter or D (meters)
						1273.00	20.00			0	0	0
						1273.00	20.00			0	0	0
						1273.00	20.00			0	0	0
						1273.00	20.00			0	0	0
						1273.00	20.00			0	0	0

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Date: September 2019

EPN	Model ID	Description
LITA	WOOGCITE	Description
	1	

Date: September 2019 Permit #: TBD

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County **General Information**

EPN	Model ID	Description
_		

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Date: September 2019

EPN	Model ID	Description

Date: September 2019

Facility:												
EPN	Model ID	Modeling Scenario	Source Description	Point Source Type	Point Source Justification	Easting: X [m]	Northing: Y [m]	Base Elevation [m]	Height [m]	Exit Temperature [K]	Exit Velocity [m/s]	Diameter [m]
VCU-1	VCU_1		Railcar Vapor Combustion Unit	POINT	Vertical stack	651981.00	3078110.00	2.25	10.67	634.261	1.143	2.438
VCU-2	VCU_2		Marine Vessel VCU	POINT	Vertical stack	651991.00	3078115.00	2.28	18.29	634.261	0.762	3.658
BD1 CSD-1	BD1_CSD1		BD1 Grab Clamshell to Marine Vessel	POINT	Pseudo-point	651587.00	3077986.00	0.00	10.64	0.000	0.001	0.001
BD1 FB-1	BD1_FB1		BD1 Feeder Belt 1	POINT	Pseudo-point	651591.50	3078003.00	0.44	11.61	0.000	0.001	0.001
BD1 H-1	BD1_H1		BD1 Hopper 1	POINT	Pseudo-point	651594.50	3078000.00	0.18	13.78	0.000	0.001	0.001
BD1 H3	BD1_H3		BD1 Loading Point for PPL1	POINT	Pseudo-point	652036.44	3078490.63	2.16	3.05	0.000	0.001	0.001
BD1 RC-1	BD1_RC1		Bulk Dock 1 Railcar Loadout 1	POINT	Pseudo-point	651593.50	3078003.00	0.44	4.57	0.000	0.001	0.001
BD1 RC-2	BD1_RC2		BD1 Railcar Loadout 2	POINT	Pseudo-point	652076.78	3078519.06	2.29	4.57	0.000	0.001	0.001
BD1 TR-1	BD1_TR1		Bulk Dock 1 Truck Loadout 1	POINT	Pseudo-point	651593.50	3078003.00	0.44	3.35	0.000	0.001	0.001
BD1 TR-2	BD1_TR2		BD1 Truck Loadout 2	POINT	Pseudo-point	652111.27	3078475.66	2.41	3.35	0.000	0.001	0.001
BD1 TS-8	BD1_TS8		BD1 Transfer Station 1 connecting CB1 to CB2	POINT	Pseudo-point	651661.51	3078017.25	1.60	3.05	0.000	0.001	0.001
BD1 TS-9	BD1_TS9		BD1 Transfer Station 2 connecting CB2 to CB3	POINT	Pseudo-point	651927.09	3078143.90	2.39	3.05	0.000	0.001	0.001
BD1 TS-10	BD1_TS10		BD1 Transfer Station 3 connecting CB3 to CB4	POINT	Pseudo-point	651970.00	3078290.00	2.64	3.05	0.000	0.001	0.001
BD1 TS-11	BD1_TS11		BD1 Transfer Station 4 connecting CB4 to CB5	POINT	Pseudo-point	651895.30	3078454.92	3.31	3.05	0.000	0.001	0.001
BD1 TR-2/BD1 RC-2	BD1RC2CP		Cap for BD1 Truck and Railcar Loadout	POINT	Pseudo-point	652076.78	3078519.06	2.29	4.57	0.000	0.001	0.001
BD2 DS-TR1	BD2_DTR1		BD2 Dump Station for Trucks	POINT	Pseudo-point	651152.45	3078208.10	11.71	1.22	0.000	0.001	0.001
BD2 DS-TR2	BD2_DTR2		BD2 Dump Station for Trucks	POINT	Pseudo-point	651278.94	3078187.03	3.70	1.22	0.000	0.001	0.001
BD2 DS-TR3	BD2_DTR3		BD2 Dump Station for Trucks	POINT	Pseudo-point	650997.00	3078219.90	5.27	1.22	0.000	0.001	0.001
BD2 FEL PC-5	BD2_FEL5		BD2 RC Station Front- End Loader Feeding Hopper to Load Portable Conveyor BD2 PC-5	POINT	Pseudo-point	651005.00	3078165.00	3.50	4.57	0.000	0.001	0.001
BD2 PC-5	BD2_PC5		BD2 Transfer Station Receives Material From Portable Conveyor or FE Loader	POINT	Pseudo-point	651217.33	3078362.82	1.76	6.10	0.000	0.001	0.001

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW) Company I Company I

Company Na	me: Port of Corpus	Christi Authority	of Nueces County
------------	--------------------	-------------------	------------------

		Modeling		Point Source		Easting:	Northing:	Base Elevation	Height	Exit Temperature	Exit Velocity	Diameter
EPN	Model ID	Scenario	Source Description	Туре	Point Source Justification	X [m]	Y [m]	[m]	[m]	[K]	[m/s]	[m]
BD2 PC-6	BD2_PC6		BD2 Transfer Station Receives Material From Portable Conveyor or FE Loader	POINT	Pseudo-point	651315.60	3078331.58	2.12	6.10	0.000	0.001	0.001
BD2 RL	BD2_RL		BD2 Railcar Loadout Point with Bitruncated Chute	POINT	Pseudo-point	650974.00	3078119.00	2.26	4.57	0.000	0.001	0.001
BD2 SL	BD2_SL		BD2 Telescopic Spout- Out Ship Loader	POINT	Pseudo-point	651149.00	3077993.00	0.00	6.10	0.000	0.001	0.001
BD2 TS FEL-1	BD2_FEL1		BD2 Loading point to Hopper from FE Loader	POINT	Pseudo-point	651564.00	3078280.00	2.06	6.10	0.000	0.001	0.001
BD2 TS FEL-2	BD2_FEL2		BD2 Loading Point to BD2 CB-2 at Citgo or Valero Pad	POINT	Pseudo-point	651363.00	3078188.00	2.66	6.10	0.000	0.001	0.001
BD2 TS FEL-6	BD2_FEL6		BD2 Front-End Loader for Loading Trucks from Stockpile	POINT	Pseudo-point	651236.00	3078106.00	2.60	3.05	0.000	0.001	0.001
BD2 TS PC-1	BD2_TPC1		BD2 Transfer Station at BD2 CB-1	POINT	Pseudo-point	651603.65	3078286.47	2.56	6.10	0.000	0.001	0.001
BD2 TS PC-2	BD2_TPC2		BD2 Transfer Station Connecting BD2 PC-2 to BD2 CB-2	POINT	Pseudo-point	651356.00	3078249.00	2.80	6.10	0.000	0.001	0.001
BD2 TS PC-4	BD2_TSP4		BD2 Receiving Hopper from Portable Conveyor or Front End Loader at CB-7	POINT	Pseudo-point	651110.00	3078296.00	4.01	6.10	0.000	0.001	0.001
BD2 TS-1	BD2_TS1		BD2 Transfer Station 1 Connecting BD2 CB-1 to BD2 CB-2	POINT	Pseudo-point	651355.00	3078254.00	3.11	4.57	0.000	0.001	0.001
BD2 TS-3	BD2_TS3		BD2 Transfer Station Connecting BD2 CB-4 to BD2 CB-5	POINT	Pseudo-point	651225.00	3078094.00	2.55	4.57	0.000	0.001	0.001
BD2 TS-3a	BD2_TS3a		BD2 Transfer Station Connecting CB-4 to CB- 10	POINT	Pseudo-point	651225.00	3078094.00	2.55	9.75	0.000	0.001	0.001
BD2 TS-4	BD2_TS4		BD2 Transfer Station Connecting BD2 CB-5 to BD2 CB-6	POINT	Pseudo-point	651196.00	3078030.00	0.52	15.24	0.000	0.001	0.001
BD2 TS-5	BD2_TS5		BD2 Transfer Station Connecting CB-7 to CB-8 or CB-9	POINT	Pseudo-point	651030.00	3078165.00	4.23	3.05	0.000	0.001	0.001
BD2 TS-6	BD2_TS6		BD2 Transfer Station Connecting BD2 CB-8 to BD2 CB-5	POINT	Pseudo-point	651223.00	3078088.00	2.55	6.10	0.000	0.001	0.001
BD2 TS-7	BD2_TS7		BD2 Transfer Station 7	POINT	Pseudo-point	651174.71	3078377.39	3.34	3.05	0.000	0.001	0.001

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)

General Information

Company Name: Port of Corpus Christi Authority of Nueces (County
--	--------

EPN	Model ID	Modeling Scenario	Source Description	Point Source Type	Point Source Justification	Easting: X [m]	Northing: Y [m]	Base Elevation [m]	Height [m]	Exit Temperature [K]	Exit Velocity [m/s]	Diameter [m]
BD2 WPE-01 & BD2 WPE-02	BD2_WPE		BD2 Wet Particle Extractor to remove dust from underground Tunnel (BD2 TS-2, BD2 DS-RR/TR)	POINT	Pseudo-point	651304.89	3078073.99	2.42	0.00	0.000	0.001	0.001
FEL-SPTK	FELSPTK		Front-end Loader for Loading Trucks from Stockpile	POINT	Pseudo-point	651584.00	3077995.00	0.00	3.05	0.000	0.001	0.001
T 5	T_5		Loading Drop Point	POINT	Pseudo-point	651276.00	3078066.00	2.54	4.57	0.000	0.001	0.001
T CH1	T_CH1		Truck Dump Fug	POINT	Pseudo-point	651530.00	3077984.00	1.32	0.91	0.000	0.001	0.001
T CH2	T_CH2		FEL to Hopper to Conveyor Fugitives	POINT	Pseudo-point	651673.00	3078000.00	0.09	1.83	0.000	0.001	0.001
T EP-10	T_EP10		Coke Loading – Port Hoppers	POINT	Pseudo-point	651464.62	3078265.12	1.96	9.75	0.000	0.001	0.001
T EP-11	T_EP11		Coke Loading – Trucks	POINT	Pseudo-point	651520.55	3078134.41	2.27	4.57	0.000	0.001	0.001
T EP-14	SPRLEP14		Coke Pile Maintenance	POINT	Pseudo-point	650959.01	3078171.71	2.51	2.29	0.000	0.001	0.001
T EP-2	T_EP2		Coke Unloading – Trucks	POINT	Pseudo-point	651469.71	3078169.67	4.50	1.22	0.000	0.001	0.001
T MSS	SPRLMSS		Water Spray Maintenance	POINT	Pseudo-point	650959.01	3078171.71	2.51	2.29	0.000	0.001	0.001
T UL-2	T_UL2		Rail Pad Unloading – Truck	POINT	Pseudo-point	651584.00	3077995.00	0.00	3.05	0.000	0.001	0.001
VUE	VUE		Vessel Unloading Equipment	POINT	Pseudo-point	651597.00	3077991.00	0.00	3.05	0.000	0.001	0.001

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

EPN	Model ID	Modeling Scenario	Area Source Type	Easting: X [m]	Northing: Y [m]	Base Elevation [m]	Modeled Release Height [m]	Length X [m]	Length Y [m]	Rotation Angle [deg]	Radius [m]	Initial Vertical Sigma (m)
BD1 SP-3	BD1_SP3		AREA	651941.00	3078380.00	2.70	1.71	48.77	185.32	69.00		1.59
BD1 SP-4	BD1_SP4		AREA	651999.00	3078341.00	2.02	1.71	27.74	143.26	69.00		1.59
BD1 SP-5	BD1_SP5		AREA	651967.00	3078294.00	2.71	1.71	25.91	181.36	69.00		1.59
BD1 SP-7	BD1_SP7		AREA	651879.00	3078485.00	3.04	1.71	45.72	152.40	69.00		1.59
BD1 SP-8	BD1_SP8		AREA	651534.69	3078023.57	2.46	1.71	15.24	159.11	83.00		1.59
SP-UNLOAD	SPUNLOAD		AREA	651563.43	3077984.31	0.34	0.91	76.20	15.24	-7.00		0.85
BLAST	BLAST		AREA	651050.73	3078137.39	3.04	1.52	6.71	3.05	22.00		1.42
PAINT	PAINT		AREA	651050.73	3078137.39	3.04	1.52	6.71	3.05	22.00		1.42
BD1 SP-1	BD1_SP1		AREAPOLY	651515.19	3078001.33	2.28	2.29			N/A		2.13
BD1 SP-2	BD1_SP2		AREAPOLY	651900.37	3078395.90	2.92	1.71			N/A		1.59
BD1 SP-6	BD1_SP6		AREAPOLY	652118.74	3078515.15	2.41	1.71			N/A		1.59
BD2-STKPL-9	BD2_SP9		AREAPOLY	650961.27	3078249.58	4.33	4.57			N/A		4.25
BD2-STKPL-10	BD2_SP10		AREAPOLY	651210.69	3078190.09	2.89	4.57			N/A		4.25
BD2-STKPL-11	BD2_SP11		AREAPOLY	651264.67	3078305.46	2.66	4.57			N/A		4.25
BD2-STKPL-12	BD2_SP12		AREAPOLY	651363.53	3078253.26	2.76	4.57			N/A		4.25
BD2 STKPL-RCU	BD2_SPRC		AREAPOLY	651326.67	3078092.22	2.61	4.57			N/A		4.25

Date: September 2019 Permit #: TBD

EPN	Model ID	Modeling Scenario	Area Source Type	Easting: X [m]	Northing: Y [m]	Base Elevation [m]	Modeled Release Height [m]	Length X [m]	Length Y [m]	Rotation Angle [deg]	Radius [m]	Initial Vertical Sigma (m)
BD2 STKPL-RL	BD2_SPRL		AREAPOLY	651025.29	3078185.92	4.51	2.29			N/A		2.13
RCLOAD	RCLOAD		AREA	651942.50	3078125.64	2.40	3.66	12.95	121.92	-28.00		1.70
SDBLOAD	SDBLOAD		AREA	651984.59	3078065.26	0.05	7.62	24.00	102.00	66.50		3.54
OBLOAD	OBLOAD		AREA	651998.46	3078071.62	0.41	4.57	16.46	48.77	66.50		2.13
SLOAD	SLOAD		AREA	651842.65	3078001.46	0.00	7.62	36.58	289.56	66.50		3.54
FUG	FUG		AREA	651993.67	3078082.36	1.08	4.57	10.67	64.01	66.50		2.13

Date: September 2019 Permit #: TBD

General Information

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

racility.		_			
EPN	Model ID	Area Source Initial Sigma Justification	Area Source Size Justification	Area Source Release Height Justification	Source Description
BD1 SP-3	BD1_SP3	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
BD1 SP-4	BD1_SP4	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
BD1 SP-5	BD1_SP5	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
BD1 SP-7	BD1_SP7	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Warehouse Stockpile
BD1 SP-8	BD1_SP8	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
SP-UNLOAD	SPUNLOAD	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	Stockpile from unloading vessels
BLAST	BLAST	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	Height of blasting activities	Blasting Emissions
PAINT	PAINT	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	Height of spraying and painting activities	Painting Emissions
BD1 SP-1	BD1_SP1	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Ship Loadout Stockpile
BD1 SP-2	BD1_SP2	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
BD1 SP-6	BD1_SP6	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
BD2-STKPL-9	BD2_SP9	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Stockpile
BD2-STKPL-10	BD2_SP10	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Stockpile
BD2-STKPL-11	BD2_SP11	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Stockpile
BD2-STKPL-12	BD2_SP12	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Misc. Stockpile
BD2 STKPL-RCU	BD2_SPRC	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Stockpile for Loading Trucks from Railcars

Date: September 2019

EPN	Model ID	Area Source Initial Sigma Justification	Area Source Size Justification	Area Source Release Height Justification	Source Description
BD2 STKPL-RL	BD2_SPRL	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Rail Loadout Station Stockpile
RCLOAD	RCLOAD	surface-based source (vertical dimension of source divided by 2.15)	Plot plan overlaid at proposed location in Google Earth	midpoint of Railcar Loading Fugitives height	Railcar Loading Fugitives
SDBLOAD	SDBLOAD	surface-based source (vertical dimension of source divided by 2.15)	Plot plan overlaid at proposed location in Google Earth	midpoint of Shallow Draft Barge Loading Fugitives height	Shallow Draft Barge Loading Fugitives
OBLOAD	OBLOAD	surface-based source (vertical dimension of source divided by 2.15)	Plot plan overlaid at proposed location in Google Earth	midpoint of Ocean Barge Loading Fugitives height	Ocean Barge Loading Fugitives
SLOAD	SLOAD	surface-based source (vertical dimension of source divided by 2.15)	Plot plan overlaid at proposed location in Google Earth	midpoint of Ship Loading Fugitives height	Ship Loading Fugitives
FUG	FUG	surface-based source (vertical dimension of source divided by 2.15)	Plot plan overlaid at proposed location in Google Earth	midpoint of Fugitive Piping Components height	Fugitive Piping Components

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

		Footprint of Source	Footprint of Source	Length of Side	Type of Volume Source (sigma y)	Sigma Y	Vertical Span	Vertical Span	Vertical Dimension
EPN	Model ID	Length (m)	Width (m)	(making it a square) SQRT(L * W)	Pick from drop-down	(m)	Min Release (m)	Max Release (m)	(m)
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
	+			0.00		Incomplete			0.00
	+			0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
	+			0.00		Incomplete			0.00
				0.00		Incomplete			0.00
	1	1		0.00		Incomplete			0.00
	†	†		0.00		Incomplete			0.00
	†	†		0.00		Incomplete			0.00
	1	1		0.00		Incomplete			0.00
	†	†		0.00		Incomplete			0.00
	†	†		0.00		Incomplete			0.00
	1			0.00		Incomplete			0.00
	†	†		0.00		Incomplete			0.00
	1	+		0.00		Incomplete			0.00
	1	+		0.00		Incomplete			0.00
				0.00		Incomplete			0.00
	+	+		0.00		Incomplete			0.00
	+			0.00		Incomplete			0.00
	1	+		0.00		Incomplete			0.00
	+	+		0.00		Incomplete			0.00

Date: September 2019 Permit #: TBD

		Footprint of Source	Source	Length of Side	Type of Volume Source (sigma y)	Sigma Y	·	Vertical Span	Vertical Dimension
EPN	Model ID	Length (m)	Width (m)	(making it a square) SQRT(L * W)	Pick from drop-down	(m)	Min Release (m)	Max Release (m)	(m)
				0.00	·	Incomplete	1 1		0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

		Footprint of Source	Footprint of Source	Length of Side (making it a square)	Type of Volume Source (sigma y)	Sigma Y	Vertical Span Min Release	Vertical Span Max Release	Vertical Dimensior
EPN	Model ID	Length (m)	Width (m)	`SQRT(L * W)	Pick from drop-down	(m)	(m)	(m)	(m)
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00

0.00

0.00

0.00

Incomplete

Incomplete

Incomplete

0.00

0.00

0.00

Date: September 2019

		Footprint of	Footprint of		Type of Volume Source (sigma y)	Sigma Y	Vertical Span	Vertical Span	Vertical
		Source	Source	Length of Side					Dimension
				(making it a square)			Min Release	Max Release	
EPN	Model ID	Length (m)	Width (m)	SQRT(L * W)	Pick from drop-down	(m)	(m)	(m)	(m)
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00
				0.00		Incomplete			0.00

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

		Type of Volume Source (sigma z)	Release Height (middle point of	Building Name (if on/adjacent to a	Adjacent Building Height, if	Sigma Z
			vertical span)	building)	applicable	
EPN	Model ID	Pick from drop-down	(m)	Pick from drop-down	(m)	(m)
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete

Date: September 2019

EPN	Model ID	Type of Volume Source (sigma z) Pick from drop-down	Release Height (middle point of vertical span) (m)	Building Name (if on/adjacent to a building) Pick from drop-down	Adjacent Building Height, if applicable (m)	Sigma Z
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)

		Liection	J	I Information	Compańy	/ Name: Poi	rt of Corpus Christi Authority of Nueces County
		Type of Volume Source (sigma z)	Release Height (middle point of vertical span)		Adjacent Building Height, if applicable	Sigma Z	
EPN	Model ID	Pick from drop-down	(m)	Pick from drop-down	(m)	(m)	
			0.00			Incomplete	
			0.00			Incomplete	

		Type of Volume Source (sigma z)	Release Height (middle point of vertical span)	Building Name (if on/adjacent to a building)	Adjacent Building Height, if applicable	Sigma Z
EPN	Model ID	Pick from drop-down	(m) '	Pick from drop-down	(m)	(m)
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete

Date: September 2019

EPN	Model ID	Type of Volume Source (sigma z) Pick from drop-down	Release Height (middle point of vertical span) (m)	Building Name (if on/adjacent to a building) Pick from drop-down	Adjacent Building Height, if applicable (m)	Sigma Z
			0.00			Incomplete
			0.00			Incomplete
			0.00			Incomplete

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

		Modeled	Modeled	Lateral	Vertical	Modeling	Facting:	Northing:	Base Elevation		
EPN	Model ID	Height [m]	[m]	Dimension SigmaY [m]	Sigma7 [m]	Scenario	Easting: X [m]	Northing: Y [m]	[m]	Source Description	Volume Source Size Justification
27.14	Wiederib	rioigiit [iii]	[:::]	oigina i [iii]	oiginaz [iii]	Coordinatio	7. [11]	. []	[]	Codies Beschpaen	Volume Course Size Guermanism

Date: September 2019

		Modeled Release	Length X	Dimension	Vertical Dimension	Modeling	Easting:	Northing:	Base Elevation		
EPN	Model ID	Height [m]	[m]	SigmaY [m]	SigmaZ [m]	Scenario	X [m]	Y [m]	[m]	Source Description	Volume Source Size Justification
											<u> </u>
											<u> </u>
											<u> </u>
											<u> </u>
											<u> </u>
											<u> </u>

Date: September 2019 Permit #: TBD

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County **General Information**

EPN	Model ID	Modeled Release Height [m]	Modeled Length X [m]	Lateral Dimension SigmaY [m]	Vertical Dimension SigmaZ [m]	Modeling Scenario	Easting: X [m]	Northing: Y [m]	Base Elevation [m]	Source Description	Volume Source Size Justification
						_					

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW) Company Name: Port of Corpus Christi Authority of Nueces County **General Information**

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate	Scalars or Factors Used?	Scalar/Factor in Use
VCU-1	VCU 1	0	NOx	1-hr	NAAQS	SIL Analysis	No	7.35	project increase	No	
VCU-2	VCU 2	0	NOx	1-hr	NAAQS	SIL Analysis	No	6.13	project increase	No	
VCU-1	VCU 1	0	NOx	Annual	NAAQS	SIL Analysis	No	3.30	project increase	Yes	Tier 2: 0.9
VCU-2	VCU 2	0	NOx	Annual	NAAQS	SIL Analysis	No	3.30	project increase	Yes	Tier 2: 0.9
VCU-1	VCU 1	0	CO	1-hr	NAAQS	SIL Analysis	No	14.67	project increase	No	Tiel 2. 0.9
VCU-2	VCU 2	0	CO	1-hr	NAAQS	SIL Analysis	No	12.23	project increase	No	
VCU-1	VCU_1	0	CO	8-hr	NAAQS	SIL Analysis	No	14.67	project increase	No	
VCU-2	VCU_1	0	CO	8-hr	NAAQS	SIL Analysis	No	12.23	project increase	No	
VCU-1	VCU_2	0	SO2	1-hr	NAAQS	SIL Analysis	No	0.0313	project increase	No	
VCU-2	VCU_1	0	SO2	1-hr	NAAQS	SIL Analysis	No	0.0261	project increase	No	
VCU-1	VCU_2	0	SO2	3-hr	NAAQS	SIL Analysis	No	0.0201	project increase	No	
VCU-2	VCU_1	0	SO2	3-hr	NAAQS NAAQS	SIL Analysis	No	0.0313	· '	No	
VCU-2 VCU-1	VCU_2 VCU 1	0	SO2		NAAQS NAAQS	, , , , , , , , , , , , , , , , , , ,		0.0261	project increase		
		0	SO2	24-hr		SIL Analysis SIL Analysis	No		project increase	No	
VCU-2	VCU_2			24-hr	NAAQS		No	0.0261	project increase	No	
VCU-1	VCU_1	0	SO2	Annual	NAAQS	SIL Analysis	No	0.0141	project increase	No	
VCU-2	VCU_2	0	SO2	Annual	NAAQS	SIL Analysis	No	0.0141	project increase	No	
VCU-1	VCU_1	0	PM10	24-hr	NAAQS	SIL Analysis	No	0.397	project increase	No	
VCU-2	VCU_2	0	PM10	24-hr	NAAQS	SIL Analysis	No	0.331	project increase	No	
VCU-1	VCU_1	0	PM2.5	24-hr	NAAQS	SIL Analysis	No	0.397	project increase	No	
VCU-2	VCU_2	0	PM2.5	24-hr	NAAQS	SIL Analysis	No	0.331	project increase	No	
VCU-1	VCU_1	0	PM2.5	Annual	NAAQS	SIL Analysis	No	0.178	project increase	No	
VCU-2	VCU_2	0	PM2.5	Annual	NAAQS	SIL Analysis	No	0.178	project increase	No	
VCU-1	VCU_1	0	NOx	1-hr	NAAQS	Minor Full NAAQS	No	7.35	proposed PTE	No	
VCU-2	VCU_2	0	NOx	1-hr	NAAQS	Minor Full NAAQS	No	6.13	proposed PTE	No	
VCU-1	VCU_1	0	NOx	Annual	NAAQS	Minor Full NAAQS	No	3.30	proposed PTE	Yes	Tier 2: 0.9
VCU-2	VCU_2	0	NOx	Annual	NAAQS	Minor Full NAAQS	No	3.30	proposed PTE	Yes	Tier 2: 0.9
VCU-1	VCU_1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.397	proposed PTE	No	
VCU-2	VCU_2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.331	proposed PTE	No	
BD1 CSD-1	BD1_CSD1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.101	proposed PTE	No	
BD1 FB-1	BD1_FB1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0505	proposed PTE	No	
BD1 H-1	BD1_H1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.101	proposed PTE	No	
BD1 H3	BD1_H3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0505	proposed PTE	No	
BD1 RC-1	BD1_RC1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0337	proposed PTE	No	
BD1 RC-2	BD1_RC2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0842	proposed PTE	No	
BD1 TR-1	BD1_TR1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0337	proposed PTE	No	
BD1 TR-2	BD1_TR2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0842	proposed PTE	No	
BD1 TS-8	BD1_TS8	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
BD1 TS-9	BD1 TS9	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
BD1 TS-10	BD1 TS10	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
BD1 TS-11	BD1 TS11	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
BD2 DS-TR1	BD2 DTR1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0903	proposed PTE	No	
BD2 DS-TR2	BD2 DTR2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0903	proposed PTE	No	
BD2 DS-TR3	BD2 DTR3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0903	proposed PTE	No	
BD2 FEL PC-5	BD2 FEL5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0752	proposed PTE	No	
BD2 PC-5	BD2 PC5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	
222 : 0 0	BD2_PC6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	

Date: September 2019

Permit #: IBD

Concret Information

Concret Information

Permit #: IBD

Company Name: Port of Corpus Christi Authority of Nueces County

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate	Scalars or Factors Used?	Scalar/Factor in Use
BD2 RL	BD2_RL	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	
BD2 SL	BD2_SL	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0135	proposed PTE	No	
BD2 TS FEL-1	BD2_FEL1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	
BD2 TS FEL-2	BD2_FEL2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0752	proposed PTE	No	
BD2 TS FEL-6	BD2_FEL6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0251	proposed PTE	No	
BD2 TS PC-1	BD2_TPC1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	
BD2 TS PC-2	BD2_TPC2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0752	proposed PTE	No	
BD2 TS PC-4	BD2_TSP4	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	
BD2 TS-1	BD2_TS1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0150	proposed PTE	No	
BD2 TS-3	BD2_TS3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-3a	BD2_TS3a	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0150	proposed PTE	No	
BD2 TS-4	BD2_TS4	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-5	BD2_TS5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-6	BD2_TS6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-7	BD2_TS7	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0150	proposed PTE	No	
WPE-01 & BD2 WPI	BD2_WPE	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0200	proposed PTE	No	
FEL-SPTK	FELSPTK	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0400	proposed PTE	No	
T 5	T_5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.114	proposed PTE	No	
T CH1	T_CH1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00100	proposed PTE	No	
T CH2	T CH2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00200	proposed PTE	No	
T EP-10	T EP10	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
T EP-11	T EP11	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0200	proposed PTE	No	
T EP-14	SPRLEP14	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0100	proposed PTE	No	
T EP-2	T EP2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
T MSS	SPRLMSS	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
T UL-2	T_UL2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
VUE	VUE	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0400	proposed PTE	No	
VCU-1	VCU_1	0	SO2	1-hr	State Property Line	Project Wide	No	0.0313	project increase	No	
VCU-2	VCU_2	0	SO2	1-hr	State Property Line	Project Wide	No	0.0261	project increase	No	
VCU-1	VCU_1	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
VCU-2	VCU_2	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
VCU-1	VCU 1	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
VCU-2	VCU 2	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	

Date: September 2019 Permit #: TBD

Gener	al information	·	_		_
					_

		Modeling		Modeled			Intermittent			Scalars or	
EPN	Model ID	Scenario	Pollutant	Averaging Time	Standard Type	Review Context	Source?	Rate [lb/hr]	Basis of Emission Rate	Factors Used?	Scalar/Factor in Use
BD1 SP-1	BD1_SP1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0206	proposed PTE	No	
BD1 SP-2	BD1_SP2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0223	proposed PTE	No	
BD1 SP-3	BD1_SP3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0281	proposed PTE	No	
BD1 SP-4	BD1_SP4	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0141	proposed PTE	No	
BD1 SP-5	BD1_SP5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0121	proposed PTE	No	
BD1 SP-6	BD1_SP6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0347	proposed PTE	No	
BD1 SP-7	BD1_SP7	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0107	proposed PTE	No	
BD1 SP-8	BD1_SP8	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00730	proposed PTE	No	
BD2-STKPL-9	BD2_SP9	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0260	proposed PTE	No	
BD2-STKPL-10	BD2_SP10	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0260	proposed PTE	No	
BD2-STKPL-11	BD2_SP11	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0260	proposed PTE	No	
BD2-STKPL-12	BD2_SP12	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0124	proposed PTE	No	
BD2 STKPL-RCU	BD2_SPRC	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00990	proposed PTE	No	
BD2 STKPL-RL	BD2_SPRL	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0204	proposed PTE	No	
SP-UNLOAD	SPUNLOAD	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00457	proposed PTE	No	
BLAST	BLAST	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0200	proposed PTE	No	
PAINT	PAINT	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	4.51	proposed PTE	Yes	Operates from 8AM - 9
RCLOAD	RCLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
SDBLOAD	SDBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
OBLOAD	OBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
SLOAD	SLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
FUG	FUG	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
RCLOAD	RCLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
SDBLOAD	SDBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
OBLOAD	OBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
SLOAD	SLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
FUG	FUG	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
									· ·		

Date: September 2019 Permit #: TBD

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County **General Information**

acility:									
EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate
							_		
	_						1		
							+		
							1		

Date: September 2019

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019 Permit #: TBD

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County **General Information**

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019

EPN	Model ID	Modeling Scenario	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019 Permit #: TBD

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County **General Information**

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019 Permit #: TBD

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019 Permit #: TBD

General InformationCompany I

Company Name: Port of Corpus Christi Auth	nority of Nueces County
---	-------------------------

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate
						_			
						-			

Date: September 2019 Permit #: TBD

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019 Permit #: TBD

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate
	_								
	-								
	-								
	 								
									1
	_								
	-								
	1								
								1	

Date: September 2019 Permit #: TBD

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019 Permit #: TBD

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019 Permit #: TBD

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019 Permit #: TBD

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Date: September 2019

EPN	Model ID	Modeling Scenario	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County Permit #: TBD

Date: September 2019

General Information

Facility:

racility:			
EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019 Permit #: TBD

General Information

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Electronic Modeling Evaluation Workbook (EMEW)

Constal Information

Company Name: Port of Corpus Christi Authority of Nueces County

Date: September 2019

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019 Permit #: TBD

	EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use
· · · · · · · · · · · · · · · · · · ·				

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Date: September 2019

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019 Permit #: TBD

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Electronic Modeling Evaluation Workbook (EMEW)

Date: September 2019 Permit #: TBD

General Information

Company Name: Port of Corpus Christi Authority of Nueces Co	ounty
---	-------

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Permit #: TBD Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County

Date: September 2019

General Information

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use
		_	
	Ī	Ī	

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Date: September 2019

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019 Permit #: TBD

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Date: September 2019

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019 Permit #: TBD

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)

Canaral Information	Composit Name:	Dort of Corpus	Christi Authority	f Nucces County
General Information	Company Name.	Port of Corpus	Christi Authority C	i Nueces County

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Electronic Modeling Evaluation Workbook (EMEW)

Permit #: TBD

Date: September 2019

General Information

EPN	Model ID	Scalars or Factors Used?	Scalar/Factor in Use

Date: September 2019 Permit #: TBD

Speciated Emissions	by Model ID							
CAS#	Chemical Species	Other Species	Short-Term ESL (μg/m³)	Long-Term ESL (μg/m³)	S Modeled Project Wide Emission C Rate [lb/hr]	Modeled Site Wide Emission Rate	S Modeled Project Wide Emission C Rate [tpy]	S Modeled Site Wide Emission Rate
N/A	Other (Please specify):	crude oil, < 1% benzene	3500	350	12.9314	12.9314	-	-
N/A	Other (Please specify):	Light Petroleum Distillates	Provide	Provide	24.4548	24.4548	-	-
N/A	Other (Please specify):	Heavy Petroleum Distillates	Provide	Provide	27.0327	27.0327	-	-
1634-04-4	methyl tert-butyl ether		630	180	2.5773	2.5773	-	-

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Speciated Emissions

		Modeled Project Wide Emission Rate [Ib/hr]	deled Site Wide Emission Rate /hr]	Modeled Project Wide Emission Rate [tpy]	Modeled Site Wide Emission Rate [tpy]	deled Project Wide Emission te [lb/hr]	deled Site Wide Emission Rate (hr]	deled Project Wide Emission te [tpy]	Modeled Site Wide Emission Rate [tpy]	deled Project Wide Emission te [lb/hr]	deled Site Wide Emission Rate /hr]	deled Project Wide Emission te [tpy]	deled Site Wide Emission Rate y]	deled Project Wide Emission te [lb/hr]	deled Site Wide Emission Rate /hr]	deled Project Wide Emission te [tpy]	deled Site Wide Emission Rate y]
	CAS#	VCU_2	% <u>(a</u> VCU_2	C_CO_2	PPOW VCU_2	Mode Rate te	S A A A A A A A A A A A A A A A A A A A	Mode Rate		SDBLOAD Rate de	SDBLOAD SDBLOA	Mode Rate	SDBLOAD	Mode Rate	OBLOAD	M Mode Rate	OBLOAD [tbx]
ı	N/A	10.7761	10.7761	-	-	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+00	-	-	10.7761	10.7761	-	-
ŀ	N/A	20.3790	20.3790	-	-	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+00	-	-	20.3790	20.3790	-	-
ļ	N/A	22.5274	22.5274	-	-	15.3754	15.3754	-	-	12.8128	12.8128	-	-	12.8128	12.8128	-	-
1	1634-04-4	2.1478	2.1478	-	-	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+00	-	_	2.1478	2.1478	_	-

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Speciated Emissions

D SLOAD	SLOAD	SLOAD		0.220	FUG	FUG
	-	-			-	-
	-	-			-	-
5.1251	-	-	0.330	0.330	-	-
9 0.859	-	-	0.330	0.330	-	_
1	05 4.3105 16 8.1516 51 5.1251	05 4.3105 - 16 8.1516 - 51 5.1251 -	05 4.3105 16 8.1516 51 5.1251	16 8.1516 - - 0.330 51 5.1251 - - 0.330	05 4.3105 - - 0.330 0.330 16 8.1516 - - 0.330 0.330 51 5.1251 - - 0.330 0.330	05 4.3105 - - 0.330 0.330 - 16 8.1516 - - 0.330 0.330 - 51 5.1251 - - 0.330 0.330 -

Date: September 2019 Permit #: TBD Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

		Madalisas		Madalad Avenanina				Carrage	Madalad Cusicaian
EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging time	Standard Type	Review Context	Intermittent	Source Type	Modeled Emission Rate [lb/hr]
VCU-1	VCU 1	0	NOx	1-hr	NAAQS	SIL Analysis	No	Point	7.35
VCU-2	VCU 2	0	NOx	1-hr	NAAQS	SIL Analysis	No	Point	6.13
VCU-1	VCU_1	0	NOx	Annual	NAAQS	SIL Analysis	No	Point	3.30
VCU-2	VCU_2	0	NOx	Annual	NAAQS	SIL Analysis	No	Point	3.30
VCU-1	VCU_1	0	CO	1-hr	NAAQS	SIL Analysis	No	Point	14.67
VCU-2	VCU_2	0	CO	1-hr	NAAQS	SIL Analysis	No	Point	12.23
VCU-1 VCU-2	VCU_1 VCU 2	0	CO CO	8-hr 8-hr	NAAQS NAAQS	SIL Analysis	No No	Point Point	14.67 12.23
VCU-1	VCU_2 VCU_1	0	SO2	0-111 1-hr	NAAQS	SIL Analysis SIL Analysis	No	Point	0.03
VCU-2	VCU_1	0	SO2	1-hr	NAAQS	SIL Analysis	No	Point	0.03
VCU-1	VCU 1	0	SO2	3-hr	NAAQS	SIL Analysis	No	Point	0.03
VCU-2	VCU_2	0	SO2	3-hr	NAAQS	SIL Analysis	No	Point	0.03
VCU-1	VCU_1	0	SO2	24-hr	NAAQS	SIL Analysis	No	Point	0.03
VCU-2	VCU_2	0	SO2	24-hr	NAAQS	SIL Analysis	No	Point	0.03
VCU-1	VCU_1	0	SO2	Annual	NAAQS	SIL Analysis	No	Point	0.01
VCU-2	VCU_2	0	SO2	Annual	NAAQS	SIL Analysis	No	Point	0.01
VCU-1	VCU_1	0	PM10	24-hr	NAAQS	SIL Analysis	No	Point	0.40
VCU-2 VCU-1	VCU_2 VCU 1	0	PM10 PM2.5	24-hr 24-hr	NAAQS	SIL Analysis	No No	Point Point	0.33
VCU-2	VCU_1 VCU 2	0	PM2.5	24-III 24-hr	NAAQS NAAQS	SIL Analysis SIL Analysis	No	Point	0.40 0.33
VCU-1	VCU_2 VCU_1	0	PM2.5	Annual	NAAQS	SIL Analysis	No	Point	0.33
VCU-2	VCU 2	0	PM2.5	Annual	NAAQS	SIL Analysis	No	Point	0.18
VCU-1	VCU_1	0	NOx	1-hr	NAAQS	Minor Full NAAQS	No	Point	7.35
VCU-2	VCU_2	0	NOx	1-hr	NAAQS	Minor Full NAAQS	No	Point	6.13
VCU-1	VCU_1	0	NOx	Annual	NAAQS	Minor Full NAAQS	No	Point	3.30
VCU-2	VCU_2	0	NOx	Annual	NAAQS	Minor Full NAAQS	No	Point	3.30
VCU-1	VCU_1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.40
VCU-2	VCU_2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No No	Point	0.33
BD1 CSD-1 BD1 FB-1	BD1_CSD1 BD1_FB1	0	PM2.5 PM2.5	24-hr 24-hr	NAAQS NAAQS	Minor Full NAAQS Minor Full NAAQS	No No	Point Point	0.10 0.05
BD1 H-1	BD1_FB1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.03
BD1 H3	BD1_H3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.05
BD1 RC-1	BD1 RC1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.03
BD1 RC-2	BD1_RC2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.08
BD1 TR-1	BD1_TR1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.03
BD1 TR-2	BD1_TR2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.08
BD1 TS-8	BD1_TS8	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.02
BD1 TS-9	BD1_TS9	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.02
BD1 TS-10 BD1 TS-11	BD1_TS10 BD1_TS11	0	PM2.5 PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.02
BD1 13-11 BD2 DS-TR1	BD2 DTR1	0	PM2.5	24-hr 24-hr	NAAQS NAAQS	Minor Full NAAQS Minor Full NAAQS	No No	Point Point	0.02 0.09
BD2 DS-TR2	BD2_DTR1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.09
BD2 DS-TR3	BD2_DTR3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.09
BD2 FEL PC-5	BD2 FEL5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.08
BD2 PC-5	BD2_PC5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.05
BD2 PC-6	BD2_PC6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.05
BD2 RL	BD2_RL	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.05
BD2 SL	BD2_SL	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.01
BD2 TS FEL-1 BD2 TS FEL-2	BD2_FEL1 BD2_FEL2	0	PM2.5 PM2.5	24-hr 24-hr	NAAQS	Minor Full NAAQS	No	Point	0.05
BD2 TS FEL-2 BD2 TS FEL-6	BD2_FEL2 BD2_FEL6	0	PM2.5	24-111 24-hr	NAAQS NAAQS	Minor Full NAAQS Minor Full NAAQS	No No	Point Point	0.08 0.03
BD2 TS PC-1	BD2_TEE0	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.05
BD2 TS PC-2	BD2_TPC2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.08
BD2 TS PC-4	BD2_TSP4	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.05
BD2 TS-1	BD2_TS1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.02
BD2 TS-3	BD2_TS3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.01
BD2 TS-3a	BD2_TS3a	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.02
BD2 TS-4	BD2_TS4	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.01
BD2 TS-5	BD2_TS5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.01
BD2 TS-6 BD2 TS-7	BD2_TS6 BD2_TS7	0	PM2.5 PM2.5	24-hr 24-hr	NAAQS NAAQS	Minor Full NAAQS Minor Full NAAQS	No No	Point Point	0.01 0.02
BD2 15-7 BD2 WPE-01 & BD2 V	BD2_157 BD2_WPE	0	PM2.5 PM2.5	24-nr 24-hr	NAAQS NAAQS	Minor Full NAAQS	No	Point	0.02
FEL-SPTK	FELSPTK	0	PM2.5	24-III 24-hr	NAAQS	Minor Full NAAQS	No	Point	0.02
T 5	T 5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.11
T CH1	T_CH1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.00
T CH2	T_CH2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.00
T EP-10	T_EP10	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.06
T EP-11	T_EP11	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.02
T EP-14	SPRLEP14	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.01
T EP-2	T_EP2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.06
T MSS	SPRLMSS	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Point	0.06
T UL-2 VUE	T_UL2 VUE	0	PM2.5 PM2.5	24-hr 24-hr	NAAQS NAAQS	Minor Full NAAQS Minor Full NAAQS	No No	Point Point	0.06 0.04
VCU-1	VCU 1	0	SO2	∠4-nr 1-hr	State Property Line	Project Wide	No	Point	0.04
VCU-2	VCU_1	0	SO2	1-hr	State Property Line	Project Wide	No	Point	0.03
VCU-1	VCU 1	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Point	
VCU-2	VCU 2	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Point	

