

11555 Clay Road, Suite 100 Houston, TX 77043 P (713) 690-8989 F (713) 690-6767

Terracon.com

November 17, 2023

U.S. Army Corps of Engineers Galveston District 2000 Fort Point Road Galveston, Texas 77550

U.S. Environmental Protection Agency Region 6 1445 Ross Avenue Dallas, Texas 75202

Re: Sampling, Chemical Analysis, and Bioassessment for

Offshore Disposal of Dredge Material

Port of Corpus Christi Authority

Harbor Island New Dock and Facilities Project

Port Aransas, Texas

To Whom It May Concern:

On behalf of the Port of Corpus Christi Authority (PCCA), Terracon Consultants, Inc. (Terracon) is pleased to submit this report which details the field sampling, analysis and results of Marine Protection, Research, and Sanctuaries Act (MPRSA) Section 103 sediment testing and analysis in support of the new work dredging for the PCCA Harbor Island New Dock and Facilities Project in Port Aransas, Texas. The project area is composed of eight dredged material management units (DMMUs), which includes six land-based/terrestrial DMMUs (DMMU 1 through DMMU 6) located on Harbor Island, and two marine DMMUs (DMMU 7 and DMMU 8) that are adjoining to the south of Harbor Island and north of the Port Aransas federal ship channel. The project included sampling at the offshore Reference Area (Reference) and the Corpus Christi New Work Ocean Dredged Material Disposal Site (ODMDS), herein referred to as New Work ODMDS.

This report presents the results of the investigation completed between January 16 and January 27, 2023 (re-sampling event) for the Harbor Island New Dock and Facilities Project, including applicable data for the offshore Reference Area and New Work ODMDS area.

Sincerely,

Terracon Consultants, Inc.

(TBPE Firm Registration No. F-3272) (TBPG Firm Registration No. 50058)

Gregg Pawlak

Senior Scientist

Prasad Rajulu, P.E.

Site Investigations Group Manager

Submitted to:

U.S. Army Corps of Engineers Galveston District 2000 Fort Point Road Galveston, Texas 77550

and

U.S. Environmental Protection Agency Region 6 1445 Ross Avenue Dallas, Texas 75202

Prepared by:

Terracon Consultants, Inc. 11555 Clay Road, Suite 100 Houston, Texas 77043

On behalf of

Port of Corpus Christi Authority 400 Harbor Drive Corpus Christi, Texas 78401

Date

November 17, 2023

TABLE OF CONTENTS

EXE	CUTI	VE SUI	MMARY	ES-1
1	INTF	RODUC	CTION	1
	1.1	Projec	ct Area Description	1
	1.2	-	jing History	
	1.3	•	iption of the Testing Approach	
			Evaluation of Dredged Material for Disposal	
		1.3.2	Objectives and Deliverables	
2	MAT	ERIAL	S AND METHODS	5
	2.1		ct Design and Rationale	
	2.2	Samp	le Collection Techniques	13
		2.2.1	Field Effort	13
		2.2.2	Site Positioning	14
		2.2.3	Sediment Sampling with Drill Rig	15
		2.2.4	Sediment Sampling with Double van Veen™	17
		2.2.5	Water Column Measurements and Sampling	
		2.2.6	Decontamination Procedures	
		2.2.7	Field Quality Control	
		2.2.8	Sample Transport, Processing, and Custody	
	2.3	,	cal and Chemical Analytical Procedures	
		2.3.1	Physical Procedures	
		2.3.2	Chemical Analytical Procedures	
	2.4	Bioaco	cumulation and Toxicology Procedures	
		2.4.1	Ammonia and Salinity Screening in Sediments	
		2.4.2	Water for Bioassay Testing	
		2.4.3	Water Column (Suspended Particulate Phase) Bioassay Procedures	
		2.4.4	Whole Sediment (Solid Phase) Bioassay Procedures	
		2.4.5	Bioaccumulation Procedures	
	2.5		e Analysis Recommendations	
	2.6	Data F	Reduction and Applicable Technical Quality Standards	
		2.6.1	Sediment Chemistry	
		2.6.2	Elutriate and Water Chemistry	
		2.6.3	Toxicity	
		2.6.4	Tissue Chemistry	29
	2.7	Repor	ting Limits	30
3	RES	ULTS A	AND DISCUSSION	31
	3.1	Field S	Sampling	31
	3.2	Sedim	nent Physical Results	31
	3.3	Sedim	nent Chemistry	34
		3.3.1	Metals, Ammonia, Cyanide, TPH, TOC, Total Solids and Butyltins	
		3.3.2	Pesticides and Total PCBs	
		3.3.3	PAHs	38
		334	SVOCs	41

	3.4	Elutri	ate and Water Chemistry	41
		3.4.1	Metals, Ammonia, Cyanide, TOC, TSS, TPH, Organotins, and Salinity.	41
		3.4.2	Pesticides and Total PCBs	45
		3.4.3	PAHs	45
		3.4.4	Semi-volatile Organic Compounds	45
	3.5	Wate	r Column (Suspended Particulate Phase) Bioassays	46
		3.5.1	Americamysis bahia 96-Hour Bioassay	46
		3.5.2		
		3.5.3	Americamysis bahia Plankton 48-Hour Bioassay	48
	3.6	Whol	e Sediment (Solid Phase) Bioassays	
		3.6.1	Leptocheirus plumulosus 10-Day Bioassay	
		3.6.2	Americamysis bahia 10-Day Bioassay	50
	3.7	Bioac	cumulation Potential Tests	51
	3.8	Tissu	e Chemistry	52
		3.8.1	Total Solids	52
		3.8.2	Metals and TPH	52
		3.8.3	PAHs	57
	3.9	Gene	eral Risk-Based Evaluations	63
4	ADD	AMS I	MODEL	110
5	RFF	FRFN	CES	116
Exhib	it ES-	1. S	ummary of Analytical Results for Harbor Island New Dock and Facilities	. ES-14
Exhib			rincipal Data Users and Decision-Makers Associated with This Project	
Exhib			rime and Subcontractors and Responsibilities Associated with This Report	
Exhib			redged Material Management Units, Sample IDs, Bottom Elevations,	4
⊏XI IID	IL Z-1.	C	omposite IDs, and Analyses	7
Exhib	it 2-1.		redged Material Management Units, Sample IDs, Bottom Elevations, omposite IDs, and Analyses	8
Exhib	it 2-1.		redged Material Management Units, Sample IDs, Bottom Elevations, omposite IDs, and Analyses	9
Exhib	it 2-1.		redged Material Management Units, Sample IDs, Bottom Elevations, omposite IDs, and Analyses	10
Exhib	it 2-2.	S	ummary of Field Sampling Materials and Methods	11
Exhib	it 2-3.	A	nalytical Requirements for Physical, Chemical, and Toxicological Testing	12
Exhib	it 2-4.		ummary of Methods and Equipment Used during Sediment, Elutriate, and issue Analysis	22
Exhib	it 2-5.		oxicity and Bioaccumulation Potential Testing Performed for Dredged Material valuation	24
Exhib	it 2-6.	In	itial Sediment Overlying Water Measurements	25
Exhib		С	ontaminants of Concern Analyzed in Tissue Samples from PCCA Harbor Island ew Dock and Facilities Project	
Exhib	it 3-1.		ercent Grain Size Distribution by Subsample	

Exhibit 3-2.	Analytical Results for Metals, Ammonia, Cyanide, TPH, Total Solids, TOC, and Organotins in Sediment	36
Exhibit 3-2.	Analytical Results for Metals, Ammonia, Cyanide, TPH, Total Solids, TOC, and Organotins in Sediment	37
Exhibit 3-3.	Analytical Results for PAHs Detected in Sediment Subsamples Above LRLs in Sediment	40
Exhibit 3-4.	Results for Metals, Monobutyltin, Ammonia, TOC, TSS, and TPH Detected Above LRLs in One or More Elutriate Samples	43
Exhibit 3-5.	Results for Metals, Monobutyltin, Ammonia, TOC, TSS, and TPH Detected Above LRLs in One or More Site Water Samples	44
Exhibit 3-6.	Summary of Survival Data for 96-hour SPP Tests Using Americamysis bahia	47
Exhibit 3-7.	Summary of Survival Data for 96-hour SPP Tests Using Menidia beryllina	48
Exhibit 3-8.	Summary of Survival Data for 48-hour SPP Tests Using Planktonic Life Stage Americamysis bahia	49
Exhibit 3-9.	Summary of Survival Data for the 10-Day SP Tests Using Leptocheirus plumulosus	50
Exhibit 3-10.	Summary of Survival Data for the 10-Day SP Tests Using Americamysis bahia	51
Exhibit 3-11.	Summary of Survival Data for Mercenaria mercenaria and Alitta virens	52
Exhibit 3-12.	Mercenaria mercenaria Tissue: Summary of Mean Wet Weight Metals and TPH Results Detected above the MDL in One or More Samples	55
Exhibit 3-13.	Alitta virens Tissue: Summary of Mean Wet Weight Metals and TPH Results Detected above the MDL in One or More Samples	56
Exhibit 3-14.	Mercenaria mercenaria Tissues: Summary of Mean Adjusted Wet Weight PAH Analytes Results Detected above the LRL in One or More Samples	58
Exhibit 3-15.	Alitta virens Tissues: Summary of Mean Adjusted Wet Weight PAH Analytes Results Detected above the LRL in One or More Samples	59
Exhibit 3-16.	Mercenaria mercenaria and Alitta virens Tissues: Summary of Mean Adjusted Wet Weight SVOCs Results Detected Above the LRL	62
Exhibit 3-17.	Analytical Results for <i>Mercenaria mercenaria</i> Wet Weight Tissue Compared to the Reference and Screening Benchmarks	63
Exhibit 3-18.	Analytical Results for <i>Alitta virens</i> Wet Weight Tissue Compared to the Reference and Screening Benchmarks	65
Exhibit 3-19.	Mercenaria mercenaria Tissue Mean Concentrations Statistically Significantly Greater Than Those of the Reference, Expressed as a Percent of Screening Benchmarks	67
Exhibit 3-20.	Alitta virens Tissue Mean Concentrations Statistically Significantly Greater Than Those of the Reference, Expressed as a Percent of Screening Benchmarks	
Exhibit 3-21.	Number of Tissue Analyte Concentrations Statistically Significantly Greater than Reference Concentrations	73
Exhibit 3-22.	Mean Antimony Concentrations in Project Tissue Samples Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida	74
Exhibit 3-23.	Arsenic Concentrations in Project Tissue Samples Compared to Toxicity Values from Literature Review	75
Exhibit 3-24.	Mean Arsenic Concentrations in Project Tissue Samples Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida	76
Exhibit 3-25.	Mean Arsenic Concentrations in Project Tissue Samples Compared to Concentrations in Wild Aquatic Species Caught off Fort Lauderdale, Florida	76

Exhibit 3-26.	Cadmium Concentrations in Project Tissue That Statistically Significantly Exceeded Those of the Reference Compared to Toxicity Values from Literature Review	77
Exhibit 3-27.	Cadmium Concentration in Project Tissue Sample That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida	79
Exhibit 3-28.	Cadmium Concentration in Project Tissue Sample That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Fort Lauderdale, Florida	79
Exhibit 3-29.	Cadmium Concentration in Project Tissue Sample That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Northern Quahog from Indian River Lagoon, Florida	80
Exhibit 3-30.	Chromium Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida	81
Exhibit 3-31.	Chromium Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Fort Lauderdale, Florida	81
Exhibit 3-32.	Chromium Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Northern Quahog from Indian River Lagoon, Florida	82
Exhibit 3-33.	Copper Mean Concentration in Project Tissue That Statistically Significantly Exceeded the Reference Compared to Toxicity Values from Literature Review	83
Exhibit 3-34.	Lead Concentrations in Project Tissue That Statistically Significantly Exceeded Those of the Reference Compared to Toxicity Values from Literature Review	84
Exhibit 3-35.	Lead Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida	85
Exhibit 3-36.	Lead Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Fort Lauderdale, Florida	85
Exhibit 3-37.	Lead Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Northern Quahog from Indian River Lagoon, Florida	86
Exhibit 3-38.	Nickel Concentration in Project Tissue That Statistically Significantly Exceeded That of the Reference Compared to Toxicity Values from Literature Review	87
Exhibit 3-39.	Nickel Concentration in Project Tissue Sample That Statistically Significantly Exceeded That of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida	88
Exhibit 3-40.	Nickel Concentration in Project Tissue Sample That Statistically Significantly Exceeded That of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Fort Lauderdale, Florida	88
Exhibit 3-41.	Nickel Concentration in Project Tissue Sample That Statistically Significantly Exceeded That of the Reference Compared to Concentrations in Wild Northern Quahog from Indian River Lagoon, Florida	89
Exhibit 3-42.	Selenium Mean Concentration in Project Tissue That Statistically Significantly Exceeded That of the Reference Compared to Concentrations in Wild Mercenaria mercenaria (Northern Quahog) from Indian River Lagoon, Florida	90

Exhibit 3-43.	Mean Selenium Concentrations in Project Tissue Samples Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida	90
Exhibit 3-44.	Mean Silver Concentration in Project Tissue Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida	91
Exhibit 3-45.	Mean Silver Concentration in Project Tissue Compared to Concentrations in Wild Jonah Crab Caught off Fort Lauderdale, Florida	91
Exhibit 3-46.	Mean Silver Concentration in Project Tissue Compared to Concentrations in Wild Northern Quahog from Indian River Lagoon, Florida	92
Exhibit 3-47.	Zinc Concentrations in Project Tissues That Statistically Significantly Exceeded Those of the Reference Compared to Toxicity Values from Literature Review	94
Exhibit 3-48.	Fluoranthene Mean Concentration in Project Tissues Compared to NOAEL Values from Literature Review	97
Exhibit 3-49.	Fluoranthene Mean Concentrations in Project Tissues Compared to LOAEL Values from Literature Review	97
Exhibit 3-50.	Proposed Criteria for Ingestion of Total PAHs in Human Health Protection Obtained from a Literature Search	98
Exhibit 3-51.	Maximum Concentrations of Total HPAHs and Total PAHs in Project Tissues Compared to NOAEL Values Obtained from the Literature Review	100
Exhibit 4-1.	Simulation Type: Descent, Collapse, and Diffusion	110
Exhibit 4-2.	Site Description for New Work ODMDS	111
Exhibit 4-3.	Current Velocity Data	111
Exhibit 4-4.	Material Data	111
Exhibit 4-5.	Output Options	111
Exhibit 4-6.	Disposal Operation Data	112
Exhibit 4-7.	Volumetric Fractions and Water Quality Criteria of Dredge Material	112
Exhibit 4-8.	Four-Hour Criteria and Disposal Site (D.S.) Boundary Criteria after Initial Mixing	114
Exhibit 4-9.	Corpus Christi New Work ODMDS Map with STFATE Modeled Disposal Point	115

LIST OF FIGURES

- Figure 1 Dredge Area Location Map
- Figure 2.1 Dredge Sample Locations (Harbor Island DMMUs)
- Figure 2.2 Dredge Sample Locations (New Work ODMDS)
- Figure 2.3 Dredge Sample Locations (Reference Area)

LIST OF TABLES

Table 1A	Terrestrial Core Sample Summary and Field Data
Table 1B	Marine Core Sample and Grab Sample Summary
Table 1C	Reference and ODMDS Grab Sample Summary
Table 2	Site Water Sample Summary Including Water Column Measurements
Table 3	Results of Physical Analyses for Sediment Samples
Table 4	Analytical Results for Dry Weight Metals, Ammonia, Total Cyanide, TPH, Total Solids, TOC, Organotins, and pH in Sediment Samples
Table 5	Analytical Results for Dry Weight Pesticides and Total PCBs in Sediment Samples
Table 6	Analytical Results for Dry Weight PAHs in Sediment Samples
Table 7	Analytical Results for Dry Weight SVOCs in Sediment Samples
Table 8	Analytical Results for Metals, Ammonia, Organotins, TOCs, Total Cyanide, TSSs, TPH, and Salinity in Site Water and Elutriates Generated from Sediment
Table 9	Analytical Results for Pesticides and Total PCBs in Site Water and Elutriates Generated from Sediment
Table 10	Analytical Results for PAHs in Water and Elutriates Generated from Sediment
Table 11	Analytical Results for SVOCs in Water and Elutriates Generated from Sediment
Table 12	Analytical Results for Total Solids in Mercenaria Tissues and Alitta virens Tissues
Table 13	Analytical Results for Wet Weight Metals and TPH in Mercenaria Tissues
Table 14	Analytical Results for Wet Weight Metals and TPH in Alitta virens Tissues
Table 15	Analytical Results for Dry Weight Metals and TPH in <i>Mercenaria mercenaria</i> Tissues
Table 16	Analytical Results for Dry Weight Metals and TPH in Alitta virens Tissues
Table 17	Analytical Results for Wet Weight PAHs in Mercenaria mercenaria Tissues
Table 18	Analytical Results for Wet Weight PAHs in Alitta virens Tissues
Table 19	Analytical Results for Dry Weight PAHs in Mercenaria mercenaria Tissues
Table 20	Analytical Results for Dry Weight PAHs in Alitta virens Tissues
Table 21	Analytical Results for Wet Weight Organotins in <i>Mercenaria mercenaria</i> and <i>Alitta virens</i> Tissues
Table 22	Analytical Results for Dry Weight Organotins in <i>Mercenaria mercenaria</i> and <i>Alitta virens</i> Tissues
Table 23	Analytical Results for Wet Weight SVOCs in Mercenaria mercenaria Tissues
Table 24	Analytical Results for Wet Weight SVOCs in Alitta virens Tissues
Table 25	Analytical Results for Dry Weight SVOCs in Mercenaria mercenaria Tissues
Table 26	Analytical Results for Dry Weight SVOCs in <i>Alitta virens</i> Tissues

LIST OF APPENDICES

Appendix A SAP (PCCA 2021) Appendix B Field Paperwork Appendix C Physical Lab Report Appendix D Chemical Quality Assurance Report Appendix E Chemistry Lab Reports Appendix F **Statistical Calculations** Appendix G **Toxicity Lab Report** ADDAMS Model Appendix H Appendix I Photos of Samples and Field Operations

Pertinent Correspondence

Appendix J

ACRONYMS, ABBREVIATIONS, & INITIALISMS

ADDAMS Automated Dredging and Disposal Alternatives Modeling System

CFR Code of Federal Regulations
CMC criteria maximum concentration

CME Central Mine Equipment

CQAR Chemical Quality Assurance Report

Cy cubic yard

DEHP di(2-ethylhexyl) phthalate

DMMU dredged material management unit

ECD/ELCD electron capture detectors/electrolytic conductivity detectors

EET ecological effects threshold

EPA/USEPA U.S. Environmental Protection Agency

ERDC U.S. Army Engineer Research and Development Center

ERED Environmental Residue Effects Database

ERL effects range-low

FDA U.S. Food and Drug Administration

Green Book Evaluation of Dredged Material Proposed for Ocean Disposal – Testing

Manual (EPA 503/8-91/001, February 1991)

GPS Global positioning system
HPAH high molecular weight PAH

HSA hollow-stem augers

ICP/MS inductively coupled plasma
ITM Inland Testing Manual

LC₅₀ lethal concentration affecting 50% of a population

LOAEL laboratory calibration standard lowest observed adverse effect level

LPAH low molecular weight PAHs
LPC limiting permissible concentration

LRL laboratory reporting limit
LMW low molecular weight
MDL method detection limit
MLLW Mean Lower Low Water

MPRSA Marine Protection, Research, and Sanctuaries Act of 1972

MRL method reporting limit

MS/MSD matrix spike/matrix spike duplicate NOAEL no observed adverse effect level

NWDLS North Water District Laboratory Services, Inc.

ODMDS ocean dredged material disposal site polynuclear aromatic hydrocarbon

pH potential of hydrogen
PCB polychlorinated biphenyl

PCCA Port of Corpus Christi Authority QA/QC quality assurance/quality control

Reference Offshore Reference Area

RIA Regional Implementation Agreement

RRC Railroad Commission of Texas SAP Sampling and Analysis Plan

SP solid phase

SPP suspended particulate phase

SERIM Southeastern Regional Implementation Manual (EPA USACE 2008)

SMMP Site Management and Monitoring Plan

STFATE Short-Term Fate of Dredged Material Disposal in Open-Water Models

SVOC semi-volatile organic compounds

TEL threshold effects level TDL target detection limit TOC total organic carbon total suspended solids

TPH total petroleum hydrocarbons
TWQS Texas Water Quality Standard
USACE U.S. Army Corps of Engineers
VOA volatile organic analysis

LABORATORY QUALIFIERS

A Detection limit elevated due to abundance of non-target analyte B Analyte was found in the associated method blank

B2 The analyte was detected in the associate leach blank

C+ The associated calibration higher than the established quality control

criteria for accuracy

CQ Internal standard response less than 50% calibration response

H The parameter was analyzed outside the method specified holding time

V Analyte was detected in both sample and method blank

V2 Analyte was detected in the sample and associated leach blank U Indicates that the compound was analyzed for but not detected

EXECUTIVE SUMMARY

This report details the field sampling, analysis, and results of Marine Protection, Research, and Sanctuaries Act of 1972 (MPRSA) Section 103 sediment testing and analysis in support of the new work dredging, to include deepening and widening from current elevation of the Harbor Island New Dock and Facilities Project in Port Aransas, Texas. The project area is composed of eight dredged material management units (DMMUs), which includes six land-based/terrestrial DMMUs (DMMU 1 through DMMU 6) located on Harbor Island, and two marine DMMUs (DMMU 7 and DMMU 8) that are adjoining to the south of Harbor Island and north of the Port Aransas federal ship channel. The project included sampling at the offshore Reference Area (Reference) and the Corpus Christi New Work Ocean Dredged Material Disposal Site (ODMDS), herein referred to as New Work ODMDS.