Date: September 2019 Permit #: TBD

		Modeling		Modeled Averaging				Source	Modeled Emission
EPN	Model ID	Scenario	Pollutant	time	Standard Type	Review Context	Intermittent	Type	Rate [lb/hr]
VCU-1	VCU_1	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No	Point	
VCU-2	VCU_2	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No	Point	
BD1 SP-1	BD1_SP1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.02
BD1 SP-2	BD1_SP2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.02
BD1 SP-3	BD1_SP3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.03
BD1 SP-4	BD1_SP4	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.01
BD1 SP-5	BD1_SP5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.01
BD1 SP-6	BD1_SP6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.03
BD1 SP-7	BD1_SP7	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.01
BD1 SP-8	BD1_SP8	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.01
BD2-STKPL-9	BD2_SP9	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.03
BD2-STKPL-10	BD2_SP10	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.03
BD2-STKPL-11	BD2_SP11	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.03
BD2-STKPL-12	BD2_SP12	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.01
BD2 STKPL-RCU	BD2_SPRC	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.01
BD2 STKPL-RL	BD2_SPRL	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.02
SP-UNLOAD	SPUNLOAD	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.00
BLAST	BLAST	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	0.02
PAINT	PAINT	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	Area	4.51
RCLOAD	RCLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Area	
SDBLOAD	SDBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Area	
OBLOAD	OBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Area	
SLOAD	SLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Area	
FUG	FUG	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Area	
RCLOAD	RCLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No	Area	
SDBLOAD	SDBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No	Area	
OBLOAD	OBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No	Area	
SLOAD	SLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No	Area	
FUG	FUG	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No	Area	

Date: September 2019 Permit #: TBD

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County

General Information

Facility:											
<u> </u>					Modeled Emission Rate (lb/hr)	Emergency	Maximum Emission	# Events per	Hours per		Calculated emission
EPN	Model ID	Pollutant	Review Context	Modeling Scenario	Rate (lb/hr)	Engine?	Rate (lb/hr)	year	Event	Hours per Year	rate (lb/hr)
					,	J	,	,		0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
								ļ		0	0
								ļ		0	0
								ļ		0	0
										0	0
								ļ		0	0
								ļ		0	0
								ļ		0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0

Date: September 2019

EPN	Model ID	Pollutant	Review Context	Modeled Emission Rate (lb/hr)	Emergency Engine?	Maximum Emission Rate (lb/hr)	# Events per year	Hours per Event	Hours per Year	Calculated emission rate (lb/hr)
									0	0
									0	0

Date: September 2019 Permit #: TBD

Permit #: TBD

General Information

Company Name: Port of Corpus Christi Authority of Nueces County

EPN	Model ID	Pollutant	Review Context	Modeling Scenario	Modeled Emission Rate (lb/hr)	Emergency Engine?	Maximum Emission Rate (lb/hr)	# Events per year	Hours per Event	Hours per Year	Calculated emission rate (lb/hr)
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										_	
										0	0
											0
										0	
										0	0
								+		0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
								-		0	0
								-		0	0
								-		0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0

Date: September 2019

EPN	Model ID	Pollutant	Review Context	Modeled Emission Rate (lb/hr)	Emergency Engine?	Maximum Emission Rate (lb/hr)	# Events per year	Hours per Event	Hours per Year	Calculated emission rate (lb/hr)
									0	0
									0	0
									0	0

Date: September 2019 Permit #: TBD

Permit #: TBD

General Information

Company Name: Port of Corpus Christi Authority of Nueces County

EPN	Model ID	Pollutant	Review Context	Modeling Scenario	Modeled Emission Rate (lb/hr)	Emergency Engine?	Maximum Emission Rate (lb/hr)	# Events per year	Hours per Event	Hours per Year	Calculated emission rate (lb/hr)
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										_	
										0	0
											0
										0	
										0	0
								+		0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
								-		0	0
								-		0	0
								-		0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0

Date: September 2019

General Information

EPN	Model ID	Pollutant	Review Context	Modeled Emission Rate (lb/hr)	Emergency Engine?	Maximum Emission Rate (lb/hr)	# Events per year	Hours per Event	Hours per Year	Calculated emission rate (lb/hr)
									0	0
									0	0

Date: September 2019 Permit #: TBD

Permit #: TBD

General Information

Company Name: Port of Corpus Christi Authority of Nueces County

EPN	Model ID	Pollutant	Review Context	Modeling Scenario	Modeled Emission Rate (lb/hr)	Emergency Engine?	Maximum Emission Rate (lb/hr)	# Events per year	Hours per Event	Hours per Year	Calculated emission rate (lb/hr)
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	
										0	0
										0	0
										0	
										, and the second	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
								-		0	0
										0	0
								-		0	0
										0	0
								-		0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)

General Information

Company	Name: Port of	Corpus Christi	Authority of N	Nueces County
---------	---------------	----------------	----------------	---------------

EPN	Model ID	Pollutant	Review Context	Modeling Scenario	Modeled Emission Rate (lb/hr)	Emergency Engine?	Maximum Emission Rate (lb/hr)	# Events per year	Hours per Event	Hours per Year	Calculated emission rate (lb/hr)
	Woderib	1 Ollutarit	TREVIEW CONTEXT	Wodeling Ocertailo	rtate (IB/III)	Liigino:	rtate (ID/III)	year	LVCIII		
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0
										0	0

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Facility:

racility:			
		List Intermittent Sources operating simultaneously	Describe any other justification for intermittent
EPN	Model ID	simultaneously	intermittent

Date: September 2019

EPN Mode	List Intermittent Sources operating ID simultaneously	Describe any other justification for intermittent

Date: September 2019 Permit #: TBD

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County **General Information**

EPN	Model ID	List Intermittent Sources operating simultaneously	Describe any other justification for intermittent
□ 114	Woderib	Simulatioodory	intermittent

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Date: September 2019

EPN	Model ID	List Intermittent Sources operating simultaneously	Describe any other justification for intermittent

Date: September 2019

EPN Model ID		List Intermittent Sources operating simultaneously	Describe any other justification for intermittent
LIIV	Woder ib	Simultaneously	intermitent

Date: September 2019

EPN	Model ID	List Intermittent Sources operating simultaneously	Describe any other justification for intermittent

Date: September 2019 Permit #: TBD

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County **General Information**

		List Intermittent Sources operating	Describe any other justification for		
EPN	Model ID	List Intermittent Sources operating simultaneously	Describe any other justification for intermittent		
		·			

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Date: September 2019

		List Intermittent Sources operating	Describe any other justification for intermittent
EPN	Model ID	List Intermittent Sources operating simultaneously	intermittent

Date: September 2019 Permit #: TBD Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

Modeling Scenario	Scenario Description:

Date: September 2019

Pollutant:	PM _{2.5}			
AQS ID:	4835	50032	Street Address and City:	3810 Huisache Street
Link to Data Source:	ww17.tceq.texas.gov/tamis/index.cfm?fuseaction=rep		County:	Nueces
Select metric for short term averaging time below:	1st Year Concentration (µg/m³)	2nd Year Concentration (µg/m³)	3rd Year (most recent) Concentration (µg/m³)	Calculated Background Concentration (µg/m³)
24-hr 98 percentile	25.30000	22.10000	35.41667	28
Annual Average				0

Pollutant:	NO ₂			
AQS ID:	4824	50628	Street Address and City:	6956 James Gamble Drive
Link to Data Source:	ww17.tceq.texas.gov/tamis/index.cfm?fuseaction=rep		County:	Jefferson
Select metric for short term averaging time below:	1st Year Concentration (µg/m³) 2nd Year Concentration (µg/m³)		3rd Year (most recent) Concentration (µg/m³)	Calculated Background Concentration (µg/m³)
1-hr 98 percentile	51.75307	55.74206	59.64531	56
Annual Average			9.71578	10

Date: September 2019

Pollutant:	PM _{2.5}					
AQS ID:		50032				
County:	Nue	eces				
Distance to Project						
Site (km):	3	.0				
			Monitor Justification Data	a		
Category:	10 Kilometer PM _{2.5} Emissions Comparison	Types of Nearby Sources	County PM _{2.5} Emissions Comparison	County Population Comparison	Land Use Comparison	Regional Considerations
Project:	1029.561 TPY	Multiple refineries, loading docks			Mixed industrial and residential	
Monitor:	1029.561 TPY	Multiple refineries			Mixed industrial and residential	
Data Source:	assets/public/implementatio n/air/ie/pseisums/2016state					
	•		Additional Information			
How are off-property sources accounted for?	ources accounted project site. No adjacent sites to the project site					
Monitoring data set year(s)/Additional Justification:	Major roadways near the mor	nitor site.				

Date: September 2019

Pollutant:	NO_2
AQS ID:	482450628
County:	Jefferson
Distance to Project	
Sito (km):	115.0

County:	Jefferson					
Distance to Project Site (km):	41:	5.0				
			Monitor Justification Data	a		
Category:	10 Kilometer NO ₂ Emissions Comparison	Types of Nearby Sources	County NO ₂ Emissions Comparison	County Population Comparison	Land Use Comparison	Regional Considerations
Project:	3927.816 TPY	Multiple refineries, loading docks	15916.318	362,265	Mixed industrial and residential	Coastal
Monitor:	6462.385 TPY	Multiple refineries	21,303.583	255,001	Mixed industrial and residential	Coastal
Data Source:	assets/public/implementatio n/air/ie/pseisums/2016state		www.epa.gov/air-emissions- inventories/national- emissions-inventory-nei	www.census.gov/programs- surveys/popest.html		
			Additional Information			
How are off-property sources accounted for?	urces accounted project site. No adjacent sites to the project site					
Monitoring data set year(s)/Additional Justification:	Major roadways near the mor	nitor site.				

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

General Information

Permit #: TBD

Facility:

	Modeled Emission Rates for Precursors (MERPs) Demonstration Tool for Calculating Secondary PM _{2.5} Impacts								
	Selection of Variables MERP Value Total Secondary Value (µg/m³)								
Precursor	Project Increases (tpy)	Source Selection	Emission Rate (tpy)	Height (m)	24-hr	Annual	24-hr PM _{2.5}	Annual PM _{2.5}	
Nitrogen Oxide (NO _x)	14.4448891	worst-case			2500	10000	0.00715	0.00030	
Sulfur Dioxide (SO ₂)	0.061572417	worst-case			343	1801	0.00715	0.00030	

MERPs Demonstration Justification	Applican
A. Provide justification for selection of worst-case MERP and/or site-specific source here. Please limit your response to 2000 characters.	All internal comments i
Utilized worst-case MERPs in order to be conservative.	

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

Date: September 2019

Table 1. Project-Related Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)
SO ₂	1-hr	0.295	20.42
H ₂ SO ₄	1-hr		1
H ₂ SO ₄	24-hr		0.3
H₂S	1-hr		2.16 (If property is residential, recreational, business, or commercial)
H ₂ S	1-hr		3.24 (If property is not residential, recreational, business, or commercial)

Table 2. Site-wide Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	Standard (µg/m³)
SO ₂	1-hr		1021
H ₂ SO ₄	1-hr		50
H ₂ SO ₄	24-hr		15
H₂S	1-hr		108 (If property is residential, recreational, business, or commercial)
H₂S	1-hr		162 (If property is not residential, recreational, business, or commercial)

Table 3. Modeling Results for Minor NSR De Minimis

3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -							
Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)				
SO ₂	1-hr	0.295	7.8*				
SO ₂	3-hr	0.272	25				
SO ₂	24-hr	0.135	5				
SO ₂	Annual	0.00509	1				
PM ₁₀	24-hr	1.71602	5				
NO ₂	1-hr	62.31902	7.5**				
NO ₂	Annual	1.07335	1				
CO	1-hr	138.23549	2000				
CO	8-hr	111.37084	500				

Additional information for the De Minimis values listed above can be found at:

www.tceq.texas.gov/assets/public/permitting/air/memos/appwso2.pdf

^{*} www.tceq.texas.gov/assets/public/permitting/air/memos/guidance 1hr no2naaqs.pdf

Permit #: TBD Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

General Information

Date: September 2019

Table 4. PM_{2.5} Modeling Results for Minor NSR De Minimis

Pollutant	Averaging Time	GLCmax (μg/m³)	Secondary PM _{2.5} Contribution (µg/m³)	Total Conc. = Secondary PM _{2.5} + GLCmax (μg/m³)	De Minimis (μg/m³)					
PM _{2.5}	24-hr	1.71602	0.00714896	1.72317	1.2*					
PM _{2.5}	Annual	0.0644	0.000295735	0.06469	0.2*					
Additional information f	dditional information for the De Minimis values listed above can be found at:									

Additional information for the De Minimis values listed above can be found at: www.tceq.texas.gov/permitting/air/modeling/epa-mod-guidance.html

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

General Information

Table 5. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Background (μg/m³)	Total Conc. = [Background + GLCmax] (μg/m³)	Standard (µg/m³)
SO ₂	1-hr		0	0	196
SO ₂	3-hr		0	0	1300
SO ₂	24-hr		0	0	365
SO ₂	Annual		0	0	80
PM ₁₀	24-hr		0	0	150
Pb	3-mo		0	0	0.15
NO ₂	1-hr	62.31902	56.00	118.32	188
NO ₂	Annual	1.07335	10.00	11.07	100
CO	1-hr		0	0	40000
CO	8-hr		0	0	10000

Date: September 2019 Permit #: TBD

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

General Information

Table 6. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Secondary PM _{2.5} Contribution (μg/m³)	Background (μg/m³)	Total Conc. = [Background + Secondary + GLCmax] (µg/m³)	Standard (μg/m³)
PM _{2.5}	24-hr	5.33396	0.00714896	27.61	32.95111	35
PM _{2.5}	Annual		0.000295735	0	2.96E-04	12

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

Date: September 2019

Facility:

ity:				GLCmax	GLCmax (µg/m³ per tpy)
EPN	Model ID	Modeling Scenario	Averaging Time	(µg/m³ per lb/hr)	(µg/m³ per tpy

Date: September 2019 Permit #: TBD

				GLCmax	GLCmax
EPN	Model ID	Modeling Scenario	Averaging Time	(µg/m³ per lb/hr)	(µg/m³ per tpy)
				_	
				 	
		the state of the s		II.	

Date: September 2019 Permit #: TBD

				GLCmax	
EPN	Model ID	Modeling Scenario	Averaging Time	(µg/m³ per lb/hr)	(µg/m³ per tpy)

Date: September 2019 Permit #: TBD

				GLCmax	GLCmax
EPN	Model ID	Modeling Scenario	Averaging Time	(µg/m³ per lb/hr)	GLCmax (µg/m³ per tpy)
			7.1.5.5.99	(49, 60. 12,)	([#9/
				1	

Date: September 2019 Permit #: TBD

				GLCmax	GLCmax
EPN	Model ID	Modeling Scenario	Averaging Time	(µg/m³ per lb/hr)	(µg/m³ per tpy)
		<u> </u>	0 0	(10 1)	(10 1 17)

Date: September 2019 Permit #: TBD

EPN	Model ID	Modeling Scenario	Averaging Time	GLCmax (µg/m³ per lb/hr)	GLCmax (µg/m³ per tpy)

Date: September 2019 Permit #: TBD

Madalad Haalth E	Effect Deculte /	MEDA Cuidonos	١.	Cton 2	Cton 1. Draduation		Ctan 4: MCC		Cton F. MCC Only	Cton E. Hours of Eve	andanas			Cton 6	Ctan 7. Cita Wide		Cton 7. Hours of Ev	a a dama a		
Modeled Health E	Effect Results (WERA Guidance):	Step 3	Step 4: Production	1	Step 4: MSS	T	Step 5: MSS Only	Step 5: Hours of Exc	eedance	T	T	Step 6	Step 7: Site Wide	T	Step 7: Hours of Ex	ceedance T	T	
					25 % ESL	10% ESL	50% ESL													
				10% ESL	Step 4 Production GLCmax		Step 4 MSS GLCmax	25% ESL	Full ESL	1V ESL CL Cmay	2V ESL CL Cmay	AV EST CLCmay	10V ESL CL Cmay	Was Stan 6 raliad			1X ESL GLCni	2V ESL CL Cmay	4X ESL GLCmax	10X ESL GLCm
					since most recent site wide				Step 5 GLCmax	Sten 5 MSS Hours	Stan 5 MSS Hours	Step 5 MSS Hours	10X ESL GLCmax Step 5 MSS Hours	on to fall out of the	Site Wide GL Cmax	Site Wide Gl Cni	Hours of	2X ESL GLCmax Hours of	Hours of	Hours of
Chemical Species	CAS Number	Averaging Time	ESL [µg/m³]	[µg/m ³]	modeling [µg/m³]	[µg/m ³]	wide modeling [µg/m³]		[µg/m ³]	of Exceedance	of Exceedance	of Exceedance	of Exceedance	MERA?	[µg/m ³]	[µg/m ³]	Exceedance	Exceedance	Exceedance	Exceedance
crude oil, < 1% benzene	N/A	1-hr	3500	[[-9,]	1758.33	1758.33	mas measing [pg/m]		[49,]	0. <u>_</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			5. <u>2</u> /355 dd55		1758.33	1758.33				
Light Petroleum Distillates	N/A	1-hr	Provide Documentation		3283.96	3283.96									3283.96	3283.96				
leavy Petroleum Distillates	N/A	1-hr	Provide Documentation		2549.81	2549.81									2549.81	391.00	0	6	0	0
methyl tert-butyl ether	1634-04-4	1-hr	630		387.53	387.53									387.53	387.53				
																	-			
																				,
																				+
																				+
					_															
																	1			
																				_
															1		+			+
																	†			+
																	1			
																	_			
																	+			+
																	1			1

Date: September 2019 Permit #: TBD

Permit #: TBD
Company Name: Port of Corpus Christi Authority of Nueces County
General Information

Facility:

-acility:					
Model File Base Name	Pollutant	Averaging Time	File Extensions	Additional File Description	
Nueces_CRPCRP12L	All	All	*.PFL, *.SFC	Surface and upper air met files	
NED_93836365	All	All	*.tif	Terrain file	
NAAQS PID AN_2012_NO2	NO2	Annual	*.bnd, *.dta, *.grf, *.lst, *.sum	de minimis	
NAAQS PID AN_2012_PM2.5	PM2.5	Annual	*.bnd, *.dta, *.grf, *.lst, *.sum	de minimis	
NAAQS PID AN_2012_SO2	SO2	Annual	*.bnd, *.dta, *.grf, *.lst, *.sum	de minimis	
NAAQS PID HR_2012_CO	СО	1-hr and 8-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	de minimis	
NAAQS PID HR_2012_NO2	NO2	1-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	de minimis	
NAAQS PID HR_2012_PM2.5	PM2.5	24-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	de minimis	
NAAQS PID HR_2012_PM10	PM10	24-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	de minimis	
NAAQS PID HR_2012_SO2	SO2	1-hr, 3-hr and 24-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	NAAQS de minimis, SPL de minimis	
NAAQS PID	NO2, CO, SO2, PM10 and PM2.5	All	*.map, *.mot, *.rcf, *.rmp, *.srf	AERMAP files	
NAAQS PID_MAPDETAIL	NO2, CO, SO2, PM10 and PM2.5	All	*.out	AERMAP files	
NAAQS PID_MAPPARAMS	NO2, CO, SO2, PM10 and PM2.5	All	*.out	AERMAP files	
NAAQS PID	NO2, CO, SO2, PM10 and PM2.5	All	*.pip, *.prw, *.so, *.sum, *.tab	de minimis downwash file	
NAAQS CIM NO2 1HR_2012_NO2	NO2	1-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	Minor Full NAAQS	
NAAQS PID HR_2012_NO2	NO2	1-hr	*.csv	significant receptors	
NAAQS CIM NO2 AN_2012_NO2	NO2	Annual	*.bnd, *.dta, *.grf, *.lst, *.sum	Minor Full NAAQS	
VCU_1 NAAQS PID AN_2012_NO2.csv	NO2	Annual	*.csv	significant receptors	
VCU_2 NAAQS PID AN_2012_NO2.csv	NO2	Annual	*.csv	significant receptors	
NAAQS CIM PM2.5 24HR_2012_NO2	PM2.5	24-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	Minor Full NAAQS	
NAAQS PID HR_2012_PM2.5	PM2.5	24-hr	*.csv	significant receptors	
NAAQS CIM	NO2, CO, SO2, PM10 and PM2.5	All	*.map, *.mot, *.rcf, *.rmp, *.srf	AERMAP files	
NAAQS CIM_MAPDETAIL	NO2, CO, SO2, PM10 and PM2.5	All	*.out	AERMAP files	
NAAQS CIM_MAPPARAMS	NO2, CO, SO2, PM10 and PM2.5	All	*.out	AERMAP files	
NAAQS CIM	NO2, CO, SO2, PM10 and PM2.5	All	*.pip, *.prw, *.so, *.sum, *.tab	CIM downwash file	
MERA Step 4_2012_CRUDE	CRUDE	1-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	MERA Step 4	
MERA Step 4_2012_HPD	HPD	1-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	MERA Steps 4 and 7	

Date: September 2019 Permit #: TBD

Model File Base Name	Pollutant	Averaging Time	File Extensions	Additional File Description		
MERA Step 4_2012_LPD	LPD	1-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	MERA Step 4		
MERA Step 4_2012_MTBE	MTBE	1-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	MERA Step 4		
MERA Step 4_2012_HPD_1_OBARGELD	HPD	1-hr	*.ary, *.max	MERA Step 7		
MERA Step 4_2012_HPD_1_RAILLD	HPD	1-hr	*.ary, *.max	MERA Step 7		
MERA Step 4_2012_HPD_1_SBARGELD	HPD	1-hr	*.ary, *.max	MERA Step 7		
MERA Step 4_2012_HPD_1_SHIPLOAD	HPD	1-hr	*.ary, *.max	MERA Step 7		
MERA Step 4	CRUDE, HPD, LPD, MTBE	All	*.map, *.mot, *.rcf, *.rmp, *.srf	AERMAP files		
MERA Step 4_MAPDETAIL	CRUDE, HPD, LPD, MTBE	All	*.out	AERMAP files		
MERA Step 4_MAPPARAMS	CRUDE, HPD, LPD, MTBE	All	*.out	AERMAP files		
MERA Step 4	CRUDE, HPD, LPD, MTBE	All	*.pip, *.prw, *.so, *.sum, *.tab	MERA downwash file		
2019_03_07 - Unit_2012_UNIT	Generic	24-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	T MSS, T EP-14 worst-case location determination		
WC_AERMAP	Generic	24-hr	*.map, *.mot, *.rcf, *.rmp, *.srf	AERMAP files		
WC_AERMAP_MAPDETAIL	Generic	24-hr	*.out	AERMAP files		
WC_AERMAP_MAPPARAMS	Generic	24-hr	*.out	AERMAP files		
2019_03_07 - WC	Generic	24-hr	*.pip, *.prw, *.so, *.sum, *.tab	Generic downwash file		

Initial Electronic Modeling Evaluation Workbook (EMEW) Review Response

Purpose: This form is used by the Air Dispersion Modeling Team (ADMT) to document ADMT's review of initial submittal of the EMEW and any attachments.

Date: December 3, 2019

Permit Application Number: 159254

NSR Project Number: 309311 ADMT Project Number: 6599 NSRP Document Number: 623888

County: Nueces

Assigned Modeling Staff: Philip Leung and Lucero Marquez

Modeling Staff Contact Information: Philip.Leung@tceq.texas.gov or (512) 239-1508 and

Lucero.Marquez@tceq.texas.gov or (512) 239-1288

Review Summary

The ADMT has conducted a review of the initial Electronic Modeling Evaluation Workbook (EMEW) for Port of Corpus Christi Authority of Nueces County provided on November 25, 2019. Based on the review, the ADMT has the following comments that should be addressed in the final modeling submittal:

1. General

Administrative Information:

Be sure to include NSR Project No. 309311 for the Facility Information's Project Number in the final submittal.

Be sure to include Permit No. 159254 for the Facility Information's Permit Number in the final submittal.

2. Additional Attachments

Source Group Descriptions:

The EMEW was marked noting that a description of source groups was included. No other additional information was provided other than the EMEW for initial review. Be sure to provide all applicable materials with the final submittal to support any source groups used.

Modeling Techniques and Scenarios:

Discussion and images for worst-case determination was selected. No other additional information was provided other than the EMEW for initial review. Be sure to provide all applicable materials with the final submittal to support any worst-case determinations.

3. Model Options

The project overview states that the Port of Corpus Christi Authority is requesting a new case-by-case NSR permit. However, it goes on to state that the Port of Corpus Christi Authority is "planning to increase authorized marine vessel and railcar loading throughputs of gasoline and diesel...". Please clarify the scope of the project and how throughput is planned to be increased with a new case-by-case NSR permit.

A. Type of Model Used:

The EMEW notes that AERMOD Version 18081 will be used. Please note that the most recent version of AERMOD is Version 19191. If revised modeling is needed, please use the most recent version of AERMOD. Be sure to use the most recent version of AERMOD for all future modeling.

H. Receptor Grid:

According to the EMEW, the worst-case non-industrial receptor was placed at 652400.00 m E, 3077000.00 m N. It's not clear from the documentation on how this worst-case non-industrial receptor was chosen. Be sure to provide attachment 2B with the final submittal.

4. Building Downwash

No additional comments.

5. Flare Source Parameters

Not applicable.

6. Point Source Parameters

All point sources that were modeled as pseudo-point sources do not emit from a conventional stack. Please provide justification on the modeled release height for all pseudo-point sources.

7. Area Source Parameters

All stockpiles were modeled with a release height at the midpoint of the stockpile height. Please confirm whether the stockpile height represents the maximum height or an average height of the stockpile. Please note that stockpiles should be modeled at half of the average height of the stockpiles.

Please provide additional justification on why all area sources were modeled with an initial vertical sigma.

Additionally, the initial vertical sigma for model IDs RCLOAD, SDBLOAD, OBLOAD, SLOAD, and FUG were determined by dividing the modeled release height by 2.15. This is not appropriate. The vertical dimension of the source should be considered.

8. Volume Source Calculations

Not applicable.

9. Volume Source Parameters

Not applicable.

10. Point and Flare Source Emissions

Please note that the 24-hr and annual SO₂ standards are revoked for Nueces County (effective April 2019). The 24-hr and annual averaging times for SO₂ do not need to be documented and evaluated.

11. Area Source Emissions

No additional comments.

12. Volume Source Emissions

Not applicable.

13. Speciated Emissions

Light petroleum distillates and heavy petroleum distillates do not have a reported ESL. Please provide justification for the ESL used.

14. Intermittent Sources

Not applicable.

15. Modeling Scenarios

Not applicable.

16. Monitor Calculations

No additional comments.

17. Background Justification

The EMEW states that a background monitor was used in lieu of explicitly modeling offproperty sources. However, how are sources from surrounding facilities being considered for sources that are new and/or not yet operating and are not captured in the background monitor?

18. Secondary Formation of PM_{2.5}

No additional comments.

19. NAAQS/State Property Line Modeling Results

As noted above in section 10, the 24-hr and annual averaging times for SO_2 do not need to be documented and evaluated since the 24-hr and annual SO_2 standards are revoked for Nueces County.

20. Unit Impact Multipliers

Not applicable.

21. Health Effects Modeling Results

No additional comments.

22. Modeling File Names

No additional comments.

Please be aware that federal and state standards can change over the life of a project, therefore, the facility may be asked to update EMEW to reflect applicable changes. Any deviations or information not submitted with the initial modeling workbook could cause delay in the final modeling review. The ADMT highly recommends submitting an updated initial EMEW if significant changes are made to the modeling methodologies previously reviewed.

February 4, 2020

Ms. Laura Gibson, P.E. Texas Commission on Environmental Quality Air Permits Division (MC-163) P.O. Box 13087 Austin, Texas 78711-3087

Re: Air Quality Modeling Analysis

Permit Number: 159254 TCEQ Project No. 309311

Port of Corpus Christi Authority Bulk Dock 3 Layberth

Corpus Christi, Nueces County

Regulated Entity Number: RN104989116 Customer Reference Number: CN600885248

Dear Ms. Gibson,

On behalf of Port of Corpus Christi Authority (PCCA), TRICORD Consulting, LLC is submitting this letter to provide responses to the questions from the Air Dispersion Modeling Team (ADMT) dated December 3, 2019 (response extension granted via email on December 23, 2019) regarding the modeling submitted in support of the Air Quality Analysis (AQA) report. The Texas Commission on Environmental Quality (TCEQ) information requests are provided below, followed by corresponding responses.

1. General, Administrative Information: Be sure to include NSR Project No. 309311 for the Facility Information's Project Number in the final submittal. Be sure to include Permit No. 159254 for the Facility Information's Permit Number in the final submittal.

Response: These items are included with the updated EMEW.

Additional Attachments, Source Group Descriptions: The EMEW was marked noting that a
description of source groups was included. No other additional information was provided
other than the EMEW for initial review. Be sure to provide all applicable materials with the
final submittal to support any source groups used.

Response: This is included in the updated EMEW attachments.

3. Additional Attachments, Modeling Techniques and Scenarios: Discussion and images for worst-case determination was selected. No other additional information was provided other than the EMEW for initial review. Be sure to provide all applicable materials with the final submittal to support any worst-case determinations.

Response: This is included in the updated EMEW.

4. Model Options: The project overview states that the Port of Corpus Christi Authority is requesting a new case-by-case NSR permit. However, it goes on to state that the Port of

Ms. Laura Gibson, P.E. Page 2 February 4, 2020

Corpus Christi Authority is "planning to increase authorized marine vessel and railcar loading throughputs of gasoline and diesel...". Please clarify the scope of the project and how throughput is planned to be increased with a new case-by-case NSR permit.

Response: PCCA is planning to increases throughputs relative to the existing throughputs under Permit-By-Rule emissions. This NSR permit is a new case-by-case permit.

5. Model Options, Type of Model Used: The EMEW notes that AERMOD Version 18081 will be used. Please note that the most recent version of AERMOD is Version 19191. If revised modeling is needed, please use the most recent version of AERMOD. Be sure to use the most recent version of AERMOD for all future modeling.

Response: AERMOD Version 19191 was used in the updated analyses.

6. Model Options, Receptor Grid: According to the EMEW, the worst-case non-industrial receptor was placed at 652400.00 m E, 3077000.00 m N. It's not clear from the documentation on how this worst-case non-industrial receptor was chosen. Be sure to provide attachment 2B with the final submittal.

Response: This is included in the updated EMEW attachments.

7. Point Source Parameters: All point sources that were modeled as pseudo-point sources do not emit from a conventional stack. Please provide justification on the modeled release height for all pseudo-point sources.

Response: Modeled release heights are the actual height of each activity.

8. Area Source Parameters: All stockpiles were modeled with a release height at the midpoint of the stockpile height. Please confirm whether the stockpile height represents the maximum height or an average height of the stockpile. Please note that stockpiles should be modeled at half of the average height of the stockpiles. Please provide additional justification on why all area sources were modeled with an initial vertical sigma. Additionally, the initial vertical sigma for model IDs RCLOAD, SDBLOAD, OBLOAD, SLOAD, and FUG were determined by dividing the modeled release height by 2.15. This is not appropriate. The vertical dimension of the source should be considered.

Response: Stockpiles were modeled at half of the average height of the stockpiles. Initial vertical sigmas were reviewed and it was determined they should be removed from the analysis.

9. Point and Flare Source Emissions: Please note that the 24-hr and annual SO2 standards are revoked for Nueces County (effective April 2019). The 24-hr and annual averaging times for SO2 do not need to be documented and evaluated.

Response: SO₂ 24-hour and annual averaging periods were removed from the NAAQS analyses.

10. Speciated Emissions: Light petroleum distillates and heavy petroleum distillates do not have a reported ESL. Please provide justification for the ESL used.

Response: This is included in the updated EMEW attachments.

11. Background Justification: The EMEW states that a background monitor was used in lieu of explicitly modeling off- property sources. However, how are sources from surrounding facilities being considered for sources that are new and/or not yet operating and are not captured in the background monitor

Response: After reviewing the PID significant receptors for the NO₂ 1-hour, NO₂ annual, and PM_{2.5} 24-hour averaging periods, it was determined that off-property sources are not needed for the NO₂ annual and PM_{2.5} 24-hour analyses due to the limited number of significant receptors in both analyses.

Off-property sources are needed for the NO₂ 1-hour analysis given that significant receptors extend far from the property line. A list of RNs within 10 km of the site was provided by the ADMT. Research using the TCEQ Online File Room was performed to determine recently permitted projects within the past 18 months. Off-property source emission rates, stack parameters, and background documentation are included with this submittal.

12. NAAQS/State Property Line Modeling Results: As noted above in section 10, the 24-hr and annual averaging times for SO2 do not need to be documented and evaluated since the 24-hr and annual SO2 standards are revoked for Nueces County.

Response: SO₂ 24-hour and annual averaging periods were removed from the NAAQS analyses.

If you have any questions, please contact Mr. Anthony Anders with TRICORD at anthony.anders@tricordconsulting.com. Thank you for your time and consideration in this matter.

Sincerely,

Joe J. Ibanez

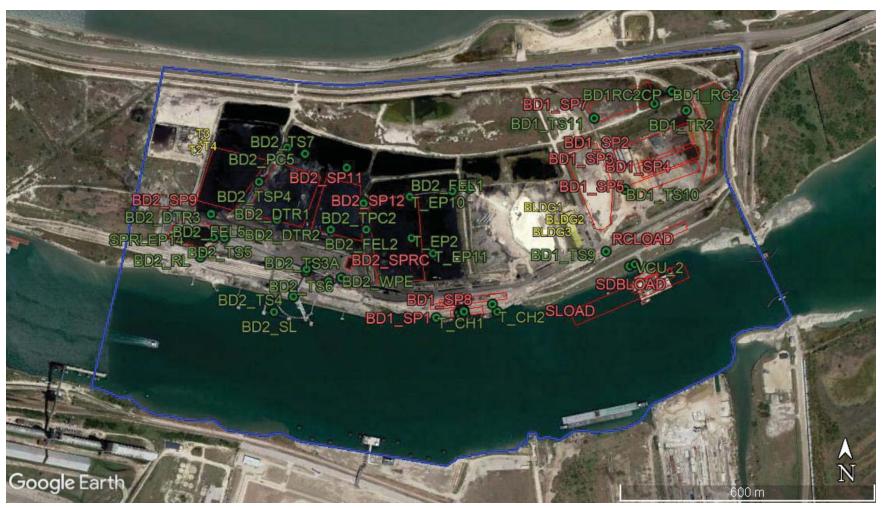
TRICORD Consulting, LLC 4760 Preston Rd., Ste 244-193

Frisco, TX 75034

Office and Fax: (888) 900-0746 x 700

Cell: (972) 837-0591

E-mail: joe.ibanez@tricordconsulting.com


Enclosures

Ms. Laura Gibson, P.E. Page 4 February 4, 2020

cc: Lucero Marquez, TCEQ ADMT
Philip Leung, TCEQ ADMT
Sarah Garza, Port of Corpus Christi
Air Section Manager, Region 14 – Corpus Christi

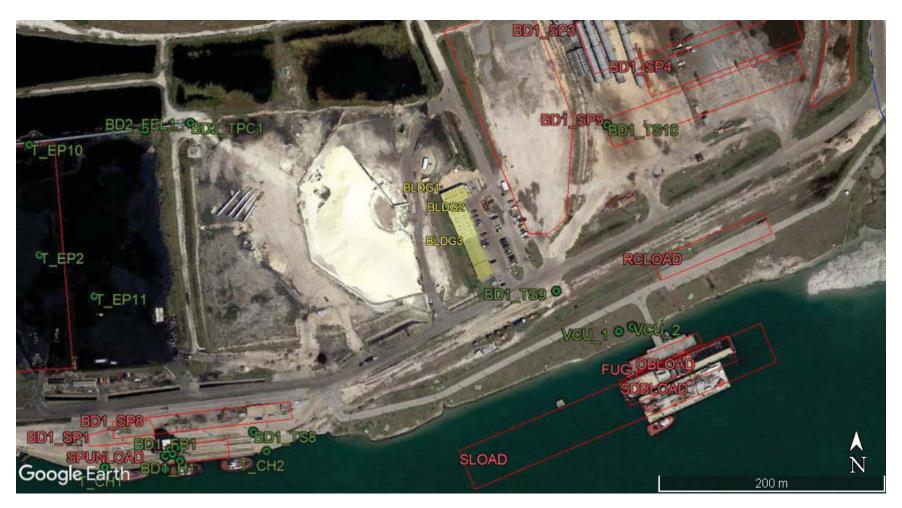
Company Name: Port of Corpus Christi Authority of Nueces County:

EMEW Attachment 1A Plot Plan Overview

Note: No new buildings or structures have been added as part of this project and the imagery shown above is representative of all downwash structures currently at the site.

Legend

Property Line

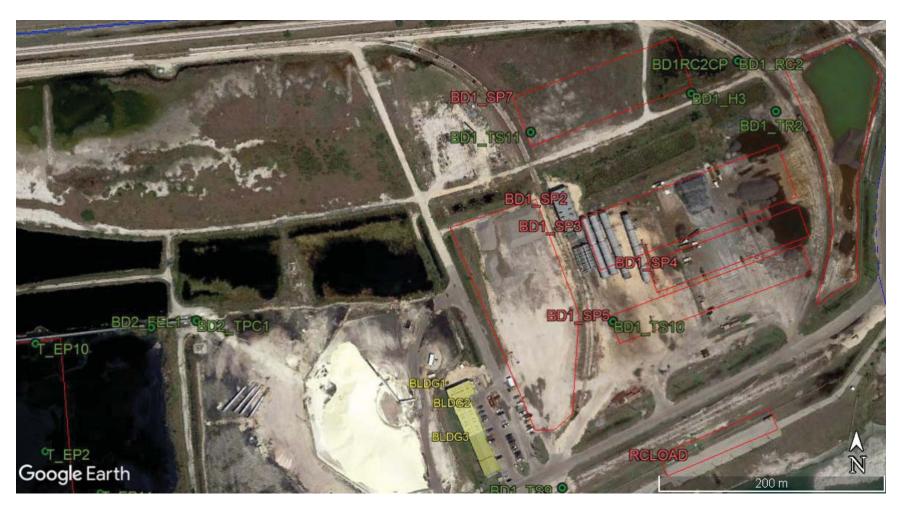

Downwash Structure

Area Source

Company Name: Port of Corpus Christi Authority of Nueces County:

EMEW Attachment 1B Plot Plan Southeast

Note: No new buildings or structures have been added as part of this project and the imagery shown above is representative of all downwash structures currently at the site.

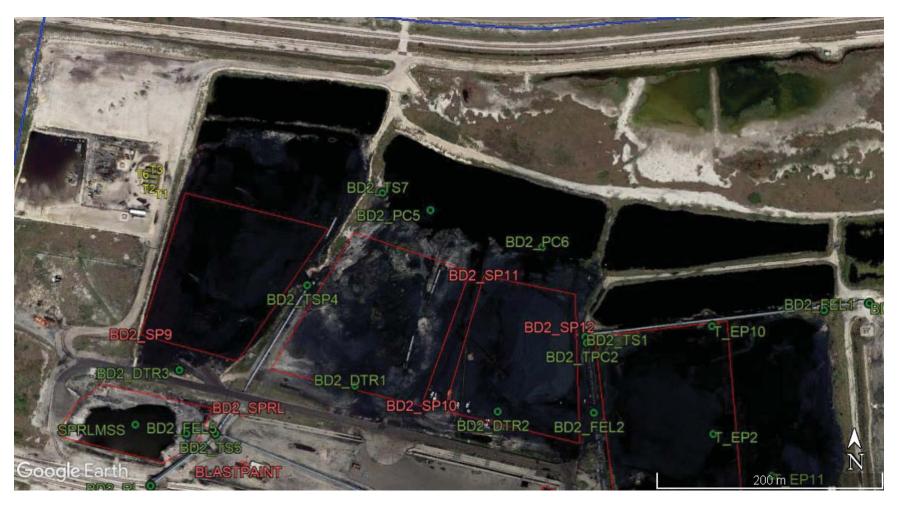

Legend

Property Line

Company Name: Port of Corpus Christi Authority of Nueces County:

EMEW Attachment 1C Plot Plan Northeast

Note: No new buildings or structures have been added as part of this project and the imagery shown above is representative of all downwash structures currently at the site.

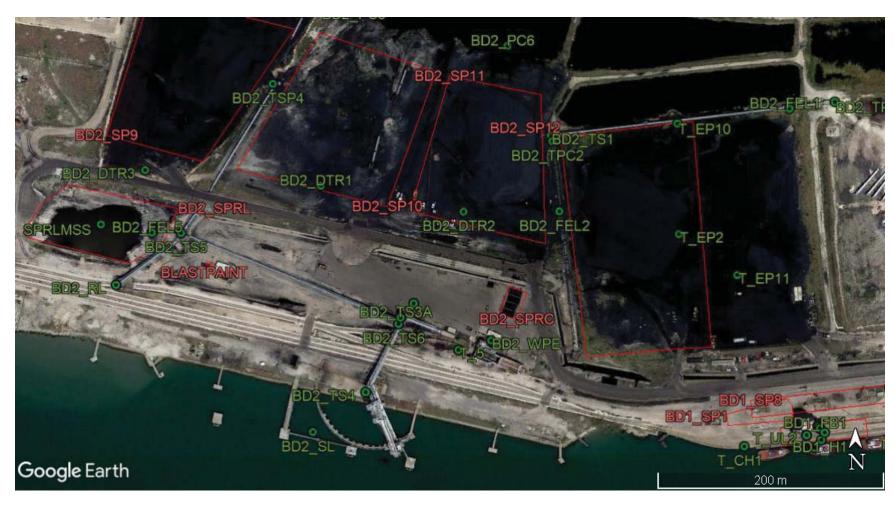

Legend

Property Line

Company Name: Port of Corpus Christi Authority of Nueces County:

EMEW Attachment 1D Plot Plan Northwest

Note: No new buildings or structures have been added as part of this project and the imagery shown above is representative of all downwash structures currently at the site.


Legend

Property Line

Company Name: Port of Corpus Christi Authority of Nueces County:

EMEW Attachment 1E Plot Plan Southwest

Note: No new buildings or structures have been added as part of this project and the imagery shown above is representative of all downwash structures currently at the site.

Legend

Property Line

Company Name: Port of Corpus Christi Authority of Nueces County:

EMEW Attachment 2A Area Map

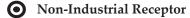
Note: There are no schools within 3,000 feet of the site.

Legend

☐ Property Line

☐ Distance Boundary

Company Name: Port of Corpus Christi Authority of Nueces County:


EMEW Attachment 2B Non-Industrial Receptor Location

Note: This analysis assumes that all waterways north of the PCCA facility have controlled public access; therefore the nearest residential area has been chosen as the location of the worst-case non-industrial receptor.

Legend

Property Line

Date: September 2019

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County

EMEW Attachment 3 Source Group Descriptions

Scenario Description	Affected Source	Affected	Affected	Source Group	Source Group Description
	IDs	Analyses	Averaging	ID	
			Periods		
					Source Group VCU_1 conservatively
				VCU1	represents all annual emissions from either
EPNs VCU-1 and VCU-2				VCOI	EPN VCU-1 or VCU-2 occuring at the
are permitted under an	VCU_1, VCU_2	NAAQS	Annual		location of Source ID VCU_1.
annual emissions cap	VCO_1, VCO_2	NAAQS	Ailituai		Source Group VCU_2 conservatively
(EPN LDCNTRL).				VCU2	represents all annual emissions from either
				VC02	EPN VCU-1 or VCU-2 occuring at the
					location of Source ID VCU_2.
					Source Group RAILLD represents short-
				RAILLD	term emissions occuring only at the location
					of source RCLOAD.
Unloading activities from					Source Group SBARGELD represents short-
EPNs RCLOAD,	RCLOAD,			SBARGELD	term emissions occuring only at the location
SDBLOAD, OBLOAD,	SDBLOAD,	HER	1-hr		of source SDBLOAD.
and SLOAD cannot	OBLOAD, SLOAD	TILK	1-111		Source Group OBARGELD represents short-
	Obload, Sload			OBARGELD	term emissions occuring only at the location
occur simultantously.					of source OBLOAD.
					Source Group SHIPLOAD represents short-
				SHIPLOAD	term emissions occuring only at the location
					of source SLOAD.