Sampling Approach

Mobilization and field sampling for this report which relates to the Harbor Island New Dock and Facilities Project took place between January 16 and January 27, 2023. However, please note than an initial sampling event for the Harbor Island New Dock and Facilities Project, which included sampling of DMMUs 1 through DMMU 8, the Reference Area, and the New Work ODMDS, took place between February 1, 2022 and March 3, 2022.

Toxicity studies and bioaccumulation studies in the U.S. Army Corps of Engineers (USACE) Galveston and New Orleans Districts are generally conducted in accordance with the Regional Implementation Agreement (RIA, U.S. Environmental Protection Agency [EPA]/USACE, 2003), which "provides guidance for applicants, permittees, and USACE and EPA staff working on ocean dredge material disposal projects in Louisiana and Texas." RIA, Preface. For biological tests of dredge material, RIA Appendix B indicates that holding times, the time between sample collection and test initiation, should not exceed eight weeks or 56 days.

During the initial sampling event conducted in 2022, Terracon performed sediment and water sampling on behalf of the PCCA to establish that material from certain dredging units meets ocean disposal criteria in 40 CFR Parts 220-229. Samples were sent to the North Water District Laboratory Services, Inc. (NWDLS) in the Woodlands, Texas. Due to NWDLS starting the holding time upon the composite date of the sediment material, rather than the time of sample collection, recommended holding times per the RIA were exceeded for eight samples collected for solid phase (SP) bioassay testing and seven samples collected for suspended particulate phase (SPP) bioassay testing. Test initiation for sediment samples collected for SP bioassay testing from DMMU 1 through DMMU 8 commenced between 10 to 15 days beyond the 56 days recommended by the RIA. Test initiation for sediment samples collected for SPP bioassay testing from DMMU 1 through DMMU 7 commenced between one to five days beyond the 56 days recommended by the RIA. Test initiation for sediment samples collected from the Reference Area commenced within the recommended 56-day period.

Due to the test initiation for sediment samples collected for SP and SPP bioassay testing from the various DMMUs beyond the 56 days recommended in the RIA, Terracon mobilized back to the site in January 2023 to conduct a complete resampling of the Harbor Island New Dock and Facilities Project per approval and under the directive of the EPA and USACE. The results of the January 2023 resampling event are summarized below and throughout the following sections of this report.

Sampling efforts consisted of collecting sediment and water samples for physical, chemical, toxicological, and bioaccumulation analysis. A copy of the EPA/USACE-approved Port of Corpus Christi Authority (PCCA) Sampling and Analysis Plan (SAP), dated April 2021, including the SAP Errata Sheet, dated January 10, 2022, and subsequent email correspondences dated January 28, 2022, January 31, 2022, February 3, 2022, February 14, 2022, December 14, 2022, January 17, 2023, January 24, 2023, and February 3, 2023, are presented in Appendix A.

Areas to be dredged were divided into eight DMMUs for the purpose of new work dredging. Each DMMU was expected to have consistent characteristics, and each DMMU covers a specific area (land-based/terrestrial and marine) and dredge material volume within the overall dredging footprint.

- DMMU 1 is comprised of subsample locations 1A 1C and characterizes the surficial terrestrial sediment (0 feet [ft.] Mean Lower Low Water [MLLW] to -30 ft. MLLW).
- DMMU 2 is comprised of subsample locations 1A 1C and characterizes the subsurface terrestrial sediment (-30 ft. MLLW to -60 ft. MLLW).
- DMMU 3 is comprised of subsample locations 2A 2B and characterizes the surficial terrestrial sediment (0 ft. MLLW to -30 ft. MLLW).
- DMMU 4 is comprised of subsample locations 2A 2B and characterizes the subsurface terrestrial sediment (-30 ft. MLLW to -60 ft. MLLW).
- DMMU 5 is comprised of subsample locations 3A 3C and characterizes the surficial terrestrial sediment (0 ft. MLLW to -30 ft. MLLW).
- DMMU 6 is comprised of subsample locations 3A 3C and characterizes the subsurface terrestrial sediment (-30 ft. MLLW to -60 ft. MLLW).
- DMMU 7 is comprised of subsample locations 4A 4D and characterizes the shallow marine sediment from existing depths to -60 ft. MLLW.
- DMMU 8 is comprised of subsample location 5A 5D and characterizes marine sediment from existing depths to -60 ft. MLLW.

Sediment samples were collected from two to four sample locations within each DMMU as referenced above. Sampling locations were selected by the PCCA and approved by the EPA/USACE based on previous terrestrial and marine soil boring investigations conducted in 2019. The distribution and number of cores collected at substation locations provided adequate representation for each DMMU. The material collected from the stations represents dredged material to be disposed of at the New Work ODMDS. The sediment samples were collected from 24 substations within the eight DMMUs using either a Central Mine Equipment (CME) drill rig equipped with hollow-stem and solid-flight augers (terrestrial borings), sonic drill rig (marine borings) and/or double van Veen™ grab sampler (DMMU-8-5D). Grab samples were collected from three substations (A, B, and C) within the offshore Reference Area located to the north of the Entrance Channel and the New Work ODMDS located to the south of the entrance channel using the double van Veen™ grab sampler.

The sediment samples collected from each station within the eight DMMUs were discretely homogenized for physical and chemical laboratory analysis prior to combining the station subsamples to create one composite per DMMU for elutriate preparation and

toxicological/bioaccumulation analysis. Physical, chemical, and toxicological/bioaccumulation analysis was performed on the Reference composite sample. Physical and chemical analysis was performed on the ODMDS composite sample.

Site water was collected from station DMMU-7-4A for elutriate preparation of the terrestrial composite samples from DMMUs 1 through 4. Site water was collected from station DMMU-7-4B for elutriate preparation of the terrestrial composite samples from DMMUs 5 and 6. Site water for elutriate preparation of the marine composite samples from DMMUs 7 and 8 was collected from stations DMMU-7-4B and DMMU-8-5B, respectively. The locations were chosen to best represent the hydrochemical conditions for each DMMU. Additionally, water samples from the Reference Area and the New Work ODMDS was collected for chemical analysis.

Exhibit ES-1 is a summary table of analytical results for this project.

Sediment Physical Results

Grain size distributions for the subsamples analyzed for each DMMU, including the Reference composite sample, and the New Work ODMDS composite sample, are summarized below.

DMMU 1 (Subsamples 1A, 1B, and 1C) - Surficial Terrestrial (0 to -30 ft MLLW)

• DMMU-1 core station subsamples 1A, 1B, and 1C were predominantly sand (71.8% to 82.4%), with silt (17.2% to 27.3%), and trace clay (0.4% to 0.9%).

DMMU 2 (Subsamples 1A, 1B, 1C) - Subsurface Terrestrial (-30 to -60 ft MLLW)

• DMMU-2 core station subsamples 1A, 1B, and 1C were predominantly sand (59.5% to 69.6%), with silt (29.7% to 33.4%), and trace clay (0.7% to 7.1%).

DMMU 3 (Subsamples 2A, 2A Duplicate, and 2B) – Surficial Terrestrial (0 to -30 ft MLLW)

• DMMU-3 core station subsamples 2A and 2B were predominantly sand (84.5% and 82.1%), with silt (15.0% and 17.1%), and clay (15.0% and 17.1%). DMMU-3-2A Duplicate was predominantly sand (84.0%), with silt (15.6%), and trace clay (0.4%).

DMMU 4 (Subsamples 2A and 2B) - Subsurface Terrestrial (-30 to -60 ft MLLW)

• DMMU-4 core station subsamples 2A and 2B were predominantly sand (63.6% and 66.7%), with silt (34.2% and 30.3%), and trace clay (2.2% and 3.0%).

DMMU 5 (Subsamples 3A, 3B, and 3C) - Surficial Terrestrial (0 to -30 ft MLLW)

• DMMU-5 core station subsamples 3A, 3B, and 3C were predominantly sand (70.3% to 83.1%), with silt (16.4% to 29.1%), and trace clay (0.5% to 0.9%).

DMMU 6 (Subsamples 3A, 3B, and 3C) – Subsurface Terrestrial (-30 to -60 ft MLLW)

DMMU-6 core station subsamples -3A, -3B, and -3C were predominantly sand (66.0% to 72.6%), with silt (26.4% to 32.3%), and trace clay (1.0% to 1.7%).

DMMU 7 (Subsamples 4A, 4B, 4C and 4D) – Marine (existing depth to -60 ft MLLW)

• DMMU-7 core station subsamples -4A, -4B, -4C, and -4D were predominantly sand (40.4% to 63.6%) and silt (35.2% to 51.9%), with trace clay (1.2% to 7.4%).

DMMU 8 (Subsamples 5A, 5B, 5C and 5D) - Marine (existing depth to -60 ft MLLW)

• DMMU-8 core station subsamples 5A, 5B, and 5C, were predominantly sand (64.1% to 70.6%), with silt (27.3% to 31.8%), and trace clay (0.9% to 6,3%). Subsample DMMU-8-5D, which was a surface grab sample, consisted of nearly equal portions of sand (43.3%) and silt (47.3%), with some clay 9.4%.

The Reference composite was predominantly sand (59.8%), with silt (39.1%), and trace clay (1.1%).

The New Work ODMDS composite was predominantly sand (76.3%), with silt (23.3%), and trace clay (0.4%).

Sediment Chemistry Results

Sediment chemistry analyses were performed on each DMMU discrete subsample, the Reference composite sample, and the New Work ODMDS composite sample.

Metals, Ammonia, Cyanide, Total Petroleum Hydrocarbons (TPH), Total Organic Carbon (TOC), Total Solids and Butyltins

Most of the 13 metals analyzed were detected in concentrations above the method detection limits (MDL / J-qualified¹) or the laboratory reporting limit (LRL) in the subsamples tested except for antimony, which was U-qualified². Metals detected above the LRL were below the respective threshold effects level (TEL) and effects range low (ERL).

Trivalent chromium ranged from less than (<) 0.139 milligrams per kilogram (mg/kg) to 6.55 mg/kg among the samples tested and was highest in DMMU-7-4B. Hexavalent chromium ranged from <0.132 mg/kg to 1.78 mg/kg among the samples tested and was highest in DMMU-7-4B.

Ammonia (as nitrogen) concentrations ranged from <6.60 mg/kg to 261 mg/kg among samples tested and was highest in DMMU-7-4B. Total cyanide was not detected above the MDL in any of the samples tested.

TPH ranged from <1.86 mg/kg (New Work ODMDS) to 2,068 mg/kg among samples tested and was highest in DMMU-3-2A.

Total solids ranged from 54.2% to 85.5% among samples tested.

TOC concentrations ranged from <0.0512% to 1.29% among samples tested.

The potential of hydrogen (pH) ranged from 7.88 to 9.04 System International [S.I.] units and was H-qualified (analyzed outside of holding time) among samples tested. Please note that the numerous results reported with an H qualifier are a direct result of the Laboratory Information Management System (LIMS) which automatically assigns qualifiers based on the test and specific criteria maintained in the LIMS for analysis. The pH holding times from SW 846 are not specified but have been recommended for as little as 15 minutes. Because of the procedure for sample collection from a vessel including sample prep and delivery to the laboratory, sample analysis was performed as soon as possible, even though it did not meet the suggested holding time.

² Indicates that the compound was analyzed, but not detected above the MDL. Concentrations preceded by the less than (<) symbol are U-qualified.

¹ Indicates an estimated concentration, reported between the laboratory MDL and the LRL.

Organotin compounds dibutyltin, monobutyltin, and tributyltin were not detected above the LRLs in any of the project samples tested, except for monobutyltin in DMMU-1-1C (1.6 micrograms per kilogram [µg/kg]).

Pesticides and Total Polychlorinated Biphenyls (PCB)

Pesticide analytes were not detected above the MDLs (U-qualified) for any DMMU subsample or composite sample tested. The pesticide analyte MDLs, except for dieldrin, γ -BHC (lindane), and toxaphene, were reported below the applicable TELs and (or) ERLs for the samples tested. The MDLs for chlordane (technical) in samples DMMU-2-1C and DMMU-7-4B exceeded the ERL of 0.5 μ g/kg.

Total PCBs were not detected above the MDL (U-qualified) for any DMMU subsample or composite sample tested. Project sediment samples had MDLs ranging between 1.15 μ g/kg to 1.84 μ g/kg, which slightly exceeded the target detection limit (TDL) for total PCBs (1.0 μ g/kg) in the SAP. The MDLs for total PCBs were below the TEL (21.6 μ g/kg) and ERL (22.7 μ g/kg) for the samples tested.

Polynuclear Aromatic Hydrocarbons (PAH)

Several PAH analytes tested were detected above the LRL in some of the subsamples, as summarized below:

- DMMU 1: In subsamples 1B and 1C, PAH analytes were not detected above the LRL. In subsample 1A, two PAH analytes (fluorene and pyrene) were detected above the LRL.
- DMMU 2: In subsamples 1A, 1B, and 1C, PAHs were not detected above the MDL (U-qualified).
- DMMU 3: In subsample 2B, PAHs were not detected above the MDL (U-qualified). In subsamples 2A and 2A Duplicate, seven and six PAH analytes were detected above the LRL respectively. Subsample 2A had four PAH analytes with concentrations that exceeded the TEL and/or ERL. Subsample 2A had one PAH analyte (dibenzo[a,h]anthracene) with a MDL that exceeded the TEL.
- DMMU 4: In subsample 2A, fluorene was detected above the LRL. In subsample 2B, PAHs were not detected above the MDL (U-qualified).
- DMMU 5: In subsamples 3A and 3C, PAHs were not detected above the MDL (U-qualified). In subsample 3B, ten PAH analytes were detected above the LRLs. The detected concentrations for PAHs in subsample 3B did not exceed applicable TELs or ERLs.
- DMMU 6: In subsamples 3A, 3B, and 3C, PAHs were not detected above the MDL (U-qualified).
- DMMU 7: In subsample 4C, PAHs were not detected above the MDL (U-qualified). In subsamples 4A, 4B, and 4D, between three and 12 PAH analytes were detected above the LRL. The PAH analyte concentrations were below the applicable TELs and ERLs with the exception of anthracene (276 μg/kg) in subsample 4A, which exceeded the respective TEL (46.9 μg/kg) and ERL (85.3 μg/kg).
- DMMU 8: In subsamples 5A, 5B, and 5D, PAHs were not detected above the MDL (U-qualified). In subsample 5C, two PAH analytes (naphthalene and phenanthrene) were

detected above the LRL. The detected concentrations for naphthalene and phenanthrene in subsample 5C were below the respective TELs and ERLs.

 New Work ODMDS and Reference: PAHs were below the MDLs in the Reference composite sample and New Work ODMDS composite sample.

Total low molecular weight PAHs (LPAH) ranged from 8.34 μ g/kg to 2,485 μ g/kg among samples tested. Total high molecular weight PAHs (HPAH) ranged from 12.5 μ g/kg to 329 μ g/kg among samples tested. Total PAHs ranged from 20.9 μ g/kg to 2,814 μ g/kg among samples tested. Total LPAHs, total HPAHs, and total PAHs were highest in DMMU-3-2A. The concentration for total LPAHs in DMMU-3-2A (2,485 μ g/kg) exceeded the TEL (312 μ g/kg) and ERL (552 μ g/kg), and the concentration for total PAHs (2,814 μ g/kg) exceeded the TEL (1,684 μ g/kg). The concentration for total LPAHs in DMMU-7-4A (460 μ g/kg) exceeded the TEL of 312 μ g/kg.

MDLs for the PAH compounds were below applicable TDLs from the SAP. The MDLs for acenaphthene, acenaphthylene, and dibenzo(a,h)anthracene in DMMU-3-2A (16.8 μ g/kg) exceeded the analyte specific TELs 6.71 μ g/kg, 5.87 μ g/kg, and 6.22 μ g/kg, respectively, and the ERL for acenaphthene (16 μ g/kg).

Semi-Volatile Organic Compounds (SVOCs)

Most SVOCs were reported below MDLs (U-qualified) among the samples tested, with specific SVOCs detected in J-qualified concentrations or above the LRL in one or more subsamples tested. Di-n-butyl phthalate was detected above the LRL in the majority of the DMMU subsamples tested while specific SVOCs were detected above the LRL in the following DMMU subsamples tested.

- 2,4-dichlorophenol and 2,6-dinitrotoluene (2,6-DNT) were detected above the LRL in DMMU-3-2A Duplicate sample.
- Diethyl phthalate was detected above the LRL in the three subsamples from DMMU 5 (3A, 3B, and 3C), and hexachlorocyclopentadiene was detected above the LRL in DMMU-5-3B.
- Bis(2-ethylhexyl) phthalate was detected above the LRL in DMMU-8-5C.

TEL or ERL criteria values were not listed for the SVOC analytes except for bis(2-ethylexyl) phthalate. The concentrations for bis(2-ethylexyl) phthalate for the samples ranged from <1.48 to 18.8 μg/kg and were below the TEL of 182 μg/kg.

Elutriate and Water Chemistry Results

Elutriates were generated from the eight project sediment composites as referenced above. Project elutriates, site water samples, and water samples collected from the Reference Area and New Work ODMDS were analyzed for the analytes summarized below. Results for elutriate and water samples were compared to applicable criteria maximum concentration (CMC [synonymous with 'acute']) and Texas Water Quality Standard (TWQS) values.

Metals, Ammonia, Cyanide, TPH, and TOC

Two or more metals were detected above the MDL in either J-qualified concentrations or above the LRLs in site water and elutriate samples tested except for mercury, selenium, silver, and thallium, which were U-qualified. Beryllium was U-qualified in the samples tested, except for

DMMU-7-4B water. Detected concentrations of the 13 metals analyzed did not exceed applicable CMCs or TWQS.

Trivalent chromium was below the MDL in the samples tested. Hexavalent chromium ranged from 0.00208 micrograms per liter (μ g/L) to 58.4 μ g/L and was greatest in DMMU-8 water. Hexavalent chromium concentrations in the samples tested were below the CMC or TWQS.

Monobutyltin was detected above the LRL in elutriate samples DMMU-2 and DMMU-4, site water samples DMMU-7-4B, DMMU-8-5B, and the ODMDS water sample. Dibutyltin and tributyltin were not detected above the MDLs in any of the elutriate and site water samples tested.

Ammonia (as nitrogen) ranged from 0.133 milligrams per liter (mg/L) to 7.62 mg/L among the samples tested and was highest in DMMU-7 elutriate. Ammonia concentrations in DMMU-7 elutriate exceeded the calculated CMC of 6.50 mg/L.

Total cyanide was not detected above the MDL in any of the elutriate and site water samples tested.

TOC ranged from 2.0 mg/L to 9.9 mg/L among samples tested.

Total suspended solids (TSS) ranged from 1.68 mg/L to 249 mg/L among samples tested.

Salinity ranged from 28.6 mg/L to 30.4 mg/L among the site water samples tested.

TPH concentrations ranged from <0.484 mg/L to 8.94 mg/L among samples tested and was highest in elutriate sample DMMU-3.

Pesticides and Total PCBs

Pesticide analytes were reported below MDL (U-qualified) in the site water and elutriate samples tested except for p,p'-DDE (4,4'-DDE) in DMMU-1-E (0.00790 μ g/L) and methoxychlor in DMMU-3-E (0.0101 μ g/L). There are not CMC or TWQS values listed for 4,4'-DDE or methoxychlor. The MDLs for toxaphene were 0.300 μ g/L among samples tested, which exceeded the CMC (0.21 μ g/L) and TWQS (0.21 μ g/L).

Total PCBs were not detected above the MDL (U-qualified) in any sample.

PAHs

PAH analytes were not detected above the MDLs in elutriate samples from DMMU-1, DMMU-2, DMMU-4, DMMU-5, and DMMU-6. PAH analytes were not detected above the MDLs in site waters from DMMU-7, DMMU-8, the Reference, or the ODMDS. Four PAH analytes were detected in concentrations above the LRLs in elutriate sample DMMU-3. Two PAH analytes were detected in concentrations above the LRLs in elutriate sample DMMU-3 Duplicate. One PAH analyte was detected at concentrations above the MDL in elutriate samples DMMU-7 and DMMU-8. There are not CMC or TWQS values for the PAH analytes except phenanthrene. The concentration for phenanthrene in DMMU-3 elutriate (1.08 μ g/L) was below the TWQS (7.7 μ g/L).

Total LPAHs ranged from 1.66 μ g/L to 7.06 μ g/L among samples tested. Total HPAHs ranged from 2.49 μ g/L to 2.81 μ g/L among samples tested. Total PAHs ranged from 4.16 μ g/L to 9.87 μ g/L among samples tested.

SVOCs

Two of the 41 SVOC analytes (diethyl phthalate and di-n-butyl phthalate) were detected above the LRLs in the samples tested, except for diethyl phthalate in site water samples DMMU-7-4A and DMMU-8-5B, which were J-qualified. Bis(2-ethylhexyl) phthalate was detected above the MDL (J-qualified) in elutriate samples DMMU-1 and DMMU-7. Total phenol was detected above the MDL (J-qualified) in elutriate samples DMMU-3 Duplicate, DMMU-6, DMMU-7, and DMMU-8, and the site water samples. There are not CMC or TWQS for the SVOC analytes tested except for pentachlorophenol. Concentrations for pentachlorophenol were below the MDLs (U-qualified) in the samples tested, and the MDLs were below the CMC (13 mg/L) and TWQS (15.1 mg/L).