Company Name: Port of Corpus Christi Authority of Nueces County

EMEW Attachment 4 Modeling Techniques and Scenarios Worst-case Determination

EPNs	Source ID	Source Description	Stack Release	Easting NAD83 (X)	Northing NAD83 (Y)	Base Elevation	Stack Height	Temperature	Exit Velocity	Stack Diameter	24-hr Unit Concentration
				(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	$(\mu g/m^3)$
T MSS, T EP-14	SP9UNIT	MSS for BD2 STKPL-9	DEFAULT	651,043.68	3,078,301.56	6.10	4.57	0.00	0.0010	0.0010	26.9494
T MSS, T EP-14	SP10UNIT	MSS for BD2 STKPL-10	DEFAULT	651,164.58	3,078,265.95	6.27	4.57	0.00	0.0010	0.0010	14.7519
T MSS, T EP-14	SP11UNIT	MSS for BD2 STKPL-11	DEFAULT	651,290.54	3,078,232.10	2.62	4.57	0.00	0.0010	0.0010	14.6793
T MSS, T EP-14	SP12UNIT	MSS for BD2 STKPL-12	DEFAULT	651,431.58	3,078,164.05	3.00	4.57	0.00	0.0010	0.0010	8.8320
T MSS, T EP-14	SPRCUNIT	MSS for BD2 STKPL-RCU	DEFAULT	651,323.29	3,078,106.56	2.64	4.57	0.00	0.0010	0.0010	8.8208
T MSS, T EP-14	SPRLUNIT	MSS for BD2 STKPL-RL	DEFAULT	650,959.01	3,078,171.71	2.51	2.29	0.00	0.0010	0.0010	56.7969

Notes:

1. The worst-case location for the T MSS and T EP-14 stockpile maintenance activities is at the BD2 STKPL-RCU location (NAAQS source IDs SPRLMSS and SPRLEP14).

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County

EMEW Attachment 5 ESL Documentation

Pollutant ID	Pollutant Description	Example Chemical Species	Example Species CAS #	Short-Term ESL (µg/m³)	Long-Term ESL (µg/m³)
HPD	Heavy Petroleum Distillate (HPD) includes but is not	Diesel	68476-34-6	1,000	100
, ,	limited to diesel and kerosene.	Kerosene	8008-20-6	1,000	100
LPD	Light Petroleum Distillates (LPD) includes but is not limited to gasoline (specialty	Gasoline	8006-61-9	3,500	350
Li D	fuel blendstocks) and naphtha.	Naphtha	92045-53-9	3,500	350

Notes:

- 1. Pollutant groups were created by conservatively grouping chemical species which share common toxicity effects and the same short-term (ST) and long-term (LT) ESLs.
- 2. A long-term analysis was not performed for crude oil, HPD, LPD, or methyl tert-butyl ether. The LTESL for these pollutants is greater than or equal to 10% of the STESL; therefore, a long-term health effects analysis is not required.

Date: Upd. 2/2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

General

Acknowle	Select from the drop down:			
I acknowledge that I am submitting an au Evaluation Workbook and any necessary requested data, I have not changed the To Workbook in any way, including but not li content, or protections.	I agree			
	ministrative Information:			
Data Type:	Facility Information:			
Project Number (6 digits):	309311			
Permit Number:	159254			
Regulated Entity ID (9 digits):	104989116			
Facility Name:	Port of Corpus Christi Authority Bulk Dock	3 Layberth		
Facility Address:	202 Bulk Materials Dock Rd, Corpus Chris	sti TX 78402		
Facility County (select one):	Nueces			
Company Name:	Port of Corpus Christi Authority of Nueces	County		
Company Contact Name:	Ms. Sarah Garza			
Company Contact Number:	361-885-6163			
Company Contact Email:	sarah@pocca.com			
Modeling Company Name, as applicable:	TRICORD Consulting, LLC			
Modeling Contact Name:	Mr. Anthony Anders			
Modeling Contact Number: 832-714-1418				
Modeling Contact Email: Anthony.Anders@TRICORDconsulting.com				
New/Existing Site (select one): Existing Site				
Modeling Date (MM/DD/YYYY):	9/5/2019			
Datum Used (select one):	NAD 83			
JTM Zone (select one): 14				

Sheet Instructions: Indicate in the Table of Contents which sections are applicable and included for this modeling demonstration. Select "X" from the drop down if the item below is included in the workbook. Note: This workbook is only for the following air dispersion models: AERSCREEN, ISC/ISCPrime, and/or AERMOD. If SCREEN3 is used, please use the separate Electronic Modeling Evaluation Workbook (EMEW) for SCREEN3 workbook.

	Table of Contents:					
Section:	Sheet Title (Click to jump to specific sheet):	Select an X from the dropdown menu if included:				
1	General	X				
2	Model Options	X				
3	Building Downwash	X				
4	Flare Source Parameters					
5	Point Source Parameters	X				
6	Area Source Parameters	X				
7	Volume Source Calculations					
8	Volume Source Parameters					
9	Point and Flare Source Emissions	X				
10	Area Source Emissions	X				
11	Volume Source Emissions					
12	Speciated Emissions	X				
13	Intermittent Sources					
14	Modeling Scenarios					
15	Monitor Calculations	X				
16	Background Justification	X				
17	Secondary Formation of PM2.5	X				
18	NAAQS/State Property Line (SPL) Modeling Results	X				
19	Unit Impact Multipliers					
20	Health Effects Modeling Results	X				
21	Modeling File Names	X				
22	Speciated Chemicals					

Date: Upd. 2/2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

General

Included Attachments Select an X from the Instructions: The following are attachments that must be included with any modeling dropdown menu if analysis. If providing the plot plan and area map with the permit application, ensure included: there is also a copy with the EMEW. The copy can be electronic. Plot Plan: Instructions: Mark all that apply in the attached plot plan. For larger properties or dense source areas, provide multiple zoomed in plot plans that are legible. Property/Fence Lines all visible and marked. North arrow included. Clearly marked scale. All sources and buildings are clearly labeled. Instructions: Mark all that apply in the attached area map Annotate schools within 3,000ft of source's nearest property line. All property lines are included. Non-industrial receptors are identified. Additional Attachments (as applicable): Select an X from the Note: These are just a few examples of attachments that may need to be included. dropdown menu if There may be others depending on the scope of the modeling analysis. included: **Processed Met Data Information** Excel spreadsheet of processed meteorology data. Meteorological Files (all input and outputs). Source Group Descriptions Description of modeling source groups (could be in a tabulated format). X **Modeling Techniques and Scenarios** Provide all justification and discussion on modeling scenarios used for the modeling analyses. The following boxes are examples of approaches that should be provided but is not all inclusive. Discussion on modeling techniques not discussed in workbook. Justification for exceedance refinements, as applicable. Discussion and images for worst-case determination, as applicable. Single Property Line Designation, as applicable Include Agreement, Order, and map defining each petitioner. Post Processing using Unit Impact Multipliers (UIMs) Include documentation on any calculations used with the UIMs (i.e., Step 3 of the MERA) Tier 3 NO₂ analysis If OLM or PVMRM are used, provide all justification and documentation on using this approach. Description of model setup. Description and justification of model options selected (i.e., NO₂ to NO_x in-stack ratios). Other Attachments Provide a list in the box below of additional attachments being provided that are not listed above:

Date: Upd. 2/2020 Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Model Options Permit #: 159254

		_			- 4		•			
ı		μ	rc	110	nct.	Ir	۱tn	rm	atı	on
•	•	•		'JC	UL	••			uu	U 11

A. Project Overview: In the box below, give a brief Project Overview. To type or insert text in box, double click in the box below. Please limit your response to 2000 characters.

PCCA is requesting a new case-by-case NSR permit under 30 TAC Chapter 116 Subchapter B to authorize emissions associated with the planned Bulk Dock 3 Expansion Project. With this project, PCCA is planning to increase authorized marine vessel and railcar loading throughputs of gasoline and diesel and to authorize marine vessel and railcar loading of crude oil, dieselLPG, and jet fuel (relative to what is already permitted at the site under PBR). The loading operations will include two vapor combustion units (VCUs) for emission controls and new fugitive piping components, including pumps, valves and flanges.

II. Air Dispersion Modeling Preliminary Information

Instructions: Fill in the information below based on your modeling setup. The selections chosen in this sheet will carry throughout the sheet and workbook. Based on selections below, only portions of the sheet and workbook will be available. Therefore, it is vital the sheet and workbook are filled out in order, do NOT skip around.

For larger text boxes, double click to type or insert text.

A. Type of	A. Type of Model Used: Select "X" in all that apply					
	AERSCREEN	X	AERMOD			
19191	19191 Enter in all applicable Model Version(s).					
B. Building	B. Building Downwash					
Yes	Is downwash applicable? (Select "Yes" or "No")					
04274	Enter BPIP version (AERMOD and ISCPrime only).					

Date: Upd. 2/2020 Permit #: 159254 Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Model Options

C. Type of Analyses: (Select "X" in all that apply) *PSD projects should submit a protocol and not utilize this form.						
X	Minor NSR NA		X	State Property Line		
X Constitu	Health Effects	g: (Select "X" in a	II that apply)			
		•		ew. (Select "X" in all that apply)		
X	SO ₂	that require an r	X	PM ₁₀		
X	CO		X	PM _{2.5}		
<u>Λ</u>	Pb		X	NO ₂		
Both		Identify which av		ods are being evaluated for NO ₂ .		
		•	0 0.	Ç _		
Tier 2: ARM	12	Identify the 1-hr NO ₂ tier used for the AERMOD or AERSCREEN analyses.				
Tier 2: 0.9		Identify the annual NO_2 tier used for the AERMOD or AERSCREEN analyses.				
State Prope apply)	erty Line: List	all pollutants that	t require an n	nodeling review. (Select "X" in all that		
	H ₂ S H ₂ SO ₄		X	SO ₂		
Health Effects: Fill in the Speciated Emissions sheet with all applicable pollutants, CAS numbers, and ESLs.						

Date: Upd. 2/2020 Permit #: 159254 Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Model Options

		•
-	•	n selected and this project is using AERMOD or . Select "X" in the box to select an option.
	Lirbon	
X	Urban	
	Rural	innersian antion colored above.
	-	ispersion option selected above: nd presented in previous modeling demonstrations
for this facili result of the	ty using the Auer land-use proc	cedure and general knowledge of the terrain. The indicates rural land type and absence of large
F. Determin	•	FAERSCREEN or AERMOD is used, fill out the
Select basis	for surface roughness:	AERSURFACE
Select "X" ir	n one of the three surface rough	nness categories:
X	Low	Medium
		High
If you are us	sing AERSURFACE, please cor	
13016		Version Number
651320.8	Center UTM Easting (meters)	
1	Study Radius (km)	
No	Airport? (Select Yes or No)	
No	Continuous Snow Cover (Selec	ct Yes or No)
Average	Surface Moisture (Select Wet,	,
No	Arid Region? (Select Yes or No	.
	default	Month/Season Assignment

Date: Upd. 2/2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Model Options
Permit #: 159254
Company Name: Port of Corpus Christi Authority of Nueces County

G. Meteoro	ological Data:				
If AERMOD	and/or ISC/ISCPrime are selec	ted, please c	complete the following section:		
12924		Surface Sta			
12924		Upper Air S			
13.4	Meters (m)		e Elevation (AERMOD only)		
16216		AERMET V	ersion Number		
Yes	Was TCEQ pre-processed data used?	1 Year	Years used		
	er the year(s) selected for this me	eteorological	data:		
2012	1 Year				
Durani					
Provide any other justification for Meteorological Data, as applicable.					

Date: Upd. 2/2020 Permit #: 159254 Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Model Options
Permit #: 159254

)			
Η.	Rec	ento	r (¬r	JU.

For AERMOD or ISC/ISCPrime, fill in the following information on your modeled receptor grid. Note: Receptor grid resolution (tight, fine, medium, coarse) are based on recommended receptor grid spacing per the AQMG, if something outside of this is used, fully describe it below.

25	Meters (m)	Tight Receptor Spacing
100	Meters (m)	Tight Receptor Distance
100	Meters (m)	Fine Receptor Spacing
1000	Meters (m)	Fine Receptor Distance
500	Meters (m)	Medium Receptor Spacing
5000	Meters (m)	Medium Receptor Distance
1000	Meters (m)	Coarse Receptor Spacing
10000	Meters (m)	Coarse Receptor Distance

Describe any other receptor grid designs (over water, GLC_{ni}, SPLD etc.):

For MERA crude oil, LPD, and MTBE analyses, all receptors were conservatively considered non-industrial.

For MERA HPD, the worst-case non-industrial receptor was placed at 652400.00 m E, 3077000.00 m N. See Attachment 2B for the worst-case non-industrial receptor demonstration.

I. Terrain:

Elevated

18081 AERMAP Version.

For additional justification on terrain selection, fill in the box below:

Date: Upd. 2/2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Area Source Parameters

Facility:							Modeled	1								
EPN	Model ID	Modeling Scenario	Area Source Type	Easting: X [m]	Northing: Y [m]	Base Elevation [m]	Modeled Release Height [m]	Length X	Length Y	Rotation Angle [deg]	Radius [m]	Initial Vertical Sigma (m)	Area Source Initial Sigma Justification	Area Source Size Justification	Area Source Release Height Justification	Source Description
LIIN	Woder ib	Oceriano	Area Gource Type	X [III]	' [''']	[111]	[""]	[111]	[111]	[ueg]	readius [iii]	Olgina (III)	surface-based source			Oddice Description
BD1 SP-3	BD1_SP3		AREA	651941.00	3078380.00	2.70	1.71	48.77	185.32	69.00			(vertical dimension of	based on Google Earth aerial outline	midpoint of average stockpile height	BD1 Stockpile
													source divided by 2.15)	aenai outiline	Stockpile neight	
DD4 CD 4	DD4 CD4		ADEA	054000.00	2070244 00	0.00	4 74	07.74	4.40.00	00.00			surface-based source	based on Google Earth	midpoint of average	DD4 Ote almile
BD1 SP-4	BD1_SP4		AREA	651999.00	3078341.00	2.02	1.71	27.74	143.26	69.00			(vertical dimension of source divided by 2.15)	aerial outline	stockpile height	BD1 Stockpile
													surface-based source			
BD1 SP-5	BD1_SP5		AREA	651967.00	3078294.00	2.71	1.71	25.91	181.36	69.00			(vertical dimension of	based on Google Earth	midpoint of average	BD1 Stockpile
													source divided by 2.15)	aerial outline	stockpile height	· ·
													surface-based source	based on Google Earth	midpoint of average	BD1 Warehouse
BD1 SP-7	BD1_SP7		AREA	651879.00	3078485.00	3.04	1.71	45.72	152.40	69.00			(vertical dimension of	aerial outline	stockpile height	Stockpile
													source divided by 2.15) surface-based source			·
BD1 SP-8	BD1_SP8		AREA	651534.69	3078023.57	2.46	1.71	15.24	159.11	83.00			(vertical dimension of	based on Google Earth	midpoint of average	BD1 Stockpile
													source divided by 2.15)	aerial outline	stockpile height	
													surface-based source	based on Google Earth	midpoint of average	Stockpile from unloading
SP-UNLOAD	SPUNLOAD		AREA	651563.43	3077984.31	0.34	0.91	76.20	15.24	-7.00			(vertical dimension of	aerial outline	stockpile height	vessels
													source divided by 2.15)		eteekpiie neight	1000010
BLAST	BLAST		AREA	651050.73	3078137.39	3.04	1.52	6.71	3.05	22.00			surface-based source (vertical dimension of	based on Google Earth	Height of blasting activities	Blasting Emissions
BLAST	DLAST		AREA	651050.73	3076137.39	3.04	1.52	0.71	3.05	22.00			source divided by 2.15)	aerial outline	Height of blasting activities	Diasting Emissions
													surface-based source			
PAINT	PAINT		AREA	651050.73	3078137.39	3.04	1.52	6.71	3.05	22.00			(vertical dimension of	based on Google Earth aerial outline	Height of spraying and	Painting Emissions
													source divided by 2.15)	aeriai outiine	painting activities	
													surface-based source	based on Google Earth	midpoint of average	BD1 Ship Loadout
BD1 SP-1	BD1_SP1		AREAPOLY	651515.19	3078001.33	2.28	2.29			N/A			(vertical dimension of	aerial outline	stockpile height	Stockpile
													source divided by 2.15) surface-based source	+		<u>'</u>
BD1 SP-2	BD1_SP2		AREAPOLY	651900.37	3078395.90	2.92	1.71			N/A			(vertical dimension of	based on Google Earth	midpoint of average	BD1 Stockpile
551 61 2	001_012		71112711 321	001000.07	0070000.00	2.02	1			14//			source divided by 2.15)	aerial outline	stockpile height	
													surface-based source	based on Google Earth	midpoint of average	
BD1 SP-6	BD1_SP6		AREAPOLY	652118.74	3078515.15	2.41	1.71			N/A			(vertical dimension of	aerial outline	stockpile height	BD1 Stockpile
													source divided by 2.15)	dendi ediline	Stockpile Height	
DD2 CTVDL 0	BD2 CD0		ABEADOLV	650064.07	2070240 50	4.22	4 57			NI/A			surface-based source	based on Google Earth	midpoint of average	DD0 Ctooksile
BD2-STKPL-9	BD2_SP9		AREAPOLY	650961.27	3078249.58	4.33	4.57			N/A			(vertical dimension of source divided by 2.15)	aerial outline	stockpile height	BD2 Stockpile
													surface-based source			
BD2-STKPL-10	BD2_SP10		AREAPOLY	651210.69	3078190.09	2.89	4.57			N/A			(vertical dimension of	based on Google Earth	midpoint of average	BD2 Stockpile
													source divided by 2.15)	aerial outline	stockpile height	·
													surface-based source	based on Google Earth	midpoint of average	
BD2-STKPL-11	BD2_SP11		AREAPOLY	651264.67	3078305.46	2.66	4.57			N/A			(vertical dimension of	aerial outline	stockpile height	BD2 Stockpile
													source divided by 2.15) surface-based source			
BD2-STKPL-12	BD2_SP12		AREAPOLY	651363.53	3078253.26	2.76	4.57			N/A			(vertical dimension of	based on Google Earth	midpoint of average	BD2 Misc. Stockpile
						0							source divided by 2.15)	aerial outline	stockpile height	
													surface-based source	based on Google Earth	midpoint of average	BD2 Stockpile for Loading
BD2 STKPL-RCU	BD2_SPRC		AREAPOLY	651326.67	3078092.22	2.61	4.57			N/A			(vertical dimension of	aerial outline	stockpile height	Trucks from Railcars
													source divided by 2.15)		l l	
BD2 STKPL-RL	BD2_SPRL		AREAPOLY	651025.29	3078185.92	4.51	2.29			N/A			surface-based source (vertical dimension of	based on Google Earth	midpoint of average	BD2 Rail Loadout Station
DDZ OTKI L-KL	BBZ_OFTE		AREAI OLI	031023.23	3070103.32	7.01	2.25			IV/A			source divided by 2.15)	aerial outline	stockpile height	Stockpile
													surface-based source	Plot plan overlaid at	uniduraint of Dailean Landing	
RCLOAD	RCLOAD		AREA	651942.50	3078125.64	2.40	3.66	12.95	121.92	-28.00			(vertical dimension of	proposed location in	midpoint of Railcar Loading Fugitives height	Railcar Loading Fugitives
													source divided by 2.15)	Google Earth		
			ADE A	05400450	0070005 00	0.05	7.00	04.00	400.00	00.50			surface-based source	Plot plan overlaid at	midpoint of Shallow Draft	Shallow Draft Barge
SDBLOAD	SDBLOAD		AREA	651984.59	3078065.26	0.05	7.62	24.00	102.00	66.50			(vertical dimension of source divided by 2.15)	proposed location in Google Earth	Barge Loading Fugitives height	Loading Fugitives
				†									surface-based source	Plot plan overlaid at		
OBLOAD	OBLOAD		AREA	651998.46	3078071.62	0.41	4.57	16.46	48.77	66.50			(vertical dimension of	proposed location in	midpoint of Ocean Barge	Ocean Barge Loading
								<u></u>	<u></u>				source divided by 2.15)	Google Earth	Loading Fugitives height	Fugitives
													surface-based source	Plot plan overlaid at	midpoint of Ship Loading	
SLOAD	SLOAD		AREA	651842.65	3078001.46	0.00	7.62	36.58	289.56	66.50			(vertical dimension of	proposed location in	Fugitives height	Ship Loading Fugitives
				1	-	-	-						source divided by 2.15)	Google Earth		-
FUG	FUG		AREA	651993.67	3078082.36	1.08	4.57	10.67	64.01	66.50			surface-based source (vertical dimension of	Plot plan overlaid at proposed location in	midpoint of Fugitive Piping	Fugitive Piping
1 00	1 00			051885.07	3010002.30	1.00	4.57	10.67	04.01	00.50			source divided by 2.15)	Google Earth	Components height	Components
	1	1	Î.	1	ì	Ī	Ī	1	1	1			JUGITUS GIVINGU DY Z. 101	LOUGIO LUIUI		i e

Date: Upd. 2/2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
NAAQS-SPL Modeling Results

Table 1. Project-Related Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (µg/m³)
SO ₂	1-hr	0.295	20.42
H ₂ SO ₄	1-hr		1
H ₂ SO ₄	24-hr		0.3
H₂S	1-hr		2.16 (If property is residential, recreational, business, or commercial)
H₂S	1-hr	3.49353	3.24 (If property is not residential, recreational, business, or commercial)

Table 2. Site-wide Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	Standard (µg/m³)
SO ₂	1-hr		1021
H ₂ SO ₄	1-hr		50
H ₂ SO ₄	24-hr		15
H₂S	1-hr		108 (If property is residential, recreational, business, or commercial)
H₂S	1-hr	3.49353	162 (If property is not residential, recreational, business, or commercial)

Table 3. Modeling Results for Minor NSR De Minimis

Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)										
SO ₂	1-hr	6.42170	7.8*										
SO ₂	3-hr	5.92337	25										
SO ₂	24-hr		5										
SO ₂	Annual		1										
PM ₁₀	24-hr	1.71602	5										
NO ₂	1-hr	62.31902	7.5**										
NO ₂	Annual	2.05299	1										
CO	1-hr	138.23549	2000										
CO	8-hr	111.37084	500										

Additional information for the De Minimis values listed above can be found at:

^{*} www.tceq.texas.gov/assets/public/permitting/air/memos/appwso2.pdf

Date: Upd. 2/2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 4. PM_{2.5} Modeling Results for Minor NSR De Minimis

Pollutant	Averaging Time	GLCmax (µg/m³)	Secondary PM _{2.5} Contribution (µg/m³)	Total Conc. = Secondary PM _{2.5} + GLCmax (μg/m³)	De Minimis (μg/m³)	
PM _{2.5}	24-hr	1.71602	0.00714896	1.72317	1.2*	
PM _{2.5}	Annual	0.110	0.000295735	0.11065	0.2*	

Additional information for the De Minimis values listed above can be found at:

* www.tceq.texas.gov/permitting/air/modeling/epa-mod-guidance.html

Date: Upd. 2/2020 Permit #: 159254 Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
NAAQS-SPL Modeling Results

Table 5. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

			•	,	
Pollutant	Averaging Time	GLCmax (μg/m³)	Background (μg/m³)	Total Conc. = [Background + GLCmax] (μg/m³)	Standard (µg/m³)
SO ₂	1-hr		0	0	196
SO ₂	3-hr		0	0	1300
SO ₂	24-hr		0	0	365
SO ₂	Annual		0	0	80
PM ₁₀	24-hr		0	0	150
Pb	3-mo		0	0	0.15
NO ₂	1-hr	78.06994	56.00	134.07	188
NO ₂	Annual	2.05299	10.00	12.05	100
CO	1-hr		0	0	40000
CO	8-hr		0	0	10000

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Date: Upd. 2/2020

Table 6. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Secondary PM _{2.5} Contribution (μg/m³)	Background (μg/m³)	Total Conc. = [Background + Secondary + GLCmax] (μg/m³)	Standard (µg/m³)
PM _{2.5}	24-hr	5.33396	0.00714896	27.61	32.95111	35
PM _{2.5}	Annual		0.000295735	0	2.96E-04	12

February 4, 2020

Ms. Laura Gibson, P.E. Texas Commission on Environmental Quality Air Permits Division (MC-163) P.O. Box 13087 Austin, Texas 78711-3087

Re: Permit Application

Permit Number: 159254 TCEQ Project No. 309311

Port of Corpus Christi Authority Bulk Dock 3 Layberth

Corpus Christi, Nueces County

Regulated Entity Number: RN104989116 Customer Reference Number: CN600885248

Dear Ms. Gibson,

On behalf of Port of Corpus Christi Authority (PCCA), TRICORD Consulting, LLC is submitting this letter to provide responses to your questions December 13, 2019 (response extension granted via email on December 23, 2019) regarding above-referenced application. The Texas Commission on Environmental Quality (TCEQ) information requests are provided below, followed by corresponding responses.

1. It is unclear where the 3rd party tanks are located (from which products are sent to the loading dock.) If they are located at the same site as the current project, the increased throughput from the tanks may need to be authorized with this project. Please refer to EPA guidance regarding project aggregation (https://www.epa.gov/nsr/final-action-project-aggregation), and let us know if your proposed project is affected by this consideration.

Response: The third-party owned and operated tanks are located on a separate site east of Bulk Dock 3. The tanks belong to RN109746487/CN604599324 – Maverick Terminals, LLC and they have their own air permit(s) since they are legally responsible for those operations; therefore, project aggregation does not apply to this project. Any increase in emissions for those tanks will be permitted separate of this project for the PCCA.

- 2. With regard to the Vapor Combustion Unit calculations, (VCU-1 and VCU-2, Tables C-3 and C-4):
 - a. SO₂ emissions were determined using the emission factor associated with natural gas combustion (AP-42, Chapter 1.4, Table 1.4-2). Note that the sulfur content of the fuel (gasoline, crude oil) and/or additive (MTBE) is all assumed to be converted to SO₂ through combustion. That sulfur content must be used to calculate SO₂ from the VCU, not the natural gas AP-42 factor. Further note that even for the natural gas firing by the pilot, the expected sulfur content of natural gas must be used to

quantify SO₂ emissions, not the AP-42 factor. Please revise your SO₂ emission estimates from the VCUs.

Response: SO_2 emissions from waste gas were updated to account for sulfur concentrations (See Tables C-6a and C-6b). For the natural gas pilot SO_2 emissions, the AP-42 factor of 0.6 lb/10⁶ scf is considered to be conservative and consistent with numerous past permits previously approved by the TCEQ; therefore, this factor is still used in the calculations.

b. Please double check the annual emissions of NOx and CO from the Natural Gas Assist & Pilot, it appears the lb/hr emission rate was not converted to a tons per year emission rate, i.e., our calculations show for NOx:

Response: Annual NOx and CO emission calculations were updated accordingly; please see Tables C-3 and C-4.

3. Piping fugitives were calculated using Petroleum Marketing Terminal Factors, however, this facility may not use these PMT factors. As stated in our June 2018 Fugitive Guidance (https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/fugiti ve- guidance.pdf), these factors may not be used at a large terminal for hire that includes marine loading. Please review this guidance and provide revised emission calculations using acceptable fugitive factors.

Response: PCCA Response: Fugitive emissions were updated to use SOCMI without Ethylene factors from the June 2018 Fugitive Guidance. Please note that fugitive counts were also updated to remove conservatism in the original equipment fugitive component counts. See Table C-5 for the updated calculations.

4. Once piping fugitive calculations are corrected, please review that BACT is still met and whether an appropriate LDAR program must be selected.

Response: Uncontrolled fugitive emissions totals are below 10 tpy; therefore, no LDAR program is needed.

5. Once any calculation corrections are made, please revise the emissions per EPN, BACT, Monitoring, total PTE, and Federal Applicability within your NSR workbook and provide me the revised Excel workbook.

Response: An updated NSR workbook and revised Excel calculation workbook is provided with this response.

6. With your response, please include items as requested by Lucero Marquez on Wednesday December 4, 2019 (attached) of our Air Dispersion Modeling Team in regard to the initial EMEW provided with the application.

Response: Responses regarding air dispersion modeling are provided with this application. Please note that modeling was also updated to incorporate the changes made in response to the NOD responses above. Updated modeling files will be provided via FTP.

Ms. Laura Gibson, P.E. Page 3 February 4, 2020

If you have any questions, please contact me at <u>joe.ibanez@tricordconsulting.com</u>. Thank you for your time and consideration in this matter.

Sincerely,

Joe J. Ibanez TRICORD Consulting, LLC 4760 Preston Rd., Ste 244-193

Frisco, TX 75034

Office and Fax: (888) 900-0746 x 700

Cell: (972) 837-0591

E-mail: joe.ibanez@tricordconsulting.com

Enclosures

Ms. Laura Gibson, P.E. Page 4 February 4, 2020

cc: Sarah Garza, Port of Corpus Christi Air Section Manager, Region 14 – Corpus Christi

Texas Commission on Environmental Quality Form Pl-1 General Application Unit Types - Emission Rates

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI

AUTHORITY OF NUECES COUNTY

Permit primary industry (must be selected for workbook to function)

Chemical / Energy

Action Requested (only 1 action per FIN)	Include these emissions in annual (tpy) summary?	Facility ID Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Current Short- Term (lb/hr)	Current Long- Term (tpy)	Consolidated Current Short- Term (lb/hr)	Consolidated Current Long- Term (tpy)		t-Proposed Long-	Short-Term -Difference (lb/hr)	Long-Term Difference (tpy)	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Unit Type Notes (only if "other" unit type in Column O)
New/Modified	No	RCLOAD	RCLOAD	Railcar Loading Fugitives	VOC					15.38		15.38	0	Loading: Railcar	
New/Modified	No	SDBLOAD	SBDLOAD	Shallow Draft Barge Loading Fugitives	voc					12.81		12.81	0	Loading: Marine Vessel	
New/Modified	No	OBLOAD	OBLOAD	Ocean Barge Loading Fugitives	VOC					22.53		22.53	0	Loading: Marine Vessel	
New/Modified	No	SLOAD	SLOAD	Ship Loading Fugitives	VOC					9.01		9.01	0	Loading: Marine Vessel	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	VOC					27.03		27.03	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1		NOx	_				7.35		7.35	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1		CO					14.67		14.67	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1		SO2					68.08		68.08	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	PM					0.4		0.4	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	PM10					0.4		0.4	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	PM2.5					0.4		0.4	0	Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	H2S					0.37		0.37	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	VOC					22.53		22.53	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	NOx					6.13		6.13	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	CO					12.23		12.23	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	SO2					56.73		56.73	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2		PM					0.33		0.33	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	PM10					0.33		0.33	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	PM2.5					0.33		0.33	0	Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2	Marine Vessel VCU	H2S					0.31		0.31	0	Control: Vapor Combustor	
New/Modified	Yes	LDFUG	LDFUG	Loading Fugitives	VOC						43.86	0	43.86	Other	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	VOC						52.63	0	52.63	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL		NOx						14.51	0	14.51	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	<u> </u>	CO						28.97	0	28.97	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL		SO2						56.84	0	56.84	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	PM						0.78	0	0.78	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	PM10						0.78	0	0.78	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	PM2.5						0.78	0	0.78	Control: Vapor Combustor	
New/Modified	Yes	FUG	FUG	Components	voc					2.24	9.82	2.24	9.82	Fugitives: Piping and Equipment Leak	
New/Modified	Yes	FUG	FUG	Fugitive Piping Components	H2S						0.31	0	0.31	Fugitives: Piping and Equipment Leak	

Version 3.3 Page 1

Texas Commission on Environmental Quality Form PI-1 General Application Federal Applicability

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

I. County Classification								
Door the project require retrespective review?	No							
Does the project require retrospective review?	INO							
County (completed for you from your response on the General sheet)	Nueces							
This project will be located in an area that is in attainment for ozone as of April 30, 2019. Select from the drop-down list to the right if you would like the project to be reviewed under a different classification.								
· · · · ·	ated in an area that is in attainment or unclassified for all ent review is not required.							

	II. PSD and GHG PSD	Applicability Summary	
Is netting required for the PSD analysis for th	nis project?		No
Pollutant	Project Increase	Threshold	PSD Review Required?
CO	28.97	250	No
NO _x	14.51	250	No
PM	0.78	250	No
PM ₁₀	0.78	250	No
PM _{2.5}	0.78	250	No
SO ₂	56.84	250	No
Ozone (as VOC)	106.31	250	No
Ozone (as NOx)	0	100	No
Pb	0	100	No
H ₂ S	0.31	10	No
TRS	0	10	No
Reduced sulfur compounds (including H ₂ S)	0	10	No
H ₂ SO ₄	0	7	No
Fluoride (excluding HF)	0	3	No
CO2e	0	75000	No

Is netting required for the nonattainment analysis for this project?	No

Version 3.3 Page 1

Table C-1
Bulk Dock 3 Emission Rate Summary and PSD Evaluation
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

EPN	Description	Criteria Pollutant Emission Rates Re									Reference			
		V	VOC		NO_X		CO		PM/PM ₁₀ /PM _{2.5}		SO ₂		H ₂ S	
		Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	
		(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
RCLOAD	Railcar Loading Fugitives	15.38												C-2
SDBLOAD	Shallow Draft Barge Loading Fugitives	12.81								1				C-2
OBLOAD	Ocean Barge Loading Fugitives	22.53								-				C-2
SLOAD	Ship Loading Fugitives	9.01												C-2
VCU-1	Railcar VCU	27.03		7.35		14.67		0.40		0.68		< 0.01		C-3
VCU-2	Marine Vessel VCU	22.53		6.13		12.23		0.33		0.57		< 0.01		C-4
LDFUG	Loading Fugitives		43.86											Note (1)
LDCNTRL	Controlled Loading		52.63		14.51		28.97		0.78		1.14		< 0.01	Note (1)
FUG	Fugitive Piping Components	2.24	9.82											C-5
	Total Project Emissions		106.31		14.51		28.97		0.78		1.14		<0.01	Sum
	PSD Significance Level		250		250	-	250	-	250		250		10	
	Triggers Further Review?		No		No		No		No		No		No	

Notes

1) Total annual emissions from the loading operations are based on the maximum emissions from the different loading scenarios.

Table C-2
Loading Fugitive Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Temperature and Material Data

	Maximum	Average Loading	Maximum Vapor	Average Annual	Vapor	Liquid
Material	Loading	Temperature ¹	Pressure ^{2,3,4}	Vapor Pressure ^{2,3,4}	Molecular	Molecular
	Temperature ¹				Weight ⁶	Weight
	(°F)	(°F)	(psia)	(psia)	(lb/lb-mol)	(lb/lb-mol)
Gasoline (RVP 7.8)	95	N/A	7.60	N/A	68	92
Gasoline (RVP 11)	N/A	72.05	N/A	7.23	65	92
Crude Oil (RVP 5)	95	72.05	5.47	3.62	50	207
Jet Fuel	95	72.05	0.03	0.01	130	162
Diesel	95	72.05	0.019	0.010	130	162
MTBE	95	72.05	4.12	2.37	88.1	188

Table C-2
Loading Fugitive Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Fugitive Loading Emission Calculations

Loading Facility	EPN	Product		Annual		Но	urly	Capture	Fugitive	Loading	Emissions	to Control
		Loaded	Product	Saturation	Emission	Maximum	Emission	Efficiency		on Rates		
			Loaded	Factor ^{7,8}	Factor ⁸	Ldg Rate ¹¹	Factor ⁹		By Facili	ty/Product	By Facilit	ty/Product
			(Mgal/yr)	(dim'less)	(lb/Mgal)	(gal/hr)	(lb/Mgal)	(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Railcar Loading	RCLOAD	Gasoline	1,533,000	0.6	6.65	351,000	6.97	100%	-0-	-0-	2,445.48	5,094.05
Railcar Loading	RCLOAD	Crude Oil (RVP 5)	1,533,000	0.6	2.54	351,000	3.69	100%	-0-	-0-	1,294.70	1,949.34
Railcar Loading	RCLOAD	Jet Fuel	1,533,000	0.6	0.02	351,000	0.04	0%	15.38	16.56	-0-	-0-
Railcar Loading	RCLOAD	Diesel	1,533,000	0.6	0.02	351,000	0.03	0%	11.69	13.47	-0-	-0-
Railcar Loading	RCLOAD	MTBE	114,975	0.6	2.94	52,650	4.90	100%	-0-	-0-	257.73	168.91
								TOTAL ¹⁰	15.38	16.56		
Shallow Draft Barge Loading	SDBLOAD	Gasoline	1,533,000	0.5	5.54	351,000	5.81	100%	-0-	-0-	2,037.90	4,245.04
Shallow Draft Barge Loading	SDBLOAD	Crude Oil (RVP 5)	1,533,000	0.5	2.12	351,000	3.07	100%	-0-	-0-	1,078.92	1,624.45
Shallow Draft Barge Loading	SDBLOAD	Jet Fuel	1,533,000	0.5	0.02	351,000	0.04	0%	12.81	13.80	-0-	-0-
Shallow Draft Barge Loading	SDBLOAD	Diesel	1,533,000	0.5	0.01	351,000	0.03	0%	9.74	11.23	-0-	-0-
Shallow Draft Barge Loading	SDBLOAD	MTBE	114,975	0.5	2.45	52,650	4.08	100%	-0-	-0-	214.78	140.76
								TOTAL ¹⁰	12.81	13.80		
Ocean Barge Loading	OBLOAD	Gasoline	1,533,000	0.5	5.54	351,000	5.81	99%	20.38	42.45	2,017.52	4,202.59
Ocean Barge Loading	OBLOAD	Crude Oil (RVP 5)	1,533,000	0.5	2.12	351,000	3.07	99%	10.79	16.24	1,068.13	1,608.21
Ocean Barge Loading	OBLOAD	Jet Fuel	1,533,000	0.5	0.02	351,000	0.04	0%	12.81	13.80	-0-	-0-
Ocean Barge Loading	OBLOAD	Diesel	1,533,000	0.5	0.01	351,000	0.03	0%	9.74	11.23	-0-	-0-
Ocean Barge Loading	OBLOAD	MTBE	114,975	0.5	2.45	52,650	4.08	99%	2.15	1.41	212.63	139.35
								TOTAL ¹⁰	22.53	43.86		
Ship Loading	SLOAD	Gasoline	1,533,000	0.2	2.22	351,000	2.32	99%	8.15	16.98	807.01	1,681.04
Ship Loading	SLOAD	Crude Oil (RVP 5)	1,533,000	0.2	0.85	351,000	1.23	99%	4.32	6.50	427.25	643.28
Ship Loading	SLOAD	Jet Fuel	1,533,000	0.2	0.01	351,000	0.01	0%	5.13	5.52	-0-	-0-
Ship Loading	SLOAD	Diesel	1,533,000	0.2	0.01	351,000	0.01	0%	3.90	4.49	-0-	-0-
Ship Loading	SLOAD	MTBE	114,975	0.2	0.98	52,650	1.63	99%	0.86	0.56	85.05	55.74
								TOTAL ¹⁰	9.01	17.54		

Table C-2

Loading Fugitive Emission Calculations Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

NOTES:

- 1. Maximum hourly temperature based on TCEQ guidance for loading operations. Average annual temperature based on daily average ambient temperature for Corpus Christi from AP-42 Chapter 7.1.
- 2. Gasoline uses RVP 7.8 for summer gasoline and maximum vapor pressure, and RVP 11 for average annual vapor pressure. RVP is converted to TVP using AP-42 Chapter 7.1, Figure 7.1-14b and a slope of 3.
- 3. Diesel true vapor pressure is interpolated based on AP-42 Chapter 7.1, Table 7.1-2
- 4. Crude Oil uses RVP 5 for crude oil. RVP is converted to TVP using AP-42 Chapter 7.1, Figure 7.1-13b.
- 5. Vapor pressure for MTBE uses Antoine's Equation.
- 6. Molecular weights for all materials based on AP-42 Chapter 7.1, Table 7.1-2.
- 7. Based on Submerged Loading: Dedicated Normal Service
- 8. Based on Submerged Loading: Barges and Submerged Loading: Ships
- 9. Emission Factors were determined by use of the equations in AP-42, 5th Ed., 1/95, Section 5.2 (Transportation & Marketing of Petroleum Liquids).
- 10. Totals for each loading scenario are based on maximum of each material on a short-term basis and annual basis. The MTBE rate is added to the gasoline rate for the maximimum loading rate scenario.
- 11.Maximum loading rate for MTBE is based on 15% of gasoline short-term loading.

Example Calculations

Diesel Emission Factor (Short-Term)

(12.46) * (0.60) * (0.02 psia) * (130) / ((459.67 + (95 deg F)) = 0.03 lb/Mgal

Fugitive Emissions:

Hourly Emission Rate - EPN RCLOAD Diesel

(351,000 gal/hr) / (1,000 gal/Mgal) * (0.033 lb/Mgal) * (1 - 0.00 %) = 11.69 lb/hr

Annual Emission Rate - EPN RCLOAD Diesel

(1,533,000 Mgal/yr) * (0.0176 lb/Mgal) / (2000 lb/ton) * (1 - 0.00 %) = 13.47 tpy

Table C-3
Railcar Loading Vapor Combustor Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

<u>Vapor Combustion Emission Calculations (See Table C-2 for details on the data provided below).</u>

Loading Facility	FIN	Product	Maximum VOC	Average VOC	Heat Content ⁽¹⁾	Maximum	Average
		Loaded	Vapors to VCU	Vapors to VCU		Vapors to VCU	Vapors to VCU
			(lb/hr)	(tpy)	(Btu/lb)	(MMBtu/hr)	MMBtu/yr
Railcar Loading	RCLOAD	Gasoline	2,445.48	5,094.05	20,007	48.93	203,833.28
Railcar Loading	RCLOAD	MTBE	257.73	168.91	16,319	4.21	5,512.83
Railcar Loading	RCLOAD	Crude Oil (RVP 5)	1,294.70	1,949.34	19,580	25.35	76,336.26
Vapor Combustion Unit ⁽²⁾	VCU-1	Total	2,703.21	5,262.96		53.13	209,346.11

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	99	%	27.03	52.63	Vendor Guarantee/BACT
MTBE	99	%	2.58	1.69	Vendor Guarantee/BACT
NO _X	0.138	lb/MMBtu	7.33	14.44	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
СО	0.2755	lb/MMBtu	14.64	28.84	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMBtu	0.40	0.78	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO ₂	99	%	0.68	1.14	See Table C-6
H ₂ S			<0.001	<0.011	ER _{SO2} * 34.1/64.066 * 0.01/0.99

Natural Gas Assist and Pilots (3)

Maximum	Average	Heat Value	Maximum	Average
(scfh)	(scfh)	(Btu/scf)	(MMBtu/hr)	(MMBtu/hr)
108	108	1020	0.11	0.11

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	0.0054	lb/MMBtu	<0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
NO _X	0.138	lb/MMbtu	0.02	0.07	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
СО	0.2755	lb/MMbtu	0.03	0.13	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMbtu	<0.01	<0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO ₂	0.0006	lb/MMbtu	<0.01	<0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2

Table C-3

Railcar Loading Vapor Combustor Emission Calculations Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Total result from Vapor Combustion Unit (EPN: VCU-1)

Pollutant ⁽⁴⁾	(lb/hr)	(tpy)
VOC	27.03	52.63
MTBE	2.58	1.69
NO _X	7.35	14.51
CO	14.67	28.97
PM/PM ₁₀ /PM _{2.5}	0.40	0.78
SO ₂	0.68	1.14
H ₂ S	<0.001	<0.011

NOTES:

- 1. Typical higher heating values for gasoline and crude oil from "GREET, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET 1.8d.1 (August 2010)
- 2. Flowrates to the VCU are based on the maximum of the material and loading type (gasoline and MTBE are summed together since they will be in-line mixed prior to loading).
- 3. Pilot/assist gas data based on vendor specifications.
- 4. VOC includes MTBE.