Toxicology Results

Toxicity analyses were performed on the eight project composites and the Reference. Site water samples from the eight DMMUs were analyzed as part of the water column bioassays.

Water Column (Suspended Particulate Phase) Bioassays

Water column SPP tests were performed with the atherinoid fish *Menidia beryllina* (inland silverside) and planktonic and juvenile life stages of the mysid crustacean *Americamysis bahia* (opossum shrimp).

<u>Americamysis bahia 96-Hour Bioassay</u>: Survival in the site water controls for each project sample ranged from 96% to 100%, meeting the acceptability criterion of greater than or equal to (\geq) 90% survival. Mean survival in the 100% elutriate concentration ranged from 94% to 100% among the project elutriates and was 100% in the Reference. The estimated lethal concentration affecting 50% of a population (LC₅₀) was greater than (>) 100% for the eight project samples.

<u>Menidia beryllina 96-Hour Bioassay</u>: Survival in the site water controls for each project sample ranged from 94% to 100%, meeting the acceptability criterion of ≥90% survival. Mean survival in the 100% elutriate concentration ranged from 94% to 98% among the project elutriates and was 92% in the Reference. The estimated LC₅₀ values were >100% for the eight project samples.

<u>Americamysis bahia Plankton 48-Hour Bioassay</u>: Survival in the controls for each project sample ranged from 96% to 100%, meeting the acceptability criterion of \geq 90% survival. Mean survival in the 100% elutriate concentration ranged from 94% to 100% among the project elutriates and was 100% in the Reference. The estimated LC₅₀ values were \geq 100% for the eight project samples.

Whole Sediment (Solid Phase) Bioassays

The SP toxicity tests were performed with the amphipod crustacean *Leptocheirus plumulosus* and the mysid crustacean *Americamysis bahia*.

Significant differences between the project sediments and the Reference sediment were not observed. Mean survival in the project sediments using *L. plumulosus* ranged from 87% to 92% and was 91% in the Reference. Mean survival in the project sediments using *A. bahia* ranged from 87% to 93% and was 91% in the Reference. Mortality in the test treatments did not exceed the biological criterion for the limiting permissible concentration (LPC, >20% for amphipods and >10% for mysids). The results did not statistically exceed those of the Reference and met the LPC for benthic toxicity as defined in the Regional Implementation Agreement (RIA).

Bioaccumulation Potential

Bioaccumulation tests were conducted with the bivalve mollusk *Mercenaria mercenaria* (hard clam) and the polychaete worm *Alitta virens* (sand worm). Mean survival in the control was 99% for *M. mercenaria* and 87% for *A. virens*. Mean survival in the Reference was 99% for *M. Mercenaria* and 96% for *A. virens*. Survival in the project sediment samples ranged from 91% to 100% in *M. mercenaria* and from 89% to 100% for *A. virens*.

Tissue Chemistry Results

Tissue chemistry results for project samples are compared to the Reference and to applicable screening benchmarks. Results are summarized below.

Total Solids in Tissues

<u>Mercenaria mercenaria:</u> Total solids ranged from 10.4% to 15.6% among the project samples, the Reference, and pre-exposure tissue.

<u>Alitta virens:</u> Total solids ranged from 9.43% to 15.0% among the project samples, the Reference, and pre-exposure tissue.

Metals and TPH in Tissues

Mercenaria mercenaria

Most metals tested in *M. mercenaria* tissue were detected in concentrations greater than the MDL (in one or more replicates) in one or more project samples. The mean concentrations for antimony, arsenic, chromium, copper, lead, selenium, thallium, and zinc were statistically significantly greater than those of the Reference tissue (as listed below).

- DMMU-1: antimony, arsenic, lead, selenium, and thallium
- DMMU-2: antimony, arsenic, chromium, lead, selenium, and thallium
- DMMU-3: antimony, arsenic, chromium, lead, and selenium
- DMMU-4: arsenic, chromium, lead, selenium, and thallium
- DMMU-5: antimony, arsenic, chromium, copper, lead, selenium, and thallium
- DMMU-6: antimony, arsenic, chromium, lead, selenium, and thallium
- DMMU-7: arsenic, lead, and selenium
- DMMU-8: antimony, arsenic, lead, selenium, and zinc

The results did not exceed their respective U.S. Food and Drug Administration (FDA) action levels. Mean concentrations for copper in DMMU-5, lead in DMMU-2 and DMMU-5, and zinc in DMMU-1 exceeded the applicable ecological effects threshold. Additionally, the mean concentration of zinc in DMMU-8 exceeded the northern Gulf of Mexico background concentration.

TPH mean wet weight concentrations in *M. mercenaria* tissues ranged from 10.4 mg/kg to 2,404 mg/kg and were highest in DMMU-7. Mean concentrations for TPH in the project samples, except for DMMU-2, were statistically significantly greater than that of the Reference. There is not a FDA action level for TPH.

 The fact sheet from the Agency for Toxic Substances and Disease Registry (ATSDR 1999) states that TPH is a term used to describe a large family of several hundred chemical compounds originally from crude oil. Crude oil is used to make petroleum products, which can contaminate the environment. Because there are so many different chemicals in crude oil and in other petroleum products, it is not practical to measure each one separately. However, it is useful to measure the total amount of TPH at a site to evaluate and screen potential constituents of concern and intensity. Scientists do this by dividing TPH into groups of petroleum hydrocarbons that act alike in soil or water. These groups are called petroleum hydrocarbon fractions. Each fraction contains many individual chemicals, including both volatile and extractable petroleum hydrocarbons (VPHs and EPHs), encompassing the gasoline range organics ($>C_{6}-C_{12}$), diesel range organics ($>C_{12}-C_{28}$), and oil range organics ($>C_{28}-C_{35}$).

Generally, TPH testing provides a means to quantify the magnitude (in relative terms) of petroleum contamination that remains in the environment. For dredging projects, this exposure would come from biomagnification starting at low level organisms and working up to humans through a food chain. Upon their discharge into the environment, petroleum hydrocarbons can pose risks to human health, ecosystems, and groundwater. Since there are not FDA action levels for TPH resulting from the lack of scientific studies that document the effects of TPH on local marine-based organisms due to its large chemical composition, where mean concentrations for TPH were statistically significantly greater than that of the Reference, the effects of the TPH were addressed through PAH and SVOC analyses which provide an estimate of more toxic components found within the TPH fractions (as further discussed below and in Section 3.8.3). PAHs and SVOCs were not identified as a concern for *M. mercenaria*.

Alitta virens

Most metals tested in *A. virens* tissue were detected in concentrations greater than the MDL (in one or more replicates) in one or more project samples. Mercury was not detected above the MDL (U-qualified) in any sample. Mean concentrations for cadmium (all project samples except DMMU-8), nickel (all project samples), silver (DMMU-4, DMMU-6, and DMMU-8) and thallium (DMMU-2, DMMU-3, DMMU-4, and DMMU-6), were statistically significantly greater than those of the Reference tissues. Sample mean results did not exceed the FDA action levels or screening criteria concentrations in *A. virens* tissues.

TPH mean wet weight concentrations in *A. virens* tissues ranged from 76.7 mg/kg to 2,566 mg/kg and were highest in the Reference. Mean concentrations for TPH in the project samples were not statistically significantly greater than that of the Reference tissues. There is not a FDA action level for TPH.

PAHs in Tissues

<u>Mercenaria mercenaria</u>: One to four PAH analytes were detected in concentrations greater than the LRL in *M. mercenaria* tissues in one or more replicates in project tissues as follows:

- DMMU-3 fluorene
- DMMU-7 acenaphthene, fluoranthene, phenanthrene, and pyrene
- DMMU-8 anthracene

Mean adjusted concentrations of acenaphthene, fluoranthene, phenanthrene, and pyrene in DMMU-7, and anthracene in DMMU-8, statistically significantly exceeded those of the Reference tissues. Additionally, mean concentrations of total LPAHs, total HPAHs, and total

PAHs in DMMU-7, calculated from results of individual PAHs, statistically significantly exceeded those of the Reference. These results did not exceed the ecological effects threshold except for acenaphthene and fluoranthene in DMMU-7. Additionally, the results did not exceed the northern Gulf of Mexico background concentration except for total HPAHs in DMMU-7. There are not applicable FDA action levels for the PAHs tested.

<u>Alitta virens:</u> One to four of the PAH analytes were detected in concentrations greater than the LRL in *A. virens* tissues in one or more replicates in project tissues, and adjusted mean concentrations of these analytes statistically significantly exceeded those of the Reference tissues as follows:

- DMMU-3 fluorene, phenanthrene, pyrene
- DMMU-5 benzo(a)pyrene
- DMMU-7 anthracene, fluoranthene, phenanthrene, pyrene

Mean concentrations of total LPAHs (DMMU-7), total HPAHs (DMMU-7), and total PAHs (DMMU-3 and DMMU-7), calculated from results of individual PAHs, also statistically significantly exceeded those of the Reference tissues. There are not applicable FDA action levels for the PAHs tested. However, these results did not exceed the ecological effects threshold or northern Gulf of Mexico background concentration.

MonobutyItin and SVOCs in Tissues

Monobutyltin was tested in project sample DMMU 1, the Reference, and pre-exposure tissues. SVOCs including 4-nitrophenol, bis(2-ethylhexyl) phthalate, di-n-butyl phthalate, and total phenol were tested in *M. mercenaria* and *A. virens* tissues from the eight project samples along with the Reference and pre-exposure tissues.

Monobutyltin in Mercenaria mercenaria and Alitta virens

Monobutyltin was not detected above the MDL (U-qualified) in DMMU-1, the Reference, and the pre-exposure tissues for either species. There are not applicable FDA action levels, ecological effect threshold, or northern Gulf of Mexico background concentrations for monobutyltin in either species.

SVOCs in Mercenaria mercenaria

The following SVOC analytes were detected in *M. mercenaria* tissues above the LRL in one or more replicates of the project samples tested:

- DMMU-2 di-n-butyl phthalate
- DMMU-3 bis(2-ethylhexyl) phthalate, di-n-butyl phthalate
- DMMU-5 di-n-butyl phthalate, diethyl phthalate, hexachlorocyclopentadiene
- DMMU-6 di-n-butyl phthalate
- DMMU-8 di-n-butyl phthalate
- Reference bis(2-ethylhexyl) phthalate, di-n-butyl phthalate, diethyl phthalate

Adjusted mean concentrations for these SVOCs did not statistically significantly exceed those of the Reference. There are not applicable FDA action levels or northern Gulf of Mexico background

concentrations for these SVOCs. The adjusted mean concentrations for bis(2-ethylhexyl) phthalate in *M. mercenaria* were below the ecological effects threshold.

SVOCs in Alitta virens

The following SVOC analytes were detected in *A. virens* tissues above the LRL in one or more replicates of the project samples tested:

- DMMU-2 di-n-butyl phthalate
- DMMU-3 bis(2-ethylhexyl) phthalate, di-n-butyl phthalate
- DMMU-4 di-n-butyl phthalate
- DMMU-5 di-n-butyl phthalate, diethyl phthalate
- DMMU-6 di-n-butyl phthalate
- DMMU-7 di-n-butyl phthalate
- DMMU-8 bis(2-ethylhexyl) phthalate, di-n-butyl phthalate
- Reference bis(2-ethylhexyl) phthalate, di-n-butyl phthalate, diethyl phthalate
- Pre-Exposure bis(2-ethylhexyl) phthalate, di-n-butyl phthalate, diethyl phthalate

Adjusted mean concentrations for bis(2-ethylhexyl) phthalate (DMMU-8), di-n-butyl phthalate (DMMU-2, DMMU-4, and DMMU-7), and diethyl phthalate (DMMU-5), statistically significantly exceeded those of the Reference tissue. There are not applicable FDA action levels or screening criteria concentrations for these SVOCs in *A. virens* tissues.

<u>Automated Dredging and Disposal Alternatives Modeling System</u> (ADDAMS) Model Results

Simulations of the Short-Term Fate [of Dredged Material Disposal in Open-Water Models] (STFATE) module of the Automated Dredging and Disposal Alternatives Modeling System (ADDAMS) model were run to establish the compliance of the water column toxicity for the Harbor Island New Dock and Facilities sediment samples. Based on analytical results, one sample was selected for modeling Tier II Water Quality Criteria for ammonia because those elutriate concentrations were above the CMC. The CMC for ammonia was determined using a spreadsheet provided in Appendix H.

Based on elutriate chemistry results, sample DMMU-7 (prepared as the composite of sediment subsamples DMMU-7A through DMMU-7D) was selected for modeling Tier II Water Quality Criteria. The elutriate concentration for ammonia of 10.8 mg/L exceeded the calculated CMC of 6.50 mg/L. Other sample results did not exceed the CMC for any other contaminant.

The results of the STFATE (Tier II) modeling indicate that the dredged material from DMMU-7 and additional seven project DMMUs may be disposed of without restriction to a maximum of 13,500 cubic yards (cy) per load for hopper or cutter dredging, or 9,000 cy per load for mechanical dredging. Exhibit 4-9 is a map of the Corpus Christi New Work ODMDS with boundaries and the modeled disposal point.

Exhibit ES-1. Summary of Analytical Results for Harbor Island New Dock and Facilities

								Sediment Chemistr	у	Elutriate Chemistry					
		Gravel	Sand	Silt	Clay	Solids	Metals, Ammonia, Cyanide, Organotins, & TPH* (mg/kg)	тос	Pesticides & Total	PAHs	SVOCs	Metals, Ammonia, Cyanide, Organotins, & TPH*	Pesticides & Total PCBs	Total PAHs	SVOCs
Dredging Unit / Composite ID		%	%	%	%	%	# of analytes > TEL or ERL	(%)	# of analytes > TEL or ERL	# of analytes > TEL or ERL	# of analytes > TEL or ERL	# of analytes > CMC or TWQS	# of analytes > CMC or TWQS	μg/L	# of analytes > CMC or TWQS
DMMU 1	1A, 1B, 1C	0.0	71.8 to 82.4	17.2 to 27.3	0.4 to 0.9	74.4 to 74.6	(none) TPH* (78.4, 71.8, and 75.5)	<0.0594, <0.0514, and <0.0569	(none) ^A	(none)	(none)	(none) TPH* (0.867 mg/L)	1 > CMC and TWQS (toxaphene MDL and LRL) ^c	(none)	(none)
DMMU 2	1A, 1B, 1C	0.0	59.5 to 69.6	29.7 to 33.4	0.7 to 7.1	58.0 to 67.8	(none) TPH* (74.5, 76.6, and 78.4)	0.0584, <0.0529, and <0.0598	(none) ^A	(none)	(none)	(none) TPH* (1.25 mg/L)	1 > CMC and TWQS (toxaphene MDL and LRL) ^c	(none)	(none)
DMMU 3	2A, 2A Duplicate, 2B	0.0	82.1 to 84.5	15.0 to 17.1	0.4 to 0.8	72.2 to 74.3	(none) TPH* (2608, 144.1, and 77.9)	<0.0547, <0.0517, and <0.0596	(none) ^A	DMMU-3-2A (7 > TEL and ERL) ^B	(none)	(none) TPH* (8.94 mg/L and 1.90 mg/L)	1 > CMC and TWQS (toxaphene MDL and LRL) ^c	(none)	(none)
DMMU 4	2A, 2B	0.0	63.6 and 66.7	34.2 and 30.3	2.2 and 3.0	65.1 and 69.7	(none) TPH* (83.1 and 74.6)	< 0.0567 and <0.0522	(none) ^A	(none)	(none)	(none) TPH* (1.73 mg/L)	1 > CMC and TWQS (toxaphene MDL and LRL) ^c	(none)	(none)
DMMU 5	3A, 3B, 3C	0.0	70.3 to 83.1	16.4 to 29.1	0.5 to 0.9	72.9 to 74.0	(none) TPH* (79.5, 292.4, and 71.5)	<0.0518, <0.0522, and <0.0578	(none) ^A	(none)	(none)	(none) TPH* (0.654 mg/L)	1 > CMC and TWQS (toxaphene MDL and LRL) ^c	(none)	(none)
DMMU 6	3A, 3B, 3C	0.0	66.0 to 72.6	26.4 to 32.3	1.0 to 1.7	73.1 to 75.8	(none) TPH* (73.1, 79.3, and 71.8)	<0.0569, <0.0544, and <0.0594	(none) ^A	(none)	(none)	(none) TPH* (0.649 mg/L)	1 > CMC and TWQS (toxaphene MDL and LRL) ^c	(none)	(none)
DMMU 7	4A, 4B, 4C, 4D	0.0	40.4 to 63.6	35.2 to 51.9	1.2 to 19.5	54.2 to 83.2	(none) TPH* (80.4, 69.2, 78.9, and 75.0)	1.29, <0.0528, <0.0545, and <0.0579	(none) ^A	DMMU-7-4A (Anthracene and Total LPAHs > TEL or ERL)	(none)	DMMU-7 Elutriate 1 > CMC (Ammonia) TPH* (1.58 mg/L))	1 > CMC and TWQS (toxaphene MDL and LRL) ^c	(none)	(none)
DMMU 8	5A, 5B, 5C, 5D	0.0	43.3 to 70.6	27.3 to 47.3	0.9 to 9.4	71.7 to 85.5	(none) TPH* (76.3, 75.2, 73.2, and 71.7)	<0.0542, <0.0512, <0.0593, and <0.0583	(none) ^A	(none)	(none)	(none) TPH* (0.676 mg/L)	1 > CMC and TWQS (toxaphene MDL and LRL) ^c	(none)	(none)
Reference	REF Composite	0.0	59.8	39.1	1.1	69.0	(none) TPH* (81.7)	<0.0597	(none) ^A	(none)	(none)	(none) TPH* (<0.489 mg/L)	1 > CMC and TWQS (toxaphene MDL and LRL) ^c	(none)	(none)
ODMDS Placement Area	ODMDS Composite	0.0	76.3	23.3	0.4	75.6	(none) TPH* (<1.86)	<0.0548	(none) ^A	(none)	(none)	(none) TPH* (1.78 mg/l)	1 > CMC and TWQS (toxaphene MDL and LRL) ^c	(none)	(none)

A Although no pesticide analytes concentration exceeded the TEL or ERL (U-qualified), the MDLs and (or) LRLs for either chlordane, dieldrin, lindane, and/or toxaphene exceeded the associated TEL and (or) ERL.

B Refer to Section 3.0 Exhibit 3-3 for a list of the PAH analytes that exceeded the TEL or ERL in respective samples.

C Although toxaphene was not detected (U-qualified) in any sample, the MDLs/LRLs were greater than the CMC/TWQS.

*TPH results for sediment and elutriate samples are provided as data only. There is no applicable TEL, ERL, CMC, or TWQS for TPH.

Exhibit ES-2. Summary of Analytical Results for Harbor Island New Dock and Facilities

	Water Column Bioassays						Whole Sediment Bioassays Bioaccumulation Bioassay					ion Bioassay	Bioaccumulation					
	Mysic 96-hı <i>Americamy</i> s	•	Fish 96-hr <i>Menidia be</i> i		Planktonic 48-hı Americamys	r		nphipod rus plumulosus		Mysid amysis bahia	Mollusk Mercenaria mercenaria	Polychaeta Alitta virens	Metals an	nd TPH	РАН	ls	Organotins a	nd SVOCs
Dredging Unit /	Significantly different from control? (yes or no)	EC ₅₀ (%)	Significantly different from control? (yes or no)	EC ₅₀ (%)	Significantly different from control? (yes or no)	EC ₅₀ (%)	Mean Survival (%)	Significantly different from reference? (yes or no)	Mean Survival (%)	Significantly different from reference? (yes or no)	Mean Survival (%)	Mean Survival (%)	Mercenaria mercenaria (# of analytes stat. sig. > reference)	Alitta virens (# of analytes stat. sig. > reference)	Mercenaria mercenaria (# of analytes stat. sig. > reference)	Alitta virens (# of analytes stat. sig. > reference)	Mercenaria mercenaria (# of analytes stat. sig. > reference)	Alitta virens (# of analytes stat. sig. > reference)
DMMU 1	No	>100	No	>100	No	>100	92	No	93	No	98	100	6 (Sb, As, Pb, Se, Th, TPH)	2 (Cd, Ni,)	(none)	(none)	(none)	(none)
DMMU 2	No	>100	No	>100	No	>100	89	No	90	No	99	99	6 (Sb, As, Cr, Pb, Se, Th)	3 (Cd, Ni, Th)	(none)	(none)	(none)	1 (D-n-butyl phthalate)
DMMU 3	No	>100	No	>100	No	>100	91	No	89	No	100	95	6 (Sb, As, Cr, Pb, Se, TPH)	3 (Cd, Ni, Th)	(none)	4 (Fluorene, Phenanthrene, Pyrene, Total PAHs)	(none)	(none)
DMMU 4	No	>100	No	>100	No	>100	90	No	90	No	97	97	6 (Sb, Cr, Pb, Se, TPH)	4 (Cd, Ni, Ag, Th)	(none)	(none)	(none)	1 (D-n-butyl phthalate)
DMMU 5	No	>100	No	>100	No	>100	88	No	89	No	99	100	8 (Sb, As, Cr, Cu, Pb, Se, Th, TPH)	2 (Cd, Ni)	(none)	1 (Benzo(a) pyrene)	(none)	1 (Diethyl phthalate)
DMMU 6	No	>100	No	>100	No	>100	87	No	87	No	99	93	7 (Sb As, Cr, Pb, Se, Th, TPH)	4 (Cd, Ni, Ag, Th)	(none)	(none)	(none)	(none)
DMMU 7	No	>100	No	>100	No	>100	90	No	88	No	91	89	4 (As, Pb, Se, TPH.)	2 (Cd, Ni)	7 (Acenaphthene, Fluoranthene, Phenanthrene, Pyrene, Total LPAHs, Total HPAHs, Total PAHs)	7 (Anthracene, Fluoranthene, Phenanthrene, Pyrene, Total LPAHs, Total HPAHs, Total PAHs)	(none)	1 (D-n-butyl phthalate)
DMMU 8	No	>100	No	>100	No	>100	91	No	90	No	96	95	6 (Sb As, Pb, Se, Zn, TPH)	2 (Ni, Ag)	1 (Anthracene)	(none)	(none)	1 (Bis(2-ethylhexyl) phthalate
REF (Reference)	(not applicable)				91	(not applicable)	91	(not applicable)	99	96	(not appli	cable)	(not appli	icable)	(not appli	cable)		
ODMDS Placement Area	(not applicable)						(not applicable)			(not app	olicable)	(not appli	cable)	(not appli	icable)	(not appli	(not applicable)	

N/A = Not analyzed for that parameter; Stat. Sig. = Statistically significantly greater (>) the Reference.