Example Calculations

VCU Hourly VOC Emission Rate

(2,703.21 lb/hr) * (100% - 99%) = 27.03 lb/hr

VCU Annual VOC Emission Rate

(5,262.96 tpy) * (100% - 99%) = 52.63 tpy

VCU Hourly NO_x Emission Rate

(53.13 MMBtu/hr) * 0.138 lb NOX/MMBtu = 7.33 lb/hr

VCU Annual NO_x Emission Rate

(209,346.11 MMBtu/yr) * 0.138 lb NOX/MMBtu / 2,000 lb/ton = 14.44 tpy

Table C-4
Marine Loading Vapor Combustor Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

<u>Vapor Combustion Emission Calculations (See Table C-2 for details on the data provided below).</u>

Loading Facility	FIN	Product	Maximum VOC	Average VOC	Heat Content ⁽¹⁾		Average
		Loaded	Vapors to VCU	Vapors to VCU		vapors to VCU	Vapors to VCU
			(lb/hr)	(tpy)	(Btu/lb)	(MMBtu/hr)	MMBtu/yr
Shallow Draft Barge Loading	SDBLOAD	Gasoline	2,037.90	4,245.04	20,007	40.77	169,861.07
Shallow Draft Barge Loading	SDBLOAD	Crude Oil (RVP 5)	1,078.92	1,624.45	19,580	21.13	63,613.55
Shallow Draft Barge Loading	SDBLOAD	MTBE	214.78	140.76	16,319	3.50	4,594.02
Ocean Barge Loading	OBLOAD	Gasoline	2,017.52	4,202.59	20,007	40.36	168,162.46
Ocean Barge Loading	OBLOAD	Crude Oil (RVP 5)	1,068.13	1,608.21	19,580	20.91	62,977.42
Ocean Barge Loading	OBLOAD	MTBE	212.63	139.35	16,319	3.47	4,548.08
Ship Loading	SLOAD	Gasoline	807.01	1,681.04	20,007	16.15	67,264.98
Ship Loading	SLOAD	Crude Oil (RVP 5)	427.25	643.28	19,580	8.37	25,190.97
Ship Loading	SLOAD	MTBE	85.05	55.74	16,319	1.39	1,819.23
Vapor Combustion Unit ⁽²⁾	VCU-2	Total	2,252.68	4,385.80		44.28	174,455.09

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	99	%	22.53	43.86	Vendor Guarantee/BACT
MTBE	99	%	2.15	3.36	Vendor Guarantee/BACT
NO _χ	0.138	lb/MMBtu	6.11	12.04	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
CO	0.2755	lb/MMBtu	12.20	24.03	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMBtu	0.33	0.65	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO_2			0.57	0.95	See Table C-6
H ₂ S			<0.001	<0.011	ER _{SO2} * 34.1/64.066 * 0.01/0.99

Natural Gas Assist and Pilots (3)

Maximum	Average	Heat Value	Maximum	Average
(scfh)	(scfh)	(Btu/scf)	(MMBtu/hr)	(MMBtu/hr)
108	108	1020	0.11	0.11

Table C-4
Marine Loading Vapor Combustor Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	0.0054	lb/MMBtu	<0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
NO _χ	0.138	lb/MMbtu	0.02	0.07	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
СО	0.2755	lb/MMbtu	0.03	0.13	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMbtu	<0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO ₂	0.0006	lb/MMbtu	<0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2

Total result from Vapor Combustion Unit (EPN: VCU-2)

Pollutant ⁽⁴⁾	(lb/hr)	(tpy)
VOC	22.53	43.86
MTBE	2.15	3.36
NO _X	6.13	12.10
CO	12.23	24.16
PM/PM ₁₀ /PM _{2.5}	0.33	0.65
SO ₂	0.57	0.95
H_2S	<0.01	<0.01

NOTES:

- 1. Typical higher heating values for gasoline and crude oil from "GREET, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET 1.8d.1 (August 2010)
- 2. Flowrates to the VCU are based on the maximum of the material and loading type (gasoline and MTBE are summed together since they will be in-line mixed prior to loading).
- 3. Pilot/assist gas data based on vendor specifications.
- 4. VOC includes MTBE.

Table C-4

Marine Loading Vapor Combustor Emission Calculations Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Example Calculations

VCU Hourly VOC Emission Rate

(2,252.68 lb/hr) * (100% - 99%) = 22.53 lb/hr

VCU Annual VOC Emission Rate

(4,385.80 tpy) * (100% - 99%) = 43.86 tpy

VCU Hourly NO_x Emission Rate

(44.28 MMBtu/hr) * 0.138 lb NOX/MMBtu = 6.11 lb/hr

VCU Annual NO_x Emission Rate

(174,455.09 MMBtu/yr) * 0.138 lb NOX/MMBtu / 2,000 lb/ton = 12.04 tpy

Table C-5
Fugitive Piping Component Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Component Type	Service	No. of	SOCMI Without Ethylene	Calculated Emission	
		Components	Emission Factor (1)	Rat	es ⁽²⁾
			lb/hr-component	lb/hr	tpy
Valves	Gas/Vapor	88	0.0089	0.783	3.430
Valves	Light Liquid	85	0.0035	0.298	1.303
Valves	Heavy Liquid	80	0.0007	0.056	0.245
Flanges/Connectors	Gas/Vapor	220	0.0029	0.638	2.794
Flanges/Connectors	Light Liquid	213	0.0005	0.107	0.466
Flanges/Connectors	Heavy Liquid	200	0.0001	0.014	0.061
Pumps	Light Liquid	9	0.0386	0.347	1.522
Pumps	Heavy Liquid	0	0.0161	-0-	-0-
				2.243	9.823

Notes:

- (1) Factors based on TCEQ's Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives (June 2018).
- (2) Sample Calculations Fugitive Emissions (Valves)

88 components * 0.0089 lb/hr-component * (100%-0%) = 0.783 lb/hr 0.783 lb/hr * 8,760 hours/year / 2,000 lbs/ton= 3.430 tpy

Table C-6a
Sulfur Cencentrations of Various Mixtures
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Maximum Hourly Case

Material	Units	Gasoline	Gasoline	Crude Oil	Jet Fuel	Diesel	MTBE	Notes
		(RVP 7.8)	(RVP 11)	(RVP 5)				
Maximum Loading Temperature	(°F)	95		95	95	95	95	
Maximum Vapor Pressure	(psia)	7.602		5.473	0.025	0.019	4.120	
Vapor Molecular Weight	(lb/lb-mol)	68		50	130	130	88.1	
Liquid Molecular Weight	(lb/lb-mol)	92		207	162	162	188	
Most Common Sulfur Species		Ethanethiol		H ₂ S	Ethanethiol	Ethanethiol	n/a	
Most Common Sulfur Species MW	(lb/lb-mol)	62.13404		34.1	62.13404	62.13404		
Maximum Liquid Sulfur	(ppm wt)	1		1	1	1		User Defined Assumption
Maximum Liquid Mol Fraction Sulfur	(mol/mol)	0.00000		0.00001	0.00000	0.00000		AP-42 Chapter 7.1, Equation 4-4
Loading Temperature	(K)	308		308	308	308		K = 5/9 * (°F -32) + 273
Antoine's A		4.07696		4.52887	4.07696	4.07696		webbook.nist.gov
Antoine's B		1,084.531		958.587	1,084.531	1,084.531		webbook.nist.gov
Antoine's C		-41.765		-0.539	-41.765	-41.765		webbook.nist.gov
Sulfur Vapor Pressure	(psia)	14.62		373.77	14.62	14.62		AP-42 Chapter 7.1, Equation 1-25
Sulfur Partial Pressure	(psia)	0.0000		0.0023	0.0000	0.0000		AP-42 Chapter 7.1, Equation 4-3
Vapor Mol Fraction Sulfur	(mol/mol)	0.0000		0.0004	0.0015	0.0020		AP-42 Chapter 7.1, Equation 4-5
Maximum Vapor Mass Fraction Sulfur	(lb S/lb)	0.00000		0.00028	0.001	0.001	0.00000	AP-42 Chapter 7.1, Equation 4-6

Average Annual Case

Material	Units	Gasoline	Gasoline	Crude Oil	Jet Fuel	Diesel	MTBE	Notes
		(RVP 7.8)	(RVP 11)	(RVP 5)				
Average Loading Temperature	(°F)		72.05	72.05	72.05	72.05	72.05	
Average Annual Vapor Pressure	(psia)		7.235	3.618	0.012	0.010	2.371	
Vapor Molecular Weight	(lb/lb-mol)		65.3	50	130	130	88.1	
Liquid Molecular Weight	(lb/lb-mol)		92	207	162	162	188	
Most Common Sulfur Species			Ethanethiol	H ₂ S	Ethanethiol	Ethanethiol	n/a	
Most Common Sulfur Species MW	(lb/lb-mol)		62.13404	34.1	62.13404	62.13404		
Average Annual Liquid Sulfur	(ppm wt)		1	1	1	1		User Defined Assumption
Average Liquid Mol Fraction Sulfur	(mol/mol)		0.00000	0.00001	0.00000	0.00000		AP-42 Chapter 7.1, Equation 4-4
Loading Temperature	K		295	295	295	295		K = 5/9 * (°F -32) + 273
Antoine's A			4.07696	4.52887	4.07696	4.07696		webbook.nist.gov
Antoine's B			1,084.531	958.587	1,084.531	1,084.531		webbook.nist.gov
Antoine's C			-41.765	-0.539	-41.765	-41.765		webbook.nist.gov
Sulfur Vapor Pressure	(psia)		9.12	273.98	9.12	9.12		AP-42 Chapter 7.1, Equation 1-25
Sulfur Partial Pressure	(psia)		0.0000	0.0017	0.0000	0.0000		AP-42 Chapter 7.1, Equation 4-3
Vapor Mol Fraction Sulfur	(mol/mol)		0.00000	0.0005	0.0020	0.0025		AP-42 Chapter 7.1, Equation 4-5
Average Vapor Mass Fraction Sulfur	(lb S/lb)		0.00000	0.00031	0.00096	0.00118	0.00000	AP-42 Chapter 7.1, Equation 4-6

Table C-6b

Sulfur Emissions from Loading Activities Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Fugitive Loading Emission Calculations

Loading Facility	EPN Product Loaded		Emissions to Facility/	Control by Product	Vapor Mas Sul		SO ₂ Emissions from VCU	
			(lb/hr)	(tpy)	Maximum lb S/lb	Average lb S/lb	(lb/hr)	(tpy)
Railcar Loading	RCLOAD	Gasoline	2,445.48	5,094.05	0.00000	0.00000	0.0065	0.0092
Railcar Loading	RCLOAD	Crude Oil (RVP 5)	1,294.70	1,949.34	0.00028	0.00031	0.6808	1.1368
Railcar Loading	RCLOAD	Jet Fuel	-0-	-0-	0.0007	0.0010	-0-	-0-
Railcar Loading	RCLOAD	Diesel	-0-	-0-	0.0010	0.0012	-0-	-0-
Railcar Loading	RCLOAD	MTBE	257.73	168.91	0.00000	0.00000	-0-	-0-
			2,703.21	5,262.96			0.68	1.14
Shallow Draft Barge Loading	SDBLOAD	Gasoline	2,037.90	4,245.04	0.00000	0.00000	0.0054	0.0077
Shallow Draft Barge Loading	SDBLOAD	Crude Oil (RVP 5)	1,078.92	1,624.45	0.00028	0.00031	0.5673	0.9474
Shallow Draft Barge Loading	SDBLOAD	Jet Fuel	-0-	-0-	0.0007	0.0010	-0-	-0-
Shallow Draft Barge Loading	SDBLOAD	Diesel	-0-	-0-	0.0010	0.0012	-0-	-0-
Shallow Draft Barge Loading	SDBLOAD	MTBE	214.78	140.76	0.00000	0.00000	-0-	-0-
			2,252.68	4,385.80			0.57	0.95
Ocean Barge Loading	OBLOAD	Gasoline	2,017.52	4,202.59	0.00000	0.00000	0.0054	0.0076
Ocean Barge Loading	OBLOAD	Crude Oil (RVP 5)	1,068.13	1,608.21	0.00028	0.00031	0.5617	0.9379
Ocean Barge Loading	OBLOAD	Jet Fuel	-0-	-0-	0.0007	0.0010	-0-	-0-
Ocean Barge Loading	OBLOAD	Diesel	-0-	-0-	0.0010	0.0012	-0-	-0-
Ocean Barge Loading	OBLOAD	MTBE	212.63	139.35	0.00000	0.00000	-0-	-0-
			2,230.15	4,341.94			0.56	0.94
Ship Loading	SLOAD	Gasoline	807.01	1,681.04	0.00000	0.00000	0.0021	0.0030
Ship Loading	SLOAD	Crude Oil (RVP 5)	427.25	643.28	0.00028	0.00031	0.2247	0.3752
Ship Loading	SLOAD	Jet Fuel	-0-	-0-	0.0007	0.0010	-0-	-0-
Ship Loading	SLOAD	Diesel	-0-	-0-	0.0010	0.0012	-0-	-0-
Ship Loading	SLOAD	MTBE	85.05	55.74	0.00000	0.00000	-0-	-0-
			892.06	1,736.78			0.22	0.38

VCU 1 Total 0.68 1.14 VCU 2 Total 0.57 0.95

Notes:

1. Vapor sulfur concentrations are calculated in Table C-6a and assume all sulfur exists as ethyl mercaptan for all mixtures, with the exception of Crude Oil, which containes H_2S .

March 26, 2020

Ms. Laura Gibson, P.E. Texas Commission on Environmental Quality Air Permits Division (MC-163) P.O. Box 13087 Austin, Texas 78711-3087

Re: Permit Application

Permit Number: 159254 TCEQ Project No. 309311

Port of Corpus Christi Authority Bulk Dock 3 Layberth

Corpus Christi, Nueces County

Regulated Entity Number: RN104989116 Customer Reference Number: CN600885248

Dear Ms. Gibson,

On behalf of Port of Corpus Christi Authority (PCCA), TRICORD Consulting, LLC is submitting this letter and the attached information as a follow-up to my February 26, 2020 correspondence and your recent inquiry regarding the above-referenced permit application.

As provided in the February 26th response to your comments, due to the increased emissions, we anticipated the SO₂ 1-hour and 3-hour modeled concentrations to be over the respective Significant Impact Levels (SILs) and site-wide modeling to be required. Given our initial results of the site-wide modeling and the recently updated guidance from the Air Dispersion Modeling Team (ADMT), we also anticipated that we would need to include recently permitted off-property sources in our analysis. As such, herein we are providing the following information in support of your continued review of the subject permit application:

- Updated emission calculations (including changes addressing all of your previous comments);
- Updated modeling files, including cumulative impact analyses for the SO2 1-hour and 3-hour averaging periods (including recently permitted off-property sources);
- Updated New Source Review (NSR) Workbook; and
- Updated Electronic Modeling Evaluation Workbook (EMEW).

If you have any questions, please contact me at <u>joe.ibanez@tricordconsulting.com</u>. Thank you for your time and consideration in this matter and we look forward to working with you to get this permit issued soon.

Ms. Laura Gibson, P.E. Page 2 March 26, 2020

Sincerely,

Joe J. Ibanez

TRICORD Consulting, LLC 4760 Preston Rd., Ste 244-193

Frisco, TX 75034

Office and Fax: (888) 900-0746 x 700

Cell: (972) 837-0591

E-mail: joe.ibanez@tricordconsulting.com

Enclosures

cc: Sarah Garza, Port of Corpus Christi Authority Erica Bayeh, TRICORD Consulting, LLC

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

General

Acknowle	Select from the drop down:			
I acknowledge that I am submitting an aut Evaluation Workbook and any necessary a requested data, I have not changed the TC Workbook in any way, including but not li content, or protections.	I agree			
Ad	ministrative Information:			
Data Type:	Facility Information:			
Project Number (6 digits):	309311			
Permit Number:	Number: 159254			
Regulated Entity ID (9 digits):	legulated Entity ID (9 digits): 104989116			
Facility Name:	Port of Corpus Christi Authority Bulk Dock	3 Layberth		
Facility Address:	202 Bulk Materials Dock Rd, Corpus Chris	sti TX 78402		
Facility County (select one):	Nueces			
Company Name:	Port of Corpus Christi Authority of Nueces	s County		
Company Contact Name:	Ms. Sarah Garza			
Company Contact Number:	361-885-6163			
Company Contact Email:	sarah@pocca.com			
Modeling Company Name, as applicable:	TRICORD Consulting, LLC	RICORD Consulting, LLC		
Modeling Contact Name:	Mr. Anthony Anders			
Modeling Contact Number:	832-714-1418			
Modeling Contact Email:	om			
New/Existing Site (select one):				
Modeling Date (MM/DD/YYYY):	3/26/2020			
Datum Used (select one):	NAD 83			
UTM Zone (select one):	14			

Sheet Instructions: Indicate in the Table of Contents which sections are applicable and included for this modeling demonstration. Select "X" from the drop down if the item below is included in the workbook. Note: This workbook is only for the following air dispersion models: AERSCREEN, ISC/ISCPrime, and/or AERMOD. If SCREEN3 is used, please use the separate Electronic Modeling Evaluation Workbook (EMEW) for SCREEN3 workbook.

Table of Contents:				
Section:	Sheet Title (Click to jump to specific sheet):	Select an X from the dropdown menu if included:		
1	General	X		
2	Model Options	X		
3	Building Downwash	X		
4	Flare Source Parameters			
5	Point Source Parameters	X		
6	Area Source Parameters	X		
7	Volume Source Calculations			
8	Volume Source Parameters			
9	Point and Flare Source Emissions	X		
10	Area Source Emissions	X		
11	Volume Source Emissions			
12	Speciated Emissions	X		
13	Intermittent Sources			
14	Modeling Scenarios			
15	Monitor Calculations	X		
16	Background Justification	X		
17	Secondary Formation of PM2.5	X		
18	NAAQS/State Property Line (SPL) Modeling Results	X		
19	Unit Impact Multipliers			
20	Health Effects Modeling Results	X		
21	Modeling File Names	Х		
22	Speciated Chemicals			

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
General

Included Attachments Instructions: The following are attachments that must be included with any modeling analysis. If providing the plot plan and area map with the permit application, ensure	Select an X from the dropdown menu if included:
there is also a copy with the EMEW. The copy can be electronic.	
Plot Plan:	
Instructions: Mark all that apply in the attached plot plan. For larger properties or dense s multiple zoomed in plot plans that are legible.	source areas, provide
Property/Fence Lines all visible and marked.	X
North arrow included.	X
Clearly marked scale.	X
All sources and buildings are clearly labeled.	X
Area Map:	•
Instructions: Mark all that apply in the attached area map.	
Annotate schools within 3,000ft of source's nearest property line.	
All property lines are included.	X
Non-industrial receptors are identified.	X
Additional Attachments (as applicable):	Select an X from the
Note: These are just a few examples of attachments that may need to be included.	dropdown menu if
There may be others depending on the scope of the modeling analysis.	included:
Processed Met Data Information	
Excel spreadsheet of processed meteorology data.	
Meteorological Files (all input and outputs).	
Source Group Descriptions	
Description of modeling source groups (could be in a tabulated format).	X
Modeling Techniques and Scenarios	
Provide all justification and discussion on modeling scenarios used for the modeling anal	lyses. The following
boxes are examples of approaches that should be provided but is not all inclusive.	
Discussion on modeling techniques not discussed in workbook.	
Justification for exceedance refinements, as applicable.	
Discussion and images for worst-case determination, as applicable.	X
Single Property Line Designation, as applicable	
Include Agreement, Order, and map defining each petitioner.	
Post Processing using Unit Impact Multipliers (UIMs)	
Include documentation on any calculations used with the UIMs (i.e., Step 3 of the MERA).	
Tier 3 NO ₂ analysis	
If OLM or PVMRM are used, provide all justification and documentation on using this app	oroach.
Description of model setup.	
Description and justification of model options selected (i.e., NO_2 to NO_x in-stack ratios).	
Other Attachments	
Provide a list in the box below of additional attachments being provided that are not listed	d above:

Texas Commission on Environmental Quality

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Model Options

Date: September 2019

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

ı	Dro	ioct	Info	rmation	
		Jeci	11110	rination	

A. Project Overview: In the box below, give a brief Project Overview. To type or insert text in box, double click in the box below. *Please limit your response to 2000 characters.*

PCCA is requesting a new case-by-case NSR permit under 30 TAC Chapter 116 Subchapter B to authorize emissions associated with the planned Bulk Dock 3 Expansion Project. With this project, PCCA is planning to increase authorized marine vessel and railcar loading throughputs of gasoline and diesel and to authorize marine vessel and railcar loading of crude oil, dieselLPG, and jet fuel. The loading operations will include two vapor combustion units (VCUs) for emission controls and new fugitive piping components, including pumps, valves and flanges.

II. Air Dispersion Modeling Preliminary Information

Instructions: Fill in the information below based on your modeling setup. The selections chosen in this sheet will carry throughout the sheet and workbook. Based on selections below, only portions of the sheet and workbook will be available. Therefore, it is vital the sheet and workbook are filled out in order, do NOT skip around.

For larger text boxes, double click to type or insert text.

A. Type of Model Used: Select "X" in all that apply				
	AERSCREEN	X	AERMOD	
18081, 1919	18081, 19191 Enter in all applicable Model Version(s).			
B. Building Downwash				
Yes Is downwash applicable? (Select "Yes" or "No")				
04274				

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Model Options
Permit #: 159254
Company Name: Port of Corpus Christi Authority of Nueces County

C. Type of Analyses: (Select "X" in all that apply) *PSD projects should submit a protocol and not utilize this form.				
PSD projects should subi	ilit a protocol an	ia noi uillize ii	iis ioiiii.	
X Minor NSR NA	AAQS	Χ	State Property Line	
X Health Effects				
D. Constituents Evaluating				
•	that require an		iew. (Select "X" in all that apply)	
X SO ₂		X	PM ₁₀	
X CO		X	PM _{2.5}	
Pb		X	NO ₂	
Both	Identify which a	averaging per	iods are being evaluated for NO ₂ .	
Tier 2: ARM 2	Identify the 1-h analyses.	r NO ₂ tier use	ed for the AERMOD or AERSCREEN	
Tier 2: 0.9	Identify the ann AERSCREEN a	_	used for the AERMOD or	
State Property Line: List apply)	all pollutants tha	at require an ı	modeling review. (Select "X" in all that	
X H ₂ S		Χ	SO ₂	
H ₂ SO ₄			_	
Health Effects: Fill in the Speciated Emissions sheet with all applicable pollutants, CAS numbers, and ESLs.				

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Model Options

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

· -	on Options: <i>If "Urban" has been</i> EN, <i>include the population used</i>		d this project is using AERMOD or the box to select an option.			
	Urban					
X	Rural					
	additional justification on the di	ispersion opti	ion selected above:			
	-		in previous modeling demonstrations			
for this facil	ity using the Auer land-use proc	edure and ge	eneral knowledge of the terrain. The			
result of the	result of the Auer land-use analysis clearly indicates rural land type and absence of large					
"heat island	s," therefore the "No Urban Are	ea" was selec	ted for modeling.			
F. Determine section below		AERSCREE	N or AERMOD is used, fill out the			
Select basis	s for surface roughness:	AERSURFA	ACE			
0 1 111111						
	n one of the three surface rough	ness categor				
X	Low		Medium			
16	: AEDOLIDEAGE I		High			
	sing AERSURFACE, please cor					
13016	AERSURFACE		-			
651320.8	Center UTM Easting (meters)	3078194	Center UTM Northing (meters)			
1 No	Study Radius (km)					
Continuous Snow Cover (Select Yes or No)						
Average						
No	Arid Region? (Select Yes or No)					
	default	worth/Seas	son Assignment			

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Model Options
Permit #: 159254
Company Name: Port of Corpus Christi Authority of Nueces County

G. Meteoro	G. Meteorological Data:				
If AERMOD and/or ISC/ISCPrime are selected, please complete the following section:					
12924		Surface Sta	ation		
12924		Upper Air Station			
13.4	Meters (m)	Profile Base	e Elevation (AERMOD only)		
16216		AERMET V	ersion Number		
Yes	Was TCEQ pre-processed data used?	1 Year	Years used		
	r the year(s) selected for this me	eteorological	data:		
2012	1 Year				
Provide any	other justification for Meteorolo	gical Data, a	s applicable.		

Date: September 2019 **Texas Commission on Environmental Quality**

Permit #: 159254 Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Model Options
Permit #: 159254

H. Receptor Grid:

For AERMOD or ISC/ISCPrime, fill in the following information on your modeled receptor grid. Note: Receptor grid resolution (tight, fine, medium, coarse) are based on recommended receptor grid spacing per the AQMG, if something outside of this is used, fully describe it below.

25	Meters (m)	Tight Receptor Spacing
100	Meters (m)	Tight Receptor Distance
100	Meters (m)	Fine Receptor Spacing
1000	Meters (m)	Fine Receptor Distance
500	Meters (m)	Medium Receptor Spacing
5000	Meters (m)	Medium Receptor Distance
1000	Meters (m)	Coarse Receptor Spacing
10000	Meters (m)	Coarse Receptor Distance

Describe any other receptor grid designs (over water, GLC_{ni}, SPLD etc.):

For MERA crude oil, LPD, and MTBE analyses, all receptors were conservatively considered non-industrial.

For MERA HPD, the worst-case non-industrial receptor was placed at 652400.00 m E, 3077000.00 m N. See Attachment 2B for the worst-case non-industrial receptor demonstration.

For the SO2 analyses, the receptor grid is as follows:

25m/300m Tight Receptors

100m/1000m Fine Receptors

100m/5000m Medium Receptors

1000m/27000m Coarse Receptors

I. Terrain:

Elevated 18081 AERMAP Version.

For additional justification on terrain selection, fill in the box below:

A new terrain data file was downloaded and processed for the updated SO2 and H2S analyses.

Page 5

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Building Downwash

Facility:

Downwash Type	Modeled Building ID	Tank Diameter (m)	Number of Tiers	Maximum Height (m)	Tier 1 Height (m)
Building	BLDG1		1	3	3
Building	BLDG2		1	3	3
Building	BLDG3		1	3	3
Tank	T1	3.5	1	7	7
Tank	T2	3.5	1	7	7
Tank	T3	3.5	1	7	7
Tank	T4	3.5	1	7	7
Tank	T5	3.5	1	7	7
Tank	T6	3.5	1	7	7
Tank	T7	3.5	1	7	7
Tank	T8	3.5	1	7	7

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Facility:												
EPN	Model ID	Modeling Scenario	Source Description	Point Source Type	Point Source Justification	Easting: X [m]	Northing: Y [m]	Base Elevation [m]	Height [m]	Exit Temperature [K]	Exit Velocity [m/s]	Diameter [m]
VCU-1	VCU_1		Railcar Vapor Combustion Unit	POINT	Vertical stack	651981.00	3078110.00	1.59	10.67	634.261	1.143	2.438
VCU-2	VCU_2		Marine Vessel VCU	POINT	Vertical stack	651991.00	3078115.00	1.55	18.29	634.261	0.762	3.658
BD1 CSD-1	BD1_CSD1		BD1 Grab Clamshell to Marine Vessel	POINT	Pseudo-point	651587.00	3077986.00	0.00	10.64	0.000	0.001	0.001
BD1 FB-1 BD1 H-1	BD1_FB1 BD1_H1		BD1 Feeder Belt 1 BD1 Hopper 1	POINT POINT	Pseudo-point Pseudo-point	651591.50 651594.50	3078003.00 3078000.00	0.44 0.18	11.61 13.78	0.000	0.001 0.001	0.001 0.001
BD1 H3	BD1_H3		BD1 Loading Point for	POINT	Pseudo-point	652036.44	3078490.63	2.16	3.05	0.000	0.001	0.001
BD1 RC-1	BD1_RC1		PPL1 Bulk Dock 1 Railcar Loadout 1	POINT	Pseudo-point	651593.50	3078003.00	0.44	4.57	0.000	0.001	0.001
BD1 RC-2	BD1_RC2		BD1 Railcar Loadout 2	POINT	Pseudo-point	652076.78	3078519.06	2.29	4.57	0.000	0.001	0.001
BD1 TR-1	BD1_TR1		Bulk Dock 1 Truck Loadout 1	POINT	Pseudo-point	651593.50	3078003.00	0.44	3.35	0.000	0.001	0.001
BD1 TR-2	BD1_TR2		BD1 Truck Loadout 2	POINT	Pseudo-point	652111.27	3078475.66	2.41	3.35	0.000	0.001	0.001
BD1 TS-8	BD1_TS8		BD1 Transfer Station 1 connecting CB1 to CB2	POINT	Pseudo-point	651661.51	3078017.25	1.60	3.05	0.000	0.001	0.001
BD1 TS-9	BD1_TS9		BD1 Transfer Station 2 connecting CB2 to CB3	POINT	Pseudo-point	651927.09	3078143.90	2.39	3.05	0.000	0.001	0.001
BD1 TS-10	BD1_TS10		BD1 Transfer Station 3 connecting CB3 to CB4	POINT	Pseudo-point	651970.00	3078290.00	2.64	3.05	0.000	0.001	0.001
BD1 TS-11	BD1_TS11		BD1 Transfer Station 4 connecting CB4 to CB5	POINT	Pseudo-point	651895.30	3078454.92	3.31	3.05	0.000	0.001	0.001
BD1 TR-2/BD1 RC-2	BD1RC2CP		Cap for BD1 Truck and Railcar Loadout	POINT	Pseudo-point	652076.78	3078519.06	2.29	4.57	0.000	0.001	0.001
BD2 DS-TR1	BD2_DTR1		BD2 Dump Station for	POINT	Pseudo-point	651152.45	3078208.10	11.71	1.22	0.000	0.001	0.001
BD2 DS-TR2	BD2 DTR2		Trucks BD2 Dump Station for	POINT	Pseudo-point	651278.94	3078187.03	3.70	1.22	0.000	0.001	0.001
	_		Trucks BD2 Dump Station for		·							
BD2 DS-TR3	BD2_DTR3		Trucks	POINT	Pseudo-point	650997.00	3078219.90	5.27	1.22	0.000	0.001	0.001
BD2 FEL PC-5	BD2_FEL5		BD2 RC Station Front- End Loader Feeding Hopper to Load Portable Conveyor BD2 PC-5	POINT	Pseudo-point	651005.00	3078165.00	3.50	4.57	0.000	0.001	0.001
BD2 PC-5	BD2_PC5		BD2 Transfer Station Receives Material From Portable Conveyor or FE Loader	POINT	Pseudo-point	651217.33	3078362.82	1.76	6.10	0.000	0.001	0.001
BD2 PC-6	BD2_PC6		BD2 Transfer Station Receives Material From Portable Conveyor or FE Loader	POINT	Pseudo-point	651315.60	3078331.58	2.12	6.10	0.000	0.001	0.001
BD2 RL	BD2_RL		BD2 Railcar Loadout Point with Bitruncated Chute	POINT	Pseudo-point	650974.00	3078119.00	2.26	4.57	0.000	0.001	0.001
BD2 SL	BD2_SL		BD2 Telescopic Spout- Out Ship Loader	POINT	Pseudo-point	651149.00	3077993.00	0.00	6.10	0.000	0.001	0.001
BD2 TS FEL-1	BD2_FEL1		BD2 Loading point to Hopper from FE Loader	POINT	Pseudo-point	651564.00	3078280.00	2.06	6.10	0.000	0.001	0.001
BD2 TS FEL-2	BD2_FEL2		BD2 Loading Point to BD2 CB-2 at Citgo or Valero Pad	POINT	Pseudo-point	651363.00	3078188.00	2.66	6.10	0.000	0.001	0.001
BD2 TS FEL-6	BD2_FEL6		BD2 Front-End Loader for Loading Trucks from Stockpile	POINT	Pseudo-point	651236.00	3078106.00	2.60	3.05	0.000	0.001	0.001
BD2 TS PC-1	BD2_TPC1		BD2 Transfer Station at BD2 CB-1	POINT	Pseudo-point	651603.65	3078286.47	2.56	6.10	0.000	0.001	0.001
BD2 TS PC-2	BD2_TPC2		BD2 Transfer Station Connecting BD2 PC-2	POINT	Pseudo-point	651356.00	3078249.00	2.80	6.10	0.000	0.001	0.001
BD2 TS PC-4	BD2_TSP4		to BD2 CB-2 BD2 Receiving Hopper from Portable Conveyor or Front End Loader at	POINT	Pseudo-point	651110.00	3078296.00	4.01	6.10	0.000	0.001	0.001
BD2 TS-1	BD2_TS1		CB-7 BD2 Transfer Station 1 Connecting BD2 CB-1	POINT	Pseudo-point	651355.00	3078254.00	3.11	4.57	0.000	0.001	0.001
BD2 TS-3	BD2_TS3		to BD2 CB-2 BD2 Transfer Station Connecting BD2 CB-4	POINT	Pseudo-point	651225.00	3078094.00	2.55	4.57	0.000	0.001	0.001
BD2 TS-3a	BD2_TS3a		to BD2 CB-5 BD2 Transfer Station Connecting CB-4 to CB-	POINT	Pseudo-point	651225.00	3078094.00	2.55	9.75	0.000	0.001	0.001
BD2 TS-4	BD2_TS4		BD2 Transfer Station Connecting BD2 CB-5 to BD2 CB-6	POINT	Pseudo-point	651196.00	3078030.00	0.52	15.24	0.000	0.001	0.001
BD2 TS-5	BD2_TS5		BD2 Transfer Station Connecting CB-7 to CB-8 or CB-9	POINT	Pseudo-point	651030.00	3078165.00	4.23	3.05	0.000	0.001	0.001

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

EPN	Model ID	Modeling Scenario	Source Description	Point Source Type	Point Source Justification	Easting: X [m]	Northing: Y [m]	Base Elevation [m]	Height [m]	Exit Temperature [K]	Exit Velocity [m/s]	Diameter [m]
BD2 TS-6	BD2_TS6		BD2 Transfer Station Connecting BD2 CB-8 to BD2 CB-5	POINT	Pseudo-point	651223.00	3078088.00	2.55	6.10	0.000	0.001	0.001
BD2 TS-7	BD2_TS7		BD2 Transfer Station 7	POINT	Pseudo-point	651174.71	3078377.39	3.34	3.05	0.000	0.001	0.001
BD2 WPE-01 & BD2 WPE-02	BD2_WPE		BD2 Wet Particle Extractor to remove dust from underground Tunnel (BD2 TS-2, BD2 DS-RR/TR)	POINT	Pseudo-point	651304.89	3078073.99	2.42	0.00	0.000	0.001	0.001
FEL-SPTK	FELSPTK		Front-end Loader for Loading Trucks from Stockpile	POINT	Pseudo-point	651584.00	3077995.00	0.00	3.05	0.000	0.001	0.001
T 5	T_5		Loading Drop Point	POINT	Pseudo-point	651276.00	3078066.00	2.54	4.57	0.000	0.001	0.001
T CH1	T_CH1		Truck Dump Fug	POINT	Pseudo-point	651530.00	3077984.00	1.32	0.91	0.000	0.001	0.001
T CH2	T_CH2		FEL to Hopper to Conveyor Fugitives	POINT	Pseudo-point	651673.00	3078000.00	0.09	1.83	0.000	0.001	0.001
T EP-10	T_EP10		Coke Loading – Port Hoppers	POINT	Pseudo-point	651464.62	3078265.12	1.96	9.75	0.000	0.001	0.001
T EP-11	T_EP11		Coke Loading – Trucks	POINT	Pseudo-point	651520.55	3078134.41	2.27	4.57	0.000	0.001	0.001
T EP-14	SPRLEP14		Coke Pile Maintenance	POINT	Pseudo-point	650959.01	3078171.71	2.51	2.29	0.000	0.001	0.001
T EP-2	T_EP2		Coke Unloading – Trucks	POINT	Pseudo-point	651469.71	3078169.67	4.50	1.22	0.000	0.001	0.001
T MSS	SPRLMSS		Water Spray Maintenance	POINT	Pseudo-point	650959.01	3078171.71	2.51	2.29	0.000	0.001	0.001
T UL-2	T_UL2		Rail Pad Unloading – Truck	POINT	Pseudo-point	651584.00	3077995.00	0.00	3.05	0.000	0.001	0.001
VUE	VUE		Vessel Unloading Equipment	POINT	Pseudo-point	651597.00	3077991.00	0.00	3.05	0.000	0.001	0.001

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Area Source Parameters

Facility:

Facility:							Modeled					T				
EPN	Model ID	Modeling Scenario	Area Source Type	Easting: X [m]	Northing: Y [m]	Base Elevation [m]	Release Height	Length X	Length Y	Rotation Angle [deg]	Radius [m]	Initial Vertical Sigma (m)	Area Source Initial Sigma Justification	Area Source Size Justification	Area Source Release Height Justification	Source Description
BD1 SP-3	BD1_SP3	Coonano	AREA	651941.00	3078380.00	2.70	1.71	48.77	185.32	69.00	rtadiao [iii]	1.59	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	
BD1 SP-4	BD1_SP4		AREA	651999.00	3078341.00	2.02	1.71	27.74	143.26	69.00		1.59	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
BD1 SP-5	BD1_SP5		AREA	651967.00	3078294.00	2.71	1.71	25.91	181.36	69.00		1.59	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
BD1 SP-7	BD1_SP7		AREA	651879.00	3078485.00	3.04	1.71	45.72	152.40	69.00		1.59	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Warehouse Stockpile
BD1 SP-8	BD1_SP8		AREA	651534.69	3078023.57	2.46	1.71	15.24	159.11	83.00		1.59	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
SP-UNLOAD	SPUNLOAD		AREA	651563.43	3077984.31	0.34	0.91	76.20	15.24	-7.00		0.85	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	Stockpile from unloading vessels
BLAST	BLAST		AREA	651050.73	3078137.39	3.04	1.52	6.71	3.05	22.00		1.42	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	Height of blasting activities	Blasting Emissions
PAINT	PAINT		AREA	651050.73	3078137.39	3.04	1.52	6.71	3.05	22.00		1.42	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	Height of spraying and painting activities	Painting Emissions
BD1 SP-1	BD1_SP1		AREAPOLY	651515.19	3078001.33	2.28	2.29			N/A		2.13	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Ship Loadout Stockpile
BD1 SP-2	BD1_SP2		AREAPOLY	651900.37	3078395.90	2.92	1.71			N/A		1.59	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
BD1 SP-6	BD1_SP6		AREAPOLY	652118.74	3078515.15	2.41	1.71			N/A		1.59	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD1 Stockpile
BD2-STKPL-9	BD2_SP9		AREAPOLY	650961.27	3078249.58	4.33	4.57			N/A		4.25	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Stockpile
BD2-STKPL-10	BD2_SP10		AREAPOLY	651210.69	3078190.09	2.89	4.57			N/A		4.25	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Stockpile
BD2-STKPL-11	BD2_SP11		AREAPOLY	651264.67	3078305.46	2.66	4.57			N/A		4.25	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Stockpile
BD2-STKPL-12	BD2_SP12		AREAPOLY	651363.53	3078253.26	2.76	4.57			N/A		4.25	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Misc. Stockpile
BD2 STKPL-RCU	BD2_SPRC		AREAPOLY	651326.67	3078092.22	2.61	4.57			N/A		4.25	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Stockpile for Loading Trucks from Railcars
BD2 STKPL-RL	BD2_SPRL		AREAPOLY	651025.29	3078185.92	4.51	2.29			N/A		2.13	surface-based source (vertical dimension of source divided by 2.15)	based on Google Earth aerial outline	midpoint of stockpile height	BD2 Rail Loadout Station Stockpile
RCLOAD	RCLOAD		AREA	651942.50	3078125.64	2.40	3.66	12.95	121.92	-28.00		1.70	surface-based source (vertical dimension of source divided by 2.15)	Plot plan overlaid at proposed location in Google Earth	midpoint of Railcar Loading Fugitives height	Railcar Loading Fugitives
SDBLOAD	SDBLOAD		AREA	651984.59	3078065.26	0.05	7.62	24.00	102.00	66.50		3.54	surface-based source (vertical dimension of source divided by 2.15)	Plot plan overlaid at proposed location in Google Earth	midpoint of Shallow Draft Barge Loading Fugitives height	Shallow Draft Barge Loading Fugitives
OBLOAD	OBLOAD		AREA	651998.46	3078071.62	0.41	4.57	16.46	48.77	66.50		2.13	surface-based source (vertical dimension of source divided by 2.15)	Plot plan overlaid at proposed location in Google Earth	midpoint of Ocean Barge Loading Fugitives height	Ocean Barge Loading Fugitives
SLOAD	SLOAD		AREA	651842.65	3078001.46	0.00	7.62	36.58	289.56	66.50		3.54	surface-based source (vertical dimension of source divided by 2.15)		midpoint of Ship Loading Fugitives height	Ship Loading Fugitives
FUG	FUG		AREA	651993.67	3078082.36	1.08	4.57	10.67	64.01	66.50		2.13	surface-based source (vertical dimension of source divided by 2.15)	Plot plan overlaid at proposed location in Google Earth	midpoint of Fugitive Piping Components height	Fugitive Piping Components

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW) Company Name: Port of Corpus Christi Authority of Nueces County **Point + Flare Emissions**

EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate	Scalars or Factors Used?	Scalar/Factor in Use
VCU-1	VCU_1	0	NOx	1-hr	NAAQS	SIL Analysis	No	7.35	project increase	No	
VCU-2	VCU_2	0	NOx	1-hr	NAAQS	SIL Analysis	No	6.13	project increase	No	
VCU-1	VCU_1	0	NOx	Annual	NAAQS	SIL Analysis	No	3.30	project increase	Yes	Tier 2: 0.9
VCU-2	VCU_2	0	NOx	Annual	NAAQS	SIL Analysis	No	3.30	project increase	Yes	Tier 2: 0.9
VCU-1	VCU_1	0	СО	1-hr	NAAQS	SIL Analysis	No	14.67	project increase	No	
VCU-2	VCU_2	0	СО	1-hr	NAAQS	SIL Analysis	No	12.23	project increase	No	
VCU-1	VCU_1	0	CO	8-hr	NAAQS	SIL Analysis	No	14.67	project increase	No	
VCU-2	VCU_2	0	CO	8-hr	NAAQS	SIL Analysis	No	12.23	project increase	No	
VCU-1	VCU_1	0	SO2	1-hr	NAAQS	SIL Analysis	No	19.74	project increase	No	
VCU-2	VCU_2	0	SO2	1-hr	NAAQS	SIL Analysis	No	14.65	project increase	No	
VCU-1	VCU_1	0	SO2	3-hr	NAAQS	SIL Analysis	No	19.74	project increase	No	
VCU-2	VCU_2	0	SO2	3-hr	NAAQS	SIL Analysis	No	14.65	project increase	No	
VCU-1	VCU_1	0	PM10	24-hr	NAAQS	SIL Analysis	No	0.397	project increase	No	
VCU-2	VCU_2	0	PM10	24-hr	NAAQS	SIL Analysis	No	0.331	project increase	No	
VCU-1	VCU_1	0	PM2.5	24-hr	NAAQS	SIL Analysis	No	0.397	project increase	No	
VCU-2	VCU_2	0	PM2.5	24-hr	NAAQS	SIL Analysis	No	0.331	project increase	No	
VCU-1	VCU_1	0	PM2.5	Annual	NAAQS	SIL Analysis	No	0.178	project increase	No	
VCU-2	VCU_2	0	PM2.5	Annual	NAAQS	SIL Analysis	No	0.178	project increase	No	
VCU-1	VCU_1	0	NOx	1-hr	NAAQS	Minor Full NAAQS	No	7.35	proposed PTE	No	
VCU-2	VCU_2	0	NOx	1-hr	NAAQS	Minor Full NAAQS	No	6.13	proposed PTE	No	
VCU-1	VCU_1	0	NOx	Annual	NAAQS	Minor Full NAAQS	No	3.30	proposed PTE	Yes	Tier 2: 0.9
VCU-2	VCU_2	0	NOx	Annual	NAAQS	Minor Full NAAQS	No	3.30	proposed PTE	Yes	Tier 2: 0.9
VCU-1	VCU_1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.397	proposed PTE	No	
VCU-2	VCU_2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.331	proposed PTE	No	
BD1 CSD-1	BD1_CSD1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.101	proposed PTE	No	
BD1 FB-1	BD1_FB1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0505	proposed PTE	No	
BD1 H-1	BD1_H1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.101	proposed PTE	No	
BD1 H3	BD1_H3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0505	proposed PTE	No	
BD1 RC-1	BD1_RC1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0337	proposed PTE	No	
BD1 RC-2	BD1_RC2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0842	proposed PTE	No	
BD1 TR-1	BD1_TR1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0337	proposed PTE	No	
BD1 TR-2	BD1_TR2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0842	proposed PTE	No	
BD1 TS-8	BD1_TS8	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
BD1 TS-9	BD1_TS9	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
BD1 TS-10	BD1_TS10	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
BD1 TS-11	BD1_TS11	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No No	
BD2 DS-TR1	BD2_DTR1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0903	proposed PTE	No No	
BD2 DS-TR2	BD2_DTR2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0903	proposed PTE	No No	
BD2 DS-TR3	BD2_DTR3 BD2_FEL5	0	PM2.5 PM2.5	24-hr	NAAQS NAAQS	Minor Full NAAQS	No	0.0903	proposed PTE	No No	
BD2 FEL PC-5 BD2 PC-5	BD2_FEL5 BD2_PC5	0	PM2.5 PM2.5	24-hr 24-hr	NAAQS NAAQS	Minor Full NAAQS Minor Full NAAQS	No No	0.0752 0.0451	proposed PTE proposed PTE	No No	
BD2 PC-6	BD2_PC5	0	PM2.5	24-hr	NAAQS NAAQS	Minor Full NAAQS	No	0.0451			
BD2 PC-6	_	0	PM2.5		NAAQS NAAQS				proposed PTE	No No	
BD2 SL	BD2_RL BD2_SL	0	PM2.5	24-hr 24-hr	NAAQS NAAQS	Minor Full NAAQS Minor Full NAAQS	No No	0.0451 0.0135	proposed PTE proposed PTE	No No	
BD2 SL BD2 TS FEL-1	BD2_SL BD2_FEL1	0	PM2.5	24-hr	NAAQS NAAQS	Minor Full NAAQS	No	0.0135	proposed PTE	No	
BD2 TS FEL-1	BD2_FEL1	0	PM2.5	24-nr 24-hr	NAAQS NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE proposed PTE	No	
3D2 TS FEL-2 3D2 TS FEL-6	BD2_FEL2 BD2_FEL6	0	PM2.5	24-nr 24-hr	NAAQS NAAQS	Minor Full NAAQS	No	0.0752		No	
BD2 TS PC-1	BD2_FEL6	0	PM2.5	24-hr	NAAQS NAAQS	Minor Full NAAQS	No	0.0251	proposed PTE proposed PTE	No	
BD2 TS PC-1 BD2 TS PC-2		0	PM2.5	24-nr 24-hr	NAAQS NAAQS	Minor Full NAAQS	No	0.0451		No	
	BD2_TPC2								proposed PTE		
BD2 TS PC-4 BD2 TS-1	BD2_TSP4 BD2_TS1	0	PM2.5 PM2.5	24-hr 24-hr	NAAQS NAAQS	Minor Full NAAQS Minor Full NAAQS	No No	0.0451 0.0150	proposed PTE proposed PTE	No No	

Date: September 2019

Permit #: 159254 Company Name: Port of Corpus Christi Authority of Nueces County Point -

+ Flare Emissions	Company Name:	Port of Corpus	Christi Authority	y of Nueces	Count

EDN	Madal ID	Modeling	Dalladad	Modeled	Ota a dan d Tana	Davis October		Modeled Emission	Desir of Essiveing Deta	Scalars or	Occion/Frataria Har
EPN	Model ID	Scenario	Pollutant	Averaging Time	Standard Type	Review Context	Source?	Rate [lb/hr]	Basis of Emission Rate	Factors Used?	Scalar/Factor in Use
BD2 TS-3	BD2_TS3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-3a	BD2_TS3a	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0150	proposed PTE	No	
BD2 TS-4	BD2_TS4	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-5	BD2_TS5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-6	BD2_TS6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-7	BD2_TS7	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0150	proposed PTE	No	
WPE-01 & BD2 WPE	BD2_WPE	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0200	proposed PTE	No	
FEL-SPTK	FELSPTK	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0400	proposed PTE	No	
T 5	T_5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.114	proposed PTE	No	
T CH1	T_CH1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00100	proposed PTE	No	
T CH2	T_CH2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00200	proposed PTE	No	
T EP-10	T_EP10	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
T EP-11	T_EP11	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0200	proposed PTE	No	
T EP-14	SPRLEP14	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0100	proposed PTE	No	
T EP-2	T_EP2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
T MSS	SPRLMSS	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
T UL-2	T_UL2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
VUE	VUE	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0400	proposed PTE	No	
VCU-1	VCU_1	0	SO2	1-hr	State Property Line	Project Wide	No	19.74	project increase	No	
VCU-2	VCU_2	0	SO2	1-hr	State Property Line	Project Wide	No	14.65	project increase	No	
VCU-1	VCU_1	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
VCU-2	VCU_2	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
VCU-1	VCU_1	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
VCU-2	VCU_2	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
VCU-1	VCU_1	0	H2S	1-hr	State Property Line	Project Wide	No	0.110	proposed PTE	No	
VCU-2	VCU_2	0	H2S	1-hr	State Property Line	Project Wide	No	0.0900	proposed PTE	No	

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Alea Source Ellissions

proposed PTE

proposed PTE

No

No

Facility: Modeling Modeled Modeled Emission Intermittent Scalars or **EPN** Model ID Scenario **Pollutant** Averaging Time Standard Type **Review Context** Rate [lb/hr] Basis of Emission Rate Factors Used? Scalar/Factor in Use Source? BD1 SP-1 BD1_SP1 NAAQS Minor Full NAAQS 0.0206 0 PM2.5 24-hr No proposed PTE No BD1 SP-2 BD1_SP2 0 PM2.5 24-hr **NAAQS** Minor Full NAAQS No 0.0223 No proposed PTE BD1 SP-3 BD1_SP3 0 PM2.5 24-hr **NAAQS** Minor Full NAAQS 0.0281 proposed PTE No No BD1 SP-4 BD1_SP4 PM2.5 24-hr Minor Full NAAQS proposed PTE 0 **NAAQS** No 0.0141 No BD1 SP-5 BD1_SP5 0 PM2.5 24-hr **NAAQS** Minor Full NAAQS No 0.0121 proposed PTE No BD1 SP-6 BD1_SP6 PM2.5 Minor Full NAAQS 0.0347 proposed PTE 0 24-hr **NAAQS** No No BD1 SP-7 BD1_SP7 PM2.5 0 24-hr **NAAQS** Minor Full NAAQS No 0.0107 proposed PTE No BD1 SP-8 BD1_SP8 0 PM2.5 24-hr **NAAQS** Minor Full NAAQS 0.00730 proposed PTE No No BD2-STKPL-9 BD2_SP9 0 PM2.5 24-hr **NAAQS** Minor Full NAAQS No 0.0260 proposed PTE No BD2-STKPL-10 BD2_SP10 PM2.5 Minor Full NAAQS 0.0260 0 24-hr **NAAQS** No proposed PTE No BD2_SP11 0 BD2-STKPL-11 PM2.5 24-hr **NAAQS** Minor Full NAAQS No 0.0260 proposed PTE No BD2_SP12 PM2.5 Minor Full NAAQS 0.0124 BD2-STKPL-12 0 24-hr **NAAQS** No No proposed PTE BD2 STKPL-RCU BD2_SPRC 0 PM2.5 24-hr **NAAQS** Minor Full NAAQS No 0.00990 No proposed PTE **BD2 STKPL-RL** BD2_SPRL 0 PM2.5 24-hr **NAAQS** Minor Full NAAQS No 0.0204 proposed PTE No SP-UNLOAD SPUNLOAD PM2.5 24-hr **NAAQS** Minor Full NAAQS 0.00457 0 No proposed PTE No **BLAST BLAST** 0 PM2.5 24-hr **NAAQS** Minor Full NAAQS 0.0200 proposed PTE No No Operates from 8AM - 5PM Yes **PAINT PAINT** PM2.5 **NAAQS** proposed PTE 0 24-hr Minor Full NAAQS No 4.51 **RCLOAD** Health Effects Pollutant Health Effects **RCLOAD** Project Wide project increase 0 1-hr No No **SDBLOAD** SDBLOAD Project Wide 0 Health Effects Pollutant 1-hr Health Effects No No project increase **OBLOAD** OBLOAD Health Effects Pollutant 1-hr Health Effects Project Wide No No project increase SLOAD SLOAD Health Effects Pollutant No 0 1-hr Health Effects Project Wide No project increase FUG FUG Health Effects Pollutant 1-hr Health Effects No 0 Project Wide No project increase **RCLOAD** RCLOAD Health Effects Site Wide 0 Health Effects Pollutant 1-hr No proposed PTE No **SDBLOAD** SDBLOAD Health Effects Pollutant Site Wide No No 0 1-hr Health Effects proposed PTE **OBLOAD** OBLOAD 0 Health Effects Pollutant 1-hr Health Effects Site Wide No proposed PTE No

Site Wide

Site Wide

No

No

Health Effects Pollutant

Health Effects Pollutant

1-hr

1-hr

Health Effects

Health Effects

SLOAD

FUG

SLOAD

FUG

0

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Date: September 2019

Speciated Emissions

Speciated Emissions	s by Model ID							
CAS#	Chemical Species	Other Species	Short-Term ESL (μg/m³)	Long-Term ESL (µg/m³)	S Modeled Project Wide Emission C Rate [lb/hr]	S Modeled Site Wide Emission Rate C	S Modeled Project Wide Emission C Rate [tpy]	S Modeled Site Wide Emission Rate C [tpy]
N/A	Other (Please specify):	crude oil, < 1% benzene	3500	350	12.9314	12.9314	-	-
N/A	Other (Please specify):	Light Petroleum Distillates	Provide	Provide	24.4548	24.4548	-	-
N/A	Other (Please specify):	Heavy Petroleum Distillates	Provide	Provide	27.0327	27.0327	1	-
1634-04-4	methyl tert-butyl ether		630	180	2.5773	2.5773	-	-

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County **Speciated Emissions**

Speciated Emissions

CAS#	ຽ Modeled Project Wide Emission C Rate [lb/hr]	ດ Modeled Site Wide Emission Rate ີ [lb/hr]	S Modeled Project Wide Emission C Rate [tpy]	S Modeled Site Wide Emission Rate [tpy]	지 Modeled Project Wide Emission O Rate [lb/hr]	지 Modeled Site Wide Emission Rate O [lb/hr]	Modeled Project Wide Emission S Rate [tpy]	Modeled Site Wide Emission Rate [tpy]	ଦ୍ଧୁ ଅ Modeled Project Wide Emission O Rate [lb/hr]	ທ G Modeled Site Wide Emission Rate C [lb/hr]	Modeled Project Wide Emission C Rate [tpy]	ທ G B Modeled Site Wide Emission Rate O [tpy]	Modeled Project Wide Emission Second Rate [Ib/hr]	Modeled Site Wide Emission Rate Q [lb/hr]	Modeled Project Wide Emission Second Rate [tpy]	Modeled Site Wide Emission Rate [tpy]	Modeled Project Wide Emission Rate [lb/hr]
N/A	10.7761	10.7761	-	-	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+00	-	-	10.7761	10.7761	-	-	4.3105
N/A	20.3790	20.3790	-	-	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+00	-	-	20.3790	20.3790	-	-	8.1516
N/A	22.5274	22.5274	-	-	15.3754	15.3754	-	-	12.8128	12.8128	-	-	12.8128	12.8128	-	-	5.1251
1634-04-4	2.1478	2.1478	-	-	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+00	-	-	2.1478	2.1478	-	-	0.859

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Speciated Emissions

	CAS#	Modeled Site Wide Emission Rate Nodeled Site Wide Emission Rate 15/hr]	Modeled Project Wide Emission Rate [tpy]	Modeled Site Wide Emission Rate [tpy]	T Modeled Project Wide Emission G Rate [lb/hr]	ਜ Modeled Site Wide Emission Rate ਨ [lb/hr]	പ്പ Modeled Project Wide Emission G Rate [tpy]	ਜੁ Modeled Site Wide Emission Rate ਨ [tpy]
	N/A	4.3105	-	-	0.330	0.330	-	-
L	N/A	8.1516	-	-	0.330	0.330	-	-
	N/A	5.1251	-	-	0.330	0.330	-	-
	163/1-0/1-/	0.850	_	_	0.330	0.330	_	

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Monitor Calculations

Permit #: 159254

Pollutant:	PM _{2.5}			
AQS ID:	4835	50032	Street Address and City:	3810 Huisache Street
Link to Data Source:	ww17.tceq.texas.gov/tamis/index.cfm?fuseaction=rep		County:	Nueces
Select metric for short term averaging time below:	1st Year Concentration (µg/m³)	2nd Year Concentration (µg/m³)	3rd Year (most recent) Concentration (µg/m³)	Calculated Background Concentration (µg/m³)
24-hr 98 percentile	25.30000	22.10000	35.41667	28
Annual Average				0

Pollutant:	NO ₂			
AQS ID:	482450628		Street Address and City:	6956 James Gamble Drive
Link to Data Source:	ww17.tceq.texas.gov/tamis/index.cfm?fuseaction=rep		County:	Jefferson
Select metric for short term averaging time below:	1st Year Concentration (µg/m³)	2nd Year Concentration (µg/m³)	3rd Year (most recent) Concentration (µg/m³)	Calculated Background Concentration (µg/m³)
1-hr 98 percentile	51.75307	55.74206	59.64531	56
Annual Average			9.71578	10

Pollutant:	SO₂			
AQS ID:	482010026		Address:	9860 La Branch
Link to Data Source:	www.epa.gov/outdoor-air-quality-data/monitor-values		County:	Nueces
Select metric for short term averaging time below:	1st Year Concentration (µg/m³)	2nd Year Concentration (μg/m³)	3rd Year (most recent) Concentration (µg/m³)	Calculated Background Concentration (µg/m³)
1-hr 99 percentile	7.86000	7.86000	7.86000	8
H1H 3-hr Avg			7.86000	8
Choose an item				0
Annual Average				0

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Background Justification

Pollutant:	PM _{2.5}					
AQS ID:	48355	50032				
County:	Nueces					
Distance to Project Site (km):		.0				
			Monitor Justification Data	1		
Category:	10 Kilometer PM _{2.5} Emissions Comparison	Types of Nearby Sources	County PM _{2.5} Emissions Comparison	County Population Comparison	Land Use Comparison	Regional Considerations
Project:	1029.561 TPY	Multiple refineries, loading docks			Mixed industrial and residential	
Monitor:	1029.561 TPY	Multiple refineries			Mixed industrial and residential	
Data Source:	ssets/public/implementation/ air/ie/pseisums/2016statesu					
Additional Information						
How are off-property sources accounted for?	sources accounted project site. No adjacent sites to the project site					
Monitoring data set year(s)/Additional Justification:	Major roadways near the mor	nitor site.				

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Background Justification

Pollutant:	NO ₂						
AQS ID:	482450628						
County:	Jefferson						
Distance to Project Site							
(km):	41:	5.0					
			Monitor Justification Data	1			
Category:	10 Kilometer NO ₂ Emissions Comparison	Types of Nearby Sources	County NO ₂ Emissions Comparison	County Population Comparison	Land Use Comparison	Regional Considerations	
Project:	3927.816 TPY	Multiple refineries, loading docks	15916.318	362,265	Mixed industrial and residential	Coastal	
Monitor:	6462.385 TPY	Multiple refineries	21,303.583	255,001	Mixed industrial and residential	Coastal	
Data Source:	ssets/public/implementation/ air/ie/pseisums/2016statesu		www.epa.gov/air-emissions- inventories/national- emissions-inventory-nei	www.census.gov/programs- surveys/popest.html			
Additional Information							
How are off-property sources accounted for? The monitor was used in lieu of explicitly modeling off-property sources considering the quantity of emissions near the monitor compared to the quantity of emissions near the project site. No adjacent sites to the project site.							
Monitoring data set year(s)/Additional Justification:	Major roadways near the mor	nitor site.					

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Background Justification

Pollutant:	SO ₂						
AQS ID:	482010026						
County:		eces					
Distance to Project Site (km):		.9					
			Monitor Justification Data	1			
Category:	10 Kilometer SO ₂ Emissions Comparison	Types of Nearby Sources	County SO ₂ Emissions Comparison	County Population Comparison	Land Use Comparison	Regional Considerations	
Project:	653.19	Multiple refineries, loading docks			Mixed industrial and residential		
Monitor:	2374.24	Chemical plants, some non- industrial areas.			Mixed industrial and residential		
Data Source:	ssets/public/implementation/ air/ie/pseisums/2016statesu						
			Additional Information				
ISULITOS ACCULINTAD	sources accounted project site. No adjacent sites to the project site						
Monitoring data set year(s)/Additional Justification:	It is important to note that the data set.	background concentration use	ed for the 1-hour analysis was	also conservatively used for t	he 3-hour analysis due to lack	of a 3-hour value in the EPA	

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Secondary Formation of PM2.5

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Facility:

t dointy.								
Modeled Emission Rates for Precursors (MERPs) Demonstration Tool for Calculating Secondary PM _{2.5} Impacts								
			Selection of Variables		MERP Value		Total Secondary Value (µg/m³)	
Precursor	Project Increases (tpy)	Source Selection	Emission Rate (tpy)	Height (m)	24-hr	Annual	24-hr PM _{2.5}	Annual PM _{2.5}
Nitrogen Oxide (NO _x)	14.4448891	worst-case			2500	10000	0.04674	0.00155
Sulfur Dioxide (SO ₂)	11.37	worst-case			343	1801	0.04671	0.00155

MERPs Demonstration Justification	Applican
A. Provide justification for selection of worst-case MERP and/or site-specific source here. Please limit your response to 2000 characters.	All internal comments r
Utilized worst-case MERPs in order to be conservative.	

Date: September 2019

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 1. Project-Related Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)
SO ₂	1-hr	179.25973	20.42
H ₂ SO ₄	1-hr		1
H ₂ SO ₄	24-hr		0.3
H ₂ S	1-hr	1.02930	2.16 (If property is residential, recreational, business, or commercial)
H₂S	1-hr	1.02930	3.24 (If property is not residential, recreational, business, or commercial)

Table 2. Site-wide Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	Standard (µg/m³)
SO ₂	1-hr	179.25973	1021
H ₂ SO ₄	1-hr		50
H ₂ SO ₄	24-hr		15
H₂S	1-hr		108 (If property is residential, recreational, business, or commercial)
H₂S	1-hr		162 (If property is not residential, recreational, business, or commercial)

Table 3. Modeling Results for Minor NSR De Minimis

•							
Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)				
SO ₂	1-hr	179.25973	7.8*				
SO ₂	3-hr	166.79200	25				
SO ₂	24-hr		5				
SO ₂	Annual		1				
PM ₁₀	24-hr	1.71602	5				
NO ₂	1-hr	62.31902	7.5**				
NO ₂	Annual	1.07335	1				
CO	1-hr	138.23549	2000				
CO	8-hr	111.37084	500				

Additional information for the De Minimis values listed above can be found at:

^{*} www.tceq.texas.gov/assets/public/permitting/air/memos/appwso2.pdf

** www.tceq.texas.gov/assets/public/permitting/air/memos/guidance 1hr no2naaqs.pdf

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 4. PM_{2.5} Modeling Results for Minor NSR De Minimis

Pollutant	Averaging Time	GLCmax (µg/m³)	Secondary PM _{2.5} Contribution (µg/m³)	Total Conc. = Secondary PM _{2.5} + GLCmax (μg/m³)	De Minimis (μg/m³)
PM _{2.5}	24-hr	1.71602	0.046711972	1.76273	1.2*
PM _{2.5}	Annual	0.0644	0.00155153	0.06594	0.2*

Additional information for the De Minimis values listed above can be found at:

* www.tceq.texas.gov/permitting/air/modeling/epa-mod-guidance.html

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
NAAQS-SPL Modeling Results

Table 5. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Background (μg/m³)	Total Conc. = [Background + GLCmax] (μg/m³)	Standard (µg/m³)
SO ₂	1-hr	179.28755	8.00	187.29	196
SO ₂	3-hr	166.91305	8.00	174.91	1300
SO ₂	24-hr		0	0	365
SO ₂	Annual		0	0	80
PM ₁₀	24-hr		0	0	150
Pb	3-mo		0	0	0.15
NO ₂	1-hr	62.31902	56.00	118.32	188
NO ₂	Annual	1.07335	10.00	11.07	100
CO	1-hr		0	0	40000
CO	8-hr		0	0	10000

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 6. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Secondary PM _{2.5} Contribution (µg/m³)	Background (μg/m³)	Total Conc. = [Background + Secondary + GLCmax] (μg/m³)	Standard (µg/m³)
PM _{2.5}	24-hr	5.33396	0.046711972	27.61	32.99067	35
PM _{2.5}	Annual		0.00155153	0	0.00155	12

Date: September 2019 Permit #: 159254

Permit #: 159254

Health Effect Modeling Results

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Modeled Health	Effect Results	(MERA Guidance):	Step 3	Step 4: Production		Step 4: MSS		
Chamical Species	CAC Number	Avorogina Timo	FCL [a/m ³]	10% ESL Step 3 Modeled GLCmax		1 ' '		25% ESL Step 4 MSS Project Only	
Chemical Species		Averaging Time	0	[µg/m³]	modeling [μg/m ³]	[µg/m³]	wide modeling [µg/m³]	GLCmax [µg/m³]	
crude oil, < 1% benzene	N/A	1-hr	3500		1758.33	1758.33			
Light Petroleum Distillates	N/A	1-hr	Provide Documentation		3283.96	3283.96			
Heavy Petroleum Distillates	N/A	1-hr	Provide Documentation		2549.81	2549.81			
methyl tert-butyl ether	1634-04-4	1-hr	630		387.53	387.53			

Date: September 2019 Permit #: 159254

Permit #: 159254

Health Effect Modeling Results

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Modeled Health	Effect Results	(MERA Guidance):	Step 5: MSS Only	SS Only Step 5: Hours of Exceedance						
Chemical Species	CAS Number	Averaging Time	ESL [µg/m³]	Full ESL Step 5 GLCmax [µg/m³]	1X ESL GLCmax Step 5 MSS Hours of Exceedance	2X ESL GLCmax Step 5 MSS Hours of Exceedance	4X ESL GLCmax Step 5 MSS Hours of Exceedance		Was Step 6 relied on to fall out of the MERA?		
crude oil, < 1% benzene	N/A	1-hr	3500								
Light Petroleum Distillates	N/A	1-hr	Provide Documentation								
Heavy Petroleum Distillates	N/A	1-hr	Provide Documentation								
methyl tert-butyl ether	1634-04-4	1-hr	630								

Date: September 2019 Permit #: 159254

Permit #: 159254

Health Effect Modeling Results

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Modeled Health	Effect Results	(MERA Guidance):	Step 7: Site Wide		Step 7: Hours of Exceedance				
Chemical Species	CAS Number	Averaging Time	ESL [µg/m³]	Site Wide GLCmax [µg/m³]	Site Wide GLCni [µg/m³]	1X ESL GLCni Hours of Exceedance	2X ESL GLCmax Hours of Exceedance	4X ESL GLCmax Hours of Exceedance	10X ESL GLCmax Hours of Exceedance	
crude oil, < 1% benzene	N/A	1-hr	3500	1758.33	1758.33					
Light Petroleum Distillates	N/A	1-hr	Provide Documentation	3283.96	3283.96					
Heavy Petroleum Distillates	N/A	1-hr	Provide Documentation	2549.81	391.00	0	6	0	0	
methyl tert-butyl ether	1634-04-4	1-hr	630	387.53	387.53					

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

Modeling File Names

Pollutant	Averaging Time	File Extensions	Additional File Description
All	All	*.PFL, *.SFC	Surface and upper air met files
All	All	*.tif	Terrain file
NO2	Annual	*.bnd, *.dta, *.grf, *.lst,	de minimis
PM2.5	Annual	*.bnd, *.dta, *.grf, *.lst,	de minimis
СО	1-hr and 8-hr	*.bnd, *.dta, *.grf, *.lst,	de minimis
NO2	1-hr	*.bnd, *.dta, *.grf, *.lst,	de minimis
PM2.5	24-hr	*.bnd, *.dta, *.grf, *.lst,	de minimis
PM10	24-hr	*.bnd, *.dta, *.grf, *.lst,	de minimis
SO2	1-hr and 3-hr	*.bnd, *.dta, *.grf, *.lst,	NAAQS de minimis, SPL de
NO2, CO, SO2, PM10 and PM2.5	All	*.map, *.mot, *.rcf, *.rmp, *.srf,out	minimis AERMAP files
NO2, CO, SO2, PM10 and PM2.5	All	*.pip, *.prw, *.so, *.sum, *.tab	de minimis downwash file
NO2	1-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	Minor Full NAAQS
NO2	1-hr	*.CSV	significant receptors
NO2	Annual	_	Minor Full NAAQS
NO2	Annual	*.CSV	significant receptors
NO2	Annual	*.csv	significant receptors
PM2.5	24-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	Minor Full NAAQS
PM2.5	24-hr	*.csv	significant receptors
SO2	1-hr	*.csv	significant receptors
SO2	3-hr	*.csv	significant receptors
NO2, SO2, and PM2.5	All	*.map, *.mot, *.rcf, *.rmp, *.srf	AERMAP files
NO2, SO2, and	All	*.out	AERMAP files
NO2, SO2, and PM2.5	All	*.out	AERMAP files
NO2, SO2, and	All	*.pip, *.prw, *.so, *.sum, *.tab	CIM downwash file
CRUDE	1-hr	*.bnd, *.dta, *.grf, *.lst,	MERA Step 4
HPD	1-hr	*.bnd, *.dta, *.grf, *.lst,	MERA Steps 4 and 7
LPD	1-hr	*.bnd, *.dta, *.grf, *.lst,	MERA Step 4
MTBE	1-hr	*.bnd, *.dta, *.grf, *.lst,	MERA Step 4
HPD	1-hr	*.ary, *.max	MERA Step 7
HPD	1-hr	*.ary, *.max	MERA Step 7
HPD	1-hr	*.ary, *.max	MERA Step 7
HPD	1-hr	*.ary, *.max	MERA Step 7
CRUDE, HPD,		*.map, *.mot, *.rcf, *.rmp,	·
LPD, MTBE	All	*.srf	AERMAP files
	All All NO2 PM2.5 CO NO2 PM2.5 PM10 SO2 NO2, CO, SO2, PM10 and PM2.5 NO2, CO, SO2, PM10 and PM2.5 NO2	All All All All All All NO2 Annual PM2.5 Annual CO 1-hr and 8-hr NO2 1-hr and 3-hr NO2, CO, SO2, PM10 and PM2.5 NO2 1-hr NO2 Annual NO3 Annual NO4 Annual NO5 Annual NO6 Annual NO8 Annual NO9 Annual All NO9, SO2, and PM2.5 All NO9, SO3 All NO9, SO4 All All NO9, SO5 All NO9, SO5 All NO9, SO5 All All NO9, SO5 All All NO9, SO5 All NO9, SO5 All All NO9, SO5 All	All All State (1974). All Stat

Date: September 2019 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW) Company Name: Port of Corpus Christi Authority of Nueces County Modeling File Names

Model File Base Name	Pollutant	Averaging Time	File Extensions	Additional File Description
MERA Step 4_MAPPARAMS	CRUDE, HPD, LPD, MTBE	All	*.out	AERMAP files
MERA Step 4	CRUDE, HPD, LPD, MTBE	All	*.pip, *.prw, *.so, *.sum, *.tab	MERA downwash file
2019_03_07 - Unit_2012_UNIT	Generic	24-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	T MSS, T EP-14 worst-case location determination
WC_AERMAP	Generic	24-hr	*.map, *.mot, *.rcf, *.rmp, *.srf	AERMAP files
WC_AERMAP_MAPDETAIL	Generic	24-hr	*.out	AERMAP files
WC_AERMAP_MAPPARAMS	Generic	24-hr	*.out	AERMAP files
2019_03_07 - WC	Generic	24-hr	*.pip, *.prw, *.so, *.sum, *.tab	Generic downwash file
SPL PID HR	H2S	1-hr	*.bnd, *.dta, *.grf, *.lst, *.sum	SPL de minimis
SPL PID HR	H2S	1-hr	*.map, *.mot, *.rcf, *.rmp, *.srf	AERMAP files
SPL PID_MAPDETAIL	H2S	1-hr	*.out	AERMAP files
SPL PID_MAPPARAMS	H2S	1-hr	*.out	AERMAP files
SPL_PID	H2S	1-hr	*.pip, *.prw, *.so, *.sum, *.tab	SPL downwash files

Table C-1

Bulk Dock 3 Emission Rate Summary and PSD Evaluation

Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

EPN	Description					Criter	ia Pollutan	t Emission	Rates					Reference
		V	OC	N	O _X	C	0	$PM/PM_{10}/PM_{2.5}$		SO ₂		Н	₂ S	Table
		Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	
		(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
RCLOAD	Railcar Loading Fugitives	15.38												C-2
SDBLOAD	Shallow Draft Barge Loading Fugitives	12.81												C-2
OBLOAD	Ocean Barge Loading Fugitives	22.53												C-2
SLOAD	Ship Loading Fugitives	9.01												C-2
VCU-1	Railcar VCU	27.03		7.35		14.67		0.40		19.74		0.11		C-3
VCU-2	Marine Vessel VCU	22.53		6.13		12.23		0.33		16.45		0.09		C-4
LDFUG	Loading Fugitives		43.86											Note (1)
LDCNTRL	Controlled Loading		52.63		14.51		28.97		0.78		16.48		0.09	Note (1)
FUG	FUG Fugitive Piping Components		9.82											C-5
	Total Project Emissions		106.31		14.51		28.97		0.78		16.48		0.09	Sum
	PSD Significance Level		250		250	-	250	-	250		250		10	
	Triggers Further Review?		No		No		No		No		No		No	

Notes

1) Total annual emissions from the loading operations are based on the maximum emissions from the different loading scenarios.

Table C-2
Loading Fugitive Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Temperature and Material Data

	Maximum	Average Loading	Maximum Vapor	Average Annual	Vapor	Liquid
Material	Loading	Temperature ¹	Pressure ^{2,3,4}	Vapor Pressure ^{2,3,4}	Molecular	Molecular
	Temperature ¹				Weight ⁶	Weight
	(°F)	(°F)	(psia)	(psia)	(lb/lb-mol)	(lb/lb-mol)
Gasoline (RVP 7.8)	95	N/A	7.60	N/A	68	92
Gasoline (RVP 11)	N/A	72.05	N/A	7.23	65	92
Crude Oil (RVP 5)	95	72.05	5.47	3.62	50	207
Jet Fuel	95	72.05	0.03	0.01	130	162
Diesel	95	72.05	0.019	0.010	130	162
MTBE	95	72.05	4.12	2.37	88.1	188

Fugitive Loading Emission Calculations

Loading Facility	EPN	Product	Annual			Ho	urly	Capture	Fugitive	Loading	Emissions to Control	
		Loaded	Product	Saturation	Emission	Maximum	Emission	Efficiency		n Rates		
		_	Loaded	Factor ^{7,8}	Factor ⁸	Ldg Rate ¹¹	Factor ⁹		,	y/Product	-	y/Product
			(Mgal/yr)	(dim'less)	(lb/Mgal)	(gal/hr)	(lb/Mgal)	(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Railcar Loading	RCLOAD	Gasoline	1,533,000	0.6	6.65	351,000	6.97	100%	-0-	-0-	2,445.48	5,094.05
Railcar Loading	RCLOAD	Crude Oil (RVP 5)	1,533,000	0.6	2.54	351,000	3.69	100%	-0-	-0-	1,294.70	1,949.34
Railcar Loading	RCLOAD	Jet Fuel	1,533,000	0.6	0.02	351,000	0.04	0%	15.38	16.56	-0-	-0-
Railcar Loading	RCLOAD	Diesel	1,533,000	0.6	0.02	351,000	0.03	0%	11.69	13.47	-0-	-0-
Railcar Loading	RCLOAD	MTBE	114,975	0.6	2.94	52,650	4.90	100%	-0-	-0-	257.73	168.91
								TOTAL ¹⁰	15.38	16.56		
Shallow Draft Barge Loading	SDBLOAD	Gasoline	1,533,000	0.5	5.54	351,000	5.81	100%	-0-	-0-	2,037.90	4,245.04
Shallow Draft Barge Loading	SDBLOAD	Crude Oil (RVP 5)	1,533,000	0.5	2.12	351,000	3.07	100%	-0-	-0-	1,078.92	1,624.45
Shallow Draft Barge Loading	SDBLOAD	Jet Fuel	1,533,000	0.5	0.02	351,000	0.04	0%	12.81	13.80	-0-	-0-
Shallow Draft Barge Loading	SDBLOAD	Diesel	1,533,000	0.5	0.01	351,000	0.03	0%	9.74	11.23	-0-	-0-
Shallow Draft Barge Loading	SDBLOAD	MTBE	114,975	0.5	2.45	52,650	4.08	100%	-0-	-0-	214.78	140.76
								TOTAL ¹⁰	12.81	13.80		
Ocean Barge Loading	OBLOAD	Gasoline	1,533,000	0.5	5.54	351,000	5.81	99%	20.38	42.45	2,017.52	4,202.59
Ocean Barge Loading	OBLOAD	Crude Oil (RVP 5)	1,533,000	0.5	2.12	351,000	3.07	99%	10.79	16.24	1,068.13	1,608.21
Ocean Barge Loading	OBLOAD	Jet Fuel	1,533,000	0.5	0.02	351,000	0.04	0%	12.81	13.80	-0-	-0-

Table C-2

Loading Fugitive Emission Calculations

Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Ocean Barge Loading	OBLOAD	Diesel	1,533,000	0.5	0.01	351,000	0.03	0%	9.74	11.23	-0-	-0-
Ocean Barge Loading	OBLOAD	MTBE	114,975	0.5	2.45	52,650	4.08	99%	2.15	1.41	212.63	139.35
								TOTAL ¹⁰	22.53	43.86		
Ship Loading	SLOAD	Gasoline	1,533,000	0.2	2.22	351,000	2.32	99%	8.15	16.98	807.01	1,681.04
Ship Loading	SLOAD	Crude Oil (RVP 5)	1,533,000	0.2	0.85	351,000	1.23	99%	4.32	6.50	427.25	643.28
Ship Loading	SLOAD	Jet Fuel	1,533,000	0.2	0.01	351,000	0.01	0%	5.13	5.52	-0-	-0-
Ship Loading	SLOAD	Diesel	1,533,000	0.2	0.01	351,000	0.01	0%	3.90	4.49	-0-	-0-
Ship Loading	SLOAD	MTBE	114,975	0.2	0.98	52,650	1.63	99%	0.86	0.56	85.05	55.74
								TOTAL ¹⁰	9.01	17.54		

NOTES:

- 1. Maximum hourly temperature based on TCEQ guidance for loading operations. Average annual temperature based on daily average ambient temperature for Corpus Christi from AP-42 Chapter 7.1.
- 2. Gasoline uses RVP 7.8 for summer gasoline and maximum vapor pressure, and RVP 11 for average annual vapor pressure. RVP is converted to TVP using AP-42 Chapter 7.1, Figure 7.1-14b and a slope of 3.
- 3. Diesel true vapor pressure is interpolated based on AP-42 Chapter 7.1, Table 7.1-2
- 4. Crude Oil uses RVP 5 for crude oil. RVP is converted to TVP using AP-42 Chapter 7.1, Figure 7.1-13b.
- 5. Vapor pressure for MTBE uses Antoine's Equation.
- 6. Molecular weights for all materials based on AP-42 Chapter 7.1, Table 7.1-2.
- 7. Based on Submerged Loading: Dedicated Normal Service
- 8. Based on Submerged Loading: Barges and Submerged Loading: Ships
- 9. Emission Factors were determined by use of the equations in AP-42, 5th Ed., 1/95, Section 5.2 (Transportation & Marketing of Petroleum Liquids).
- 10. Totals for each loading scenario are based on maximum of each material on a short-term basis and annual basis. The MTBE rate is added to the gasoline rate for the maximimum loading rate scenario.
- 11.Maximum loading rate for MTBE is based on 15% of gasoline short-term loading.

Example Calculations

Diesel Emission Factor (Short-Term)

(12.46) * (0.60) * (0.02 psia) * (130) / ((459.67 + (95 deg F)) = 0.03 lb/Mgal

Fugitive Emissions:

Hourly Emission Rate - EPN RCLOAD Diesel

(351,000 gal/hr) / (1,000 gal/Mgal) * (0.033 lb/Mgal) * (1 - 0.00 %) = 11.69 lb/hr

Annual Emission Rate - EPN RCLOAD Diesel

(1,533,000 Mgal/yr) * (0.0176 lb/Mgal) / (2000 lb/ton) * (1 - 0.00 %) = 13.47 tpy

Table C-3
Railcar Loading Vapor Combustor Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

<u>Vapor Combustion Emission Calculations (See Table C-2 for details on the data provided below).</u>

Loading Facility	FIN	Product	Maximum VOC	Average VOC	Heat Content ⁽¹⁾	Maximum	Average
		Loaded	Vapors to VCU	Vapors to VCU		Vapors to VCU	Vapors to VCU
			(lb/hr)	(tpy)	(Btu/lb)	(MMBtu/hr)	MMBtu/yr
Railcar Loading	RCLOAD	Gasoline	2,445.48	5,094.05	20,007	48.93	203,833.28
Railcar Loading	RCLOAD	MTBE	257.73	168.91	16,319	4.21	5,512.83
Railcar Loading	RCLOAD	Crude Oil (RVP 5)	1,294.70	1,949.34	19,580	25.35	76,336.26
Vapor Combustion Unit ⁽²⁾	VCU-1	Total	2,703.21	5,262.96		53.13	209,346.11

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	99	%	27.03	52.63	Vendor Guarantee/BACT
MTBE	99	%	2.58	1.69	Vendor Guarantee/BACT
NO _X	0.138	lb/MMBtu	7.33	14.44	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
СО	0.2755	lb/MMBtu	14.64	28.84	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMBtu	0.40	0.78	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO ₂	99	%	19.74	16.48	See Table C-6
H_2S			0.106	0.089	ER _{SO2} * 34.1/64.066 * 0.01/0.99

Natural Gas Assist and Pilots (3)

Maximum	Average	Heat Value	Maximum	Average
(scfh)	(scfh)	(Btu/scf)	(MMBtu/hr)	(MMBtu/hr)
108	108	1020	0.11	0.11

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	0.0054	lb/MMBtu	<0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
NO _X	0.138	lb/MMbtu	0.02	0.07	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
СО	0.2755	lb/MMbtu	0.03	0.13	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMbtu	<0.01	<0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2

Table C-3

Railcar Loading Vapor Combustor Emission Calculations Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

	SO_2	0.0006	lb/MMbtu	< 0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
--	--------	--------	----------	--------	--------	---

Total result from Vapor Combustion Unit (EPN: VCU-1)

Pollutant ⁽⁴⁾	(lb/hr)	(tpy)
VOC	27.03	52.63
MTBE	2.58	1.69
NO _X	7.35	14.51
CO	14.67	28.97
PM/PM ₁₀ /PM _{2.5}	0.40	0.78
SO ₂	19.74	16.48
H_2S	0.106	0.089

NOTES:

- 1. Typical higher heating values for gasoline and crude oil from "GREET, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET 1.8d.1 (August 2010)
- 2. Flowrates to the VCU are based on the maximum of the material and loading type (gasoline and MTBE are summed together since they will be in-line mixed prior to loading).
- 3. Pilot/assist gas data based on vendor specifications.
- 4. VOC includes MTBE.