1 INTRODUCTION

The Port of Corpus Christi Authority (PCCA) submitted an application to the U.S. Army Corps of Engineers (USACE), Galveston District under Section 10 of the Rivers and Harbors Act of 1899, Section 404 of the Clean Water Act, and Section 103 of Marine Protection, Research and Sanctuaries Act (MPRSA) to construct a new terminal and facilities to load crude oil into marine vessels as part of the Harbor Island New Dock and Facilities Project. The project area is composed of eight dredged material management units (DMMUs), which include six land-based/terrestrial DMMUs (DMMU 1 through DMMU 6) located on Harbor Island, and two marine DMMUs (DMMU 7 and DMMU 8) that are adjoining to the south of Harbor Island and north of the Port Aransas federal ship channel.

1.1 Project Area Description

The Harbor Island New Dock and Facilities Project is located at the confluence of the Aransas Pass, Gulf Intracoastal Waterway by-pass channel (Lydia Ann Channel), and the Corpus Christi Ship Channel on the northern side of State Highway 361, between channel stations 40+00 and 70+00, on Harbor Island in Port Aransas, Nueces County, Texas (refer to Figure 1 – Dredge Area Location Map).

Excavation and dredging on Harbor Island and within the Aransas Pass Channel will be required for the purpose of creating a berth at the proposed Harbor Island Terminal that is capable of supporting two very large crude carrier (VLCC) size vessels. Initial estimates indicate that approximately 6.5 million cubic yards (cy) of dredge material will need to be removed and relocated from within the approximate 64.80-acre dredge footprint for disposal at the New Work ocean dredged material disposal site (ODMDS).

The proposed dredge prism would be dredged to -54 feet mean lower low water (MLLW), plus 4 feet of advanced maintenance and a 2 feet overdredge to reach the required project depth of -60 feet MLLW. Basin corners and edges would exhibit a 3 to 1 slope.

This project area description was approved by the U.S. Environmental Protection Agency (EPA) and the USACE in PCCA's Sampling and Analysis Plan (SAP), dated April 2021.

1.2 Dredging History

As stated in the Site Management and Monitoring Plan (SMMP) prepared by the EPA and USACE in 2018 for the Corpus Christi Maintenance and New Work ODMDSs, "the ODMDSs were approved in 1989 for the placement of dredged material from the U.S. Navy Homeport Project in Ingleside, Texas. Upon approval, the original designation for the Corpus Christi New Work ODMDS site was Homeport Project, Port Aransas, Texas ODMDS; however, the Homeport project was never implemented and thus the site was not utilized.

In a Final Rule published in the Federal Register on August 2, 2014, the USEPA modified the period of use and use restriction for the ODMDS to change the use of the site to include suitable dredged material from the greater Texas vicinity over an indefinite period of time. The modification also changed the name to Corpus Christi New Work ODMDS.

On September 15, 2015, the EPA modified Title 40 of the Code of Federal Regulations (CFR), Part 228 to allow other entities besides the USACE to seek permit approval by USEPA to dispose of dredged material into ocean waters pursuant to the Marine Protection Research and Sanctuaries Act (Ocean Dumping Regulations). It is under this regulation that the PCCA is requesting the new work material dredged from the Harbor Island New Dock and Facilities dredge footprint be approved for disposal at the Corpus Christi New Work ODMDS."

A detailed history related to Harbor Island is provided in the EPA/USACE-approved PCCA SAP, dated April 2021, in Appendix A.

1.3 Description of the Testing Approach

1.3.1 Evaluation of Dredged Material for Disposal

MPRSA Section 103 requires that proposed operations involving the transportation and discharge of dredged material into ocean waters be evaluated to determine the potential environmental impact of such activities. In addition to Tier I and Tier II requirements, Tier III toxicity and bioaccumulation testing are required under MPRSA Section 103 to determine the suitability of the dredged material for ocean disposal. The proposed dumping must be evaluated using criteria published by EPA in Title 40 CFR, Parts 220-228. Specific testing methods are described in the Evaluation of Dredged Material Proposed for Ocean Disposal, Testing Manual (EPA and USACE 1991, referred to here as the 'Green Book') and the Ocean Dredged Material Disposal Program, Regional Implementation Agreement for Testing and Reporting Requirements for Ocean Disposal of Dredged Material off the Louisiana and Texas Coasts under Section 103 of the Marine Protection, Research and Sanctuaries Act (EPA and USACE 2003, referred to herein as the 'RIA'). These testing manuals provide guidance to support the tiered testing procedure for evaluating compliance with the LPC as defined by the ocean dumping regulations. The procedure includes levels of increasing investigative intensity that provide information to make ocean disposal decisions and is comprehensive enough to enable sound decision-making without unnecessary expenditure of time and resources.

1.3.2 Objectives and Deliverables

The objective of this MPRSA Section 103 report is to evaluate the suitability of dredged material from eight DMMUs from the Harbor Island New Dock and Facilities project area for ocean disposal by addressing the transport and disposal of the material at the New Work ODMDS. Terracon Consultants, Inc. (Terracon) was contracted to provide oversight of the sediment collection activities, conduct required analyses, and present the results in a report. The field effort, laboratory methods, and this report are in accordance with the SAP dated April 2021, including the SAP Errata Sheet, dated January 10, 2022, and subsequent email correspondences dated January 28, 2022, January 31, 2022, February 3, 2022, February 14, 2022, December 14, 2022, January 17, 2023, January 24, 2023, and February 3, 2023, as presented in Appendix A.

Deliverables associated with this project include:

- Daily Quality Control Reports
- Preliminary sediment physical and chemical data for tissue testing recommendations
- Laboratory electronic data deliverables and report
- Section 103 sediment testing report and supporting documentation
- A Chemical Quality Assurance Report (CQAR)

Terracon coordinated with the USACE and EPA to develop sampling and analysis schemes, schedules, and deliverables. This report summarizes the results of the physical, chemical, and toxicological analyses of sediment, elutriate, water, and tissue samples of the proposed dredge material collected from the project area. Exhibits 1-1 and 1-2 list the principal data users and subcontractors associated with this testing report and their respective areas of responsibility.

Exhibit 1-1. Principal Data Users and Decision-Makers Associated with This Project

Agency or Company	Area(s) of Responsibility
U.S. Army Corps of Engineers, Galveston District (Galveston, Texas)	Permit and maintain the federal channels with the dredge material to be disposed of at the New Work ODMDS
U.S. Environmental Protection Agency, Region 6, (Dallas, Texas)	Give concurrence to environmental requirements of dredged sediment for approval of offshore disposal per the Green Book and the RIA
Port of Corpus Christi Authority (Corpus Christi, Texas)	Manages port terminals and determines the need for maintenance and new work dredging and develops long-term dredged material management strategies

Exhibit 1-2. Prime and Subcontractors and Responsibilities Associated with This Report

Company, Location, Website	Area(s) of Responsibility
Terracon Consultants, Inc. (Houston, Texas) www.terracon.com	Primary contractor, project management team, oversight of field operations including health and safety, drilling service provider, coordinate with labs, and prepare project deliverables
ANAMAR Environmental Consulting, Inc. (Gainesville, Florida) www.anamarinc.com	Provide field support for sediment core sample collection, coordinate with labs, data Quality Assurance/Quality Control (QA/QC), and prepare portions of project deliverables
Laredo Offshore Services (Galveston, Texas) http://www.laredogroup.org	Provide sampling vessel (<i>L/B DuLarge</i>), captain and crew
Envirotech Drilling Services (Houston, Texas) http://www.envirotech-services.com	Provide CME 55 drill rig and crew for DMMU 1 through DMMU 6
Cascade Drilling L.P. (Weatherford, Texas) http://www.cascade-env.com	Provide sonic drill rig and crew for DMMU 7 and DMMU 8
Ryan Marine Services (Galveston, Texas) http://www.ryanmarine.com	Provide sampling vessel (M/V Hercules), captain, and crew
North Water District Laboratory Services, Inc. (NWDLS) (The Woodlands, Texas) http://www.nwdls.com	Laboratory sample preparation and chemical analysis of sediment, elutriate and water and tissues; toxicology analysis, sample holding, and archiving
A&B Labs (Houston, Texas) www.ablabs.com	Laboratory sample preparation and chemical analysis of TOC and TPH in sediments, elutriate, and water
ALS Environmental (Kelso, Washington) www.caslab.com/Kelso-Laboratory	Laboratory sample preparation and chemical analysis of total solids, total cyanide, and organotins in sediments, total cyanide and organotins in elutriate and water
Eurofins (Stafford, Texas) www.eurofinsus.com	Laboratory for chemical analysis of TPH and organotins in tissues
Taylor Engineering Coastal & Marine Geosciences Laboratory (Jacksonville, Florida) www.taylorengineering.com	Laboratory preparation and physical analysis of sediment; sample holding and archiving

2 MATERIALS AND METHODS

2.1 Project Design and Rationale

In 2019, the PCCA conducted pre-dredge characterization sampling associated with the Harbor Island New Dock and Facilities Project; however, bioassay testing was not completed during that sampling event. Therefore, because the proposed new work dredged material is being considered for ocean disposal, a full Tier II and Tier III evaluation is required. The prior results of the chemistry analysis in 2019 would subsequently be used for reference purposes only.

Thus, in accordance with the EPA/USACE-approved PCCA SAP, dated April 2021, sediment and marine water samples were collected from eight DMMUs spread across five areas within the Harbor Island New Dock and Facilities Project footprint as depicted on Figure 2.1 for physical, chemical, and toxicological/bioaccumulation analysis, to evaluate the suitability of the proposed dredged material for disposal in the New Work ODMDS. Samples obtained from the various DMMUs within the Harbor Island New Dock and Facilities dredge footprint, collected from both terrestrial and submerged marine environments, were selected by the PCCA and approved by the EPA/USACE in an effort to be spatially representative of the estimated 6.5 million cy of material to be excavated and to adequately address the vertical component of the proposed dredging activities. Each land-based DMMU was characterized by two to three subsamples while each marine DMMU was characterized by four subsamples. A total of 24 subsamples were collected from the various DMMUs throughout the dredge footprint while eight composite samples were prepared from the subsamples collected as outlined below:

- DMMU 1 is comprised of subsample locations 1A 1C and characterizes the surficial terrestrial sediment (0 ft. MLLW to -30 ft. MLLW).
- DMMU 2 is comprised of subsample locations 1A 1C and characterizes the subsurface terrestrial sediment (-30 ft. MLLW to -60 ft. MLLW).
- DMMU 3 is comprised of subsample locations 2A 2B and characterizes the surficial terrestrial sediment (0 ft. MLLW to -30 ft. MLLW).
- DMMU 4 is comprised of subsample locations 2A 2B and characterizes the subsurface terrestrial sediment (-30 ft. MLLW to -60 ft. MLLW).
- DMMU 5 is comprised of subsample locations 3A 3C and characterizes the surficial terrestrial sediment (0 ft. MLLW to -30 ft. MLLW).
- DMMU 6 is comprised of subsample locations 3A 3C and characterizes the subsurface terrestrial sediment (-30 ft. MLLW to -60 ft. MLLW).
- DMMU 7 is comprised of subsample locations 4A 4D and characterizes the shallow marine sediment from existing depths to -60 ft. MLLW.
- DMMU 8 is comprised of subsample location 5A 5D and characterizes marine sediment from existing depths to -60 ft. MLLW.

Coordinates of the sampled locations, project depths, and sample composite IDs are provided in Tables 1A through 1C and presented in Exhibit 2-1. The sample locations are depicted in Figures 2.1 through 2.3.

Reference sediment was a composite of three samples collected in the Reference Area as outlined in the SAP. A composite of three sediment samples was also collected from the New Work ODMDS for physical and chemical analysis as outlined in the SAP.

Summaries of field sampling materials and methods, analytes of interest, and bioassay test species are provided in Exhibits 2-2 and 2-3, respectively.

Exhibit 2-1. Dredged Material Management Units, Sample IDs, Bottom Elevations, Composite IDs, and Analyses

Dredged Material Management Unit	Sample ID	Sediment Elevation (ft, MLLW) or Sampling Depth (ft)	Project Depth Including Allowable Overdepth (ft, MLLW)	Discrete ID and Analyses (see Exhibit 2-3 for more information)	Composite ID and Analyses (see Exhibit 2-3 for more information)
	DMMU-1-1A	-0 to -30 ft.	-30 ft.	DMMU 1-1A Physical and Sediment Chemistry	DAME: 4
DMMU 1 (Subsurface Terrestrial)	DMMU-1-1B	-0 to -30 ft.	-30 ft.	DMMU 1-1B Physical and Sediment Chemistry	DMMU-1 elutriate chemistry, toxicological/bioaccumulation bioassays, tissue chemistry
	DMMU-1-1C	-0 to -30 ft.	-30 ft.	DMMU 1-1C Physical and Sediment Chemistry	zioaccaje, accae ciioiiilea y
	DMMU-2-1A	DMMU-2-1A -30 to -60 ft.		DMMU 2-1A Physical and Sediment Chemistry	DMMU 0
DMMU 2 (Subsurface Terrestrial)	DMMU-2-1B	-30 to -60 ft.	-60 ft.	DMMU 2-1B Physical and Sediment Chemistry	DMMU-2 elutriate chemistry, toxicological/bioaccumulation bioassays, tissue chemistry
	DMMU-2-1C	-30 to -60 ft.	-60 ft.	DMMU 2-1C Physical and Sediment Chemistry	2.00000,
DMMU 3 (Subsurface	DMMU-3-2A and 2A Duplicate	-0 to -30 ft.	-30 ft.	DMMU 3-2A and 2A Duplicate Physical and Sediment Chemistry	DMMU-3 elutriate chemistry,
`Terrestrial)	DMMU-3-2B	-0 to -30 ft.	-30 ft.	DMMU 3-2B Physical and Sediment Chemistry	toxicological/bioaccumulation bioassays, tissue chemistry

Exhibit 2-2. Dredged Material Management Units, Sample IDs, Bottom Elevations, Composite IDs, and Analyses

Dredged Material Management Unit	Sample ID	Sediment Elevation (ft, MLLW) or Sampling Depth (ft)	Project Depth Including Allowable Overdepth (ft, MLLW)	Composite ID and Analyses (see Exhibit 2-3 for more information)	Composite ID and Analyses (see Exhibit 2-3 for more information)
DMMU 4 (Subsurface	DMMU-4-2A	-30 to -60 ft.	-60 ft.	DMMU 4-2A Physical and Sediment Chemistry	DMMU-4 elutriate chemistry,
Terrestrial)	DMMU-4-2B	-30 to -60 ft.	-60 ft.	DMMU 4-2B Physical and Sediment Chemistry	toxicological/bioaccumulation bioassays, tissue chemistry
	DMMU-5-3A	-0 to -30 ft.	-30 ft.	DMMU 5-3A Physical and Sediment Chemistry	
DMMU 5 (Subsurface Terrestrial)	DMMU-5-3B	-0 to -30 ft.	-30 ft.	DMMU 5-3B Physical and Sediment Chemistry	elutriate chemistry, toxicological/bioaccumulation bioassays, tissue chemistry
•	DMMU-5-3C	-0 to -30 ft.	-30 ft.	DMMU 5-3C Physical and Sediment Chemistry	bloassays, ussue chemistry
	DMMU-6-3A	-30 to -60 ft.	-60 ft.	DMMU 6-3A Physical and Sediment Chemistry	
DMMU 6 (Subsurface Terrestrial)	DMMU-6-3B	-30 to -60 ft.	-60 ft.	DMMU 6-3B Physical and Sediment Chemistry	DMMU-06 elutriate chemistry, toxicological/bioaccumulation bioassays, tissue chemistry
	DMMU-6-3C	-30 to -60 ft.	-60 ft.	DMMU 6-3C Physical and Sediment Chemistry	bioassays, ussue chemistry

Exhibit 2-3. Dredged Material Management Units, Sample IDs, Bottom Elevations, Composite IDs, and Analyses

Dredged Material Management Unit	Sample ID	Sediment Elevation (ft, MLLW) or Sampling Depth (ft)	Project Depth Including Allowable Overdepth (ft, MLLW)	Composite ID and Analyses (see Exhibit 2-3 for more information)	Composite ID and Analyses (see Exhibit 2-3 for more information)
DMMU 7 (Marine Area)	DMMU-7-4A	-12.1 ft., MLLW*	-60 ft., MLLW	DMMU 7-4A Physical and Sediment Chemistry	DMMU-7 elutriate chemistry, toxicological/bioaccumulation bioassays, tissue chemistry
	DMMU-7-4B	-13.1 ft., MLLW*	-60 ft., MLLW	DMMU 7-4B Physical and Sediment Chemistry	
	DMMU-7-4C	-44.0 ft., MLLW*	-60 ft., MLLW	DMMU 7-4C Physical and Sediment Chemistry	
	DMMU-7-4D	-15.5 ft., MLLW*	-60 ft., MLLW	DMMU 7-4D Physical and Sediment Chemistry	
DMMU 8 (Marine Area)	DMMU-8-5A	-41.3 ft., MLLW*	-60 ft., MLLW	DMMU 8-5A Physical and Sediment Chemistry	DMMU-8 elutriate chemistry, toxicological/bioaccumulation bioassays, tissue chemistry
	DMMU-8-5B	-51.4 ft., MLLW*	-60 ft., MLLW	DMMU 8-5B Physical and Sediment Chemistry	
	DMMU-8-5C	-44.4 ft., MLLW*	-60 ft., MLLW	DMMU 8-5C Physical and Sediment Chemistry	
	DMMU-8-5D	-60.3 to -66.8 ft., MLLW* Grab Samples	-60 ft., MLLW	DMMU 8-5D Physical and Sediment Chemistry	

^{*} Feet mean lower low water were calculated from water depth (measured by fathometer and lead line) and tide height using real-time data

Exhibit 2-4. Dredged Material Management Units, Sample IDs, Bottom Elevations, Composite IDs, and Analyses

Dredged Material Management Unit	Sample ID	Sediment Elevation (ft, MLLW) or Sampling Depth (ft)	Project Depth Including Allowable Overdepth (ft, MLLW)	Composite ID and Analyses (see Exhibit 2-3 for more information)	Composite ID and Analyses (see Exhibit 2-3 for more information)
ODMDS (New Work ODMDS)	ODMDS-A	-44.3 ft., MLLW*	Not Applicable	Not Applicable	ODMDS physical and sediment chemistry
	ODMDS-B	-44.6 ft., MLLW*			
	ODMDS-C	-44.4 ft., MLLW*			
Reference (HI-REF)	REF A	-44.2 ft., MLLW*	Not Applicable	Not Applicable	REFERENCE physical, sediment chemistry, solid phase/bioaccumulation bioassays, tissue chemistry
	REF B	-44.2 ft., MLLW*			
	REF C	-44.3 ft., MLLW*			

^{*} Feet mean lower low water were calculated from water depth (measured by fathometer and lead line) and tide height using real-time data

Exhibit 2-5. Summary of Field Sampling Materials and Methods

FIELD SAMPLE COLLECTION:

- 24 subsamples were collected from the 8 DMMUs within the dredge footprint (DMMU 1 through DMMU 8) for physical and sediment chemistry.
- 1 duplicate sediment sample was collected at DMMU-3-2A for physical and sediment chemistry.
- 8 project sediment composites (one composite per DMMU composed of 2 to 4 subsamples each [N = 24]), 1 reference composite (composed of 3 samples), and 1 ODMDS composite (composed of 3 samples).
- 5 water samples (Stations DMMU-7-4A, DMMU-7-4B, DMMU-8-5B, Reference, and New Work ODMDS) for water chemistry.
- 9 elutriate preparation (1 per DMMU and 1 duplicate).
- 9 toxicology testing (1 per DMMU and Reference).

SAMPLING GEAR:

- Land-Based Borings
 - Sediment samples DMMU-1-1A through DMMU-6-3C (16 subsamples total) were collected from borings advanced by a Monitor Well Driller licensed in the State of Texas utilizing CME drill rig equipped with hollow-stem and solid flight augers.
- Marine Borings
 - Sediment samples DMMU-7 (4A through 4D) and DMMU-8 (5A through 5C) were collected from borings advanced by a Monitor Well Driller licensed in the State of Texas utilizing a sonic drill rig. The drill rig was mounted on a lift boat (the *DuLarge* Class 170 liftboat).
- Grab Samples
 - Sediment at DMMU-8-5D was collected utilizing a double van Veen™ sampler due to the depth of water (62 feet).
- Reference and ODMDS Sample
 - All offshore Reference and ODMDS grab samples were collected utilizing a double van Veen™ grab sampler.
- Site marine water samples were collected with a stainless-steel submersible pump in laboratory supplied glassware and/or clean food grade 5-gallon buckets

VESSELS:

- The DuLarge Class 170 liftboat (sediment from DMMU 7 and DMMU 8 [except 5D])
- Hercules crew boat (sediment from DMMU-8-5D, Reference, and ODMDS)
- Gulf Star crew boat (water samples from DMMU 7 and DMMU 8)

PRESERVATION:

- Sediment chemistry samples were kept at or below 4°C
- Marine water samples in various containers, with or without stabilizing agents, were kept at or below 4°C
- Holding-time requirements were analyte-specific and test-specific

IN-SITU WATER COLUMN MEASUREMENTS AT SITE WATER SAMPLING STATIONS:

• Horiba multiparameter meter

Exhibit 2-6. Analytical Requirements for Physical, Chemical, and Toxicological Testing

SEDIMENT GRAIN SIZE DISTRIBUTION AND PERCENT TOTAL SOLIDS ANALYSES

- Individual subsamples from eight project DMMUs
- Reference composite
- ODMDS composite

SEDIMENT CHEMICAL ANALYSES (project, Reference, and ODMDS composites):

- Ammonia (as nitrogen)
- Cvanide
- 13 metals, plus tri- and hexavalent chromium
- 41 SVOCs
- 21 organochlorine pesticides (includes derivatives)
- 15 PAHs, plus total PAH calculations
- Total PCBs
- TOC
- TPH
- Organotins

ELUTRIATE AND WATER ANALYSES (water samples and project elutriates):

- Ammonia (as nitrogen)
 - Cyanide
 - 13 metals, plus tri- and hexavalent chromium
 - 41 SVOCs
 - 21 organochlorine pesticides (includes derivatives)
- 15 PAHs, plus total PAH calculations
- Total PCBs
- TOC
- TPH
- Organotins

BIOASSAY AND BIOACCUMULATION TESTS (eight project composites and the Reference):

Water Column (Suspended Particulate Phase) 48-hour and 96-hour tests using two species:

- Mysid crustacean: Americamysis bahia (opossum shrimp)
 - Juvenile life stage (1 to 5 days old)
 - Planktonic life stage (<1 day old)
- Atherinoid fish: *Menidia beryllina* (inland silverside)

Whole Sediment (Solid Phase) Bioassay 10-day toxicity tests using two species:

- Amphipod crustacean: Leptocheirus plumulosus (burrower amphipod)
- Mysid crustacean: Americamysis bahia (opossum shrimp)

Whole Sediment Bioaccumulation Potential 28-day exposure tests using two species:

- Bivalve mollusk: *Mercenaria mercenaria* (bent-nose clam)
- Infaunal polychaete worm: *Alitta virens* (formerly known as *Neanthes virens* or *Nereis virens*) (sand worm). Referred to as *Nereis virens* in the NWDLS toxicology report.

TISSUE CHEMICAL ANALYSES:

Based on results of sediment chemical analyses, tissues were analyzed for total solids (all samples); metals (all samples); monobutyltin in DMMU-1 only; TPH (all samples); PAHs in DMMU 1, DMMU 3, DMMU-4, DMMU-5, DMMU 7, and DMMU 8; and selected SVOC compounds (all samples). The Reference and pretest tissue samples were analyzed for all parameters recommended above. Tissue recommendations are discussed in Subsection 2.5.

2.2 Sample Collection Techniques

2.2.1 Field Effort

Field sampling as discussed in this report took place between January 16 and January 27, 2023. However, please note than an initial sampling event for the Harbor Island New Dock and Facilities Project, which included sampling of DMMUs 1 through DMMU 8, the Reference Area, and the New Work ODMDS, took place between February 1, 2022 and March 3, 2022.

Toxicity studies and bioaccumulation studies in the USACE Galveston and New Orleans Districts are generally conducted in accordance with the Regional Implementation Agreement (RIA, EPA/USACE, 2003), which "provides guidance for applicants, permittees, and USACE and EPA staff working on ocean dredge material disposal projects in Louisiana and Texas." RIA, Preface. For biological tests of dredge material, RIA Appendix B indicates that holding times, the time between sample collection and test initiation, should not exceed eight weeks or 56 days.

During the initial sampling event conducted in 2022, Terracon performed sediment and water sampling on behalf of the PCCA to establish that material from certain dredging units meets ocean disposal criteria in 40 CFR Parts 220-229. Samples were sent to the North Water District Laboratory Services, Inc. (NWDLS) in the Woodlands, Texas. Due to NWDLS starting the holding time upon the composite date of the sediment material, rather than the time of sample collection, recommended holding times per the RIA were exceeded for eight samples collected for solid phase (SP) bioassay testing and seven samples collected for suspended particulate phase (SPP) bioassay testing. Test initiation for sediment samples collected for SP bioassay testing from DMMU 1 through DMMU 8 commenced between 10 to 15 days beyond the 56 days recommended by the RIA. Test initiation for sediment samples collected for SPP bioassay testing from DMMU 1 through DMMU 7 commenced between one to five days beyond the 56 days recommended by the RIA. Test initiation for sediment samples collected from the Reference Area commenced within the recommended 56-day period.

Due to the test initiation for sediment samples collected for SP and SPP bioassay testing from the various DMMUs beyond the 56 days recommended in the RIA, Terracon mobilized back to the site in January 2023 to conduct a complete resampling of the Harbor Island New Dock and Facilities Project per approval and under the directive of the EPA and USACE. The results of the January 2023 resampling event are summarized in the following sections of this report and were conducted as outlined in the EPA/USACE-approved PCCA SAP, dated April 2021, including the SAP Errata Sheet, dated January 10, 2022, and subsequent email correspondences dated January 28, 2022, January 31, 2022, February 3, 2022, February 14, 2022, December 14, 2022, January 17, 2023, January 24, 2023, and February 3, 2023 (presented in Appendix A).

Terracon and ANAMAR personnel were present throughout the field activities to direct the work, log the borings and collect samples. As part of the scope of work, 16 land-based borings plus one duplicate, and seven marine borings were advanced throughout the proposed dredge footprint, plus one grab sediment sample at DMMU-8-5D. The samples were collected at representative locations within DMMU 1 through DMMU 8 as depicted on Figure 2.1 for the collection of marine water and sediment samples. Sampling locations were evenly distributed across the proposed dredge footprint in an effort to be spatially representative of the estimated cubic yards of material to be excavated and to adequately address the vertical extent of the proposed dredging activities.

As outlined in the SAP, a total of 24 subsamples were collected from the various DMMUs advanced throughout the dredge footprint for physical and chemical laboratory analysis while eight composite samples were prepared at the analytical laboratory from the subsamples collected for elutriate preparation and toxicological/bioaccumulation analysis. In addition to the project samples, three sediment grab samples were collected using a double van Veen™ from three stations within the New Work ODMDS, and from three stations within the offshore Reference Area to the north of the Entrance Channel. The Reference composite underwent physical, sediment chemistry, and toxicological/bioaccumulation analysis. The New Work ODMDS composite sample underwent physical and sediment chemistry analysis.

Site water for elutriate preparation of the terrestrial composite samples from DMMUs 1 through 4 was collected from station DMMU-7-4A. Site water for elutriate preparation of the terrestrial composite samples from DMMUs 5 and 6 was collected from station DMMU-7-4B. Site water for elutriate preparation of the marine composite samples from DMMUs 7 and 8 was collected from stations DMMU-7-4B and DMMU-8-5B, respectively.

Figure 2.1 shows the location of the borings in relation to the pertinent structures and dredging prism. Details regarding the various daily sampling activities are presented on the Daily Log Sheets and/or Daily Quality Control Reports in Appendix B. Photographs taken during the field activities are presented in Appendix I.

2.2.2 Site Positioning

Sampling locations within each DMMU were selected by the PCCA and approved by the EPA/USACE based on previous terrestrial and marine soil boring investigations conducted in 2019. The distribution and number of cores collected at substation locations provided adequate representation for each DMMU. The material collected from the stations represents dredged material to be disposed of at the New Work ODMDS. The locations of the three site water sampling stations were chosen to best represent the hydrochemical conditions within each DMMU. Water for chemical analysis also was collected from the Reference Area and the New Work ODMDS.

Target coordinates were uploaded to a Trimble® Global Positioning System (GPS – Geoexplorer® 6000 Series, Geo XH 3.5 H edition, model #88951) unit with an accuracy of approximately ± 3 feet for each boring location was utilized to ensure that the samples were collected as close as possible to the boring locations provided in the SAP. Uploaded coordinates in the GPS unit were reviewed and compared with the original coordinates for verification prior to field sampling.

All sediment and water samples were taken within 100 feet of the target station and conformed to the Station Positioning paragraph in the Errata dated January 10, 2022, except for borings at DMMU-7-4A, DMMU-7-4C and DMMU-8-5D, as well as site water sample DMMU-7-4A. These locations were subsequently approved by the USACE and EPA in emails dated February 3, 2022, February 14, 2022, and January 24, 2023.

- Boring DMMU-7-4A The water depth at the target location was approximately 4 feet.
 Due to the lift boat's (the DuLarge Class 170 liftboat) minimal draft depth of approximately 10 feet, the boring was moved 275 feet to the southeast.
 - Water Sample HI-DMMU-7-4A-SW Due to the relocation of boring DMMU-7-4A, the collection point for the associated water sample was also relocated to be representative of the revised boring location. The location of the marine water sample

was approximately 240 feet southwest of the original coordinates provided in the SAP, but well within the boundaries of DMMU 7.

- Marine water samples collected as part of the assessment were considered a snapshot in time, and levels of any chemical of concern detected in marine water could vary at any point in time due to the continual tidal movement of water through the channel. During collection of marine water sample HI-DMMU-7-4A-SW for elutriate and bioassay analysis, there was a low to mid-outgoing tide and there was a strong current throughout the dredge prism. Therefore, water sample HI-DMMU-7-4A-SW collected in the vicinity of boring DMMU-7-A passed through both DMMU 7 and DMMU 8 at the time of collection and is representative of water flowing throughout the dredge prism at any one point in time.
- Boring DMMU-7-4C Shallow water depths and rock/rubble/concrete debris were observed at the target location. Due to the lift boat's minimal draft depth of approximately 10 feet, the debris and rubble represented a safety hazard for the lift boat and operations. Therefore, the boring was relocated 375 feet to the west. The location of the boring was also affected by strong currents encountered by the lift boat while maneuvering into position and prior to finding the bottom while jacking up the lift boat.
- Boring DMMU-8-5D Due to the remnants of the former structures off the shoreline of Harbor Island and water depths greater than the project depth of -60 feet MLLW, surface grab samples were approved by the EPA per email received January 24, 2023. Grab samples were collected using a double van Veen™.

Sampled locations are depicted in Figures 2.1 through 2.3. Tables 1A through 1C and Table 2 contain spatial and temporal data along with field observations taken during sediment grab and site water sampling, respectively.

2.2.3 Sediment Sampling with Drill Rig

Land-Based Borings

Sediment samples DMMU-1-1A through DMMU-6-3C (16 subsamples total) were collected from borings advanced by a Monitor Well Driller licensed in the State of Texas utilizing CME drill rig equipped with hollow-stem augers (HSA) to a depth of 60 feet MLLW (during drilling activities, the ground surface at each land-based boring was assumed to be +10 feet MLLW). A Trimble® Global Positioning System (GPS - Geoexplorer® 6000 Series, Geo XH 3.5 H edition, model #88951) unit with an accuracy of approximately ± 3 feet loaded with the coordinates for each boring location was utilized to ensure that the samples were collected as close as possible to the boring locations provided in the SAP.

During drilling activities, saturated flowing sands within the land-based borings were encountered at depths between -15 and -20 feet MLLW which resulted in reduced sample recovery and sample barrels becoming trapped within the augers due to the upwelling of flowing sands. Therefore, sediment from the land-based borings was collected utilizing the following approach approved by the USACE and EPA via email correspondence dated February 3, 2022:

- The top 10 feet of sediment under the jurisdiction of the Railroad Commission of Texas (RRC) was screened off with 6 ⁵/₈-inch diameter decontaminated HSAs.
- 6-inch solid flight augers were subsequently used to drill within the 6 ⁵/₈-inch HSA collecting sediment in the form of cuttings from the 0 to -30 feet MLLW sampling interval.

- Upon completion of sampling, the 6 ⁵/₈-inch HSAs were decontaminated. Following decontamination, the 6 ⁵/₈-inch HSAs were advanced to a depth of -30 feet MLLW to screen off the 0 to -30 feet MLLW sample interval (DMMU) as well as the 10 feet of sediment under the jurisdiction of the RRC.
- Once set at a depth of 40 feet below ground surface, decontaminated 6-inch solid flight augers were advanced within the 6 ⁵/₈-inch HSAs to collect sediment in the form of cuttings from the -30 to -60 feet MLLW sampling interval (DMMU).

Note that 6-milliliter plastic was placed on the ground surrounding the HSAs to prevent sediment at each boring location from contacting surficial soils prior to sample collection. Upon collection, the sediment cores were examined in the field to document lithology, color, moisture content, and visual or olfactory evidence of impact. In addition, the samples were screened with an organic vapor monitor (OVM) equipped with a photoionization detector (PID) calibrated to 100 parts per million (ppm) isobutylene standard to detect the presence of volatile organic vapors. GPS coordinates for each boring location are provided in Table 1A.

Marine Borings

Sediment samples DMMU-7-4A through DMMU-7-4D and DMMU-8-5A through DMMU-8-5C were collected from borings advanced by a Monitor Well Driller licensed in the State of Texas through the top of the mudline utilizing a sonic drill rig to depths ranging from -60.0 to -61.4 feet MLLW. The drill rig was mounted on a lift boat (the *DuLarge* Class 170 liftboat). A Trimble® Global Positioning System (GPS - Geoexplorer® 6000 Series, Geo XH 3.5 H edition, model #88951) unit with an accuracy of approximately ± 3 feet loaded with the coordinates for each boring location was utilized to ensure that the samples were collected as close as possible to the boring locations provided in the SAP. Prior to commencement of drilling, a water level meter equipped with a lead shackle was slowly lowered from the water surface to the mudline to determine boring depths, which were subsequently adjusted to account for tidal fluctuations observed at the time of drilling (refer to Table 1B for boring depths in relation to tide levels at time of drilling).

Sediment cores were collected continuously from the surface to the maximum terminal depths. Ten-foot threaded core barrels (4-inch and 6-inch diameter) were used and placed inside an 8-inch diameter steel casing that extended from the surface to the mudline. The steel casing was installed prior to commencement of drilling activities.

• Note that due to the depth of sediment at boring DMMU-8-5D, -60.2 feet below the water surface (or greater in the vicinity), sediment cores were not collected, and surficial grab samples were collected using a double van Veen™ grab sampler. The USACE and EPA approved grab sampling at DMMU-8-5D via email correspondence dated January 24, 2023. The sediment cores were examined in the field to document lithology, color, moisture content, and visual or olfactory evidence of impact. GPS coordinates for each boring location are provided in Tables 1A and 1B.

Sediment Sampling Procedures

For land-based borings, the top 10 feet of material was discarded since it falls under the jurisdiction of the RRC, and proposed development plans call for the soil to be reused on-site to bring existing low-lying areas to grade.

 Approximately 5-gallons of sediment placed within Teflon[®] bags were collected from each land-based DMMU subsample for physical and chemistry analyses. At each DMMU boring location, the selected sample intervals (0 to -30 feet MLLW and/or -30 to -60 feet MLLW) represented one individual sediment core sample, respectively.

 For each DMMU (1 through 6), approximately 35-gallons of sediment total was collected from the various subsamples within the DMMU for elutriate preparation and toxicological/bioaccumulation analysis (i.e., DMMU1-1A [0 to -30'] through DMMU1-1C [0 to -30'] to form composite sample DMMU 1).

For the marine-based stations, representative core sediment samples were collected from the existing mudline to at least the project depth of -60 feet MLLW at each station location except DMMU-8-5D.

Sediments from each substation (between 15 and 25 gallons) and approximately 3-gallons from DMMU-8-5D (grab sample) was placed within Teflon® bags and submitted to the lab for homogenization and collection of discrete physical parameters and sediment for chemistry analysis before compositing the subsamples within each DMMU for elutriate preparation and toxicological/bioaccumulation analysis.

When the required volume of sediment was collected, a photograph of the material was taken and notes on the sample's appearance and characteristics were recorded on a project-specific field log. Immediately after collection, food grade 5-gallon buckets containing the various sediment samples were labeled and transferred to a refrigerated trailer stored on the Martin Energy property on Harbor Island. Note that for marine borings, the sediment samples were stored in a refrigerated trailer onboard the vessel prior to being transferred to a refrigerated trailer stored on the Martin Energy property upon return to the dock. The samples were monitored for preservation at or below 4°C. Samples were received by the laboratory courier on an as needed basis, typically within one or two days of sample collection and transported back to the laboratory in a refrigerated trailer at or below 4°C. Tables 1A and 1B and the field logs in Appendix B provide additional information on the sediment sampling process.

Sediment Elutriate and Bioassay Sampling Procedures

As stated above, approximately 35 gallons of sediment were collected from the various subsamples that make up each specific DMMU for the purposes of elutriate analysis and bioassay testing. Upon receipt of the various 5-gallon buckets of sediment, the NWDLS composited the various station subsamples to create one composite per DMMU for elutriate preparation and toxicological/bioaccumulation analysis (i.e., DMMU1-1A [0 to -30'] through DMMU1-1C [0 to -30'] to form composite sample DMMU 1. The composite sediment samples were later mixed with marine water collected from within the dredge prism at a 4 to 1 ratio prior to undergoing the specified elutriate analyses. Tables 1A and 1B and the field logs in Appendix B provide additional information on the sediment sampling process.

2.2.4 Sediment Sampling with Double van Veen™

Offshore Reference grab samples were collected aboard the sampling vessel *Hercules* using a double van Veen[™] grab sampler that was lowered and raised using a cable winch with a pivoting davit on the starboard side of the vessel. One person operated the hoist, another moved/positioned/secured the davit during deployment and retrieving, and two additional team members guided the sampler into a decontaminated stainless-steel bin on the vessel. Excess water was allowed to drain from the sampler prior to placing sample material in the bin. When the required volume of sediment (~35 gallons) was collected, a photograph of the material was taken and notes on the sample's appearance and characteristics were recorded on a project-

specific field log. Using decontaminated stainless-steel utensils and disposable nitrile gloves, the sample was placed in pre-cleaned, labeled Teflon® bags and stored in a refrigerated trailer onboard the vessel. Upon return to Martin Energy dock, the samples were transferred to a refrigerated trailer stored on the Martin Energy property. The samples were monitored for preservation at or below 4°C. Samples were received by the laboratory courier the next day and transported back to the laboratory in a refrigerated trailer at or below 4°C. Table 1C and the field logs in Appendix B provide additional information on grab sampling.

2.2.5 Water Column Measurements and Sampling

Three marine water samples were collected aboard the *Gulf Star* sampling vessel from DMMU 7 and DMMU 8 within the dredge prism at various boring locations for analyses. Marine water samples were also collected on the *Hercules* from the Reference location and New Work ODMDS. A Trimble® GPS unit (Geoexplorer® 6000 Series, Geo XH 3.5 H edition, model #88951) with an accuracy of approximately \pm 3 feet loaded with the coordinates for each boring location was utilized to ensure that the samples were collected as close as possible to the boring locations provided in the SAP.

- <u>Boring DMMU-7-4A</u> Marine water sample HI-DMMU-7-4A-SW was collected for elutriate, bioassay and water chemistry associated with DMMUs 1 through 4.
- <u>Boring DMMU-7-4B</u> Marine water sample HI-DMMU-7-4B-SW was collected for elutriate, bioassay and water chemistry associated with DMMUs 5 through 7.
- <u>Boring DMMU-8-5B</u> Marine water sample HI-DMMU-8-5B-SW was collected for elutriate, bioassay and water chemistry associated with DMMU 8.
- <u>REF-B</u> Marine water sample HI-REF-B-SW was collected for bioassay and water chemistry.
- <u>ODMDS-B</u> Marine water sample HI-ODMDS-B-SW was collected for sediment and water chemistry.

Prior to sampling, a water level meter equipped with a lead shackle was slowly lowered over the side of the lift boat and/or crew boat from the water surface to the mudline to determine the depth of the water column. A stainless-steel monsoon pump equipped with phthalate-free hoses was then lowered, in tandem with the water level meter, by personnel wearing clean, disposable nitrile gloves to a depth determined to be in the middle of the water column while avoiding contact with the boat deck and other surrounding equipment to prevent contamination. New phthalate-free hoses were utilized at each sampling location. Approximately 5 to 10 gallons of water was purged through the pump, an amount greater than five times the hose volume, prior to sample collection.

A Horiba multiparameter meter was used to measure water column parameters at water sampling stations within the project area. The instrument was calibrated prior to use according to manufacturer's instructions. A summary of standard sampling parameters (including time of reading, depth, pH, dissolved oxygen, specific conductance, oxidation/reduction potential, turbidity, temperature) obtained for marine water samples collected during field activities are presented in Table 2.