Example Calculations

VCU Hourly VOC Emission Rate

(2,703.21 lb/hr) * (100% - 99%) = 27.03 lb/hr

VCU Annual VOC Emission Rate

(5,262.96 tpy) * (100% - 99%) = 52.63 tpy

VCU Hourly NO_x Emission Rate

(53.13 MMBtu/hr) * 0.138 lb NOX/MMBtu = 7.33 lb/hr

VCU Annual NO_x Emission Rate

Table C-3

Railcar Loading Vapor Combustor Emission Calculations Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

(209,346.11 MMBtu/yr) * 0.138 lb NOX/MMBtu / 2,000 lb/ton = 14.44 tpy

Table C-4
Marine Loading Vapor Combustor Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

<u>Vapor Combustion Emission Calculations (See Table C-2 for details on the data provided below).</u>

Loading Facility	FIN	Product	Maximum VOC	Average VOC Heat Content ⁽¹⁾			Average
		Loaded	Vapors to VCU Vapors to VCU			vapors to VCU	Vapors to VCU
			(lb/hr)	(tpy)	(Btu/lb)	(MMBtu/hr)	MMBtu/yr
Shallow Draft Barge Loading	SDBLOAD	Gasoline	2,037.90	4,245.04	20,007	40.77	169,861.07
Shallow Draft Barge Loading	SDBLOAD	Crude Oil (RVP 5)	1,078.92	1,624.45	19,580	21.13	63,613.55
Shallow Draft Barge Loading	SDBLOAD	MTBE	214.78	140.76	16,319	3.50	4,594.02
Ocean Barge Loading	OBLOAD	Gasoline	2,017.52	4,202.59	20,007	40.36	168,162.46
Ocean Barge Loading	OBLOAD	Crude Oil (RVP 5)	1,068.13	1,608.21	19,580	20.91	62,977.42
Ocean Barge Loading	OBLOAD	MTBE	212.63	139.35	16,319	3.47	4,548.08
Ship Loading	SLOAD	Gasoline	807.01	1,681.04	20,007	16.15	67,264.98
Ship Loading	SLOAD	Crude Oil (RVP 5)	427.25	643.28	19,580	8.37	25,190.97
Ship Loading	SLOAD	MTBE	85.05	55.74	16,319	1.39	1,819.23
Vapor Combustion Unit ⁽²⁾	VCU-2	Total	2,252.68	4,385.80		44.28	174,455.09

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	99	%	22.53	43.86	Vendor Guarantee/BACT
MTBE	99	%	2.15	3.36	Vendor Guarantee/BACT
NO _χ	0.138	lb/MMBtu	6.11	12.04	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
СО	0.2755	lb/MMBtu	12.20	24.03	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMBtu	0.33	0.65	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO ₂			16.45	13.74	See Table C-6
H ₂ S			0.088	0.074	ER _{SO2} * 34.1/64.066 * 0.01/0.99

Natural Gas Assist and Pilots (3)

Maximum	Average	Heat Value	Maximum	Average
(scfh)	(scfh)	(Btu/scf)	(MMBtu/hr)	(MMBtu/hr)
108	108	1020	0.11	0.11

Table C-4
Marine Loading Vapor Combustor Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Pollutant	Emission Factor	Units	Hourly Emissions	Annual Emissions	Emission Factor Basis
			lb/hr	tpy	
VOC	0.0054	lb/MMBtu	<0.01	< 0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
NO _X	0.138	lb/MMbtu	0.02	0.07	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
СО	0.2755	lb/MMbtu	0.03	0.13	TCEQ's "Flares and Vapor Oxidizers" (10/2000)
PM/PM ₁₀ /PM _{2.5}	0.00745	lb/MMbtu	<0.01	<0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2
SO ₂	0.0006	lb/MMbtu	<0.01	<0.01	U.S. EPA's AP-42 Chapter 1.4, Table 1.4-2

Total result from Vapor Combustion Unit (EPN: VCU-2)

Pollutant ⁽⁴⁾	(lb/hr)	(tpy)
VOC	22.53	43.86
MTBE	2.15	3.36
NO _X	6.13	12.10
CO	12.23	24.16
PM/PM ₁₀ /PM _{2.5}	0.33	0.65
SO ₂	16.45	13.74
H ₂ S	0.09	0.07

NOTES:

- 1. Typical higher heating values for gasoline and crude oil from "GREET, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET 1.8d.1 (August 2010)
- 2. Flowrates to the VCU are based on the maximum of the material and loading type (gasoline and MTBE are summed together since they will be in-line mixed prior to loading).
- 3. Pilot/assist gas data based on vendor specifications.
- 4. VOC includes MTBE.

Example Calculations

<u>VCU Hourly VOC Emission Rate</u> (2,252.68 lb/hr) * (100% - 99%) = 22.53 lb/hr

VCU Annual VOC Emission Rate

Table C-4

Marine Loading Vapor Combustor Emission Calculations Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

(4,385.80 tpy) * (100% - 99%) = 43.86 tpy

<u>VCU Hourly NO_x Emission Rate</u> (44.28 MMBtu/hr) * 0.138 lb NOX/MMBtu = 6.11 lb/hr

 $\underline{VCU\ Annual\ NO_x\ Emission\ Rate}$

(174,455.09 MMBtu/yr) * 0.138 lb NOX/MMBtu / 2,000 lb/ton = 12.04 tpy

Table C-5
Fugitive Piping Component Emission Calculations
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Component Type	Service	No. of	SOCMI Without Ethylene	Calculated	d Emission
		Components	Emission Factor (1)	Rat	es ⁽²⁾
			lb/hr-component	lb/hr	tpy
Valves	Gas/Vapor	88	0.0089	0.783	3.430
Valves	Light Liquid	85	0.0035	0.298	1.303
Valves	Heavy Liquid	80	0.0007	0.056	0.245
Flanges/Connectors	Gas/Vapor	220	0.0029	0.638	2.794
Flanges/Connectors	Light Liquid	213	0.0005	0.107	0.466
Flanges/Connectors	Heavy Liquid	200	0.0001	0.014	0.061
Pumps	Light Liquid	9	0.0386	0.347	1.522
Pumps	Heavy Liquid	0	0.0161	-0-	-0-
				2.243	9.823

Notes:

- (1) Factors based on TCEQ's Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives (June 2018).
- (2) Sample Calculations Fugitive Emissions (Valves)

88 components * 0.0089 lb/hr-component * (100%-0%) = 0.783 lb/hr 0.783 lb/hr * 8,760 hours/year / 2,000 lbs/ton= 3.430 tpy

Table C-6a
Sulfur Cencentrations of Various Mixtures
Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Maximum Hourly Case

Material	Units	Gasoline	Gasoline	Crude Oil	Jet Fuel	Diesel	MTBE	Notes
		(RVP 7.8)	(RVP 11)	(RVP 5)				
Maximum Loading Temperature	(°F)	95		95	95	95	95	
Maximum Vapor Pressure	(psia)	7.602		5.473	0.025	0.019	4.120	
Vapor Molecular Weight	(lb/lb-mol)	68		50	130	130	88.1	
Liquid Molecular Weight	(lb/lb-mol)	92		207	162	162	188	
Lightest Sulfur Species		Thiolane		H ₂ S	H ₂ S	H ₂ S	n/a	Note 1
Most Common Sulfur Species MW	(lb/lb-mol)	88.17		34.1	34.1	34.1		
Maximum Liquid Sulfur	(ppm wt)	95		29	0	0		Note 2
Maximum Liquid Mol Fraction Sulfur	(mol/mol)	0.00010		0.00018	0.00000	0.00000		AP-42 Chapter 7.1, Equation 4-4
Loading Temperature	(K)	308		308	308	308		K = 5/9 * (°F -32) + 273
Antoine's A		5.00861		4.52887	4.52887	4.52887		webbook.nist.gov
Antoine's B		1,979.981		958.587	958.587	958.587		webbook.nist.gov
Antoine's C		2.346		-0.539	-0.539	-0.539		webbook.nist.gov
Sulfur Vapor Pressure	(psia)	0.62		373.77	373.77	373.77		AP-42 Chapter 7.1, Equation 1-25
Sulfur Partial Pressure	(psia)	0.0001		0.0658	0.0000	0.0000		AP-42 Chapter 7.1, Equation 4-3
Vapor Mol Fraction Sulfur	(mol/mol)	0.0000		0.0120	0.0000	0.0000		AP-42 Chapter 7.1, Equation 4-5
Maximum Vapor Mass Fraction Sulfur	(lb S/lb)	0.00001		0.00820	0.000	0.000	0.00000	AP-42 Chapter 7.1, Equation 4-6

Average Annual Case

Material	Units	Gasoline	Gasoline	Crude Oil	Jet Fuel	Diesel	MTBE	Notes
		(RVP 7.8)	(RVP 11)	(RVP 5)				
Average Loading Temperature	(°F)		72.05	72.05	72.05	72.05	72.05	
Average Annual Vapor Pressure	(psia)		7.235	3.618	0.012	0.010	2.371	
Vapor Molecular Weight	(lb/lb-mol)		65.3	50	130	130	88.1	
Liquid Molecular Weight	(lb/lb-mol)		92	207	162	162	188	
Lightest Sulfur Species			Thiolane	H ₂ S	H ₂ S	H ₂ S	n/a	Note 1
Most Common Sulfur Species MW	(lb/lb-mol)		88.17	34.1	34.1	34.1		
Average Annual Liquid Sulfur	(ppm wt)		47.5	14.5	0	0		Note 2, Note 3
Average Liquid Mol Fraction Sulfur	(mol/mol)		0.00005	0.00009	0.00000	0.00000		AP-42 Chapter 7.1, Equation 4-4
Loading Temperature	K		295	295	295	295		K = 5/9 * (°F -32) + 273
Antoine's A			5.00861	4.52887	4.52887	4.52887		webbook.nist.gov
Antoine's B			1,979.981	958.587	958.587	958.587		webbook.nist.gov
Antoine's C			2.346	-0.539	-0.539	-0.539		webbook.nist.gov
Sulfur Vapor Pressure	(psia)		0.33	273.98	273.98	273.98		AP-42 Chapter 7.1, Equation 1-25
Sulfur Partial Pressure	(psia)		0.0000	0.0241	0.0000	0.0000		AP-42 Chapter 7.1, Equation 4-3
Vapor Mol Fraction Sulfur	(mol/mol)		0.00000	0.0067	0.0000	0.0000		AP-42 Chapter 7.1, Equation 4-5
Average Vapor Mass Fraction Sulfur	(lb S/lb)		0.00000	0.00455	0.00000	0.00000	0.00000	AP-42 Chapter 7.1, Equation 4-6

Table C-6b

Sulfur Emissions from Loading Activities Port of Corpus Christi Authority - Initial NSR Application for Bulk Dock 3

Fugitive Loading Emission Calculations

Loading Facility	EPN	Product	Emissions to Control by		Vapor Mas		SO ₂ Emissions from	
		Loaded	Facility/Product		Sulfur ¹		VCU	
					Maximum	Average		
			(lb/hr)	(tpy)	lb S/lb	lb S/lb	(lb/hr)	(tpy)
Railcar Loading	RCLOAD	Gasoline	2,445.48	5,094.05	0.00001	0.00000	0.0260	0.0158
Railcar Loading	RCLOAD	Crude Oil (RVP 5)	1,294.70	1,949.34	0.0082	0.0045	19.7433	16.4840
Railcar Loading	RCLOAD	Jet Fuel	-0-	-0-	0.00000	0.00000	-0-	-0-
Railcar Loading	RCLOAD	Diesel	-0-	-0-	0.00000	0.00000	-0-	-0-
Railcar Loading	RCLOAD	MTBE	257.73	168.91	0.00000	0.00000	-0-	-0-
			2,703.21	5,262.96			19.74	16.48
Shallow Draft Barge Loading	SDBLOAD	Gasoline	2,037.90	4,245.04	0.00001	0.00000	0.0217	0.0132
Shallow Draft Barge Loading	SDBLOAD	Crude Oil (RVP 5)	1,078.92	1,624.45	0.0082	0.0045	16.4527	13.7367
Shallow Draft Barge Loading	SDBLOAD	Jet Fuel	-0-	-0-	0.00000	0.00000	-0-	-0-
Shallow Draft Barge Loading	SDBLOAD	Diesel	-0-	-0-	0.00000	0.00000	-0-	-0-
Shallow Draft Barge Loading	SDBLOAD	MTBE	214.78	140.76	0.00000	0.00000	-0-	-0-
			2,252.68	4,385.80			16.45	13.74
Ocean Barge Loading	OBLOAD	Gasoline	2,017.52	4,202.59	0.00001	0.00000	0.0215	0.0130
Ocean Barge Loading	OBLOAD	Crude Oil (RVP 5)	1,068.13	1,608.21	0.0082	0.0045	16.2882	13.5993
Ocean Barge Loading	OBLOAD	Jet Fuel	-0-	-0-	0.00000	0.00000	-0-	-0-
Ocean Barge Loading	OBLOAD	Diesel	-0-	-0-	0.00000	0.00000	-0-	-0-
Ocean Barge Loading	OBLOAD	MTBE	212.63	139.35	0.00000	0.00000	-0-	-0-
			2,230.15	4,341.94			16.29	13.60
Ship Loading	SLOAD	Gasoline	807.01	1,681.04	0.00001	0.00000	0.0086	0.0052
Ship Loading	SLOAD	Crude Oil (RVP 5)	427.25	643.28	0.0082	0.0045	6.5153	5.4397
Ship Loading	SLOAD	Jet Fuel	-0-	-0-	0.00000	0.00000	-0-	-0-
Ship Loading	SLOAD	Diesel	-0-	-0-	0.00000	0.00000	-0-	-0-
Ship Loading	SLOAD	MTBE	85.05	55.74	0.00000	0.00000	-0-	-0-
			892.06	1,736.78			6.52	5.44

VCU 1 Total 19.74 16.48 VCU 2 Total 16.45 13.74

Notes:

1. Vapor sulfur concentrations are calculated in Table C-6a and assume all sulfur exists as ethyl mercaptan for all mixtures, with the exception of Crude Oil, which containes H_2S .

Date: 10/15/2019 Permit #: TBD

Company: PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY

I. Applicant Information I acknowledge that I am submitting an authorized TCEQ application workbook and any necessary attachments. Except for inputting the requested data and adjusting row height, I I agree have not changed the TCEQ application workbook in any way, including but not limited to changing formulas, formatting, content, or protections. A. Company Information Port Of Corpus Christi Authority of Nueces County Company or Legal Name: Permits are issued to either the facility owner or operator, commonly referred to as the applicant or permit holder. List the legal name of the company, corporation, partnership, or person who is applying for the permit. We will verify the legal name with the Texas Secretary of State at (512) 463-5555 or at: www.sos.state.tx.us Texas Secretary of State Charter/Registration N/A Number (if given): B. Company Official Contact Information: must not be a consultant Prefix (Mr., Ms., Dr., etc.): Mr. First Name: Sean Last Name: Strawbridge Title: Chief Exective Officer Mailing Address: PO Box 1541 Address Line 2: City: Corpus Christi State: Texas ZIP Code: 78403 Telephone Number: (361) 882-5633 Fax Number: (361) 881-5161 Sstrawbridge@pocca.com Email Address: C. Technical Contact Information: This person must have the authority to make binding agreements and representations on behalf of the applicant and may be a consultant. Additional technical contact(s) can be provided in a cover letter. Prefix (Mr., Ms., Dr., etc.): Ms. Sarah First Name: Last Name: Garza Title: Director of Environmental Planning & Compliance Company or Legal Name: Port Of Corpus Christi Authority of Nueces County Mailing Address: PO Box 1541 Address Line 2: City: Corpus Christi State: Texas ZIP Code: 78403 Telephone Number: (361) 885-6163 Fax Number: (361) 881-5161

D. Assigned Numbers

Email Address:

Version 3.3 Page 1

Sarah@pocca.com

Permit #: TBD Company: PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY

Date: 10/15/2019

The CN and RN below are assigned when a Core Data Form is initially submitted to the Central Registry. The RN is also assigned if the agency has conducted an investigation or if the agency has issued an enforcement action. If these numbers have not yet been assigned, leave these questions blank and include a Core Data Form with your application submittal. See Section VI.B. below for additional information.

Enter the CN. The CN is a unique number given to each business, governmental body, association, individual, or other entity that owns, operates, is responsible for, or is affiliated with a regulated entity.	CN600885248
Enter the RN. The RN is a unique agency assigned number given to each person, organization, place, or thing that is of environmental interest to us and where regulated activities will occur. The RN replaces existing air account numbers. The RN for portable units is assigned to the unit itself, and that same RN should be used when applying for authorization at a different location.	RN104989116

II. Delinquent Fees and Penalties	
Does the applicant have unpaid delinquent fees and/or penalties owed to the TCEQ? This form will not be processed until all delinquent fees and/or penalties owed to the TCEQ or the Office of the Attorney General on behalf of the TCEQ are paid in accordance with the Delinquent Fee and Penalty Protocol. For more information regarding Delinquent Fees and Penalties, go to the TCEQ Web site at:	•
www.toog.tovac.gov/agangy/financial/foos/dolin	

www.tceq.texas.gov/agency/financial/fees/delin

III. Permit Information

A. Permit and Action Type (multiple may be selected, leave no blanks)

Additional information regarding the different NSR authorizations can be found at: www.tceq.texas.gov/permitting/air/guidance/authorize.html

Select from the drop-down the type of action being requested for each permit type. If that permit type does not apply, you MUST select "Not applicable".

Provide all assigned permit numbers relevant for the project. Leave blank if the permit number has not yet been assigned.

Permit Type	Action Type Requested (do not leave blank)	Permit Number (if assigned)
Minor NSR (can be a Title V major source): Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Relocation/Alteration, Change of Location, Alteration, Extension to Start of Construction	Initial	
Special Permit: Not applicable, Amendment, Renewal, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	
De Minimis: Not applicable, Initial	Not applicable	
Flexible: Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

			,	
PSD: Not applicable, Initial, Major Modification	Not applicable			
Nonattainment: <i>Not applicable, Initial, Major Modification</i>	Not applicable			
HAP Major Source [FCAA § 112(g)]: <i>Not</i> applicable, Initial, Major Modification	Not applicable			
PAL: Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Alteration	Not applicable			
GHG PSD: Not applicable, Initial, Major Modification, Voluntary Update	Not applicable			
B. MSS Activities				
How are/will MSS activities for sources associated with this project be authorized?	Permit by Rule			
List the permit number, registration number, and/or PBR number.		106	.263	
C. Consolidating NSR Permits				
Will this permit be consolidated into another NSR pe	ermit with this act	ion?		No
Will NSR permits be consolidated into this permit wi	th this action?			No
D. Incorporation of Standard Permits, Standard I	Exemptions, and	d/or Permits By I	Rule (PBR)	
To ensure protectiveness, previously issued authorize	zations (standard	l permits, standar	d exemptions, or	PBRs)
including those for MSS, are incorporated into a per	mit either by con	solidation or by re	ference. At the t	ime of renewal
and/or amendment, consolidation (in some cases) n	nay be voluntary	and referencing is	s mandatory. Mo	re guidance
regarding incorporation can be found at:				
www.tceq.texas.gov/assets/public/permitting/air/mer	mos/pbr spc06.p	df		
Are there any standard permits, standard exemption				
be incorporated by reference?		No		
Are there any PBR, standard exemptions, or standa	rd permits			
associated to be incorporated by consolidation? Not	te: Emission			
calculations, a BACT analysis, and an impacts analy	sis must be	Yes		
attached to this application at the time of submittal for	or any			
authorization to be incorporated by consolidation.				
If yes, list any PBR, standard exemptions, or standa	rd permits that	PBR 148696		
need to be consolidated:	•			
If yes, are emission calculations, BACT analysis, an	d an impacts			
analysis included for each authorization to be conso	•			
required information is not provided, the authorization will be		Yes		
incorporated by reference.				
E. Associated Federal Operating Permits		•		
Is this facility located at a site required to obtain a si	ite operating pe	rmit (SOP) or ge	neral operating	NI -
permit (GOP)?				No
IV Eacility Loc	ation and Gener	al Information		

IV. Facility Location and General Information			
A. Location			
County: Enter the county where the facility is physically located.	Nueces		
TCEQ Region	Region 14		

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

	T	NUECES COUNT
County attainment status as of April 30, 2019	attainment or unclassified for all pollutants	
Street Address:	202 Bulk Materials Dock Road	
City: If the address is not located in a city, then enter the city or town closest to the facility, even if it is not in the same county as the facility.	Corpus Christi	
ZIP Code: Include the ZIP Code of the physical facility site, not the ZIP Code of the applicant's mailing address.	78402	
Site Location Description: If there is no street address, provide written driving directions to the site. Identify the location by distance and direction from well-known landmarks such as major highway intersections.		
Use USGS maps, county maps prepared by the Tex such as Google Earth to find the latitude and longitu	·	ware application
Latitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address or the destination point of the driving directions. Latitude is the angular distance of a location north of the equator and will always be between 25 and 37 degrees north (N) in Texas.	027:49:04	
Longitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address or the destination point of the driving directions. Longitude is the angular distance of a location west of the prime meridian and will always be between 93 and 107 degrees west (W) in Texas.		
Is this a project for a lead smelter, concrete crushing facility?	g facility, and/or a hazardous waste management	No
B. General Information		
Site Name:	Bulk Dock 3	
Area Name: Must indicate the general type of operation, process, equipment or facility. Include numerical designations, if appropriate. Examples are Sulfuric Acid Plant and No. 5 Steam Boiler. Vague names such as Chemical Plant are not acceptable.	Bulk Dock 3 Loading Operations	
Are there any schools located within 3,000 feet of the site boundary?	No	
C. Portable Facility		
Permanent or portable facility?	Permanent	
D. Industry Type	L	
Principal Company Product/Business: A list of SIC codes can be found at:	Marine Cargo Handling	
https://www.naics.com/sic-codes-industry-drilldown/		
Principal SIC code:	4491	
NAICS codes and conversions between NAICS and	SIC Codes are available at:	

Date: 10/15/2019
Permit #: TBD

Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

www.census.gov/eos/www/naics/				
Principal NAICS code:		488320		
E. State Senator and Representative for this site				
This information can be found at (n	ote, the site is no	t compatible to Internet Explorer):		
https://wrm.capitol.texas.gov/				
State Senator:		Juan Hinojosa		
District:		20		
State Representative:		Abel Herrero		
District:		34		
	V. P	roject Information		
A. Description				
Provide a brief description of the				
project that is requested. (Limited	The purpose of t	he project is to authorize an expansion of the PCC	A's existing Bulk	
to 500 characters).		operations, including an increase in gasoline and di	•	
	•	to add crude oil, LPG, and jet fuel loading capabili	•	
	7 7 7 7 7	3 · · · · · · · · · · · · · · · · · · ·		
B. Project Timing				
•	many projects be	fore beginning construction. Construction is broadl	v interpreted as	
	* * *	n. Enter the date as "Month Date, Year" (e.g. July 4	•	
,		= (e.g. c)	, , .	
Projected Start of Construction:	Upon Issuance			
Projected Start of Operation:	Upon Issuance			
C. Enforcement Projects				
•	r related to, an ac	gency investigation, notice of violation, or		
enforcement action?	, ,	, ,	No	
D. Operating Schedule				
Will sources in this project be author	orized to operate	8760 hours per year?	Yes	
. ,	•			
	VI. Ar	oplication Materials		
All representations regarding const	.	operation procedures contained in the permit appl	ication shall be	
conditions upon which the permit is	•			
A. Confidential Application Mate	rials		-	
Is confidential information submitte	d with this applica	ation?	No	
B. Is the Core Data Form (Form 1	0400) attached?		No	
https://www.tceq.texas.gov/permitti	ng/central_registr	ry/guidance.html		
C. Is a current area map attached?			Yes	
Is the area map a current map with	a true north arrov	w, an accurate scale, the entire plant property, the		
location of the property relative to p	rominent geograp	phical features including, but not limited to,		
highways, roads, streams, and sign	nificant landmarks	s such as buildings, residences, schools, parks,	Yes	
hospitals, day care centers, and churches?				
Does the map show a 3,000-foot radius from the property boundary?				
D. Is a plot plan attached?		1	Yes	
• •	north arrow, an a	ccurate scale, all property lines, all emission		
		ess equipment, and two bench mark locations?	Yes	
100				

Date: 10/15/2019 Permit #: TBD

Company: PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY

	NUECES COUNTY
Does your plot plan identify all emission points on the affected property, including all emission points authorized by other air authorizations, construction permits, PBRs, special permits, and standard permits?	Yes
Did you include a table of emission points indicating the authorization type and authorization identifier, such as a permit number, registration number, or rule citation under which each emission point is currently authorized?	Yes
E. Is a process flow diagram attached?	Yes
Is the process flow diagram sufficiently descriptive so the permit reviewer can determine the raw materials to be used in the process; all major processing steps and major equipment items; individual emission points associated with each process step; the location and identification of all emission abatement devices; and the location and identification of all waste streams (including wastewater streams that may have associated air emissions)?	Yes
F. Is a process description attached?	Yes
Does the process description emphasize where the emissions are generated, why the emissions must be generated, what air pollution controls are used (including process design features that minimize emissions), and where the emissions enter the atmosphere?	Yes
Does the process description also explain how the facility or facilities will be operating when the maximum possible emissions are produced?	Yes
G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can be emailed with the submittal of this application workbook.	Yes
Are maximum hourly (lb/hr) and maximum annual (tpy) emission rates attached? Emission rates should be reflective of the hours of operation.	Yes
Are emission rates for planned MSS facilities and related activities attached?	N/A
H. Is a material balance (Table 2, Form 10155) attached?	Yes
Table 2 (Form 10155), entitled Material Balance: A material balance representation may be required for all applications to confirm technical emissions information. Typically this is required for refining and chemical manufacturing processes involving reactions, separations, and blending. It may also be	
requested by the permit reviewer for other applications. Table 2 should represent the total material balance; that is, all streams into the system and all streams out. Additional sheets may be attached if necessary. Complex material balances may be presented on spreadsheets or indicated using process flow diagrams. All materials in the process should be addressed whether or not they directly result in the emission of an air contaminant. All production rates must be based on maximum operating conditions.	
balance; that is, all streams into the system and all streams out. Additional sheets may be attached if necessary. Complex material balances may be presented on spreadsheets or indicated using process flow diagrams. All materials in the process should be addressed whether or not they directly result in the emission of an air contaminant. All production rates must be based on maximum operating	N/A
balance; that is, all streams into the system and all streams out. Additional sheets may be attached if necessary. Complex material balances may be presented on spreadsheets or indicated using process flow diagrams. All materials in the process should be addressed whether or not they directly result in the emission of an air contaminant. All production rates must be based on maximum operating conditions.	N/A Yes
balance; that is, all streams into the system and all streams out. Additional sheets may be attached if necessary. Complex material balances may be presented on spreadsheets or indicated using process flow diagrams. All materials in the process should be addressed whether or not they directly result in the emission of an air contaminant. All production rates must be based on maximum operating conditions. I. Is a list of MSS activities attached? J. Is a discussion of state regulatory requirements attached, addressing 30 TAC Chapters 101,	
balance; that is, all streams into the system and all streams out. Additional sheets may be attached if necessary. Complex material balances may be presented on spreadsheets or indicated using process flow diagrams. All materials in the process should be addressed whether or not they directly result in the emission of an air contaminant. All production rates must be based on maximum operating conditions. I. Is a list of MSS activities attached? J. Is a discussion of state regulatory requirements attached, addressing 30 TAC Chapters 101, 111, 112, 113, 115, and 117? For all applicable chapters, does the discussion include how the facility will comply with the	Yes

VII. Signature

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

The owner or operator of the facility must apply for authority to construct. The appropriate company official (owner, plant manager, president, vice president, or environmental director) must sign all copies of the application. The applicant's consultant cannot sign the application. **Important Note: Signatures must be original in ink, not reproduced by photocopy, fax, or other means, and must be received before any permit is issued.**

The signature below confirms that I have knowledge of the facts included in this application and that these facts are true and correct to the best of my knowledge and belief. I further state that to the best of my knowledge and belief, the project for which application is made will not in any way violate any provision of the Texas Water Code (TWC), Chapter 7; the Texas Health and Safety Code, Chapter 382; the Texas Clean Air Act (TCAA); the air quality rules of the Texas Commission on Environmental Quality; or any local governmental ordinance or resolution enacted pursuant to the TCAA. I further state that I understand my signature indicates that this application meets all applicable nonattainment, prevention of significant deterioration, or major source of hazardous air pollutant permitting requirements. The signature further signifies awareness that intentionally or knowingly making or causing to be made false material statements or representations in the application is a criminal offense subject to criminal penalties.

Name:	Sean Strawbridge
Signature:	
	Original signature is required.
Date:	N/A - Signed via ePermits

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

I. NSR Minor Permits				
E. Concrete Batch Plants Only				
Is this a project for a concrete batc	h plant?			
	VII. Federal Regulatory Questions			
Indicate if any of the following requ	irements apply to the proposed facility. Note that some federal regu	lations apply to		
minor sources. Enter all applicable	Subparts.			
A. Title 40 CFR Part 60				
Do NSPS subpart(s) apply to a	No			
facility in this application?	INO			
B. Title 40 CFR Part 61				
Do NESHAP subpart(s) apply to a	No			
facility in this application?	INO			
C. Title 40 CFR Part 63				
Do MACT subpart(s) apply to a	Yes			
facility in this application?	165			
List applicable subparts you will				
demonstrate compliance with (e.g.	A, Y			
Subpart VVVV)				
	VIII. Emissions Review			
A. Impacts Analysis		In an all the		
•	ase in off-property concentrations of air contaminants requires an a			
 - - 	regarding the air quality impacts demonstration must be provided with all state and foderal requirements. Detailed requirements for the			
1	with all state and federal requirements. Detailed requirements for the	inionnation		
necessary to make the demonstration are listed on the Impacts sheet of this workbook.				
Does this project require an impact	s analysis?	Yes		
B. Disaster Review				
If the proposed facility will handle sufficient quantities of certain chemicals which, if released accidentally, would cause off-property impacts that could be immediately dangerous to life and health, a disaster review analysis may be required				
	the appropriate NSR permitting section for assistance at (512) 239-	•		
Guidance can be found at:	The appropriate NSK permitting section for assistance at (312) 239-	1250. Additional		
www.tceq.texas.gov/permitting/air/nav/air_docs_newsource.html				
	ir contaminants for which a disaster review is required?	No		
C. Air Pollutant Watch List		a decimated		
Certain areas of the state have concentrations of specific pollutants that are of concern. The TCEQ has designated				
these portions of the state as watch list areas. Location of a facility in a watch list area could result in additional restrictions on emissions of the affected air pollutant(s) or additional permit requirements. The location of the areas				
and pollutants of interest can be found at:				
· ·				
www.tceq.texas.gov/toxicology/apwl/apwl.html				
Is the proposed facility located in a watch list area? No				
D. Mass Emissions Cap and Trac	n the Houston/Galveston nonattainment area (Brazoria, Chambers,	Τ		
•	ty, Montgomery, and Waller Counties)?	No		
Ti Oit Dolla, Calvostoli, Hallis, Libel	ty, mornigornory, and manor obuilties:	I		

Texas Commission on Environmental Quality Form PI-1 General Application Unit Types - Emission Rates

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

Permit primary industry (must be selected for workbook to function)

Chemical / Energy

Action Requested	Include these emissions in annual (tpy)	Facility ID	Emission Point			Current Short-	Current Long-	Consolidated Current Long-	Proposed Shor	rt-Proposed Long-	Short-Term Difference	Long-Term	Unit Type (Used for reviewing BACT and	Unit Type Notes (only if "other" unit type in
(only 1 action per FIN)		Number (FIN)	Number (EPN)		Pollutant		Term (tpy)		Term (lb/hr)		(lb/hr)	Difference (tpy)	Monitoring Requirements)	Column O)
New/Modified	No	RCLOAD	RCLOAD	Railcar Loading Fugitives	VOC				15.38		15.38	0	Loading: Railcar	
New/Modified	No	SDBLOAD	SBDLOAD	Shallow Draft Barge Loading Fugitives	VOC				12.81		12.81	0	Loading: Marine Vessel	
New/Modified	No	OBLOAD	OBLOAD	Ocean Barge Loading Fugitives	voc				22.53		22.53	0	Loading: Marine Vessel	
New/Modified	No	SLOAD	SLOAD	Ship Loading Fugitives	voc				9.01		9.01	0	Loading: Marine Vessel	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	VOC				27.03		27.03		Control: Vapor Combustor	
New/Modified New/Modified	No	VCU-1 VCU-1	VCU-1 VCU-1	Railcar VCU Railcar VCU	NOx CO				7.35 14.67		7.35 14.67		Control: Vapor Combustor Control: Vapor Combustor	
New/Modified	No No	VCU-1	VCU-1		SO2				19.74		19.74		Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1		PM				0.4		0.4		Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	PM10				0.4		0.4		Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	PM2.5				0.4		0.4		Control: Vapor Combustor	
New/Modified	No	VCU-1	VCU-1	Railcar VCU	H2S				0.11		0.11		Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2		VOC				22.53		22.53		Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2		NOx				6.13		6.13		Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2		CO				12.23		12.23		Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2		SO2				14.65		14.65		Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2		PM				0.33		0.33		Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2		PM10				0.33		0.33		Control: Vapor Combustor	
New/Modified	No	VCU-2	VCU-2		PM2.5				0.33		0.33		Control: Vapor Combustor	-
New/Modified	No	VCU-2	VCU-2		H2S				0.09		0.09		Control: Vapor Combustor	
New/Modified	Yes	LDFUG	LDFUG	Loading Fugitives	VOC				0.00	43.86	0		Other	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	VOC					52.63	0	52.63	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	NOx					14.51	0	14.51	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	CO					28.97	0	28.97	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	SO2					16.48	0	16.48	Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL		PM					0.78	0		Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	PM10					0.78	0		Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL		PM2.5					0.78	0		Control: Vapor Combustor	
New/Modified	Yes	LDCNTRL	LDCNTRL	Controlled Loading	H2S					0.09	0		Control: Vapor Combustor	
New/Modified	Yes	FUG	FUG	Fugitive Piping Components	voc				2.24	9.82	2.24	9.82	Fugitives: Piping and Equipment Leak	
				- Components							0	0		
											0	0		
											0	0		
											0	U		
											0	0		
											0	0		_
											0	0		_
											0	0		
											0	0		_
											0	0		
											0	0		_
											0	0		
											0	0		
											0	U		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		-
											0	0		
											0	0		
											0	0		
											0	0		
											0	0		
												0		
											0	ı		

Texas Commission on Environmental Quality Form Pl-1 General Application Unit Types - Emission Rates

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

Include	le these														
emissi	ions in							Consolidated	Consolidated			Short-Term			Unit Type Notes (only if
Action Requested annual (only 1 action per FIN)	ıl (tpy) F	Facility ID Number (FIN)	Emission Point			Current Short-	Current Long-	Current Short-	Current Long-	Proposed Shor	Proposed Long- Term (tpy)	Difference	Long-Term	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Unit Type Notes (only if "other" unit type in Column O)
(only 1 action per FIN) summa	nary?	Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Term (lb/hr)	Term (tpy)	Term (lb/hr)	Term (tpy)	Term (lb/hr)	Term (tpy)	(lb/hr)	Difference (tpy)	Monitoring Requirements)	Column O)
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		_
												0	0		
												0	0		
												0	0		
												0	0		_
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		4
												0	0		
												0	0		
												0	0		_
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		

Texas Commission on Environmental Quality Form PI-1 General Application Unit Types - Emission Rates

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI

AUTHORITY OF NUE									NUECES CO						
	Include these emissions in		Emission Boint			Current Chart	Current Leng	Consolidated	Consolidated	Dronger of Chaut	Drawaged Laws	Short-Term	Long Torm	Unit Tyme (Used for reviewing DACT and	Unit Type Notes (only if "other" unit type in
on Requested y 1 action per FIN)	annual (tpy) summary?	Facility ID Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Term (lb/hr)	Term (tpy)	Current Short- Term (lb/hr)	Term (tpy)	Term (lb/hr)	Term (tpy)	(lb/hr)	Difference (tpy)	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Column O)
. ,			, ,				(10)	, ,	(12)		(10)	0	0		,
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		_
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
											-		-		

Texas Commission on Environmental Quality Form Pl-1 General Application Unit Types - Emission Rates

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI

AUTHORITY OF												7.011101(111101	NUECES COU		
	Include these emissions in							Consolidated	Consolidated			Short-Term			Unit Type Notes (only if
tion Requested lly 1 action per FIN)	annual (tpy)	Facility ID Number (FIN)	Emission Point	Course Name	Dellutent	Current Short-	Current Long-	Current Short- Term (lb/hr)	Current Long-	Proposed Short	Proposed Long	- Difference	Long-Term	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Unit Type Notes (only if "other" unit type in
y 1 action per FIN)	summary?	Number (FIN)	Number (EPN)	Source Name	Pollutant	Term (Ib/nr)	Term (tpy)	Term (Ib/nr)	Term (tpy)	rerm (ib/nr)	Term (tpy)	(ID/Nr)	0	Monitoring Requirements)	Column O)
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		
												0	0		

Texas Commission on Environmental Quality Form PI-1 General Application Unit Types - Emission Rates

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI

AUTHORITY OF NUECES COUNTY

		Include these														
		emissions in							Consolidated	Consolidated			Short-Term			Unit Type Notes (only if
Ac	tion Requested	annual (tpy)	Facility ID	Emission Point			Current Short-	Current Long-	Current Short-	Current Long-	Proposed Short	Proposed Long-	Difference	Long-Term	Unit Type (Used for reviewing BACT and	"other" unit type in
(or	nly 1 action per FIN)	summary?	Number (FIN)	Number (EPN)	Source Name	Pollutant	Term (lb/hr)	Term (tpy)	Term (lb/hr)	Term (tpy)	Term (lb/hr)	Term (tpy)	(lb/hr)	Difference (tpy)	Monitoring Requirements)	Column O)
													0	0		
													0	0		
													0	0		

Texas Commission on Environmental Quality Form PI-1 General Application Stack Parameters

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

	Emission Point Discharge Parameters											
EPN	Included in	UTM Coordinates Zone			Building Height (ft)		Stack Exit Diameter (ft)	1	Temperature (°F)	Fugitives - Length (ft)	Fugitives -	Fugitives - Axis Degrees
RCLOAD	Yes											
SBDLOAD	Yes											
OBLOAD	Yes											
SLOAD	Yes											
VCU-1	Yes											
VCU-2	Yes											
LDFUG	Yes											
LDCNTRL	Yes											
FUG	Yes											

Texas Commission on Environmental Quality Form PI-1 General Application Public Notice

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

	7.611161(111.61.1462626.6661411
I. Public Notice Applicabili	ty
A. Application Type	
Is this an application for an initial permit?	Yes

B. Project Increases and Public Notice Thresholds (for Initial and Amendment Projects)

Texas Commission on Environmental Quality Form PI-1 General Application Public Notice

Permit #: TBD Company: PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY

Date: Updated 2/4/2020

Pollutant		Proposed Long- Term (tpy)		
VOC		106.31		
PM		0.78		
PM ₁₀		0.78		
PM _{2.5}		0.78		
NO _x		14.51		
СО		28.97		
SO ₂		16.48		
Pb		0.00		
H2S		0.09		

^{**} Notice of a GHG action is determined by action type. Initial and major modification always require notice. Voluntary updates require a consolidated notice if there is a change to BACT. Project emission increases of CO2e (CO2 equivalent) are not relevant

for determining public notice of GHG permit actions.

C. Is public notice required for this project as represented in this workbook?

Yes

If no, proceed to Section III Small Business Classification.

Note: public notice applicability for this project may change throughout the technical review.

D. Are any HAPs to be authorized/re-authorized with this project? The category "HAPs" must be specifically listed in the public notice if the project authorizes (reauthorizes for renewals) any HAP pollutants.

Ν	(
N	(

II. Public Notice Information

Complete this section if public notice is required (determined in the above section) or if you are not sure if public notice is required.

A. Contact Information

Enter the contact information for the **person responsible for publishing.** This is a designated representative who is responsible for ensuring public notice is properly published in the appropriate newspaper and signs are posted at the facility site. This person will be contacted directly when the TCEQ is ready to authorize public notice for the application.

Ms.
Sarah
Garza
Director of Environmental Planning & Compliance
Port Of Corpus Christi Authority of Nueces County
PO Box 1541
Corpus Christi
Texas
78403
(361) 885-6163
(361) 881-5161
Sarah@pocca.com

Enter the contact information for the **Technical Contact**. This is the designated representative who will be listed in the public notice as a contact for additional information.

Prefix (Mr., Ms., Dr., etc.):	Ms.
First Name:	Sarah
Last Name:	Garza
Title:	Director of Environmental Planning & Compliance
Company Name:	Port Of Corpus Christi Authority of Nueces County

Texas Commission on Environmental Quality Form PI-1 General Application Public Notice

Permit #: TBD Company: PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY

Date: Updated 2/4/2020

Mailing Address:	PO Box 1541
Address Line 2:	
City:	Corpus Christi
State:	Texas
ZIP Code:	78403
Telephone Number:	(361) 885-6163
Fax Number:	(361) 881-5161
Email Address:	Sarah@pocca.com

B. Public place

Place a copy of the full application (including all of this workbook and all attachments) at a public place in the county where the facilities are or will be located. You must state where in the county the application will be available for public review and comment. The location must be a public place and described in the notice. A public place is a location which is owned and operated by public funds (such as libraries, county courthouses, city halls) and cannot be a commercial enterprise. You are required to pre-arrange this availability with the public place indicated below. The application must remain available from the first day of publication through the designated comment period.

If this is an application for a PSD, nonattainment, or FCAA §112(g) permit, the public place must have internet access available for the public as required in 30 TAC § 39.411(f)(3).

If the application is submitted to the agency with information marked as Confidential, you are required to indicate which specific portions of the application are not being made available to the public. These portions of the application must be accompanied with the following statement: Any request for portions of this application that are marked as confidential must be submitted in writing, pursuant to the Public Information Act, to the TCEQ Public Information Coordinator, MC 197, P.O. Box 13087, Austin, Texas 78711-3087.

Name of Public Place:	TCEQ Region 14 Office	TCEQ Region 14 Office		
Physical Address:	6300 Ocean Dr, Unit 5839	6300 Ocean Dr, Unit 5839		
Address Line 2:				
City:	Corpus Christi	Corpus Christi		
ZIP Code:	78412	78412		
County:	Nueces	Nueces		
Has the public place granted au viewing and copying?	thorization to place the application for public	Yes		

Texas Commission on Environmental Quality Form PI-1 General Application Public Notice

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

C. Alternate Language Publication

In some cases, public notice in an alternate language is required. If an elementary or middle school nearest to the facility is in a school district required by the Texas Education Code to have a bilingual program, a bilingual notice will be required. If there is no bilingual program required in the school nearest the facility, but children who would normally attend those schools are eligible to attend bilingual programs elsewhere in the school district, the bilingual notice will also be required. If it is determined that alternate language notice is required, you are responsible for ensuring that the publication in the alternate language is complete and accurate in that language.

3 3	
Is a bilingual program required by the Texas Education Code in the School District?	Yes
Are the children who attend either the elementary school or the middle school closest to your facility eligible to be enrolled in a bilingual program provided by the district?	Yes
If yes to either question above, list which language(s) are required by the bilingual program?	Spanish

Texas Commission on Environmental Quality Form PI-1 General Application Public Notice

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

III. Small Business Classification	
Complete this section to determine small business classification. If a small business requests a permit, agency rule 39.603(f)(1)(A)) allow for alternative public notification requirements if all of the following criteria are met. If these rules, public notice does not have to include publication of the prominent (12 square inch) newspaper notice.	` •
Does the company (including parent companies and subsidiary companies) have fewer than 100 employees or less than \$6 million in annual gross receipts?	No
Small business classification:	No

Texas Commission on Environmental Quality Form PI-1 General Application Federal Applicability

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

I. County Classification		
Does the project require retrospective review?		No
County (completed for you from your response on the General she	et)	Nueces
This project will be located in an area that is in attainment for ozon April 30, 2019. Select from the drop-down list to the right if you wo project to be reviewed under a different classification.		
· · ·		ated in an area that is in attainment or unclassified for all ent review is not required.