Marine Water / Elutriate / Bioassay Sampling Procedures

Marine water samples were collected in laboratory-supplied volatile organic analysis (VOA) vials/polyethylene bottles/glassware equipped with Teflon®-lined caps provided by the analytical

laboratory by personnel wearing clean, disposable nitrile gloves in accordance with the SAP. VOA vials were filled to a positive meniscus, sealed, and visually checked for the presence of air bubbles. The remaining containers were filled to capacity to limit the amount of headspace. Please note that water samples to be analyzed for metals, other than mercury and selenium, were collected in unpreserved containers to be filtered by the analytical laboratory through a dedicated 0.45-micron (μ m) filter prior to analysis.

Additional water was collected from the three referenced boring locations as previously discussed in eight 5-gallon food grade buckets for the purposes of providing marine water to the laboratory for mixing with the various sediment samples collected throughout the dredge prism. The marine water was mixed with the various sediment samples upon receipt by the analytical laboratory at a 4 to 1 ratio prior to performing the elutriate and bioassay analyses.

Immediately after collection, marine water samples were labeled and placed in bubble wrap within a sealed, Ziploc®-type, plastic bag. Sealed plastic bags containing the bubble wrapped sample containers were then placed in insulated coolers and chilled to an approximate temperature of 40°F (4°C). A separate cooler was utilized for each sampling location. Upon return to Martin Energy dock, the samples were transferred to a refrigerated trailer stored on the Martin Energy property. Samples were monitored for preservation at or below 4°C. Samples were received by the laboratory courier the next day and transported back to the laboratory in a refrigerated trailer at or below 4°C. Table 2 and the field logs in Appendix B provide additional information regarding water sampling.

2.2.6 Decontamination Procedures

Equipment (including the 4-inch and 6-inch diameter 10-foot threaded core barrels, double van Veen™ grab sampler, submersible water pump, and sampling utensils) that contacted sediment or water samples was cleaned and decontaminated as described below.

<u>Decontamination of Sediment Sampling Equipment (Land-Based Borings within DMMU 1 through DMMU 6)</u>

Prior to sampling at the first DMMU substation, and prior to sampling at the next DMMU, decontamination procedures for the hollow-stem and solid-flight augers consisted of using a nonphosphate detergent (Alconox®) and potable water wash followed by cleaning with a pressure washer to rinse the outside/inside of the drilling equipment to prevent potential cross-contamination between boring locations.

<u>Decontamination of Sediment Sampling Equipment (Marine Borings within DMMU 7, DMMU 8, the Reference Area, and the ODMDS</u>

Decontamination procedures for the sonic drill rig 10-foot core barrels (4-inch and 6-inch diameter) consisted of flushing the outside and inside of the core barrel with ambient water to remove remnant sample material. A round brush connected to an extension rod was used to wash the inside of the core barrel with a nonphosphate detergent (Alconox®) and then thoroughly rinsed with deionized water. Sampling utensils were decontaminated in a 5-gallon bucket with Alconox and thoroughly rinsed with deionized water. Prior to collecting sediment grab samples from the Reference Area and the ODMDS, the double van Veen™ grab sampler was flushed with ambient water and decontaminated following the same procedures as referenced above. Disposable nitrile gloves used at a given sampling station were replaced with new gloves prior to sampling at the next station.

Decontamination of Marine Water Sampling Equipment

Decontamination procedures for stainless-steel sampling equipment (monsoon pump) and water level meter was conducted in 5-gallon buckets and consisted of using a nonphosphate detergent (Alconox®) and potable water wash followed by a distilled water rinse prior to commencement of the project and between sampling locations.

These above referenced decontamination methods conform to those summarized in the SAP (Appendix A). Any derived waste was contained and disposed of in accordance with federal, state, and local laws.

2.2.7 Field Quality Control

Field Duplicates – One sediment and one elutriate duplicate sample were collected during field activities to satisfy the general frequency per matrix specified in the SAP. The duplicate sediment sample was a composite sample consisting of sediment collected from DMMU-3-2A (0 to -30 feet MLLW) on January 19, 2023 and DMMU-3-2B (0 to -30 feet MLLW) on January 20, 2023, while the marine water sample HI-DMMU-7-4A-SW used to create the duplicate elutriate sample DMMU-3-E Duplicate was collected on January 25, 2023. Sampling procedures for duplicate samples were previously discussed in Sections 2.2.3 and 2.2.5. Analytical results for the field duplicate samples are provided in Tables 3 through 11.

Equipment Rinsate Blanks – One equipment rinsate blank was prepared during the field activities (please note that specific requirements regarding equipment rinsate blanks were not provided in the SAP [April 2021]). The equipment rinsate blank was collected from the solid-flight augers during sampling activities at boring DMMU-3-2B (0 to -30 feet MLLW) on January 20, 2023. The equipment rinsate blanks were prepared by passing analyte-free distilled water through the sampling equipment after decontamination to document potential contamination from inadequately decontaminated sample collection equipment. Analytical results for the equipment rinsate blank are provided in the general chemistry report in Appendix E.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples – In order to assess the accuracy and precision of the analytical methods used in the sample matrix, NWDLS prepared MS/MSD samples of the media sampled (sediment, marine water and elutriate) by Terracon. The MS/MSD samples are provided in the analytical laboratory reports in Appendix E.

2.2.8 Sample Transport, Processing, and Custody

2.2.8.1 Transport and Shipping to the Laboratories

As previously discussed in Sections 2.2.3 through 2.3.5, immediately after collection sediment and marine water samples were stored in refrigerated trailers onboard the marine vessels and/or at the Martin Energy property for preservation at or below 4°C. Samples were received by the laboratory courier on an as needed basis, typically within one or two days of sample collection, and transported back to NWDLS in The Woodlands, Texas in a refrigerated trailer at or below 4°C.

Chemical analyses were performed by NWDLS in The Woodlands, Texas, except for those constituents that were subcontracted to the following analytical laboratories:

• The sediment sample analyses for organotins and TOC were subcontracted to ALS Environmental located at 1317 South 13th Avenue in Kelso, Washington and 10450 Stancliff Road, Suite 210, Houston, Texas.

- The sediment sample analysis for TPH analysis was subcontracted to A&B Labs located at 10100 East Freeway, Suite 100, Houston, Texas.
- The water and elutriate analyses for organotins, TOC and total cyanide were subcontracted to ALS Environmental located at 1317 South 13th Avenue in Kelso, Washington.
- The water and elutriate analyses for TOC and TPH analysis were subcontracted to A&B Labs located at 10100 East Freeway, Suite 100, Houston, Texas.
- The tissue sample analysis for TPH and organotins was subcontracted to Eurofins Houston located at 4145 Greenbriar Drive, Stafford, Texas.
- The sediment sample analysis for grain size was subcontracted to Taylor Engineering Coastal & Marine Geosciences Laboratory located at 10199 Southside Boulevard, Suite 310 in Jacksonville, Florida.

2.2.8.2 Compositing and Homogenizing

Homogenization and compositing of samples for elutriate, toxicological, and bioaccumulation analysis was conducted by staff at NWDLS. Decontamination of the stainless-steel compositing equipment was performed before and between groups of samples and was conducted in accordance with methods outlined in the SAP and Errata dated January 10, 2022.

2.2.8.3 **Chain-of Custody**

Proper chain-of-custody documentation was maintained throughout the sampling process. Chain-of-custody forms for each laboratory were completed to reflect the final sample names and to identify the analyses and analytical methods required, and also accompanied the samples during shipment to the laboratories. Copies of the final signed chain-of-custody forms are included in the laboratory reports (Appendices C, E and G).

2.3 Physical and Chemical Analytical Procedures

2.3.1 Physical Procedures

Taylor Engineering Coastal & Marine Geosciences Laboratory, a subconsultant to NWDLS, performed physical analyses of the sediment composites. ANAMAR performed QA/QC on sediment physical data and presented the data in Table 3.

2.3.1.1 Grain Size Distribution

Gradation tests were performed by Taylor Engineering, Inc. in general accordance with method ASTM D422. Sieve analysis utilized U.S. standard sieve numbers 4, 10, 20, 40, 50, 70, 100, 140, and 200. Each DMMU subsample and each DMMU composite sample was air-dried and dry-prepped in accordance with method ASTM D422, and results of the sieve analysis of material larger than a #10 sieve (2.00-mm mesh size) were determined.

2.3.1.2 Moisture Content

Moisture content analyses were performed by NWDLS in general accordance with method ASTM D-2216-80 and Plumb (1981). The sample weight was recorded, and the sample was placed in an oven and dried to a constant mass at 110°C. Once a constant dry mass was obtained, the percent moisture was determined by subtracting the dry mass weight from the wet mass weight, then dividing the loss in mass due to drying (the mass of just moisture) by the wet mass. The percent total solids were reported on a 100% wet weight basis.

2.3.2 Chemical Analytical Procedures

Target detection limits (TDLs) for these analyses are provided in Table 5 of the SAP (Appendix A). Analytical and preparation methods were performed following guidelines in EPA (2012).

Elutriates were generated using methods described in Subsection 10.1.2.1 of the Green Book, equivalent to Subsection 10.1.2.1 of the *Inland Testing Manual* (ITM) (EPA and USACE 1998). ANAMAR performed QA/QC on these data and presented them in summary tables. Complete laboratory reports are in Appendix E. Exhibit 2-4 presents a summary of analytical methods used for chemical analysis of sediment, elutriate, and tissue samples.

Exhibit 2-7. Summary of Methods and Equipment Used during Sediment, Elutriate, and Tissue Analysis

EPA Method	Instrument/ Procedure	Methodology Summary
200.8 (trace metals)	ICP and ICP/MS for trace metals	Inductively coupled plasma (ICP) with or without mass spectrometry (MS) is applicable to the determination of sub-µg/L concentrations of many elements in water samples and in waste extracts or digests. Acid digestion prior to filtration and analysis is required for aqueous samples, sediments, and tissues for which total (acid-leachable) elements are required.
350.1, 350.2 and SM 4500 (modified)	Autoanalyzer Spectrophotometer	Methods 350.2 and 4500 are used for measuring ammonia in sediments. This method utilizes a reaction of the sample with phenolate and hypochlorite to form a blue color, which is proportional to the concentration of ammonia in the sample. The color is intensified with sodium nitroprusside and is measured by spectrophotometer.
7470 (mercury in water)	Mercury Analyzer Cold Vapor Atomic Absorption (water)	Method 7470 is a cold-vapor atomic absorption procedure approved for determining the concentration of mercury in mobility-procedure extracts and aqueous wastes. The samples are subjected to an appropriate dissolution step before analysis.
7471 (mercury in sediment and tissues)	Mercury Analyzer Cold Vapor Atomic Absorption	Method 7471 is approved for measuring total mercury (organic and inorganic) in sediments and tissues. The samples are subjected to an appropriate dissolution step before analysis. If this dissolution procedure is not sufficient to dissolve a specific matrix type or sample, this method is not applicable for that matrix.
TX-1005 (TPH C6–C35)	Gas Chromatograph/ Flame Ionization Detector	This method is designed to determine total concentrations of TPH in solid and aqueous matrices using gas chromatography. This method can be used for the quantitative analysis of petroleum hydrocarbons in the gasoline and diesel ranges and portions of the heavier fuel and lubricating oil range.
8081 (pesticides)	Gas Chromatograph	Method 8081 is used to determine the concentrations of various organochlorine pesticides in extracts from solid and liquid matrices using fused-silica, open-tubular capillary columns with electron capture detectors (ECD) or electrolytic conductivity detectors (ELCD). The compounds that can be run by this method may be determined by a single- or dual-column analysis system.

EPA	Instrument/	
Method	Procedure	Methodology Summary
8082A (PCB Aroclors)	Gas Chromatograph	Method 8082 is used to determine the concentrations of PCBs as individual PCB congeners or Aroclors in extracts from solid, tissue, and aqueous matrices using open-tubular capillary columns with ECD or ELCD. The target compounds may be determined by a single- or dual-column analysis system. Total PCBs are calculated from the sum of congeners or Aroclors.
8270 SIM (PAHs and semi- volatiles)	Gas Chromatograph/ Mass Spectrometer	This method is used to determine the concentration of semi-volatile/ PAH organic compounds in extracts prepared from many types of solid matrices and water samples. Direct injection of a sample may be used in limited applications.
9060 and 415.1 (modified*)	TOC Analyzer	EPA methods 9060 and 415.1 are used to determine the concentration of organic carbon in sediment by catalytic combustion or wet chemical oxidation. The carbon dioxide formed from this procedure is measured and is proportional to the TOC in the sample.
9014 and 4500- CN-E (cyanide)	Colorimetric Analysis	EPA methods 9014 and 4500-CN-E use colorimetric procedures to determine the total concentration of cyanide in sediment and water samples, respectively. The analysis uses linear regression of the signal measured by the instrument compared to the signal determined by known standards to evaluate the sample concentration.
7196 and SM3500-Cr B	Colorimetric Analysis	EPA methods 7196 and SM 3500-Cr B use colorimetric procedures to determine the total concentration of hexavalent chromium in sediment and water samples, respectively. The analysis uses linear regression of the signal measured by the instrument compared to the signal determined by known standards to evaluate the sample concentration.

^{*} Minor modifications were made to method 9060 that were approved by the National Environmental Laboratory Accreditation Conference.

2.4 Bioaccumulation and Toxicology Procedures

NWDLS conducted toxicology testing using sediment samples collected by Terracon as part of this MPRSA Section 103 sediment testing report. The information presented in this subsection is based on the toxicology laboratory report by NWDLS. The complete laboratory report is in Appendix G.

The material under consideration for ocean disposal was evaluated in accordance with procedures and criteria outlined in the Green Book and the RIA and with guidance outlined in the ITM. Biological analyses using Reference sediment were performed concurrently with the test sediment evaluations.

The testing program included bioassay analysis of eight project sediment composites and a Reference sediment sample composite. In addition, appropriate laboratory control samples were run with each of the selected test species. Bioassay testing consisted of three water column bioassays, two whole sediment bioassays, and two whole sediment bioaccumulation potential tests. The bioassay and bioaccumulation tests are summarized in Exhibit 2-5 below.

Exhibit 2-8. Toxicity and Bioaccumulation Potential Testing Performed for Dredged Material Evaluation

Test Type	Taxonomic Group	Test Species	Project Sediments (yes/no)	Reference Sediment (yes/no)	Control Sediment or Water (yes/no)
Water column (suspended particulate	Mysid crustacean (planktonic [<1-day- old] and juvenile stage [1-5 days-old] life stages)	Americamysis bahia ¹ (opossum shrimp)	Yes ²	No (not applicable)	Yes
phase)	Atherinoid fish	<i>Menidia beryllina</i> (inland silverside)	Yes ²	No (not applicable)	Yes
Whole sediment	Amphipod crustacean	Leptocheirus plumulosus (no common name)	Yes	Yes	Yes
(solid phase)	Mysid crustacean	Americamysis bahia ¹ (opossum shrimp)	Yes	Yes	Yes
Bioaccumulation	Bivalve mollusk	Mercenaria mercenaria (quahog clam)	Yes	Yes	Yes
potential	Infaunal polychaete worm	Alitta virens ³ (sand worm)	Yes	Yes	Yes

¹ Referred to as Mysidopsis bahia (a junior synonym of Americamysis bahia) in the NWDLS' toxicology report.

2.4.1 Ammonia and Salinity Screening in Sediments

While elevated ammonia concentrations in the porewater are transient qualities in dredged material, they can influence organism survival and development in laboratory tests. If high concentrations of ammonia were found in the test composites, they would be considered non-persistent effects under Green Book and RIA guidance.

Prior to testing, initial sediment ammonia concentrations and salinity were measured to determine if supplemental testing or modifications to the methods used would be required. The results of these analyses are summarized in Exhibit 2-6.

² Sediment elutriates of project material.

³ Formerly known as Neanthes virens and Nereis virens. Referred to as Nereis virens in the NWDLS' toxicology report.

Exhibit 2-9. Initial Sediment Overlying Water Measurements

Sample ID	Benthic Test Species	Total Ammonia (mg/L)	Un-ionized Ammonia (mg/L)	Salinity (ppt)	рН
DMMU 1 (sediment)		0.006	0.000	19.9	8.2
DMMU 2 (sediment)		0.008	0.000	19.9	8.2
DMMU 3 (sediment)		0.006	0.000	19.8	8.2
DMMU 4 (sediment)		0.006	0.000	19.8	8.2
DMMU 5 (sediment)	L. plumulosus	0.036	0.002	19.9	8.2
DMMU 6 (sediment)		0.026	0.002	20.1	8.2
DMMU 7 (sediment)		0.005	0.000	20.1	8.2
DMMU 8 (sediment)		0.005	0.000	20.0	8.2
HI-20-REF (Reference)		0.007	0.000	20.0	8.1
DMMU 1 (sediment)		0.003	0.000	29.1	8.0
DMMU 2 (sediment)		0.004	0.000	29.1	8.0
DMMU 3 (sediment)		0.005	0.000	29.1	8.0
DMMU 4 (sediment)		0.005	0.000	29.1	8.0
DMMU 5 (sediment)	A. bahia	0.020	0.001	29.2	8.0
DMMU 6 (sediment)		0.019	0.001	29.1	8.0
DMMU 7 (sediment)		0.005	0.000	29.1	8.0
DMMU 8 (sediment)		0.004	0.000	29.1	8.0
HI-20-REF (Reference)		0.003	0.000	29.2	8.1

Sources: NWDLS' toxicology report (Appendix G)

In accordance with the SAP, ammonia is to be measured in sediment overlying water to evaluate which sample(s) may have sufficiently elevated ammonia present to produce negative biological effects with the targeted test organisms. If the ammonia concentration is greater than (>) 0.4 milligrams per liter (mg/L) un-ionized ammonia or >30 mg/L total ammonia, the test sediment will be flushed with overlying water at up to six volume replacements per 24 hours, as described in *Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Marine Invertebrates* (EPA 1994). Based on the initial water quality readings, ammonia concentrations were not predicted to cause ammonia-related effects for either of the test species; therefore, flushing of test sediments was not required.

2.4.2 Water for Bioassay Testing

Water used in this study is laboratory-prepared artificial seawater (Instant Ocean® Sea Salt or Hawaiian Marine Mix) mixed with freshwater to the salinity requirements of the test species. This water was used for the control treatment and as the diluent for less than (<) 100% elutriate concentrations. Laboratory seawater parent analytical standard records are included as PDF pages 181 through 194 of the toxicology laboratory report by NWDLS (Appendix G).

2.4.3 Water Column (Suspended Particulate Phase) Bioassay Procedures

Two species were used in the SPP testing: *Americamysis bahia* (opossum shrimp) and *Menidia beryllina* (inland silverside). SPP tests were performed to estimate the potential impact of dredged

material disposal on organisms within the water column. Two life stages of *A. bahia* were tested: a zooplankton stage of <1 day old and an adult stage of 7 days old. The *A. bahia* and *M. beryllina* were cultured at the NWDLS' toxicology laboratory. SPP bioassay procedures and the sources of the two test species are described in detail in PDF pages 4 through 6 of the toxicity report (Appendix G).

After preparation, the suspended particulate phase bioassays were transferred to the test containers. Test chambers consisting of 1,000- or 500-milliliter (mL) disposable food-grade, polypropylene cups with test solution were mixed with laboratory-prepared artificial seawater in appropriate proportions to give three replicates each of 10%, 50%, and 100% concentrations of elutriates per DMMU. Containers filled with 100% laboratory-prepared seawater were used as controls for the tests.

After the test containers were prepared and determined to be at the appropriate temperature, 10 *M. beryllina* or 10 adult *A. bahia* were added randomly to each 1,000-mL test chamber. Ten post-larval *A. bahia* were added to each 500-mL test chamber. The loading factor in all vessels was less than 0.5 grams of test organism tissue per liter of medium. The number of live organisms remaining were counted after 24 and 48 hours in the post-larval mysid bioassays and after 24, 48, 72, and 96 hours in the adult mysid and *M. beryllina* bioassays to monitor the number of surviving organisms. Using hand-held meters, temperature, dissolved oxygen, pH, salinity, and ammonia were recorded daily. The fish were not fed, but the mysids, being prone to cannibalism, were given one drop of suspended *Artemia* sp. (brine shrimp) nauplii per test cup twice daily.

2.4.4 Whole Sediment (Solid Phase) Bioassay Procedures

The 10-day SP tests were performed using the amphipod crustacean *Leptocheirus plumulosus* and the mysid crustacean *Americamysis bahia*. SP tests were performed to estimate the potential impact of ocean disposal of dredged material on benthic organisms that attempt to re-colonize the area after disposal has occurred. Field collected *L. plumulosus* organisms were supplied by Aquatic Research Organisms, Inc. in Hampton, New Hampshire. The *A. bahia* were cultured at the NWDLS' toxicology laboratory. SP bioassay procedures and the sources of the two test species are described in detail in PDF pages 4 through 6 of the toxicity report (Appendix G).

The SP bioassay consisted of a 1-day settling period after the sediment was added, followed by 10 days (Days 1–10) of test-organism exposure. The bioassay vessels were partially filled with artificial seawater and enough sediment (test station, Reference, or control) was placed in each vessel to meet the needs of the test organisms: a 2-centimeter (cm) layer on the bottom. Five replicates were prepared for each of the test stations, Reference, and control. Separate 1-liter jars were used for the amphipods and for the mysids. Initial ammonia levels in the samples were below the target level in the project SAP, and ammonia reduction procedures were not required. After 10 days, the SP bioassay was terminated. The sediment was wet-sieved (0.5-mm screen) to remove surviving organisms, which were counted. To evaluate the relative sensitivity of the organisms, Reference toxicity tests were performed using standard Reference toxicants (Lee 1980).

2.4.5 Bioaccumulation Procedures

Assessment of bioaccumulation potential was carried out using the bivalve mollusk *Mercenaria mercenaria* (quahog clam) and the polychaete worm *Alitta virens* (sand worm) over a 28-day test period. The bioaccumulation study was conducted for 28 days following the same procedures as the solid phase bioassay. Field collected *M. mercenaria* and *A. virens* organisms were supplied

by Aquatic Research Organisms, Inc. in Hampton, New Hampshire. Procedures for assessment of bioaccumulation potential and test organism and control sediment sources are described in PDF pages 4 through 6 of the NWDLS' laboratory toxicology report (Appendix G).

Ten-gallon aquaria were used in the bioaccumulation study for both clams and polychaetes. A loading factor of not more than 0.5 grams of test organism tissue per liter of medium was maintained. Twenty-four hours after the addition of the sediment, or the end of the acclimation period for the new work material, the water was changed, and organisms were placed in the test vessels (20 organisms per replicate for the polychaete and 25 for the clams).

Following laboratory exposures, the gut contents of the test organisms were purged for 24 hours in clean aquaria filled with artificial seawater and clean sand. The *M. mercenaria* were then frozen, their valves were removed and discarded, and the soft tissue was placed in certified pre-cleaned glass jars, frozen, and distributed for tissue chemistry analysis. Whole specimens of *A. virens* were frozen in certified pre-cleaned glass containers and distributed for tissue chemistry analysis. Chemical analysis of tissue samples (except for the laboratory treatments) were analyzed at NWDLS for chemical contaminants. To evaluate the relative sensitivity of the organisms, Reference toxicity tests were performed using standard Reference toxicants (Lee 1980).

2.5 Tissue Analysis Recommendations

Sediment physical and chemistry results were reviewed to determine which analytes should be tested in the corresponding tissue samples based on guidance provided in Subsection 10.2.2 of the RIA and Subsection 9.5.1 in the Green Book and the ITM. The proposed tissue analyses and the rationale were provided to EPA Region 6 and USACE Galveston District for review and approval. Contaminants analyzed from tissue samples are summarized in Exhibit 2-7. Recommendations for tissue analysis are in Appendix E. EPA provided concurrence on the tissue recommendations via a letter dated April 24, 2023 (Appendix J).

Exhibit 2-10. Contaminants of Concern Analyzed in Tissue Samples from PCCA Harbor Island New Dock and Facilities Project

Analyte	DMMU 1	DMMU 2	DMMU 3	DMMU 4	DMMU 5	DMMU 6	DMMU 7	DMMU 8	HI-REF and Pre-exposure
Total cyanide	No	No	No	No	No	No	No	No	No
TPH	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Metals	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Organotina	Yes	No	No	No	No	No	No	No	Yes
Organotins	Monobutyltin								Monobutyltin
Pesticides	No	No	No	No	No	No	No	No	No
PCBs	No	No	No	No	No	No	Yes	No	Yes
PAHs	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes
SVOCs	Yes di-n-butyl phthalate	Yes di-n-butyl phthalate	Yes di-n-butyl phthalate, 2,4-dichlorophenol, 2,6-DNT, and bis(2-ethylhexyl) phthalate	Yes di-n-butyl phthalate	Yes di-n-butyl phthalate, diethyl phthalate, and hexachlorocyclopentadiene	Yes di-n-butyl phthalate	Yes di-n-butyl phthalate	Yes di-n-butyl phthalate and bis(2- ethylhexyl) phthalate	Yes di-n-butyl phthalate, 2,4-dichlorophenol, 2,6-DNT, bis(2-ethylhexyl) phthalate, diethyl phthalate, and hexachlorocyclopentadiene
All other SVOC compounds	No	No	No	No	No	No	No	No	No

Yes = Contaminant included with tissue analysis (blue font)

No = Contaminant omitted from tissue analysis

EPA approved the tissue recommendations per correspondence dated April 24, 2023.

2.6 Data Reduction and Applicable Technical Quality Standards

Raw field and laboratory data were summarized, compiled into tables, and reviewed for errors. The CQAR is in Appendix D. Figures 2.1 through 2.3 are used to associate the results spatially with respect to sampling locations.

2.6.1 Sediment Chemistry

Analytical results for sediment samples are compared to published sediment screening values as appropriate and in conformance with the Green Book and the RIA. These levels are the threshold effects level (TEL) and the effects range-low (ERL). The TEL represents the concentration below which adverse effects are expected to occur only rarely. The ERL is the value at which toxicity may begin to be observed in sensitive species (Buchman 2008). These comparisons are for reference use only and are not intended for regulatory decision-making.

2.6.2 Elutriate and Water Chemistry

Analytical results for elutriate and water samples were compared to the latest published EPA water quality criteria of criteria maximum concentration (CMC [synonymous with 'acute']) established in EPA (2006, 2015). The CMC is an estimate of the highest concentration of a pollutant in saltwater to which an aquatic community can be exposed briefly without resulting in an unacceptable effect (EPA 2006, Buchman 2008). The CMC for total ammonia was calculated using methods from EPA (1989). The site water sample having the lowest calculated concentration of total ammonia was used as the CMC value (in Table 8 and in Exhibit 3-3) for comparison with site water and elutriate results. Results for elutriate and water samples were also compared with Texas Water Quality Standards (acute) in Table 1 of Texas Surface Water Quality Standards by the Texas Commission on Environmental Quality (TCEQ, 2018).

2.6.3 Toxicity

Statistical analyses are described in the SAP and the RIA and are designed to determine whether the test results are significantly different from the results of the Reference. Statistical comparisons were at the 95% confidence level and are included herein, if needed.

Statistical calculations were performed for any SPP bioassay if survival in any 100% test treatment was less than the survival in the control and the difference exceeded 10%. For the SP bioassay, statistical comparisons of mean survival were made for each species and for the total number of organisms, if (1) mean survival for any station test was less than that for the Reference, and (2) the difference between Reference and test survival was at least 10% (20% for the amphipods). For the bioaccumulation assessment, statistical comparisons of mean concentrations were made for each parameter and species if the mean concentration of the parameter for any station test tissue was greater than that for the Reference tissue.

2.6.4 Tissue Chemistry

Analytical results for tissue samples were compared to published tissue screening values. Most U.S. Food and Drug Administration (FDA) action levels were obtained from the original FDA source documents (i.e., FDA 2001, 2020). According to FDA (2020), the action levels for arsenic, cadmium, lead, and nickel in tissue are no longer in effect. Additionally, Table 9-1 of FDA (2020) lacks action levels for chromium and mercury in tissue, although an earlier version of the document (FDA 2001) does provide action levels for these metals. Regardless, it was decided to use previous FDA action levels for arsenic, cadmium, chromium, lead, and nickel in this report as it is possible that such action levels may be put into effect in the future.

Analytical results for tissues from *Mercenaria mercenaria* tests and/or *Alitta virens* tests were compared to the FDA levels for crustacea as suggested in Appendix H of the *Southeast Regional Implementation Manual* (SERIM, EPA and USACE 2008), as there are not FDA levels published for polychaete worm tissue and the RIA does not address this topic. Additionally, mean tissue analytical results found to statistically significantly exceed those of the Reference tissue and contain at least one replicate result greater than the method detection limit (MDL) were then compared with ecological non-specific effects threshold concentrations and northern Gulf of Mexico background concentrations from Appendix H of the SERIM (the RIA lacks these background concentrations). Northern Gulf of Mexico background concentrations were chosen over other background concentrations because the survey area from which the concentrations are based included waters as far west as Gulfport, Mississippi. These waters are closest to the project area in Port Aransas, Texas. If results statistically significantly exceeded mean Reference tissue results and exceeded effects threshold or background concentrations, such results may be used in a risk-based evaluation by USACE.

Project and Reference tissue samples had five replicates (except for the pre-exposure tissue results, which had just three replicates). The mean of results of each set of five replicates per sample and analyte combination was calculated and compared to the mean of the Reference tissue result per analyte. Mean values of analyte concentrations were calculated as follows:

- For non-detects/U-flagged data, the MDL was used in the statistical calculations.
- For J-flagged and non-flagged data, the result was used in the statistical calculations.

Whenever the dry weight mean concentration (or mean adjusted concentration) of an analyte in *M. mercenaria* or *A. virens* tissue was found to exceed that of the Reference tissue, and at least one of the five replicate samples had concentrations above the MDL, the software program ToxCalc v5.0.32 (Tidepool Scientific, LLC) was used to determine the relative distribution and variances among each group of replicates tested. If the distribution was determined to be abnormal or if the variances were unequal, the data were treated with a reciprocal transformation and the distribution and variances were re-evaluated. If mean tissue contaminant concentration (or mean adjusted concentration) was found to not statistically significantly exceed that of the Reference tissue, then additional analysis was not necessary to demonstrate compliance with the LPC (Green Book). Project sample mean values that statistically significantly exceeded those of the Reference were then compared with screening benchmarks such as relevant ecological effects threshold and the northern Gulf of Mexico background concentrations.

2.7 Reporting Limits

Sediment chemical concentrations, MDLs, and laboratory reporting limits (LRLs) (essentially the same as the more widely used method reporting limits [MRLs]) were reported on a dry weight basis. Chemical concentrations, MDLs, and LRLs for water and elutriates were reported on a wet weight basis. Tissue chemical concentrations, MDLs, and MRLs were reported on dry weight and wet weight bases. The LRL and MRL refers to the minimum concentration at which the laboratory will report analytical chemistry data with confidence in quantitative accuracy of a given datum. Common laboratory procedures for defining an LRL or MRL include assigning it to a fixed factor above the MDL or by using the lowest calibration standard. LRLs and MRLs are often adjusted by the laboratory for sample-specific parameters such as sample weight, percent solids, or dilution.

3 RESULTS AND DISCUSSION

3.1 Field Sampling

A summary of the January 16 through January 27, 2023, sampling effort is provided in Tables 1A, 1B, and 2 for sediment terrestrial core data, sediment marine core data, and site water sampling, respectively. Samples were collected and processed in accordance with the SAP and Errata approved by EPA and USACE (Appendix A).

3.2 Sediment Physical Results

Physical analyses were conducted for each DMMU subsample, the ODMDS (composite), and the Reference (composite). Each DMMU subsample underwent grain size distribution analysis in accordance with the SAP (Appendix A). Exhibit 3-1 summarizes and compares percent grain size distributions for each subsample. Complete results of physical testing are in Table 3. The laboratory report of physical analytical results is in Appendix C.

DMMU 1 (Subsamples 1A, 1B, and 1C) - Surficial Terrestrial (0 to -30 ft MLLW)

• DMMU-1 core station subsamples 1A, 1B, and 1C were predominantly sand (71.8% to 82.4%), with silt (17.2% to 27.3%), and trace clay (0.4% to 0.9%).

DMMU 2 (Subsamples 1A, 1B, 1C) - Subsurface Terrestrial (-30 to -60 ft MLLW)

• DMMU-2 core station subsamples 1A, 1B, and 1C were predominantly sand (59.5% to 69.6%), with silt (29.7% to 33.4%), and trace clay (0.7% to 7.1%).

DMMU 3 (Subsamples 2A, 2A Duplicate, and 2B) – Surficial Terrestrial (0 to -30 ft MLLW)

• DMMU-3 core station subsamples 2A and 2B were predominantly sand (84.5% and 82.1%), with silt (15.0% and 17.1%), and clay (15.0% and 17.1%). DMMU-3-2A Duplicate was predominantly sand (84.0%), with silt (15.6%), and trace clay (0.4%).

DMMU 4 (Subsamples 2A and 2B) – Subsurface Terrestrial (-30 to -60 ft MLLW)

• DMMU-4 core station subsamples 2A and 2B were predominantly sand (63.6% and 66.7%), with silt (34.2% and 30.3%), and trace clay (2.2% and 3.0%).

DMMU 5 (Subsamples 3A, 3B, and 3C) - Surficial Terrestrial (0 to -30 ft MLLW)

• DMMU-5 core station subsamples 3A, 3B, and 3C were predominantly sand (70.3% to 83.1%), with silt (16.4% to 29.1%), and trace clay (0.5% to 0.9%).

DMMU 6 (Subsamples 3A, 3B, and 3C) - Subsurface Terrestrial (-30 to -60 ft MLLW)

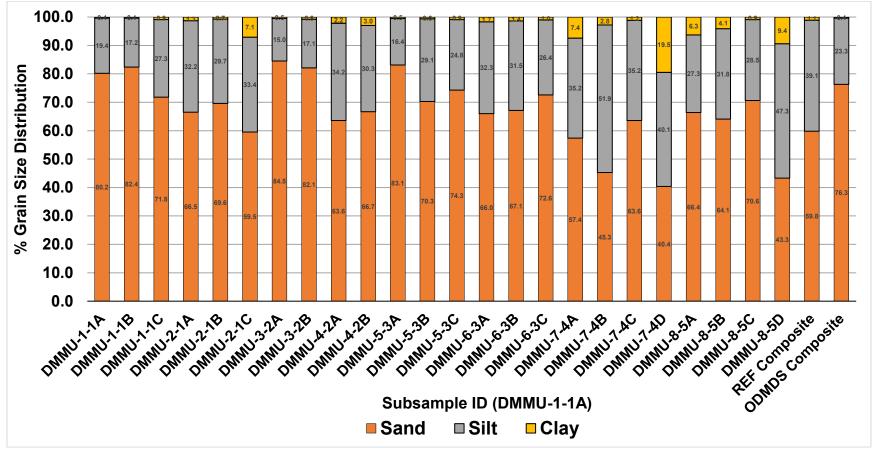
DMMU-6 core station subsamples -3A, -3B, and -3C were predominantly sand (66.0% to 72.6%), with silt (26.4% to 32.3%), and trace clay (1.0% to 1.7%).

DMMU 7 (Subsamples 4A, 4B, 4C and 4D) – Marine (existing depth to -60 ft MLLW)

• DMMU-7 core station subsamples -4A, -4B, -4C, and -4D were predominantly sand (40.4% to 63.6%) and silt (35.2% to 51.9%), with trace clay (1.2% to 7.4%).

DMMU 8 (Subsamples 5A, 5B, 5C and 5D) - Marine (existing depth to -60 ft MLLW)

• DMMU-8 core station subsamples 5A, 5B, and 5C, were predominantly sand (64.1% to 70.6%), with silt (27.3% to 31.8%), and trace clay (0.9% to 6,3%). Subsample DMMU-8-5D, which was a surface grab sample collected, consisted of nearly equal portions of sand (43.3%) and silt (47.3%), with some clay 9.4%.


REF (Reference)

• Reference Area composite was predominantly sand (59.8%), with silt (39.1%), and clay (1.1%).

ODMDS (Corpus Christi New Work ODMDS)

• New Work ODMDS was predominantly sand (76.3%), with silt (23.3%), and trace clay (0.4%).

Exhibit 3-1. Percent Grain Size Distribution by Subsample

Notes: sand = 0.075-4.749 mm, silt = 0.0005-0.074 mm, clay <0.005 mm

3.3 Sediment Chemistry

Analytical results for sediment chemistry are provided in Tables 4 through 7. Sediment chemistry analyses were performed on each DMMU discrete subsample, the Reference composite sample, and the New Work ODMDS composite sample. Analyses consisted of metals, ammonia (as nitrogen), trivalent and hexavalent chromium, total cyanide, TPH, total solids, TOC, pesticides, total PCBs, PAHs, organotins, and SVOCs. Total LPAHs and total HPAHs were calculated from the sum of individual PAHs and are defined following Table 4-1 of the SAP. Analytical results were compared to published sediment screening criteria TEL and ERL, which are defined in Subsection 2.6.1.

3.3.1 Metals, Ammonia, Cyanide, TPH, TOC, Total Solids and Butyltins

Most of the 13 metals analyzed were detected in concentrations above the MDL (J-qualified) or the LRL in the subsamples tested except for antimony, which was U-qualified. Metals detected above the LRL were below the respective TEL and ERL. Copper was V-qualified in the samples tested and chromium was V-qualified in subsamples DMMU-3-2A, and DMMU-8-5A through -5C. V-qualified values indicate the analyte was detected in both the sample and the method blank.

Trivalent chromium ranged from <0.139 milligrams per kilogram (mg/kg) to 6.55 mg/kg among samples tested and was highest in DMMU-7-4B. Hexavalent chromium ranged from <0.132 mg/kg to 1.78 mg/kg among samples tested and was highest in DMMU-7-4B.

Ammonia (as nitrogen) concentrations ranged from <6.60 mg/kg to 261 mg/kg among samples tested sample and was highest in DMMU-7-4B.

Total cyanide was not detected above the MDL (U-qualified) in the samples tested.

TPH ranged from <1.86 mg/kg (New Work ODMDS) to 2,068 mg/kg among samples tested and was highest in DMMU-3-2A.

Total solids ranged from 54.2% to 85.5% (V-qualified) among samples tested. DMMU-8-5D, the Reference, and the ODMDS samples were H-qualified. H-qualified values indicate the analyte was analyzed outside the method specified holding time.

As specified in Appendix B of the RIA, the holding time for total solids is undetermined.
The H qualifier is due to the Laboratory Information Management System (LIMS) which
automatically assigns qualifiers based on the test and specific criteria maintained in the
LIMS for analysis. Since other procedures have a required holding time for total solids,
the LIMS defaults to the time from sampling to analysis and assigns a qualifier if it exceeds
that time.

TOC concentrations ranged from <0.0512% to 1.29% among samples tested, which were H-qualified.

Sediment samples were archived and frozen from the time of receipt at the laboratory until
the samples were shipped to the subcontract laboratory for analysis. As indicated in
Appendix B of the RIA, the samples may be frozen for extended storages, and for this
reason the sample holding times were acceptable.

Organotin compounds dibutyltin, monobutyltin, and tributyltin were not detected above the LRLs in any of the project samples tested except for monobutyltin in DMMU-1-1C (1.6 6 micrograms per kilogram [µg/kg]).

pH ranged from 7.88 to 9.04 S.I. units and was H-qualified among samples tested.

Please note that numerous results were reported with an H qualifier is a direct result of
the LIMS which automatically assigns qualifiers based on the test and specific criteria
maintained in the LIMS for analysis. The pH holding times from SW 846 are not specified
but have been recommended for as little as 15 minutes. Because of the procedure for
sample collection from a vessel including sample prep and delivery to the laboratory,
sample analysis was performed as soon as possible, even though it did not meet the
suggested holding time.

Exhibit 3-2 summarizes the analytical results for these analytes in sediment compared to the TEL and ERL. Complete results are provided in Table 4.