II. PSD and GHG PSD Applicability Summary			
s netting required for the PSD analysis for this project?			No
Pollutant	Project Increase	Threshold	PSD Review Required?
CO	28.97	250	No
NO _x	14.51	250	No
РМ	0.78	250	No
PM ₁₀	0.78	250	No
PM _{2.5}	0.78	250	No
SO ₂	16.48	250	No
Ozone (as VOC)	106.31	250	No
Ozone (as NOx)	0	100	No
Pb	0	100	No
H ₂ S	0.09	10	No
TRS	0	10	No
Reduced sulfur compounds (including H ₂ S)	0	10	No
H_2SO_4	0	7	No
Fluoride (excluding HF)	0	3	No
CO2e	0	75000	No

Is netting required for the nonattainment analysis for this project?	No

Texas Commission on Environmental Quality Form PI-1 General Application Fees

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

I. General Information - Non-Renewal			
Is this project for new facilities controlled and operated directly by the federal government? (30 TAC § 116.141(b)(1) and 30 TAC § 116.163(a))			
A fee of \$75,000 shall be required if no estimate of capital project cost is included with the permit application. (30 TAC § 116.141(d)) Select "yes" here to use this option. Then skip sections II and III.			
Select Application Type Minor Application			

II. Direct Costs - Non-Renewal		
Type of Cost	Amount	
Process and control equipment not previously owned by the applicant and not currently authorized under this chapter.	\$289,742.48	
Auxiliary equipment, including exhaust hoods, ducting, fans, pumps, piping, conveyors, stacks, storage tanks, waste disposal facilities, and air pollution control equipment specifically needed to meet permit and regulation requirements.	\$697,046.75	
Freight charges.	\$0.00	
Site preparation, including demolition, construction of fences, outdoor lighting, road, and parking areas.	\$78,309.60	
Installation, including foundations, erection of supporting structures, enclosures or weather protection, insulation and painting, utilities and connections, process integration, and process control equipment.	\$0.00	
Auxiliary buildings, including materials storage, employee facilities, and changes to existing structures.	\$636,940.50	
Ambient air monitoring network.	\$0.00	
Sub-Total:	\$1,702,039.33	

III. Indirect Costs - Non-Renewal		
Type of Cost	Amount	
Final engineering design and supervision, and administrative overhead.	\$0.00	
Construction expense, including construction liaison, securing local building permits, insurance, temporary construction facilities, and construction clean-up.	\$235,500.00	
Contractor's fee and overhead.	\$0.00	
Sub-Total:	\$235,500.00	

IV. Calculations - Non-Renewal

For GHG permits: A single PSD fee (calculated on the capital cost of the project per 30 TAC § 116.163) will be required for all of the associated permitting actions for a GHG PSD project. Other NSR permit fees related to the project that have already been remitted to the TCEQ can be subtracted when determining the appropriate fee to submit with the GHG PSD application. Identify these other fees in the GHG PSD permit application.

Texas Commission on Environmental Quality Form PI-1 General Application Fees

Permit #: TBD Company: PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY

Date: 10/15/2019

In signing the "General" sheet with this fee worksheet attached, I certify that the total estimated capital cost of the project as defined in 30 TAC §116.141 is equal to or less than the above figure. I further state that I have read and understand Texas Water Code § 7.179, which defines Criminal Offenses for certain violations, including intentionally or knowingly making, or causing to be made, false material statements or representations.

Estimated Capital Cost	Minor Application Fee	
Less than \$300,000	\$900 (minimum fee)	
\$300,000 - \$7,500,000	N/A	
\$300,000 - \$25,000,000	0.30% of capital cost	
Greater than \$7,500,000	N/A	
Greater than \$25,000,000	\$75,000 (maximum fee)	

Your estimated capital cost:	\$1,937,539.33	x 0.30% =
Permit Application Fee:		\$5,812.62

VI. Total Fees							
Note: fees can be paid together with one payment or as two separate payments.							
Non-Renewal Fee	\$5,812.62						
Total	\$5,812.62						

VII. Payment Information								
A. Payment One (required)								
Was the fee paid online?	No							
Enter the fee amount:	\$5,812.62							
Enter the check, money order, ePay Voucher, or other transaction								
number:								
Enter the Company name as it appears on the check:								
C. Total Paid	\$5,812.62							

VIII. Professional Engineer Seal Requirement	
Is the estimated capital cost of the project above \$2 million?	No
Is the application required to be submitted under the seal of a Texas licensed P.E.? Note: an electronic PE seal is acceptable.	No

Texas Commission on Environmental Quality Form PI-1 General Application Impacts

Permit #: TBD Company: PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY

Date: Updated 2/4/2020

	Deep this	Have will you down an atom to the title	AUTHORITY OF NUECES COUNT
Pollutant	Does this pollutant require PSD review?	How will you demonstrate that this project meets all applicable requirements?	Notes
VOC	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).
PM ₁₀	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).
PM _{2.5}	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).
NO _x	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).
со	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).
SO ₂	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).
Pb	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).
H2S	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).

Texas Commission on Environmental Quality Form PI-1 General Application BACT

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
RCLOAD	Loading: Railcar	VOC	Specify option: 1. VOC vp < 0.5 psia: submerged or bottom loading. No splash loading. 2. VOC ≥ 0.5 psia: Route to VOC control device and meet the specific control device requirements. 100% collection efficiency of pressure-rated cars ensured by Department of Transportation Testing. Hard piped or bolted connections, dry lock design. Hard piping loading arms and/or pressure-rated chemical transfer hoses.	Yes	Applicable Option(s): 1. VOC vp < 0.5 psia: submerged or bottom loading. No splash loadingand 2. VOC ≥ 0.5 psia: Route to VOC control device and meet the specific control device requirements. 100% collection efficiency of pressure-rated cars ensured by Department of Transportation Testing. Hard piped or bolted connections, dry lock design. Hard piping loading arms and/or pressure-rated chemical transfer hoses.
		MSS	Same as normal operation BACT requirements.	Yes	
SDBLOAD	Loading: Marine Vessel	VOC	VOC >= 0.5 psia: Route to VOC control device and meet the specific control device requirements. Vessel leak testing: the marine vessel must pass an annual vapor tightness test as specified in 40 CFR §63.565(c) or 40 CFR §61.304(f). During loading of inerted marine vessels, the owner or operator of the marine terminal or of the marine vessel shall conduct AVO checks for leaks once every 8 hours for onshore equipment and on board the vessel. The pressure at the vapor collection connection and the loading rate must be monitored and recorded. See Marine Terminal Guidance dated September 21, 2016 for emission factors for ship-side emissions. Federal Coast Guard Regulation require ocean-going vessels to be inerted. Therefore, ocean-going vessels cannot use vacuum loading.	Yes	Shallow draft barge loading of material with VOC VP greater than 0.5 psia (e.g., gasoline) will be conducted using vacuum loading, which is associated with a 100% collection efficiency.
		MSS	Same as normal operation BACT requirements.	Yes	
OBLOAD	Loading: Marine Vessel	VOC	VOC >= 0.5 psia: Route to VOC control device and meet the specific control device requirements. Vessel leak testing: the marine vessel must pass an annual vapor tightness test as specified in 40 CFR §63.565(c) or 40 CFR §61.304(f). During loading of inerted marine vessels, the owner or operator of the marine terminal or of the marine vessel shall conduct AVO checks for leaks once every 8 hours for onshore equipment and on board the vessel. The pressure at the vapor collection connection and the loading rate must be monitored and recorded. See Marine Terminal Guidance dated September 21, 2016 for emission factors for ship-side emissions. Federal Coast Guard Regulation require ocean-going vessels to be inerted. Therefore, ocean-going vessels cannot use vacuum loading.		
		MSS	Same as normal operation BACT requirements.	Yes	
SLOAD	Loading: Marine Vessel	VOC	VOC >= 0.5 psia: Route to VOC control device and meet the specific control device requirements. Vessel leak testing: the marine vessel must pass an annual vapor tightness test as specified in 40 CFR §63.565(c) or 40 CFR §61.304(f). During loading of inerted marine vessels, the owner or operator of the marine terminal or of the marine vessel shall conduct AVO checks for leaks once every 8 hours for onshore equipment and on board the vessel. The pressure at the vapor collection connection and the loading rate must be monitored and recorded. See Marine Terminal Guidance dated September 21, 2016 for emission factors for ship-side emissions. Federal Coast Guard Regulation require ocean-going vessels to be inerted. Therefore, ocean-going vessels cannot use vacuum loading.		
		MSS	Same as normal operation BACT requirements.	Yes	

Texas Commission on Environmental Quality Form PI-1 General Application BACT

Date: Updated 2/4/2020
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

FINI-	Heit Toma	Dallutant	Command Tion I DACT	C = 4:		
FINs	Unit Type	Pollutant			Additional Notes	
VCU-1	Control: Vapor Combustor	VOC	99% destruction efficiency. Monitor temperature. Perform initial test.	Yes		
		MSS	Same as normal operation BACT requirements.	struction efficiency. Monitor temperature. Perform initial test. s normal operation BACT requirements. struction efficiency. Monitor temperature. Perform initial test. s normal operation BACT requirements. ditional notes: Yes Addressed with FINs: RCLOAD, SDBLOAD, STRUCTURE STRUCT		
VCU-2	Control: Vapor Combustor	VOC	99% destruction efficiency. Monitor temperature. Perform initial test.	Yes		
		MSS	Same as normal operation BACT requirements.			
LDFUG	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD	VOC	See additional notes:	Yes	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD	
		MSS	See additional notes:	Yes	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD	
LDCNTRL	Control: Vapor Combustor	VOC	99% destruction efficiency. Monitor temperature. Perform initial test.	Yes		
		MSS	Same as normal operation BACT requirements.	Yes		
FUG	Fugitives: Piping and Equipment Leak		Specify which is applicable: 1. Uncontrolled VOC emissions < 10 tpy: none 2. 10 tpy < uncontrolled VOC emissions < 25 tpy: 28M leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vp < 0.002 psia: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen cyanide and mercaptans only): AVO inspection twice per shift. Appropriate credit for AVO program.		Applicable Option(s): 1. Uncontrolled VOC emissions < 10 tpy: none	
		MSS	Same as normal operation BACT requirements.	Yes		

Texas Commission on Environmental Quality Form PI-1 General Application Monitoring

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

FIN	Unit Type	Pollutant	Minimum Monitoring Requirements	Confirm	Additional Notes for Monitoring
RCLOAD	Loading: Railcar	VOC	Temperature and Hourly volume loaded for each product. Observation for connection leaks. Where vapor routed to control copy of annual vapor tightness certification. Vacuum monitoring for 100% capture, not required for pressure vessel loading.	Yes	
SDBLOAD	Loading: Marine Vessel	VOC	Temperature and Hourly volume loaded for each product. Observation for connection leaks Where vapor routed to control, copy of annual vessel vapor tightness certification. Where 99% or greater capture claimed AVO check of vessel tanks for leaks and pressure monitoring of cargo tank. Vacuum monitoring for 100% capture, not required for pressure vessel loading. Ship loading testing required for non vacuum >99% capture claims.	Yes	
OBLOAD	Loading: Marine Vessel	VOC	Temperature and Hourly volume loaded for each product. Observation for connection leaks Where vapor routed to control, copy of annual vessel vapor tightness certification. Where 99% or greater capture claimed AVO check of vessel tanks for leaks and pressure monitoring of cargo tank. Vacuum monitoring for 100% capture, not required for pressure vessel loading. Ship loading testing required for non vacuum >99% capture claims.	Yes	
SLOAD	Loading: Marine Vessel	VOC	Temperature and Hourly volume loaded for each product. Observation for connection leaks Where vapor routed to control, copy of annual vessel vapor tightness certification. Where 99% or greater capture claimed AVO check of vessel tanks for leaks and pressure monitoring of cargo tank. Vacuum monitoring for 100% capture, not required for pressure vessel loading. Ship loading testing required for non vacuum >99% capture claims.	Yes	
VCU-1	Control: Vapor Combustor	voc	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.	Yes	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.
VCU-2	Control: Vapor Combustor	voc	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.	Yes	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.
LDFUG	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD	voc	See additional notes:	Yes	Addressed with FINs: RCLOAD, SDBLOAD, OBLOAD, and SLOAD
LDCNTRL	Control: Vapor Combustor	VOC	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.	Yes	Continuous Exhaust Temperature Monitoring recorded in six minute averages. Waste gas flow monitor or operation record that provides flow by design.

Texas Commission on Environmental Quality Form PI-1 General Application Monitoring

Date: 10/15/2019
Permit #: TBD
Company: PORT OF CORPUS CHRISTI
AUTHORITY OF NUECES COUNTY

FIN	Unit Type	Pollutant	Minimum Monitoring Requirements	Confirm	Additional Notes for Monitoring
FUG	Fugitives: Piping and Equipment Leak	VOC	Use EPA Method 21 to monitor for leaks from seals on pumps, compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action taken.	Yes	Monthly AVO inspections will be conducted on fugitive piping components. Because site-wide VOC emissions from fugitive piping components are less than 10 tons per year (tpy), no TCEQ Leak Detection and Repair Program (LDAR) needs to be established.

Texas Commission on Environmental Quality Form PI-1 General Application

Materials

Date: 10/15/2019 Permit #: TBD Company: PORT OF CORPUS CHRISTI AUTHORITY OF NUECES COUNTY

	AUTHORITY OF	MOECES COOL
Item	How submitted	Date submitted
A. Administrative Information		
Form PI-1 General Application	STEERS	10/15/2019
Hard copy of the General sheet with original (ink) signature	Not applicable	
Professional Engineer Seal	Not applicable	
B. General Information		
Core Data Form	Not applicable	
Area map	STEERS	10/15/2019
Plot plan	STEERS	10/15/2019
Process description	STEERS	10/15/2019
Process flow diagram	STEERS	10/15/2019
List of MSS activities	Not applicable	
State regulatory requirements discussion	STEERS	10/15/2019
C. Federal Applicability		
Summary and Project emission increase determination - Tables 1F and 2F	STEERS	10/15/2019
Netting analysis (if required) - Tables 3F and 4F as needed	Not applicable	
D. Technical Information		
BACT discussion, if additional details are attached	STEERS	10/15/2019
Monitoring information, if additional details are attached	STEERS	10/15/2019
Material Balance (if applicable)	STEERS	10/15/2019
Calculations	STEERS	10/15/2019
E. Impacts Analysis		
Qualitative impacts analysis	STEERS	10/15/2019
MERA analysis	STEERS	10/15/2019
Electronic Modeling Evaluation Workbook: SCREEN3	Not applicable	
Electronic Modeling Evaluation Workbook: NonSCREEN3	STEERS	10/15/2019
PSD modeling protocol	Not applicable	
F. Additional Attachments	·	
Permit Fee Verification	STEERS	10/15/2019
Table 2: Material Balance	STEERS	10/15/2019
Emission Calculations Tables C-1 through C-5	STEERS	10/15/2019
PBR 148696 Incorporation	STEERS	10/15/2019

Page 1 Version 3.3

April 8, 2020

Ms. Laura Gibson, P.E. Texas Commission on Environmental Quality Air Permits Division (MC-163) P.O. Box 13087 Austin, Texas 78711-3087

Re: Permit Application and Air Quality Analysis

Permit Number: 159254 TCEQ Project No. 309311

Port of Corpus Christi Authority Bulk Dock 3 Layberth

Corpus Christi, Nueces County

Regulated Entity Number: RN104989116 Customer Reference Number: CN600885248

Dear Ms. Gibson,

On behalf of Port of Corpus Christi Authority (PCCA), TRICORD Consulting, LLC is submitting this letter and the attached information as a follow-up to Philip Leung's request (dated Wednesday, April 1, 2020) regarding the above-referenced permit application air quality analysis.

1. Please provide documentation for all off-property sources. This includes, but not limited to, how the off-property inventory was developed and permit files showing source parameters and emission rates.

Response: Included with this response are multiple files to support the off-property sources. A summary file of stack parameters and emission rates is included, along with a folder of PDFs that are bookmarked. Each PDF is sorted and labeled according to the permit action and permit number. Each bookmark in the PDF file shows where stack parameters and/or emission rates were retrieved for use in the applicable cumulative impact analyses.

Please provide justification and documentation for not modeling receptors over the ship channel. This was discussed in a phone conference with Joe Ibanez after the Initial EMEW Review Response.

Response: In 2018, PCCA submitted a New Source Review (NSR) permit amendment for the Permit Nos. 9498 and 47881 for an expansion project and permit consolidation (TCEQ Project Number 293369). Attached to this response is documentation regarding the ambient air surrounding the PCCA property that was discussed with Chad Dumas (TCEQ ADMT) during the course of the modeling review. Additionally, legal justification provided by PCCA regarding the ship channel area is also attached as support documentation.

Based on the information provided in the attachments, PCCA does not need to include receptors over the ship channel.

Ms. Laura Gibson, P.E. Page 2 April 8, 2020

3. According to our internal GIS system, there are two RN's within the plot plan's property boundary: RN102953189 (Koch Sulfur products Company LLC) and RN102608015 (Citgo Refining and Chemicals Company LP). Additionally, there are sources modeled over these RN's. What is the relationship between Port of Corpus Christi Authority of Nueces County and RN102953189 and RN102608015?

Response: PCCA currently leases several site bulk material handling/storage areas to other companies at the site. PCCA owns the storage area land, but the facilities are operated by leases: CITGO Refining and Chemicals Company (CITGO) (NSR Permit No. 2523C, RN102608015, CN600127922), Koch Carbon, LLC (NSR Permit No. 9892A, RN102953189, CN601500382 and NSR Permit No. 35530, RN102953189, CN603352196), and Valero Refining – Texas, L.P. (Valero) (NSR Permit No. 2937, RN100211663, CN600127468).

At some point in the future, PCCA will be taking over the operator role for the three (3) currently-leased stockpiles detailed in the section above in an effort to improve the environmental footprint and control future dust issues at the sites. With TCEQ Project No. 293369, PCCA incorporated the emissions from those stockpiles and associated handling activities into NSR Permit No. 9498. This action included sources from CITGO NSR Permit No. 2523C, Koch Carbon NSR Permit No. 9892A, and Valero NSR Permit No. 2937. It is the intent that the permits maintained by these companies are in effect until a takeover date is contractually established. At such time, PCCA will notify the TCEQ and provide the agreement document and the effective date.

4. In the Modeling NOD Response to the Initial EMEW Review Response, it states that "Initial vertical sigmas were reviewed and it was determined they should be removed from the analysis." The statement is inconsistent with what was actually modeled. Please provide additional justification on why all area sources were modeled with an initial vertical sigma.

Response: Initial vertical sigmas were initially removed from the health effects analyses, but not from the PM_{2.5} NAAQS analyses. Upon further review, it was determined that it was also appropriate to remove the initial vertical sigmas from the PM_{2.5} NAAQS analyses. Updated modeling files and Electronic Modeling Evaluation Workbook (EMEW) documentation are provided with the response showing the removal of all initial vertical sigmas from all model runs.

Overall, the results of the AQA were not fundamentally changed as a result of these updates.

- 5. Please provide additional explanation regarding EMEW Attachment 4 of the Modeling NOD Response:
 - a. Why are EPNs T MSS and T EP-14 being grouped into one model ID?

Response: EPNs T MSS and T EP-14 consist of Coke Water Spray Maintenance and Coke Pile Maintenance, respectively. Both activities can occur simultaneously at a given location. There are several locations where these activities can occur, but the activities are not expected to occur at multiple locations at the same time. Given this understanding and the fact that these EPNs have similar dispersion characteristics, these sources were grouped together for unit modeling purposes in order to find the worst-case location for these activities. The worst-case location was then modeled as a conservative approach to help streamline the modeling analysis.

b. Why was the worst-case location of the stockpile maintenance activities determined?

Response: The worst-case location for stockpile maintenance was determined in order to find the most conservative location for these activities. As stated above, EPNs T MSS and T EP-14 have similar dispersion characteristics; therefore, it was appropriate to group these activities together in the unit modeling.

c. The last column shows unit concentrations; however, generic modeling was not provided.

Response: Unit modeling is provided with this response, along with an updated Attachment 4 clarifying the correct unit values.

6. Please note that the 24-hr PM_{2.5} full NAAQS significant receptor grid did not consider secondary formation of PM_{2.5}. If revised modeling is needed for 24-hr PM_{2.5}, please consider secondary formation when determining the significant receptor grid.

Response: Updated PM_{2.5} NAAQS CIM modeling and EMEW documentation is provided with this response. Secondary formation was taken into account when creating the updated significant receptor grid.

7. How was the GLCni location determined for heavy petroleum distillate? Can you confirm the grassy area directly east of the facility is not considered a non-industrial area? If so, please provide justification that the grassy area directly east of the facility is not considered a non-industrial area.

Response: As stated in the updated Attachment 2B, "This analysis assumes that all waterways south of the PCCA facility have controlled public access (including signage and security details); therefore, the nearest residential areas have been chosen as the locations of the worst-case non-industrial receptors. Additionally, PCCA owns the land east of the facility and controls access to this land." The updated health effects modeling utilizes these residential areas for the GLCni values, as shown in Attachment 2B.

8. Since 1-hr heavy petroleum distillate exceeded the ESL, please provide an evaluation of annual heavy petroleum distillate.

Response: Though not typically required, an evaluation of annual heavy petroleum distillate has been provided for review. Annual evaluations for light petroleum distillate and MTBE were not provided as those short-term evaluations were slightly over their respective short-term ESLs and there were no reportable exceedances for either short-term evaluation.

- 9. Please address the following questions from the permit reviewer:
 - a. Loading Fugitives calcs show 16.45 lb SO2/hr from VCU-2, typo occurred transcribing to PI-1 and EMEW 14.65 was modeled.

Response: The modeling and EMEW have both been updated to account for the correct loading fugitive SO₂ emissions from VCU-2.

Ms. Laura Gibson, P.E. Page 4 April 8, 2020

b. Emission rates of VOCs from FUG source as modeled did not change from initial EMEW even after Emission Rates in PI-1 were changed. 0.33 lb/hr VOC was modeled (or at least put in latest EMEW) and it should have been 2.24 lb/hr VOC. That will also affect the species break down review of Health Effects Pollutants.

Response: The modeling and EMEW have both been updated to account for the correct fugitive emission rates. Additionally, updated health effects modeling has been provided for all sources and pollutants given the changes in species totals.

If you have any questions, please contact me at <u>joe.ibanez@tricordconsulting.com</u>. Thank you for your time and consideration in this matter and we look forward to working with you to get this permit issued soon.

Sincerely,

Joe J. Ibanez

TRICORD Consulting, LLC 4760 Preston Rd., Ste 244-193

Frisco, TX 75034

Office and Fax: (888) 900-0746 x 700

Cell: (972) 837-0591

E-mail: joe.ibanez@tricordconsulting.com

Enclosures

cc: Ms. Sarah Garza, Port of Corpus Christi Authority Erica Bayeh, TRICORD Consulting, LLC

Date: Updated April 2020 Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County:

EMEW Attachment 2B Non-Industrial Receptor Location

Note: This analysis assumes that all waterways south of the PCCA facility have controlled public access (including signage and security details); therefore, the nearest residential areas have been chosen as the locations of the worst-case non-industrial receptors. Additionally, PCCA owns the land east of the facility and controls access to this land.

Legend

Property Line

■ Non-Industrial Receptor Boundaries

Date: Updated April 2020

Permit #: TBD

Company Name: Port of Corpus Christi Authority of Nueces County

EMEW Attachment 4 Modeling Techniques and Scenarios Worst-case Determination

EPNs	Source ID	Source Description	Stack Release	Easting NAD83 (X) (m)	Northing NAD83 (Y) (m)	Base Elevation (m)	Stack Height (m)	Temperature (K)	Exit Velocity (m/s)	Stack Diameter (m)	24-hr Unit Concentration
				(111)	(111)	(111)	(111)	(K)	(111/5)	(111)	(μg/m³)
T MSS, T EP-14	SP9UNIT	MSS for BD2 STKPL-9	DEFAULT	651,043.68	3,078,301.56	6.10	4.57	0.00	0.0010	0.0010	26.9494
T MSS, T EP-14	SP10UNIT	MSS for BD2 STKPL-10	DEFAULT	651,164.58	3,078,265.95	6.27	4.57	0.00	0.0010	0.0010	14.7519
T MSS, T EP-14	SP11UNIT	MSS for BD2 STKPL-11	DEFAULT	651,290.54	3,078,232.10	2.62	4.57	0.00	0.0010	0.0010	14.6793
T MSS, T EP-14	SP12UNIT	MSS for BD2 STKPL-12	DEFAULT	651,431.58	3,078,164.05	3.00	4.57	0.00	0.0010	0.0010	10.6157
T MSS, T EP-14	SPRCUNIT	MSS for BD2 STKPL-RCU	DEFAULT	651,323.29	3,078,106.56	2.64	4.57	0.00	0.0010	0.0010	8.8208
T MSS, T EP-14	SPRLUNIT	MSS for BD2 STKPL-RL	DEFAULT	650,959.01	3,078,171.71	2.51	2.29	0.00	0.0010	0.0010	56.7969

Notes:

1. The worst-case location for the T MSS and T EP-14 stockpile maintenance activities is at the BD2 STKPL-RL location (NAAQS source IDs SPRLMSS and SPRLEP14).

----- Forwarded message ------

From: **Joe Ibanez** <<u>joe.ibanez@tricordconsulting.com</u>>

Date: Tue, Jul 30, 2019 at 4:19 PM

Subject: Re: Port of Corpus Christi Authority of Nueces County (Permit No. 9498) AQA request for information

To: Chad Dumas < Chad.Dumas@tceq.texas.gov>

Cc: Garza, Sarah < Sarah@pocca.com >, Anthony Anders < anthony.anders@tricordconsulting.com >, Jennifer Harvey < Jennifer.Harvey@tceq.texas.gov >

Chad,

Per our conversation yesterday, I re-reviewed the recent EPA guidance regarding the definition of 'ambient air' and also talked with Sarah Garza today to reconfirm the relationship between the PCCA and third parties that use the ship channel. As a result, please consider the following summary and please let me know if you have any additional questions or concerns.

By the area map previously provided, the PCCA clearly owns and controls the ship channel area in question. To further clarify, the control of this area includes the PCCA employing certain measures to preclude its access from the general public for safety reasons among others. These measures include, but are not limited to physical barriers along some of the channel's bulk head, video surveillance and monitoring, clear signage, and routine security patrols. As such, the use and traffic within the ship channel is only limited to third party marine vessels which load and/or unload certain materials, products, and intermediate products at docks located along the ship channel. In addition to the dock areas operated by the PCCA, there are several dock areas along the ship channel that are operated by third party industrial companies (e.g., Valero, Citgo, etc.). Though these companies operate separate activities involving vessels located on property owned by the PCCA, the PCCA retains control over public access (including third party marine vessel vendors) to the entire property. In other words, for example, Valero cannot allow for marine vessels to enter the ship channel towards its docks without approval of the PCCA. The Harbor Master's Office, a department of the PCCA, controls all access to and regulates all traffic within the ship channel. They log all marine vessels entering into and leaving the ship channel and are responsible for coordinating the timing for which marine vessels can enter or leave the ship channel relative to existing traffic.

This scenario is consistent with the ambient air scenario No. 2 set forth in the June 22, 2007 memorandum from Stephen D. Page, Director of Office of Air Quality Planning & Standards to the Regional Air Division Directors, titled "Interpretation of 'Ambient Air' In Situations Involving Leased Land Under the Regulations for Prevention of Significant Deterioration (PSD)," and Section C of the accompanying Attachment – Support Document. Given this information, the PCCA believes the existing representations in the subject application and supporting modeling demonstrations are correct and that the area in question within the ship channel should not be considered 'ambient air' in relation to evaluating potential impacts from the PCCA's project (site) emissions.

Joe J. Ibanez

4760 Preston Rd., Ste 244-193

Frisco, TX 75034

Office and Fax: 888.900.0746 x 700

Cell: 972.837.0591

E-mail: <u>Joe.Ibanez@TRICORDConsulting.com</u>

Web: www.TRICORDConsulting.com

Robert J. Huston, Chairman R. B. "Ralph" Marquez, Commissioner Kathleen Hartnett White, Commissioner Margaret Hoffman, Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

May 2, 2003

John F. Steib

OPRR

Director

Air Permits Division

MC 163

Skip Clark, P.E.

OPRR

Engineer VI

Air Permits Division

MC 162

James B. Randall, P.E.

OPRR

Manager

Combustion/Mechanical/Agriculture Section

Air Permits Division

MC 162

Phillip Wiedenfeld

OPRR

Engineering Specialist

Operating Permits Section

Air Permits Division

MC 162

RE: Use of Corpus Christi Channel to Calculate Distances to Off-Site Receptors

Permit No. 47881

Port Authority of Corpus Christi

Bulk Materials Dock Number One

Corpus Christi, Nueces County, Texas

Dear Mr. Steib, Mr. Randall, Mr. Clark, and Mr. Wiedenfeld:

You asked whether the Port of Corpus Christi Authority (PCCA or Authority) may consider the Corpus Christi Ship Channel (the Channel) as its own property for purposes of determining the location of off-property receptors to the immediate south, southwest, and southeast of Bulk Materials Dock Number One (Dock Number One). In order to respond to this question, the Legal Division considered the following:

- application materials submitted by the Port of Corpus Christi for Permit No. 47881;
- maps of the Dock and the surrounding area;
- relevant land patents; and,

Although this issue arose with respect to Dock Number One, the same issue is also relevant to Boat Dock Number Two, which is located to the west of Boat Dock Number One and also abuts the Corpus Christi Ship Channel. Boat Dock Number Two also unloads outgoing ships and generates particulate matter.

applicable law and administrative regulations.

On the basis of this review, we have concluded that the State of Texas conveyed fee simple title to the Channel to the PCCA's predecessor, Nueces County Navigation District No.1. Off-property receptors to the south, southwest, and southeast of the Dock should therefore be located at or beyond the south bank of the Channel.

At Dock Number One, the loading and unloading of bulk materials generates air contaminates, primarily particulates, which originate from a grab clamshell that picks up bulk materials from a stockpile and loads them onto the vessels, from dump trucks that load materials onto a stockpile, and from emissions produced at dockside. Particulates associated with the unloading of ships originate from a hopper, a feeder belt, a truck, a railcar, and from dockside emissions. In determining where to place receptors designed to measure the particulate levels generated by all of these activities, the TCEQ considers only receptors located at or beyond the current property line.

Dock Number One abuts the Channel to the immediate south, southwest, and southeast. The PCCA requested that, for purposes of locating off-property receptors, the Channel be considered part of the property owned by the Authority. In support of its request, the Authority submitted to the TCEQ a land patent, Vol. Forty Seven A, No. 84, 1922, in which the State of Texas conveyed twenty six hundred ninety four and 93/100 acres of submerged land in Nueces Bay known as section 939, to the Nueces County Navigation District No. 1 and its successors. The location description of the property conveyed by this patent encompasses the Corpus Christi Ship Channel, including the stretch of the channel that abuts Dock Numbers One and Two. The Nueces County Navigation District No. 1 became the Port of Corpus Christi Authority in the 1970s.

In Texas Parks and Wildlife Department v. Champlin Petroleum Company and Nueces County Navigation District No. 1,616 S.W.2d 668 (Tex. App.—Corpus Christi [13th Dist.] 1981, writ ref'd n.r.e.), the Nueces County Navigation District No.1 brought a declaratory judgment action to quiet title in submerged land in Nueces Bay which the State of Texas had conveyed to the district by patent in the 1920s. The district court granted the declaratory judgment, which stated that the State of Texas had conveyed fee simple title to the land in question subject to existing subsurface mineral interests. On appeal by Texas Parks and Wildlife, the Thirteenth Court of Appeals affirmed the decision of the trial court.

In its published opinion, the Court of Appeals explained that Tex. Rev. Civ. Stat. Ann. Art. 8225 (repealed 1971) conferred authority upon the State of Texas to convey a fee simple interest in submerged state lands, subject to preexisting subsurface mineral interests, to navigation districts. In addition, the Nueces County Navigation District No. 1 qualified as a navigation district as contemplated by the statute. Further, the Court of Appeals noted that Section 61.117(f) of the Texas Water Code acknowledges the continuing validity of land patents obtained by navigation districts from the State.

The patent submitted to TCEQ by the Port of Corpus Christi Authority — located at Vol. Forty Seven A, No. 84, 1922 — fits the description of the patents at issue in *Texas Parks and Wildlife Department, supra* precisely. There can be no question that the State possessed authority

to convey to the Nueces County Navigation District No. 1 a fee simple interest in the land which now comprises the Channel segment that abuts Docks One and Two. As a result, for purposes of locating off-site receptors to evaluate air contaminants generated at these docks, the Corpus Christi Ship Channel should be considered the property of the PCCA. Receptors should be located at or beyond the south bank of the Channel.²

Sincerely,

Christopher Brown TCEQ Staff Attorney

Texas Bar No. 90000883 For Stephanie Bergeron

Director, Environmental Law Division

cc: Sarah L. Kowalski

Environmental Compliance Specialist Port of Corpus Christi Authority

Department of Engineering Services

P.O. Box 1541

Corpus Christi, Texas 78403

²The Port of Corpus Christi Authority has indicated that the land patent originally conveyed a fee simple interest in property that reached beyond the south shore of the Channel, but that the PCCA has exercised its authority pursuant to Section 61.117(f) of the Texas Water Code to convey land to adjacent owners to grant them access to the channel.

March 28, 2003

Mr. Christopher Brown
Legal Division
Texas Commission on Environmental Quality
P.O. Box 13087 MC 173
Austin, Texas 78711-3087

Subject: Patent for Corpus Christi Ship Channel

Dear Mr. Brown,

Enclosed as requested is a copy of the patent for the Corpus Christi Ship Channel to assist you in writing the legal opinion on the Port of Corpus Christi Authority property boundary. If you have any questions or need additional information, please contact me at 361/885-6163.

Sincerely,

Sarah L. Kowalski

Environmental Compliance Specialist

SLK/pem Enclosure

cc:

Frank C. Brogan William J. Cotter Greg Brubeck Joe Giannina

H:\sarah\TNRCC AIR PERMITTING\CR - TCEQ LEGAL - CHRIS BROWN 032803.doc

1.7

In the Name of the

State of Texas

To All to Whom These Presents Shall Come, Know Ye:

Governor of the State aforesaid, by virtue of the power invested in me by YOODY WAD law and in accordance with the laws of said State in such case made and provided, do by these presents Grant to

MUECES COUNTY NAVIGATION DISTRICT NO. I, ITS SUCCESSORS, AND

AXXXX assigns forever, TWENTY BIX HUNDRED NINETY FOUR & 93/100 acres of land situated and described

County, known as section 939, submerged land, Musoes

Nueces Bay, mituated about 2.5 miles NW from county site, said land having been surveyed by virtue of House Bill No. 92, Acts 51st Legislature 4th Called Session;

Beginning at a point in Nueces Bay, the NW cor of sur 700, R R Redus, the SW cor of aur 688 8id Katz, the NW cor of this sur;

Thence E, with the N bdy line of said sur 700, the S bdy line of sur 688, 1523.59 yrs to the NE cor of said sur 700, the NW cor of sur 691, for a cor of this sur;

Thence S, with the E bdy line of said sur 700 and W bdy kine of said sur 691, 343.19 yrs to a point for a cor of this sur;

A) Thence E, at 1000 yrs the E bdy line of sur 691, the W bdy line of sur 689, 2000 yrs the E bdy line of said sur 689, the W bdy line of sur 750; at 3294.82 yrs the E bdy line of sur 750, the W bdy line of sur 750, the W bdy line of sur 750, the W bdy line of sur 723; 7538.56 yrs the E bdy line of sur 723, the W bdy line of sur 705, 5616.93 yrs to a point, the intersection of the E bdy line of said sur 705, and the W bdy line of sur 710, with the N shoreline of a peninsula in the Nueces Bay, a cor of sur 708, and the SW cor of said sur 710, for the NE cor of this sur;

of sur 710, with the N shoreline of a peninsula in the Nucose Bay, a cor of sur 708, and the SW oor of said sur 710, for the NE cor of this sur;

Themose with the meanders of the shoreline of Nucose Bay; 8 30°49' W 37.36 vrs;
8 59°19' W 183.6 vrs; 8 29°14' W 277.2 vrs; 8 57°53' W 97.2 vrs; 8 25°57' W 61.2 vrs;
8 9°11' E 187.2 vrs; 852°39' M 79.2 vrs; 8 74°40' W 176.4 vrs; B 42°15' W 97.2 vrs;
8 9°11' E 187.2 vrs; 8 52°39' M 79.2 vrs; 8 74°40' W 176.4 vrs; B 42°15' W 97.2 vrs;
8 58°41' E 187.2 vrs; N 51°28' F 38° F 38° F 37.2 vrs; 8 4119' E 205.2 vrs;
8 68° 102' E 64.8 vrs; N 44°55' E 104.4 vrs; N 85°47' E 97.2 vrs; N 52° 20' E 190.8 vrs;
8 74°32' E 97.2 vrs; N 51°38' E at 189.12 vrs the NW cor of sur 724; 349.20 vrs;
8 74°32' E 97.2 vrs; N 51°38' E at 189.12 vrs the NW cor of sur 724; 349.20 vrs;
8 72°51' E 106 vrs; 8 23°33' E 110.7 vrs; 8 26°05' W 28.3 vrs; N 85°60' W 44.1 vrs;
8 8°15' E 106 vrs; 8 23°33' E 110.7 vrs; 8 26°05' W 28.1 vrs; N 85°06' W 44.1 vrs;
8 8°15' E 106 vrs; 8 23°33' E 110.7 vrs; 8 26°05' W 28.3 vrs; N 85°23' W 44.1 vrs; N 85°10' W 180.5 vrs; 8 6°33' E 172.6 vrs; 8 73°46' W 461.3 vrs;
8 5°5'5' 4' W 271.4' vrs; 8 85°10' W 108 vrs. N 55°01' W 120.8 vrs; H 80°33' W 116.9 vrs;
15°5'74' W 201.5 vrs; 8 35°20' W 108 vrs. N 55°01' W 120.8 vrs; H 80°33' W 116.9 vrs;
15°5'74' W 201.5 vrs; B 36°10' W 108 vrs. N 55°01' W 120.8 vrs; H 80°33' W 116.9 vrs;
16°8'25' W 68.9 vrs; B 86°10' W 20.9 vrs; N 88°07' W 487.4 vrs; H 27°43' W 121.9 vrs;
17°44' the 8E cor of said sur 708; 164.7 vrs; N 140°06' W 127.4 vrs; N 79°36' W at 171.1 vrs
18°8'25' W 128.2 vrs; N 56°10' M 78 vrs; N 68°07' W 487.4 vrs; N 79°36' W at 171.1 vrs
18°8'25' W 18'5, Vrs; W 18°5' 10' W 290.9 vrs; N 88°07' W 187.4 vrs; N 88°20' W 128.3 vrs; N 68°20' W 128.3 v

8 margin of an island at the junction of Nueses River and Nueses Bay for a cor of this-sur;

Thence with the meanders of the Left margin of Nueses River up stream N 60°30' W 174 Yrs; N 41°54' N 100 yrs N 67°84' N 100 yrs; N 63°48' N 240 yrs; N 36°38' N 166 yrs to a point on the E margin of a bayou running from Nueses River to Nueses Bay, for a cor of this sur;

Thence with the meanders of the E margin of said bayou N 54°35' E 115 yrs; N 15° T 97 yrs; N 5°35' N 153 yrs; N 35°10' E 36 yrs to a point at the junction of the E margin of Bayou with the S shore of Nueses Bay, for a cor of this sur;

Thence with the meanders of the S shore of said Nueses Bay N 39°33' N 192.8 yrs; to the M margin of said bayou at its mouth; N 48°41' N 81.2 yrs; N 85°33' N 192.8 yrs; to the M margin of said bayou at its mouth; N 48°41' N 81.2 yrs; N 85°33' N 192.8 yrsp N 6805' N 401.3 yrs; N 80°17' N 17.55 yrs to a point for cor of this sur;

This sale is made subject to any oil, gas or mineral leases therefore given by the State on said lands and all mines and mineral rights, including oil and gas in and under said land, together with the right bo enter thereon for the purpose of development, are hereby reserved to the State of Texas.

NUECES COUNTY NAVIGATION DISTRICT NO. I: Hereby relinquishing to and ITS SUCCESSORBAXXor assigns forever all the right and title in and to said land heretofore held and possessed by the said State, and I do hereby issue this Letter Patent for the same.

Date: Upd. April 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW) Company Name: Port of Corpus Christi Authority of Nueces County **Point + Flare Emissions**

		Modeling		Modeled			Intermittent	Modeled Emission		Scalars or	
EPN	Model ID	Scenario	Pollutant	Averaging Time	Standard Type	Review Context	Source?	Rate [lb/hr]	Basis of Emission Rate	Factors Used?	Scalar/Factor in Us
VCU-1	VCU 1	0	NOx	1-hr	NAAQS	SIL Analysis	No	7.35	project increase	Yes	ARM2
VCU-2	VCU 2	0	NOx	1-hr	NAAQS	SIL Analysis	No	6.13	project increase	Yes	ARM2
VCU-1	VCU 1	0	NOx	Annual	NAAQS	SIL Analysis	No	3.02	project increase	No	
VCU-2	VCU 2	0	NOx	Annual	NAAQS	SIL Analysis	No	3.02	project increase	No	
VCU-1	VCU 1	0	CO	1-hr	NAAQS	SIL Analysis	No	14.67	project increase	No	
VCU-2	VCU_2	0	CO	1-hr	NAAQS	SIL Analysis	No	12.23	project increase	No	
VCU-1	VCU_1	0	CO	8-hr	NAAQS	SIL Analysis	No	14.67	project increase	No	
VCU-2	VCU_2	0	CO	8-hr	NAAQS	SIL Analysis	No	12.23	project increase	No	
VCU-1	VCU_1	0	SO2	1-hr	NAAQS	SIL Analysis	No	19.74	project increase	No	
VCU-2	VCU_2	0	SO2	1-hr	NAAQS	SIL Analysis	No	16.45	project increase	No	
VCU-1	VCU_1	0	SO2	3-hr	NAAQS	SIL Analysis	No	19.74	project increase	No	
VCU-2	VCU_2	0	SO2	3-hr	NAAQS	SIL Analysis	No	16.45	project increase	No	
VCU-1	VCU_1	0	PM10	24-hr	NAAQS	SIL Analysis	No	0.397	project increase	No	
VCU-2	VCU_2	0	PM10	24-hr	NAAQS	SIL Analysis	No	0.331	project increase	No	
VCU-1	VCU_1	0	PM2.5	24-hr	NAAQS	SIL Analysis	No	0.397	project increase	No	
VCU-2	VCU_2	0	PM2.5	24-hr	NAAQS	SIL Analysis	No	0.331	project increase	No	
VCU-1	VCU_1	0	PM2.5	Annual	NAAQS	SIL Analysis	No	0.163	project increase	No	
VCU-2	VCU_2	0	PM2.5	Annual	NAAQS	SIL Analysis	No	0.163	project increase	No	
VCU-1	VCU_1	0	NOx	1-hr	NAAQS	Minor Full NAAQS	No	7.35	proposed PTE	Yes	ARM2
VCU-2	VCU_2	0	NOx	1-hr	NAAQS	Minor Full NAAQS	No	6.13	proposed PTE	Yes	ARM2
VCU-1	VCU_1	0	NOx	Annual	NAAQS	Minor Full NAAQS	No	3.02	proposed PTE	No	
VCU-2	VCU_2	0	NOx	Annual	NAAQS	Minor Full NAAQS	No	3.02	proposed PTE	No	
VCU-1	VCU 1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.397	proposed PTE	No	
VCU-2	VCU 2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.331	proposed PTE	No	
BD1 CSD-1	BD1_CSD1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.101	proposed PTE	No	
BD1 FB-1	BD1 FB1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0505	proposed PTE	No	
BD1 H-1	BD1 H1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.101	proposed PTE	No	
BD1 H3	BD1 H3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0505	proposed PTE	No	
BD1 RC-1	BD1 RC1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0337	proposed PTE	No	
BD1 RC-2	BD1_RC2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0842	proposed PTE	No	
BD1 TR-1	BD1_TR1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0337	proposed PTE	No	
BD1 TR-2	BD1 TR2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0842	proposed PTE	No	
BD1 TS-8	BD1 TS8	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
BD1 TS-9	BD1 TS9	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
BD1 TS-10	BD1 TS10	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
BD1 TS-11	BD1_TS11	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0168	proposed PTE	No	
3D2 DS-TR1	BD2 DTR1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0903	proposed PTE	No	
3D2 DS-TR2	BD2 DTR2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0903	proposed PTE	No	
3D2 DS-TR3	BD2 DTR3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0903	proposed PTE	No	
D2 FEL PC-5	BD2 FEL5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0752	proposed PTE	No	
BD2 PC-5	BD2_PC5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	
BD2 PC-6	BD2 PC6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	
BD2 RL	BD2_RL	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	
BD2 SL	BD2_SL	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0135	proposed PTE	No	
D2 TS FEL-1	BD2_SE	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	
D2 TS FEL-2	BD2_FEL2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0752	proposed PTE	No	
D2 TS FEL-6	BD2_FEL6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0251	proposed PTE	No	
3D2 TS PC-1	BD2_TEE0	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	
3D2 TS PC-2	BD2_TPC1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0752	proposed PTE	No	
3D2 TS PC-4	BD2_TSP4	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0752	proposed PTE	No	
BD2 TS-1	BD2_TSF4	0	PM2.5	24-hr	NAAQS NAAQS	Minor Full NAAQS	No	0.0451	proposed PTE	No	

Date: Upd. April 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

		Modeling		Modeled				Modeled Emission		Scalars or	
EPN	Model ID	Scenario	Pollutant	Averaging Time	Standard Type	Review Context	Source?	Rate [lb/hr]	Basis of Emission Rate	Factors Used?	Scalar/Factor in Use
BD2 TS-3	BD2_TS3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-3a	BD2_TS3a	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0150	proposed PTE	No	
BD2 TS-4	BD2_TS4	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-5	BD2_TS5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-6	BD2_TS6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00903	proposed PTE	No	
BD2 TS-7	BD2_TS7	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0150	proposed PTE	No	
WPE-01 & BD2 WPE		0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0200	proposed PTE	No	
FEL-SPTK	FELSPTK	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0400	proposed PTE	No	
T 5	T_5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.114	proposed PTE	No	
T CH1	T_CH1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00100	proposed PTE	No	
T CH2	T_CH2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00200	proposed PTE	No	
T EP-10	T_EP10	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
T EP-11	T_EP11	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0200	proposed PTE	No	
T EP-14	SPRLEP14	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0100	proposed PTE	No	
T EP-2	T_EP2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
T MSS	SPRLMSS	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
T UL-2	T_UL2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0600	proposed PTE	No	
VUE	VUE	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0400	proposed PTE	No	
VCU-1	VCU_1	0	SO2	1-hr	State Property Line	Project Wide	No	19.74	project increase	No	
VCU-2	VCU_2	0	SO2	1-hr	State Property Line	Project Wide	No	16.45	project increase	No	
VCU-1	VCU_1	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
VCU-2	VCU_2	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
VCU-1	VCU_1	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
VCU-2	VCU_2	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
VCU-1	VCU_1	0	H2S	1-hr	State Property Line	Project Wide	No	0.110	proposed PTE	No	
VCU-2	VCU_2	0	H2S	1-hr	State Property Line	Project Wide	No	0.0900	proposed PTE	No	
VCU-1	VCU_1	0	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		project increase	No	
VCU-2	VCU_2	0	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		project increase	No	
VCU-1	VCU_1	0	Health Effects Pollutant	Annual	Health Effects	Site Wide	No		proposed PTE	No	
VCU-2	VCU_2	0	Health Effects Pollutant	Annual	Health Effects	Site Wide	No		proposed PTE	No	

Date: Upd. April 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
Area Source Emissions

Facility:											
EPN	Model ID	Modeling Scenario	Pollutant	Modeled Averaging Time	Standard Type	Review Context	Intermittent Source?	Modeled Emission Rate [lb/hr]	Basis of Emission Rate	Scalars or Factors Used?	Scalar/Factor in Use
BD1 SP-1	BD1_SP1	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0206	proposed PTE	No	
BD1 SP-2	BD1_SP2	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0223	proposed PTE	No	
BD1 SP-3	BD1_SP3	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0281	proposed PTE	No	
BD1 SP-4	BD1_SP4	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0141	proposed PTE	No	
BD1 SP-5	BD1_SP5	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0121	proposed PTE	No	
BD1 SP-6	BD1_SP6	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0347	proposed PTE	No	
BD1 SP-7	BD1_SP7	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0107	proposed PTE	No	
BD1 SP-8	BD1_SP8	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00730	proposed PTE	No	
BD2-STKPL-9	BD2_SP9	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0260	proposed PTE	No	
BD2-STKPL-10	BD2_SP10	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0260	proposed PTE	No	
BD2-STKPL-11	BD2_SP11	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0260	proposed PTE	No	
BD2-STKPL-12	BD2_SP12	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0124	proposed PTE	No	
BD2 STKPL-RCU	BD2_SPRC	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00990	proposed PTE	No	
BD2 STKPL-RL	BD2_SPRL	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0204	proposed PTE	No	
SP-UNLOAD	SPUNLOAD	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.00457	proposed PTE	No	
BLAST	BLAST	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	0.0200	proposed PTE	No	
PAINT	PAINT	0	PM2.5	24-hr	NAAQS	Minor Full NAAQS	No	4.51	proposed PTE	Yes	Operates from 8AM - 5PM
RCLOAD	RCLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
SDBLOAD	SDBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
OBLOAD	OBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
SLOAD	SLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
FUG	FUG	0	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		project increase	No	
RCLOAD	RCLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
SDBLOAD	SDBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
OBLOAD	OBLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
SLOAD	SLOAD	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
FUG	FUG	0	Health Effects Pollutant	1-hr	Health Effects	Site Wide	No		proposed PTE	No	
RCLOAD	RCLOAD	0	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		project increase	No	
SDBLOAD	SDBLOAD	0	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		project increase	No	
OBLOAD	OBLOAD	0	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		project increase	No	
SLOAD	SLOAD	0	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		project increase	No	
FUG	FUG	0	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		project increase	No	
RCLOAD	RCLOAD	0	Health Effects Pollutant	Annual	Health Effects	Site Wide	No		proposed PTE	No	
SDBLOAD	SDBLOAD	0	Health Effects Pollutant	Annual	Health Effects	Site Wide	No		proposed PTE	No	
OBLOAD	OBLOAD	0	Health Effects Pollutant	Annual	Health Effects	Site Wide	No		proposed PTE	No	
SLOAD	SLOAD	0	Health Effects Pollutant	Annual	Health Effects	Site Wide	No		proposed PTE	No	
FUG	FUG	0	Health Effects Pollutant	Annual	Health Effects	Site Wide	No		proposed PTE	No	

Date: Upd. April 2020

Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 1. Project-Related Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)
SO ₂	1-hr	186.98650	20.42
H ₂ SO ₄	1-hr		1
H ₂ SO ₄	24-hr		0.3
H ₂ S	1-hr	1.02930	2.16 (If property is residential, recreational, business, or commercial)
H₂S	1-hr	1.02930	3.24 (If property is not residential, recreational, business, or commercial)

Table 2. Site-wide Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	Standard (µg/m³)
SO ₂	1-hr	186.98650	1021
H ₂ SO ₄	1-hr		50
H ₂ SO ₄	24-hr		15
H₂S	1-hr		108 (If property is residential, recreational, business, or commercial)
H₂S	1-hr		162 (If property is not residential, recreational, business, or commercial)

Table 3. Modeling Results for Minor NSR De Minimis

<u> </u>									
Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)						
SO ₂	1-hr	186.98650	7.8*						
SO ₂	3-hr	174.18493	25						
SO ₂	24-hr		5						
SO ₂	Annual		1						
PM ₁₀	24-hr	1.71602	5						
NO ₂	1-hr	62.31902	7.5**						
NO ₂	Annual	1.86563	1						
CO	1-hr	138.23549	2000						
CO	8-hr	111.37084	500						

Additional information for the De Minimis values listed above can be found at:

^{*} www.tceq.texas.gov/assets/public/permitting/air/memos/appwso2.pdf

^{**} www.tceq.texas.gov/assets/public/permitting/air/memos/guidance 1hr no2naaqs.pdf

Date: Upd. April 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
NAAQS-SPL Modeling Results

Table 4. PM_{2.5} Modeling Results for Minor NSR De Minimis

Pollutant	Averaging Time	GLCmax (µg/m³)	Secondary PM _{2.5} Contribution (µg/m³)	Total Conc. = Secondary PM _{2.5} + GLCmax (μg/m³)	De Minimis (μg/m³)
PM _{2.5}	24-hr	1.71602	0.058838134	1.77486	1.2*
PM _{2.5}	Annual	0.101	0.001930741	0.10266	0.2*

Additional information for the De Minimis values listed above can be found at:

* www.tceq.texas.gov/permitting/air/modeling/epa-mod-guidance.html

Date: Upd. April 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
NAAQS-SPL Modeling Results

Table 5. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Background (μg/m³)	Total Conc. = [Background + GLCmax] (μg/m³)	Standard (µg/m³)
SO ₂	1-hr	187.01533	8.00	195.02	196
SO ₂	3-hr	356.56679	8.00	364.57	1300
SO ₂	24-hr		0	0	365
SO ₂	Annual		0	0	80
PM ₁₀	24-hr		0	0	150
Pb	3-mo		0	0	0.15
NO ₂	1-hr	79.02577	56.00	135.03	188
NO ₂	Annual	1.86563	10.00	11.87	100
CO	1-hr		0	0	40000
CO	8-hr		0	0	10000

Date: Upd. April 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 6. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Secondary PM _{2.5} Contribution (µg/m³)	Background (μg/m³)	Total Conc. = [Background + Secondary + GLCmax] (μg/m³)	Standard (µg/m³)
PM _{2.5}	24-hr	5.33875	0.058838134	27.61	33.00759	35
PM _{2.5}	Annual		0.001930741	0	0.00193	12

Date: Upd. April 2020 Permit #: 159254

Permit #: 159254

Health Effect Modeling Results

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Modeled Health	Effect Results	(MERA Guidance):	Step 3	Step 4: Production		Step 4: MSS		
Chemical Species	CAS Number	Averaging Time	ESL [µg/m³]	10% ESL Step 3 Modeled GLCmax [µg/m³]	25 % ESL Step 4 Production GLCmax since most recent site wide modeling [µg/m³]	10% ESL Step 4 Production Project Only GLCmax [µg/m³]	50% ESL Step 4 MSS GLCmax since most recent site wide modeling [µg/m³]	25% ESL Step 4 MSS Project Only GLCmax [µg/m³]	
crude oil, < 1% benzene	N/A	1-hr	3500	0	2086.07	2086.07	0110	110 1	
Light Petroleum Distillates	N/A	1-hr	Provide Documentation		3649.53	3649.53			
Heavy Petroleum Distillates	N/A	1-hr	Provide Documentation		2677.71	2677.71			
methyl tert-butyl ether	1634-04-4	1-hr	630		677.22	677.22			
Heavy Petroleum Distillates	N/A	Annual	Provide Documentation		20.06	20.06			

Date: Upd. April 2020 Permit #: 159254

Permit #: 159254

Health Effect Modeling Results

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Modeled Health	Modeled Health Effect Results (MERA Guidance):					Step 5: MSS Only Step 5: Hours of Exceedance				
Chemical Species	CAS Number	Averaging Time	ESL [µg/m³]	Full ESL Step 5 GLCmax [µg/m³]	1X ESL GLCmax Step 5 MSS Hours of Exceedance	2X ESL GLCmax Step 5 MSS Hours of Exceedance	4X ESL GLCmax Step 5 MSS Hours of Exceedance	10X ESL GLCmax Step 5 MSS Hours of Exceedance	Was Step 6 relied on to fall out of the MERA?	
crude oil, < 1% benzene	N/A	1-hr	3500							
Light Petroleum Distillates	N/A	1-hr	Provide Documentation							
Heavy Petroleum Distillates	N/A	1-hr	Provide Documentation							
methyl tert-butyl ether	1634-04-4	1-hr	630							
Heavy Petroleum Distillates	N/A	Annual	Provide Documentation							

Date: Upd. April 2020 Permit #: 159254

Permit #: 159254

Health Effect Modeling Results

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Modeled Health	Modeled Health Effect Results (MERA Guidance):					Step 7: Hours of Exceedance			
Chemical Species	CAS Number	Averaging Time	ESL [µg/m³]	Site Wide GLCmax [µg/m³]	Site Wide GLCni [µg/m³]	1X ESL GLCni Hours of Exceedance	2X ESL GLCmax Hours of Exceedance	4X ESL GLCmax Hours of Exceedance	10X ESL GLCmax Hours of Exceedance
crude oil, < 1% benzene	N/A	1-hr	3500	2086.07	334.21				
Light Petroleum Distillates	N/A	1-hr	Provide Documentation	3649.53	580.78		0		
Heavy Petroleum Distillates	N/A	1-hr	Provide Documentation	2677.71	396.68		6	0	
methyl tert-butyl ether	1634-04-4	1-hr	630	677.22	112.03		0		
Heavy Petroleum Distillates	N/A	Annual	Provide Documentation	20.06	N/A				

April 17, 2020

Ms. Laura Gibson, P.E. Texas Commission on Environmental Quality Air Permits Division (MC-163) P.O. Box 13087 Austin, Texas 78711-3087

Re: Permit Application and Air Quality Analysis

Permit Number: 159254 TCEQ Project No. 309311

Port of Corpus Christi Authority Bulk Dock 3 Layberth

Corpus Christi, Nueces County

Regulated Entity Number: RN104989116 Customer Reference Number: CN600885248

Dear Ms. Gibson,

On behalf of Port of Corpus Christi Authority (PCCA), TRICORD Consulting, LLC is submitting this letter and the attached information as a follow-up to Philip Leung's requests (dated April 10 and April 14, 2020) regarding the above-referenced permit application air quality analysis.

Please note that contribution analyses were necessary for some of the updated NAAQS modeling. The EMEW does show exceedances of the NAAQS, but as there is no room to provide explanations, details are provided in the applicable responses below.

- 1. We can continue to discuss on how to send over the off-property source documentation.
 - **Response:** Off-property source documentation was received by the TCEQ, as confirmed by Philip via email on April 13, 2020.
- 2. All pseudo-point sources do not emit from a conventional stack. Please provide justification on how the release heights were determined.
 - **Response:** Philip confirmed via email on April 14, 2020 that this question had already been answered and no additional information is needed.
- 3. Regarding No. 3 of the original questions, PCCA leases land to other companies at the site. Since receptors were not modeled over these sites, please confirm whether PCCA controls access to all the companies within the modeled property boundary
 - **Response:** PCCA controls access to all the companies within the modeled property boundary.
- 4. According to the revised EMEW, the GLCmax is not assumed to be the GLCni anymore. The GLCni concentrations that were provided do not seem to be the same coordinates as the GLCni location for HPD. Please provide the GLCni locations for all health effect pollutants.

Response: As shown in the area map, there are two residential areas south of the PCCA property that are the non-industrial areas. As these two areas are similar in distance from the PCCA property, it is appropriate to look at GLCni values at both locations to ensure that the highest GLCni is being reported. The GLCni for Crude Oil, LPD, and MTBE are coincidentally the same, while the GLCni for HPD is in a different location. Locations are provided in Table 1.

Caralitana	GLCni Locations				
Constituents	mE	mN			
Crude Oil	651,400	3,077,100			
Heavy Petroleum Distillates	651,300	3,077,200			
Light Petroleum Distillates	651,400	3,077,100			
MTBE	651,400	3,077,100			

Table 1 – GLCni Locations

5. Unloading activities from EPNs RCLOAD, SDBLOAD, OBLOAD, and SLOAD cannot occur simultaneously. Annual HPD was evaluated based on this operational limitation. Please confirm whether all four loading activities can occur in an annual averaging period.

Response: The modeling files and EMEW were updated to use source group ALL in the output, as all four loading activities can occur in an annual averaging period.

6. Model ID TKMSS – How is the modeled/reported parameters considered worst-case?

Response: Originally, generic parameters for a portable control device were used for TKMSS. In order to help streamline the analysis, the parameters were updated to match those dictated in the AQMG for missing parameters. An updated off-property source documentation table is provided with this response. Updates (for all applicable sources) are highlighted in yellow.

It is important to note that updating TKMSS parameters values to "missing parameter values" causes exceedances of the 1-hour NO2 NAAQS, as shown in the EMEW. As such, a contribution analysis was performed to show that the PCCA sources to not contribute to exceedances of the 1-hour NO2 SIL at those receptors where TKMSS causes an exceedance of the NAAQS. The MAXDCONT analysis file is provided with this response.

7. Model ID 65A_2 – Please provide the documentation from the "CITGO research" for the parameters.

Response: Source parameter documentation for Model ID 65A_2 is provided with this response.

8. Model IDs VCU_3-5 – The ADMT could not verify the "current MAERT" used. Please show where the "current MAERT" is located.

Response: As a clarification, the emission increases are documented in the PDF for the project. Please see the updated PDF provided with this response.

9. Model ID MSSVCU – The ADMT could not verify the "current MAERT" and "MAERT from project no. 219294". Please show where these emission rates can be found.

Response: As a clarification, the emission increases are documented in the PDF for the project. Please see the updated PDF provided with this response (same PDF as mentioned in the prior response).

10. Model IDs 590_H1-2 and MVC001-2– The ADMT could not verify the parameters. Please show where the parameters can be found in the documentation.

Response: For Model IDs 590_H1-2, modeling files that were originally provided by the TCEQ are included with this response as justification for the stack parameters. For Model IDs MVC001-2, the parameters were updated to match those provided in the project's Table 1(a). These parameters are bookmarked in the project's PDF provided with this response.

11. Model IDs EXANVENT, PVCU, STACK_1C, 86, 202, and 207_H_1 – Pseudo-point parameters seem to be used. How was the release height determined? According to the TCEQ's AQMG, if parameters cannot be found, then a release height of 1 meter should be used.

Response: All release heights for the aforementioned Model IDs were updated to 1 meter. Updated modeling files and EMEW documentation are provided with this response.

12. Model ID LEUHOH – The source was not reported in the PDF. The source is located on RN100235266.

Response: Previously this source was not included in the analysis. This sources causes exceedances of the NAAQS for 1-hour SO₂. A contribution analysis was to show that the PCCA sources do not exceed the 1-hour SO₂ SIL at those receptors where there is an exceedance of the NAAQS. The MAXDCONT analysis file and updated SO₂ modeling files are provided with this response.

13. Model IDs VCU_3-5, 521_H1, R_201, KK_3, DDSHTRST, A_203, A_204, MX_1, V_8, EXANVENT, TRUCKCOM, 86, 202, VCU1-2 – The emission increases were modeled. Please explain why it is appropriate to only model the emission increases rather than the maximum allowable emission rates.

Response: Overall, only emission rate increases were modeled for recently permitted off-property sources as the sources are already existing and contributing to the background. In these cases, it is possible to double count source contributions if both the PTE and the background are required.

Please note that in the cases where increases could not be determined, the full allowable for the source(s) was modeled in order to be conservative.

Ms. Laura Gibson, P.E. Page 4 April 17, 2020

If you have any questions, please contact me at <u>joe.ibanez@tricordconsulting.com</u>. Thank you for your time and consideration in this matter and we look forward to working with you to get this permit issued soon.

Sincerely,

Joe J. Ibanez

TRICORD Consulting, LLC 4760 Preston Rd., Ste 244-193

Frisco, TX 75034

Office and Fax: (888) 900-0746 x 700

Cell: (972) 837-0591

E-mail: joe.ibanez@tricordconsulting.com

Enclosures

cc: Ms. Sarah Garza, Port of Corpus Christi Authority

Erica Bayeh, TRICORD Consulting, LLC

Erica Bayeh <erica.bayeh@tricordconsulting.com>

Fwd: Port of Corpus Christi Authority of Nueces County - Permit No. 159254

Philip Leung <philip.leung@tceq.texas.gov> To: Erica Bayeh <erica.bayeh@tricordconsulting.com>, Laura Gibson <laura.gibson@tceq.te <joe.ibanez@tricordconsulting.com="" cc:="" ibanez="" joe="">, Lucero Marquez <lucero.marquez@tce "sarah@pocca.com"="" <sarah@pocca.com=""></lucero.marquez@tce></laura.gibson@tceq.te></erica.bayeh@tricordconsulting.com></philip.leung@tceq.texas.gov>	
Erica,	
My apologies - you can disregard question No. 2. This was addressed in the modeling NOD	response.
Thank You,	
Philip Leung	
Texas Commission on Environmental Quality	
Office of Air - Air Permits Division	
Air Dispersion Modeling Team	
512-239-1508	
Philip.Leung@tceq.texas.gov	
How are we doing? Fill out our online customer satisfaction survey at www.tceq.texas.gov/o	customersurvey
[Quoted text hidden]	

Erica Bayeh <erica.bayeh@tricordconsulting.com>

Fwd: Port of Corpus Christi Authority of Nueces County - Permit No. 159254

Philip Leung <philip.leung@tceq.texas.gov> To: Erica Bayeh <erica.bayeh@tricordconsulting.com> Cc: Lucero Marquez <lucero.marquez@tceq.texas.gov></lucero.marquez@tceq.texas.gov></erica.bayeh@tricordconsulting.com></philip.leung@tceq.texas.gov>	Mon, Apr 13, 2020 at 1:25 PM
Good Afternoon Erica,	
Just an FYI, we were able to download the files. We will start reviewing them now.	
Thank You,	
Philip Leung	
Texas Commission on Environmental Quality	
Office of Air - Air Permits Division	
Air Dispersion Modeling Team	
512-239-1508	
Philip.Leung@tceq.texas.gov	
How are we doing? Fill out our online customer satisfaction survey at www.tceq.texas.g	gov/customersurvey
From: Erica Bayeh <erica.bayeh@tricordconsulting.com> Sent: Monday, April 13, 2020 12:56 PM To: Philip Leung <philip.leung@tceq.texas.gov></philip.leung@tceq.texas.gov></erica.bayeh@tricordconsulting.com>	
[Quoted text hidden]	
[Quoted text hidden] [Quoted text hidden]	

Date: Upd. April 2020

Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 1. Project-Related Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)
SO ₂	1-hr	186.98650	20.42
H ₂ SO ₄	1-hr		1
H ₂ SO ₄	24-hr		0.3
H ₂ S	1-hr	1.02930	2.16 (If property is residential, recreational, business, or commercial)
H₂S	1-hr	1.02930	3.24 (If property is not residential, recreational, business, or commercial)

Table 2. Site-wide Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	Standard (µg/m³)
SO ₂	1-hr	186.98650	1021
H ₂ SO ₄	1-hr		50
H ₂ SO ₄	24-hr		15
H₂S	1-hr		108 (If property is residential, recreational, business, or commercial)
H₂S	1-hr		162 (If property is not residential, recreational, business, or commercial)

Table 3. Modeling Results for Minor NSR De Minimis

<u> </u>									
Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)						
SO ₂	1-hr	186.98650	7.8*						
SO ₂	3-hr	174.18493	25						
SO ₂	24-hr		5						
SO ₂	Annual		1						
PM ₁₀	24-hr	1.71602	5						
NO ₂	1-hr	62.31902	7.5**						
NO ₂	Annual	1.86563	1						
CO	1-hr	138.23549	2000						
CO	8-hr	111.37084	500						

Additional information for the De Minimis values listed above can be found at:

^{*} www.tceq.texas.gov/assets/public/permitting/air/memos/appwso2.pdf

^{**} www.tceq.texas.gov/assets/public/permitting/air/memos/guidance 1hr no2naaqs.pdf

Date: Upd. April 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
NAAQS-SPL Modeling Results

Table 4. PM_{2.5} Modeling Results for Minor NSR De Minimis

Pollutant	Averaging Time	GLCmax (μg/m³)	Secondary PM _{2.5} Contribution (µg/m³)	Total Conc. = Secondary PM _{2.5} + GLCmax (μg/m³)	De Minimis (μg/m³)
PM _{2.5}	24-hr	1.71602	0.058838134	1.77486	1.2*
PM _{2.5}	Annual	0.101	0.001930741	0.10266	0.2*

Additional information for the De Minimis values listed above can be found at:

* www.tceq.texas.gov/permitting/air/modeling/epa-mod-guidance.html

Date: Upd. April 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)
Company Name: Port of Corpus Christi Authority of Nueces County
NAAQS-SPL Modeling Results

Table 5. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Background (μg/m³) Total Conc. = [Background + GLCmax] (μg/m³)		Standard (µg/m³)
SO ₂	1-hr	913.29229	8.00	921.29	196
SO ₂	3-hr	356.56679	8.00	364.57	1300
SO ₂	24-hr		0	0	365
SO ₂	Annual		0	0	80
PM ₁₀	24-hr		0	0	150
Pb	3-mo		0	0	0.15
NO ₂	1-hr	868.61345	56.00	924.61	188
NO ₂	Annual	1.86563	10.00	11.87	100
CO	1-hr		0	0	40000
CO	8-hr		0	0	10000

Date: Upd. April 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 6. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Secondary PM _{2.5} Contribution (μg/m³)	Background (μg/m³)	Total Conc. = [Background + Secondary + GLCmax] (μg/m³)	Standard (µg/m³)
PM _{2.5}	24-hr	5.33875	0.058838134	27.61	33.00759	35
PM _{2.5}	Annual		0.001930741	0	0.00193	12

Date: Upd. April 2020 Permit #: 159254

Permit #: 159254

Health Effect Modeling Results

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Facility:

Modeled Health	Effect Results	(MERA Guidance):	Step 3	Step 4: Production		Step 4: MSS	
Chemical Species	CAS Number	Averaging Time	ESL [µg/m³]	10% ESL Step 3 Modeled GLCmax [µg/m³]	25 % ESL Step 4 Production GLCmax since most recent site wide modeling [µg/m³]	10% ESL Step 4 Production Project Only GLCmax [µg/m³]	50% ESL Step 4 MSS GLCmax since most recent site wide modeling [µg/m³]	25% ESL Step 4 MSS Project Only GLCmax [µg/m³]
crude oil, < 1% benzene	N/A	1-hr	3500		2086.07	2086.07		
Light Petroleum Distillates	N/A	1-hr	Provide Documentation		3649.53	3649.53		
Heavy Petroleum Distillates	N/A	1-hr	Provide Documentation		2677.71	2677.71		
methyl tert-butyl ether	1634-04-4	1-hr	630		677.22	677.22		
Heavy Petroleum Distillates	N/A	Annual	Provide Documentation		34.84	34.84		

Date: Upd. April 2020 Permit #: 159254

Permit #: 159254

Health Effect Modeling Results

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Facility:

Modeled Health	Modeled Health Effect Results (MERA Guidance):					Step 5: MSS Only Step 5: Hours of Exceedance			
Chemical Species	CAS Number	Averaging Time	ESL [µg/m³]	Full ESL Step 5 GLCmax [µg/m³]	1X ESL GLCmax Step 5 MSS Hours of Exceedance	2X ESL GLCmax Step 5 MSS Hours of Exceedance	4X ESL GLCmax Step 5 MSS Hours of Exceedance	10X ESL GLCmax Step 5 MSS Hours of Exceedance	Was Step 6 relied on to fall out of the MERA?
crude oil, < 1% benzene	N/A	1-hr	3500						
Light Petroleum Distillates	N/A	1-hr	Provide Documentation						
Heavy Petroleum Distillates	N/A	1-hr	Provide Documentation						
methyl tert-butyl ether	1634-04-4	1-hr	630						
Heavy Petroleum Distillates	N/A	Annual	Provide Documentation						

Date: Upd. April 2020 Permit #: 159254

Permit #: 159254

Health Effect Modeling Results

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

Facility:

Modeled Health	Modeled Health Effect Results (MERA Guidance):					Step 7: Hours of Exceedance			
Chemical Species	CAS Number	Averaging Time	ESL [µg/m³]	Site Wide GLCmax [µg/m³]	Site Wide GLCni [µg/m³]	1X ESL GLCni Hours of Exceedance	2X ESL GLCmax Hours of Exceedance	4X ESL GLCmax Hours of Exceedance	10X ESL GLCmax Hours of Exceedance
crude oil, < 1% benzene	N/A	1-hr	3500	2086.07	334.21				
Light Petroleum Distillates	N/A	1-hr	Provide Documentation	3649.53	580.78		0		
Heavy Petroleum Distillates	N/A	1-hr	Provide Documentation	2677.71	396.68		6	0	
methyl tert-butyl ether	1634-04-4	1-hr	630	677.22	112.03		0		
Heavy Petroleum Distillates	N/A	Annual	Provide Documentation	34.84	N/A				

Erica Bayeh <erica.bayeh@tricordconsulting.com>

Port of Corpus Christi Authority of Nueces County - Permit No. 159254

Philip Leung < Philip. Leung@tceq.texas.gov>

Tue, Apr 28, 2020 at 1:35 PM

To: Joe Ibanez <joe.ibanez@tricordconsulting.com>

Cc: Erica Bayeh <erica.bayeh@tricordconsulting.com>, Laura Gibson <Laura.Gibson@tceq.texas.gov>, Lucero Marquez <Lucero.Marquez@tceq.texas.gov>, "sarah@pocca.com" <sarah@pocca.com>

Good Afternoon Joe,

If you are planning on including TKMSS, the current modeled location is not near any tanks. Since the source represents MSS activity for tanks, I would recommend modeling TKMSS at a possible location (near a tank).

Thank You,

Philip Leung

Texas Commission on Environmental Quality

Office of Air - Air Permits Division

Air Dispersion Modeling Team

512-239-1508

Philip.Leung@tceq.texas.gov

How are we doing? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

From: Joe Ibanez <joe.ibanez@tricordconsulting.com>

Sent: Tuesday, April 28, 2020 11:07 AM

To: Philip Leung < Philip.Leung@Tceq.Texas.Gov>

Cc: Erica Bayen <erica.bayen@tricordconsulting.com>; Laura Gibson <Laura.Gibson@tceq.texas.gov>; Lucero Marquez

<Lucero.Marquez@tceq.texas.gov>; sarah@pocca.com

Subject: Re: Port of Corpus Christi Authority of Nueces County - Permit No. 159254

Morning Philip!

Thanks for the feedback and continued support with this modeling related to the subject permit application.

Regarding Question #1, we propose to use the intermittent source guidance instead of removing the source completely. Per the documentation provided for Source ID TKMSS, this MSS emission activity will occur twice each year, for a

maximum total time of 24 hours for each event. As such, consistent with the guidance, it is appropriate to calculate a reduced emission rate as follows: 22.41 lb/hr * 48 hr / 8760 hr = 0.123 lb/hr. Please note that the existing modeled stack parameters will not be altered. Please confirm this approach will be acceptable.

Regarding Question #2, we will use the stack parameters you provided in an updated model run. Thank you for researching and finding those parameters.

If you have any questions, please call me on my cell phone anytime.

Regards,

Joe J. Ibanez

TRICORD

4760 Preston Rd., Ste 244-193

Frisco, TX 75034

Office and Fax: 888.900.0746 x 700

Cell: 972.837.0591

E-mail: Joe.Ibanez@TRICORDConsulting.com

Web: www.TRICORDConsulting.com

[Quoted text hidden]

Date: Upd. Apr. 2020

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 1. Project-Related Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)
SO ₂	1-hr	186.98650	20.42
H ₂ SO ₄	1-hr		1
H ₂ SO ₄	24-hr		0.3
H ₂ S	1-hr	1.02930	2.16 (If property is residential, recreational, business, or commercial)
H₂S	1-hr	1.02930	3.24 (If property is not residential, recreational, business, or commercial)

Table 2. Site-wide Modeling Results for State Property Line

rable 2. One wide inducting Results for State Froperty Line									
Pollutant	Averaging Time	GLCmax (µg/m³)	Standard (µg/m³)						
SO ₂	1-hr	186.98650	1021						
H ₂ SO ₄	1-hr		50						
H ₂ SO ₄	24-hr		15						
H ₂ S	1-hr		108 (If property is residential, recreational, business, or commercial)						
H₂S	1-hr		162 (If property is not residential, recreational, business, or commercial)						

Table 3. Modeling Results for Minor NSR De Minimis

<u> </u>									
Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)						
SO ₂	1-hr	186.98650	7.8*						
SO ₂	3-hr	174.18493	25						
SO ₂	24-hr		5						
SO ₂	Annual		1						
PM ₁₀	24-hr	1.71602	5						
NO ₂	1-hr	62.31902	7.5**						
NO ₂	Annual	1.86563	1						
CO	1-hr	138.23549	2000						
CO	8-hr	111.37084	500						

Additional information for the De Minimis values listed above can be found at:

* www.tceq.texas.gov/assets/public/permitting/air/memos/appwso2.pdf

^{**} www.tceq.texas.gov/assets/public/permitting/air/memos/guidance 1hr no2naaqs.pdf

Date: Upd. Apr. 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 4. PM_{2.5} Modeling Results for Minor NSR De Minimis

Pollutant	Averaging Time	GLCmax (µg/m³)	Secondary PM _{2.5} Contribution (µg/m³)	Total Conc. = Secondary PM _{2.5} + GLCmax (μg/m³)	De Minimis (μg/m³)	
PM _{2.5}	24-hr	1.71602	0.058838134	1.77486	1.2*	
PM _{2.5}	Annual	0.101	0.001930741	0.10266	0.2*	

Additional information for the De Minimis values listed above can be found at:

* www.tceq.texas.gov/permitting/air/modeling/epa-mod-guidance.html

Date: Upd. Apr. 2020

Permit #: 159254

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 5. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Background (μg/m³)	Total Conc. = [Background + GLCmax] (μg/m³)	Standard (µg/m³)
SO ₂	1-hr	187.01479	8.00	195.01	196
SO ₂	3-hr	174.30784	8.00	182.31	1300
SO ₂	24-hr		0	0	365
SO ₂	Annual		0	0	80
PM ₁₀	24-hr		0	0	150
Pb	3-mo		0	0	0.15
NO ₂	1-hr	120.82086	56.00	176.82	188
NO ₂	Annual	1.86563	10.00	11.87	100
CO	1-hr		0	0	40000
CO	8-hr		0	0	10000

Date: Upd. Apr. 2020 Permit #: 159254

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Port of Corpus Christi Authority of Nueces County

NAAQS-SPL Modeling Results

Table 6. Total Concentrations for Minor NSR NAAQS (Concentrations > De Minimis)

Pollutant	Averaging Time	GLCmax (μg/m³)	Secondary PM _{2.5} Contribution (µg/m³)	Background (μg/m³)	Total Conc. = [Background + Secondary + GLCmax] (μg/m³)	Standard (µg/m³)
PM _{2.5}	24-hr	5.33875	0.058838134	27.61	33.00759	35
PM _{2.5}	Annual		0.001930741	0	0.00193	12

Off-Property Source Inventory Port of Corpus Christi Authority - Transloading Bulk Dock 3 Updated - April 2020

					Emissi	on Rates		9	Stack Parameters			
RN	Project Number	Permit Number	r Site	EPN/Source ID	NO2 (lb/hr)	SO2 (lb/hr) mE (m)	mN (m)	Height (ft)	Diameter (ft)	Exit Velocity (fps)	Temp (F)	Notes
				FWP10	0.03	1.5/0.02 653357	3078345	7	0.67	134.8	894	Intermittent source guidance for NO2 and SO 1-hr (3-hr emission rate listed first).
				FWP11	0.03	1.5/0.02 653440.5	3078371.95	7	0.67	134.8	894	Intermittent source guidance for NO2 and SO 1-hr (3-hr emission rate listed first) Coordinates provided by RN were over the water. Shifted location next to FWP10.
RN109696153	266371	145717	Corpus Christi Waterfront Terminal	EMGEN10	0.04	1.63/0.02 652641	3077859	7	0.5	81.5	942	Intermittent source guidance for NO2 and SO 1-hr (3-hr emission rate listed first).
				EMGEN11	0.01	0.27/0.002283 652646	3077859	4.5	0.21	81.6	896	Intermittent source guidance for NO2 and SO 1-hr (3-hr emission rate listed first).
				VCU	11.33	132.59 653160	3078243	65	12	40	900	Page 9/755 talks about the worst-case VCU - only one is operated at a time. VCU13 is worst case per 285/755.
				PCTRL10	6.07	3.37 652939	3078125	22	7.5	21.78	950	
RN106337934	243930	100927	Corpus Christi Dock	COMB	27.46	19.76 645142	3080790	70	13	16.4	1000	
	295446	155262		PORTTO	0.9	- 655058	3076383	8.5	2.83	47.98	924.5	
	295944	155442		65A_1	1.28	0.55 655209	3076672	150	8.9	16.9	450	
RN102534138	296969	149762	Flint Hills East Refinery	TKMSS	0.3684	0.2 653705.1	3076527	3.2808	0.0033	0.0033	-459.6700	Could not find parameters, utilized AQMG instructions for missing parameters. Used PBR documentation for placement - between tanks 168 and 169 on a road. Used intermittent source guidance with TCEQ permission. 22.41 lb/hr * 144 hr / 8760 hr = 0.3684 lb/hr. Hours of operation are cited in the project documentation.
	310284	155442		65A_2	3.38	1.44 655209	3076672	150	8.9	16.9	450	Parameters from Table 1(a) - bookmarked.
	310309	154161		F_112	0.01	0.01 654000	3077000	3	0.00328084	0.00328084	-459.67	Could not find parameters, utilized worst-case.
				VCU_3	4.1712	- 657343.8	3077761.82	60	14	47	1400	Emission rate increases are bookmarked in the modeling report.
RN102317658	268645	32769	NuStar Logistics, LP	VCU_4	8.2612	0.003 656835.1	3077750.66	60	14	47	1400	Emission rate increases are bookmarked in the modeling report.
KIN102317038	200043	32709	Nustai Logistics, Li	VCU_5	7.5312	16.243 656574.9	3077752.46	60	14	47	1400	Emission rate increases are bookmarked in the modeling report.
				MSSVCU	-	0.16 658080.1	3078270.57	15	4.5	20	1100	Emission rate increases are bookmarked in the modeling report.
	265124	8778A		521_H1	8.82	- 648123.5	3077566.59	265	10.17	20.6	560	
RN100238799	296398	155603	Corpus Christi Refinery West Plant	590_H1	0.07	0.04 648387	3077050	130	5.899934383	20	455	The stack parameters are from this project's submitted modeling. Modeling files from the TCEQ are included.
	270370	155005		590_H2	0.01	0.01 648387	3077091	130	5.899934383	20	455	The stack parameters are from this project's submitted modeling. Modeling files from the TCEQ are included.
	277068			VFB145_6	0.98	1.42 644824	3080134	50	7.825	23.6	1700	Increases determined by comparing previous MAERT to the MAERT for this project.
				R_201	-	2.54 644300.5	3079587.55	175	11	11.03	300	Increase determined by comparing MAERT from Project Number 277068.
				KK_3	-	1.63 644207.4	3079685	100	4	31.5	500	Increase determined by comparing MAERT from Project Number 277068.
				DDSHTRST	-	0.92 644210.3	3079836.716	100	7	5.63	450	Increase determined by comparing MAERT from Project Number 277068.
				A_203	-	6.02 644499.3	3079666.569	50	12	17.3	300	Increase determined by comparing MAERT from Project Number 277068.
DNI100225266	288238	6819A	Files Hills December Commer Chairli Wast Diseas	A_204	-	1.9 644500	3079720	175	5	30.6	300	Increase determined by comparing MAERT from Project Number 277068.
KIN100233200®			Flint Hills Resources Corpus Christi West Plant	MX_1	-	1.02 644383	3079552	100	4	32.1	300	Increase determined by comparing MAERT from Project Number 277068. Parameters from 2018 EI.
				V_8	0.39	- 644328.1	3080096.985	15	1.4	65.6168	1831.73	Increase determined by comparing MAERT from Project Number 277068.
				EXANVENT	0.01	0.01 644824	3080134	3.2808	0.00328084	0.00328084	-459.67	Increases determined by comparing MAERT from Project Number 277068. Could not find parameters, utilized AQMG instructions for missing parameters.
				LEUHOH	4.5	6.06 644372.7	3079459.43	213	11.5	20.4	300.0	Modeled full allowable, could not determine if increases are applicable. Parameters provided from Philip Leung (TCEQ ADMT) via email on April 28th, 2020.
												EPN is formally known as "SATGASHTR" but was renamed LEUHOH in a 2019 permit amendment.
	300264	156619		DDSHTRS2	0.01	0.01 644210.3		100	,	5.63		Same stack as DDSHTRST
RN100214386	297644	155846	Valero Refining Texas LP	PVCU	5.88	0.10 644210.3	3078253.53		0.00328084	0.00328084		Could not find parameters, utilized AQMG instructions for missing parameters.
	305642	38754	Valero Refining Texas LP	TRUCKCOM	0.89	0.02 648793.2	3077697.83		0.5	10		Used current MAERT vs. MAERT from 2018 (PN 272645) to determine increases over time.
	286815	152290	POTAC LLC	STACK_1C	0.69	0.04 648416.6	3077790.07	3.2808	0.00328084	0.00328084		Could not find parameters, utilized AQMG instructions for missing parameters.
RN100214188	302292	9342A	POTAC LLC	MVC001	2.52	9.17 648446		45	11	45		Parameters from Table 1(a) - bookmarked.
				MVC002	2.52	9.17 648469	3079353	45	11	45		Parameters from Table 1(a) - bookmarked.
RN100664986	291920	3806	STX Beef Company, Rendering Facility	1	0.35	0.01 643890.6	3078241.58	3	0.00328084	0.00328084	-459.67	Was not able to determine increases from this project. Used full allowables on MAERT.
	243003	5418A		86	-	0.19 655274.3	3076855.74	3.2808	0.00328084	0.00328084	-459.67	Used current MAERT vs. MAERT from project number 190014 for emission rate comparison. Could not find parameters, utilized AQMG instructions for missing parameters.
RN102555166		011011	Citgo Refining and Chemicals Company, L.P.	202	-	0.12 655274.3	3076855.74	3.2808	0.00328084	0.00328084	-459.67	Used current MAERT vs. MAERT from project number 190014 for emission rate comparison. Could not find parameters, utilized AQMG instructions for missing parameters.
	308795	159107		207_H_1	0.28	0.18 655274.3		3.2808		0.00328084	-459.67	Used current MAERT vs. MAERT from project number 190014 for emission rate comparison. Could not find parameters, utilized AQMG instructions for missing parameters.
				RAILVCU	3	2.41 648217	3078776	29.85564304	4.98687664			Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).
				VCU1	-	4.11 647912	3079306	60	10	13.6		Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).
				VCU2	-	4.11 647901	3079313	60	10	13.6		Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).
				VCU3	6.3	7.2 647882	3079291	60.03937008				Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).
DNI40004 40= :	20045		n 1 m 27.177.0	VCU4	6.3	7.2 647878	3079294	60.03937008	10.00656168	13.61548556		Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).
RN103914974	289465	106594	Buckeye Texas Hub LLC	VCU5	6.3	7.2 648282	3078740	60.03937008	10.00656168	13.61548556		Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).
	1	1		VCU6	6.3	7.2 648277	3078744	60.03937008	10.00656168	13.61548556		Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).
				TRKDPRES	7.98	5.05 647754	3079136		2.001312336	213.2545932		Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).
1				MT_BOIL1	2.15	0.01 647806			4.002624672			Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).
1				EMERGEN1	0.02	- 647856		12.13910761	0.331364829			Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).
				EMERGEN2	0.03	0.01 647865	3078999	12.13910761	0.331364829	100.0656168	399.992	Used current MAERT vs. MAERT from 2015 to determine increases over time. ADMT files for parameters (*.ADI files).