Exhibit 3-1. Analytical Results for Metals, Ammonia, Cyanide, TPH, Total Solids, TOC, and Organotins in Sediment

							Concent	ration (mg/kg	or as otherwi	se indicated)						
								Com	posite ID							
Analyte	DMMU-1- 1A	DMMU-1- 1B	DMMU-1- 1C	DMMU-2- 1A	DMMU-2- 1B	DMMU-2- 1C	DMMU-3- 2A	DMMU-3- 2A (Dup)	DMMU-3 -2B	DMMU-4- 2A	DMMU-4- 2B	DMMU-5- 3A	DMMU-5- 3B	DMMU-5- 3C	TEL	ERL
METALS																
Antimony	<0.0277	<0.0276	<0.0279	<0.0298	<0.0302	<0.0350	<0.0285	<0.0279	<0.0276	<0.0313	<0.0285	<0.0268	<0.0277	<0.0285	Х	х
Arsenic	0.891	0.666	1.05	3.07	1.69	2.40	0.741	0.269	0.793	2.78	1.17	0.867	0.790	0.744	7.24	8.2
Beryllium	0.0436	0.0394	0.0692	0.167	0.151	0.211	0.0341	0.0189	0.0373	0.131	0.117	0.0412	0.0626	0.0410	Х	х
Cadmium	0.0132	0.0105	0.0443	0.0607	0.0570	0.0585	0.0141	0.0108	0.0220	0.100	0.0312	0.0319	0.0220	0.0131	0.676	1.2
Chromium	1.10	0.886	1.52	3.85	3.74	4.63	0.748	0.402	0.939	2.73	2.63	1.10	1.12	0.868	52.3	81
Chromium (III)	0.953	<0.139	1.19	3.61	3.74	3.72	0.228	0.402	<0.141	2.50	2.39	1.10	0.612	0.868	Х	х
Chromium (IV)	0.150	1.50	0.334	0.248	<0.144	0.909	0.520	<0.132	0.966	0.230	0.249	<0.134	0.510	<0.133	Х	х
Copper	0.568	0.502	1.39	3.22	2.64	2.91	0.459	0.326	0.633	2.00	2.06	0.652	0.812	0.437	18.7	34
Lead	1.23	1.19	1.36	3.11	2.46	2.80	1.32	0.438	0.983	2.36	2.17	1.06	1.18	0.866	30.24	46.7
Mercury	0.00962	<0.00966	<0.00902	<0.00940	<0.00947	<0.00936	<0.00929	<0.00994	<0.00964	<0.00979	<0.00991	<0.00926	<0.00945	<0.00913	0.13	0.15
Nickel	0.998	0.818	1.57	3.40	2.54	3.59	0.679	0.418	0.819	3.64	2.03	0.918	1.18	0.768	15.9	20.9
Selenium	0.312	0.266	0.375	0.703	0.755	0.612	0.269	0.0829	0.288	0.550	0.422	0.320	0.302	0.286	Х	х
Silver	0.00472	0.00415	0.00844	0.0125	0.00847	0.0113	0.00730	0.00229	0.00630	0.0121	0.0105	0.00820	0.00697	0.00479	0.73	1
Thallium	0.0241	0.0220	0.0404	0.0499	0.0382	0.0515	0.0235	0.00916	0.0285	0.0570	0.0328	0.0311	0.0298	0.0241	Х	х
Zinc	3.48	2.69	3.34	8.13	5.43	7.30	2.28	0.955	2.20	5.61	4.51	2.52	3.15	2.68	124	150
OTHERS																
Ammonia (as N)	8.26	6.74	12.8	8.71	15.1	17.3	<6.91	<6.71	6.78	9.86	8.01	<6.71	9.91	7.26	Х	х
Cyanide, Total	<0.0320	<0.0325	<0.0323	<0.0363	<0.0358	<0.0423	<0.0333	<0.0330	<0.0334	<0.0384	<0.0355	<0.0331	<0.0336	<0.0341	Х	х
TPH	78.4	71.8	75.5	74.5	76.6	78.4	2068	144.1	77.9	83.1	74.6	79.5	292.4	71.5	Х	х
Solids, Total (%)	74.4	74.6	74.4	67.5	67.8	58.0	72.2	74.3	74.2	65.1	69.7	74.0	72.9	73.2	Х	х
TOC (%)	<0.0594	<0.0514	<0.0569	0.0584	<0.0529	<0.0598	<0.0547	<0.0517	<0.0596	<0.0567	<0.0522	<0.0518	<0.0522	<0.0578	Х	х
Monobutyltin (µg/kg)	0.39	0.63	1.6	<0.52	0.39	1.1	0.70	<0.37	0.67	0.41	0.40	0.63	0.51	0.53	Х	х
Dibutyltin (µg/kg)	<0.26	<0.26	1.4	<0.29	<0.28	<0.32	<0.26	<0.27	<0.26	<0.30	<0.27	<0.26	<0.28	<0.24	Х	х
Tributyltin (µg/kg)	<0.58	<0.58	<0.62	<0.65	<0.63	<0.72	<0.57	<0.61	<0.59	<0.68	<0.61	<0.58	<0.63	<0.53	Х	х

Exhibit 3-2. Analytical Results for Metals, Ammonia, Cyanide, TPH, Total Solids, TOC, and Organotins in Sediment

		Concentration (mg/kg or as otherwise indicated)													
							Compo	site ID							
Analyte	DMMU-6- 3A	DMMU-6- 3B	DMMU-6- 3C	DMMU-7- 4A	DMMU-7- 4B	DMMU-7- 4C	DMMU-7- 4D	DMMU-8- 5A	DMMU-8- 5B	DMMU-8- 5C	DMMU-8- 5D	HI-REF	HI-ODMDS	TEL	ERL
METALS															
Antimony	<0.0273	<0.0276	<0.0274	<0.0265	<0.0375	<0.0277	<0.0241	<0.0242	<0.0246	<0.0279	<0.0286	<0.0297	<0.0270	х	х
Arsenic	0.740	1.10	1.16	2.53	3.96	2.13	0.657	0.295	1.23	6.20	1.71	1.71	1.39	7.24	8.2
Beryllium	0.0698	0.127	0.121	0.240	0.521	0.105	0.191	0.217	0.145	0.130	0.224	0.176	0.0655	х	х
Cadmium	0.0212	0.0900	0.0227	0.0518	0.133	0.00902	0.0104	0.00315	0.0214	0.0353	0.0336	0.0152	0.00909	0.676	1.2
Chromium	1.37	2.18	2.79	3.60	7.36	1.29	1.65	2.32	2.24	1.52	4.16	2.91	1.27	52.3	81
Chromium (III)	1.04	0.948	1.01	2.19	6.55	1.08	1.42	2.13	1.86	1.19	4.16	2.32	1.13	х	х
Chromium (IV)	0.326	1.23	1.78	1.41	0.810	0.209	0.229	0.187	0.379	0.326	<0.138	0.587	0.144	х	х
Copper	1.04	2.56	1.60	2.71	5.90	1.11	1.11	0.962	1.28	1.45	4.44	1.68	0.435	18.7	34
Lead	1.20	2.94	2.15	4.41	9.37	1.42	1.82	2.27	2.62	2.33	2.94	2.73	1.70	30.24	46.7
Mercury	<0.00891	<0.00977	<0.00932	<0.00924	0.0296	0.0158	<0.00839	0.0141	0.0139	<0.00995	<0.00987	0.0121	<0.00999	0.13	0.15
Nickel	1.35	2.24	1.81	4.18	6.82	1.26	1.19	1.64	2.22	1.74	5.00	3.03	1.17	15.9	20.9
Selenium	0.285	0.422	0.466	0.832	1.41	0.303	0.805	0.377	0.699	0.449	0.626	0.458	0.363	х	х
Silver	0.00459	0.0169	0.00747	0.0163	0.0394	0.00249	0.00463	<0.00121	0.00403	<0.00140	0.008	0.00851	0.00411	0.73	1
Thallium	0.0178	0.0576	0.0302	0.0467	0.0790	0.0128	0.0277	0.0223	0.0212	0.024	0.0397	0.0295	0.0218	х	х
Zinc	2.41	7.78	5.56	12.9	27.9	3.27	4.27	3.41	4.49	4.83	10.2	11.3	5.47	124	150
OTHERS															
Ammonia (as N)	6.99	7.28	<6.76	124	261	14.1	50.3	6.53	6.65	<6.71	15.9	13.4	<6.60	х	х
Cyanide, Total	<0.0314	<0.0342	<0.0322	<0.0321	<0.0439	<0.0319	<0.0289	<0.0290	<0.0294	<0.0331	<0.0349	<0.0362	<0.0331	х	х
TPH	73.1	79.3	71.8	80.4	69.2	78.9	75.0	76.3	75.2	73.2	71.7	81.7	<1.86	х	х
Solids, Total (%)	75.8	73.1	73.8	74.8	54.2	75.3	83.2	85.5	84.2	74.1	71.7	69.0	75.6	х	х
TOC (%)	<0.0569	<0.0544	<0.0594	1.29	<0.0528	<0.0545	<0.0579	<0.0542	<0.0512	<0.0593	<0.0583	<0.0597	<0.0548	х	х
Monobutyltin (µg/kg)	<0.36	<0.36	<0.38	<0.39	1.4	0.63	<0.33	0.59	<0.30	<0.37	<0.39	<0.40	<0.34	х	х
Dibutyltin (μg/kg)	<0.26	<0.26	<0.28	<0.28	<0.30	<0.24	<0.24	<0.23	<0.22	<0.27	<0.28	<0.29	<0.25	х	х
Tributyltin (µg/kg)	<0.59	<0.59	<0.63	<0.64	1.3	<0.53	<0.54	<0.50	<0.50	<0.61	<0.63	<0.66	<0.56	х	х

[&]quot;<" Less-than symbol indicates that the analyte concentration was not detected above the MDL (U-qualified). Value indicates the MDL.

x = No TEL or ERL published for that parameter. Qualifiers (omitted) are defined on page 452 of the laboratory report (Appendix E). See Table 4 for complete results.

3.3.2 Pesticides and Total PCBs

Pesticide analytes were not detected above the MDLs (U-qualified) for the DMMU subsamples or composites tested. Pesticide analyte MDLs were reported below the applicable TELs and (or) ERLs in the samples tested except for dieldrin, γ -BHC (lindane), and toxaphene. The MDLs for Chlordane (technical) in samples DMMU-2-1C and DMMU-7-4B exceeded the ERL of 0.5 μ g/kg. The laboratory included data qualifier C+ for the pesticide analytes α -BHC and toxaphene in specific subsamples and composites, which indicates the associated calibration quality control is higher than the established quality control criteria for accuracy. The analytes were not detected above the MDLs and the data was not affected and acceptable to report.

Total PCBs were not detected above the MDL (U-qualified) for the DMMU subsamples or composites tested. Project sediment samples had MDLs ranging between 1.15 μ g/kg to 1.84 μ g/kg, which slightly exceeded the TDL for Total PCBs (1.0 μ g/kg) in the SAP. The MDLs for total PCBs were below the TEL (21.6 μ g/kg) and ERL (22.7 μ g/kg) for the samples tested. The elevated detection limits for total PCBs are well below the TEL and ERL thresholds; therefore, impact to data quality is considered minimal. The laboratory included data qualifier C+ for total PCBs in specific subsamples analyzed.

Complete results for pesticides and total PCBs are in Table 5.

3.3.3 PAHs

Several PAH analytes tested were detected above the LRL in some of the subsamples, as summarized below:

- DMMU 1: In subsamples 1B and 1C, PAH analytes were not detected above the LRL. In subsample 1A, two PAH analytes (fluorene and pyrene) were detected above the LRL.
- DMMU 2: In subsamples 1A, 1B, and 1C, PAHs were not detected above the MDL (U-qualified).
- DMMU 3: In subsample 2B, PAHs were not detected above the MDL (U-qualified). In subsamples 2A and 2A Duplicate, seven and six PAH analytes were detected above the LRL respectively. Subsample 2A had four PAH analytes with concentrations that exceeded the TEL and/or ERL. Subsample 2A had one PAH analyte (dibenzo[a,h]anthracene) with a MDL that exceeded the TEL.
- DMMU 4: In subsample 2A, fluorene was detected above the LRL. In subsample 2B, PAHs were not detected above the MDL (U-qualified).
- DMMU 5: In subsamples 3A and 3C, PAHs were not detected above the MDL (U-qualified). In subsample 3B, ten PAH analytes were detected above the LRLs. The detected concentrations for PAHs in subsample 3B did not exceed applicable TELs or ERLs.
- DMMU 6: In subsamples 3A, 3B, and 3C, PAHs were not detected above the MDL (U-qualified).
- DMMU 7: In subsample 4C, PAHs were not detected above the MDL (U-qualified). In subsamples 4A, 4B, and 4D, between three and 12 PAH analytes were detected above the LRL. The PAH analyte concentrations were below the applicable TELs and ERLs with the exception of anthracene (276 μg/kg) in subsample 4A, which exceeded the respective TEL (46.9 μg/kg) and ERL (85.3 μg/kg).

- DMMU 8: In subsamples 5A, 5B, and 5D, PAHs were not detected above the MDL (U-qualified). In subsample 5C, two PAH analytes (naphthalene and phenanthrene) were detected above the LRL. The detected concentrations for naphthalene and phenanthrene in subsample 5C were below the respective TELs and ERLs.
- New Work ODMDS and Reference: PAHs were below the MDLs in the Reference composite sample and New Work ODMDS composite sample.

Total LPAHs ranged from 8.34 μ g/kg to 2,485 μ g/kg among samples tested. Total HPAHs ranged from 12.5 μ g/kg to 329 μ g/kg among samples tested. Total PAHs ranged from 20.9 μ g/kg to 2,814 μ g/kg among samples tested. Total LPAHs, total HPAHs, and total PAHs were highest in DMMU-3-2A. The concentration for total LPAHs in DMMU-3-2A (2,485 μ g/kg) exceeded the TEL (312 μ g/kg) and ERL (552 μ g/kg), and the concentration for total PAHs (2,814 μ g/kg) exceeded the TEL (1,684 μ g/kg). The concentration for total LPAHs in DMMU-7-4A (460 μ g/kg) exceeded the TEL of 312 μ g/kg.

MDLs for the PAH compounds were below applicable TDLs from the SAP. The MDLs for acenaphthene, acenaphthylene, and dibenzo(a,h)anthracene in DMMU-3-2A (16.8 μ g/kg) exceeded the analyte specific TELs 6.71 μ g/kg, 5.87 μ g/kg, and 6.22 μ g/kg, respectively, and the ERL for acenaphthene (16 μ g/kg).

Exhibit 3-3 summarizes the analytical results for the subsamples with PAH analytes detected above LRLs compared to the TEL and ERL, including the Reference composite and the New Work ODMDS composite sample results. Complete results are in Table 6.

Exhibit 3-3. Analytical Results for PAHs Detected in Sediment Subsamples Above LRLs in Sediment

		Concentration (mg/kg or as otherwise indicated)											
						Subsa	mple or Compo	osite ID					
Analyte	DMMU-1-1A	DMMU-3-2A	DMMU-3-2A (Dup)	DMMU-4-2A	DMMU-5-3B	DMMU-7-4A	DMMU-7-4B	DMMU-7-4D	DMMU-8-5C	HI-REF	HI-ODMDS	TEL	ERL
Acenaphthene ^{LPAH}	<1.64	416	3.71	<1.80	12.6	21.3	5.31	<1.48	2.24	<1.81	<1.55	6.71	16
Acenaphthylene ^{LPAH}	<1.64	323	5.87	2.03	4.35	3.66	<2.16	1.86	<1.62	<1.81	<1.55	5.87	44
Anthracene ^{LPAH}	<1.64	<16.8	3.65	<1.80	23.1	276	2.19	<1.48	<1.62	<1.81	<1.55	46.9	85.3
Benzo(a)anthraceneHPAH	<1.64	31.3	<1.56	<1.80	17.2	12.8	2.17	2.23	<1.62	<1.81	<1.55	74.8	261
Benzo(a)pyreneHPAH	<1.64	<16.8	<1.56	<1.80	2.94	7.37	<2.16	2.85	<1.62	<1.81	<1.55	88.8	430
Benzo(b&k)fluorantheneHPAH	<3.28	<16.8	<1.56	<1.80	5.10	13.2	5.29	5.04	<1.62	<3.62	<3.10	х	х
Benzo(g,h,i)peryleneHPAH	<1.64	22.3	<1.56	<1.80	1.78	3.22	<2.16	2.97	<1.62	<1.81	<1.55	х	х
ChryseneHPAH	<1.64	36.7	<1.56	<1.80	7.95	14.8	2.30	2.52	<1.62	<1.81	<1.55	108	384
Dibenzo(a,h)anthraceneHPAH	<1.64	<16.8	<1.56	<1.80	<1.64	<1.59	<2.16	<1.48	<1.62	<1.81	<1.55	6.22	63.4
FluorantheneHPAH	5.04	81.3	2.52	<1.80	3.80	78.9	10.3	6.37	<1.62	<1.81	<1.55	113	600
FluoreneLPAH	<1.64	1,190	11.1	4.00	5.38	28.5	<2.16	<1.48	<1.62	<1.81	<1.55	21.2	19
Indeno(1,2,3-cd)pyreneHPAH	<1.64	<16.8	<1.56	<1.80	<1.64	2.53	<2.16	2.22	<1.62	<1.81	<1.55	х	х
NaphthaleneLPAH	<1.64	<16.8	<1.56	<1.80	<1.64	1.63	<2.16	<1.48	5.83	<1.81	<1.55	34.6	160
Phenanthrene ^{LPAH}	<1.64	522	4.39	2.74	20.1	129	<2.16	<1.48	3.79	<1.81	<1.55	86.7	240
PyreneHPAH	3.75	90.3	3.22	<1.80	11.1	59.1	9.39	5.39	<1.62	<1.81	<1.55	153	665
Total LPAHs	9.84	2,485	30.3	14.2	67.2	460	16.1	9.26	16.7	10.9	9.30	312	552
Total HPAHs	21.9	329	16.7	16.2	53.2	194	38.1	31.1	14.6	18.1	15.5	655	1700
Total PAHs	31.8	2,814	46.9	30.4	120	654	54.2	40.3	31.3	29.0	24.8	1684	4022

LPAH = Low molecular weight PAH as defined in the Regional Implementation Agreement by USEPA/USACE (2003).

HPAH = High molecular weight PAH as defined in the Regional Implementation Agreement by USEPA/USACE (2003).

Bolded values meet or exceed the TEL and (or) ERL.

For calculating total PAHs, U-qualified results use the MDL and J-qualified results use the value reported by the laboratory.

Qualifiers (omitted) are defined on page 463 of the laboratory report (Appendix E).

See Table 6 for complete results.

[&]quot;<" Less-than symbol indicates that the analyte concentration was not detected above the MDL (U-qualified). Value indicates the MDL.

x = No TEL or ERL published for that parameter.

3.3.4 **SVOCs**

Most SVOCs were reported below MDLs (U-qualified) among the samples tested, with specific SVOCs detected in J-qualified concentrations or above the LRL in one or more subsamples tested. Di-n-butyl phthalate was detected above the LRL in the majority of the DMMU subsamples tested while specific SVOCs were detected above the LRL in the following DMMU subsamples tested.

- 2,4-dichlorophenol and 2,6-dinitrotoluene (2,6-DNT) were detected above the LRL in DMMU-3-2A Duplicate sample.
- Diethyl phthalate was detected above the LRL in the three subsamples from DMMU 5 (3A, 3B, and 3C), and hexachlorocyclopentadiene was detected above the LRL in DMMU-5-3B.
- Bis(2-ethylhexyl) phthalate was detected above the LRL in DMMU-8-5C.

TEL or ERL criteria values were not listed for the SVOC analytes except for bis(2-ethylexyl) phthalate. The concentrations for bis(2-ethylexyl) phthalate for the samples ranged from <1.48 μ g/kg to 18.8 μ g/kg and were below the TEL concentration value of 182 μ g/kg. Data qualifiers A, B, C+, CQ, H, and V were listed for various SVOC analytes in the samples tested. Data qualifiers were previously defined. Complete results are in Table 7.

3.4 Elutriate and Water Chemistry

Analytical results for site water samples and elutriates generated from the DMMU sediment composite samples are presented in Tables 8 through 11 along with results for the Reference composite and the New Work ODMDS composite. Elutriates for terrestrial composite samples from DMMUs 1 through 4 were generated from site water collected from station DMMU 7-4A. Elutriates for terrestrial composite samples from DMMUs 5 and 6 were generated from site water collected from station DMMU 7-4B. Elutriates for marine composite samples from DMMUs 7 and 8 were generated from site water collected from station DMMU 7-4B and DMMU-8-5B, respectively. Results for water and elutriate samples are compared to applicable CMC and TWQS (acute) values. The CMC is defined in Subsection 2.6.2. The elutriate and water chemistry laboratory case narrative and data are in Appendix E.

3.4.1 Metals, Ammonia, Cyanide, TOC, TSS, TPH, Organotins, and Salinity

Two or more metals were detected above the MDL in either J-qualified concentrations or above the LRLs in site water and elutriate samples tested except for mercury, selenium, silver, and thallium, which were U-qualified. Beryllium was U-qualified in the samples tested except for DMMU-7-4B water. Detected concentrations of the 13 metals analyzed did not exceed applicable CMCs or TWQS.

The laboratory included data qualifiers A, B, B2, V, V2 for specific metals in most of the DMMU elutriate and site water samples. The MDLs did not exceed the CMC or TWQS, therefore impact to data quality is minimal. Data qualifiers A, B, B2, V, and V2 were listed for specific metals in site water and elutriate samples tested.

Trivalent chromium was below the MDL in the samples tested. Hexavalent chromium ranged from 0.00208 micrograms per liter (μ g/L) to 58.4 μ g/L and was greatest in DMMU-8 water. Hexavalent chromium concentrations were V2-qualified in tested samples and below the CMC or TWQS.

Monobutyltin was detected above the LRL in elutriate samples DMMU-2 and DMMU-4, and site water samples DMMU-7-4B, DMMU-8-5B, and the ODMDS. Dibutyltin and tributyltin were not detected above the MDLs in any of the elutriate and site water samples tested.

Ammonia (as nitrogen) ranged from 0.133 mg/L to 7.62 mg/L among the samples tested and was highest in DMMU-7 elutriate. Ammonia concentrations in DMMU-7 elutriate exceeded the calculated CMC of 6.50 mg/L.

Total cyanide not detected above the MDL in any of the elutriate and site water samples tested.

TOC ranged from 2.0 mg/L to 9.9 mg/L among samples tested.

TSS ranged from 1.68 mg/L to 249 mg/L among samples tested.

Salinity ranged from 28.6 mg/L to 30.4 mg/L among the site water samples tested.

TPH concentrations ranged from <0.484 mg/L to 8.94 mg/L among samples tested and was highest in elutriate sample DMMU-3.

Elutriate and water sample results for analytes reported greater than the MDLs in one or more samples tested are summarized in Exhibits 3-4 and 3-5, respectively. Complete results are in Table 8.

Exhibit 3-4. Results for Metals, Monobutyltin, Ammonia, TOC, TSS, and TPH Detected Above LRLs in One or More Elutriate Samples

				ELUT	RIATE SAM	PLES					
Analyte	DMMU-1	DMMU-2	DMMU-3	DMMU-3 (Dup)	DMMU-4	DMMU-5	DMMU-6	DMMU-7	DMMU-8	СМС	TWQS Acute
				Cor	ncentration	(µg/L)					
Antimony	1.54	<1.00	<1.00	<1.00	<1.00	<1.00	1.07	<1.00	<1.00	х	Х
Arsenic	4.46	3.22	5.53	5.18	2.39	3.09	0.943	9.28	2.88	69	149
Cadmium	0.267	0.263	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	40	40.0
Chromium	<0.400	0.670	<0.400	<0.400	<0.400	<0.400	0.941	<0.400	<0.400	x	х
Chromium, Hexavalent	0.0251	0.0248	0.0258	0.0126	0.00208	0.0297	0.0239	0.0103	0.00286	1090	1100
Copper	<1.00	<1.00	1.08	<1.00	<1.00	<1.00	<1.00	<1.00	1.12	4.8	13.5
Nickel	3.03	1.78	2.90	0.849	1.27	0.895	2.16	2.41	2.02	74	118
Zinc	4.89	2.15	5.24	3.20	1.76	2.26	2.09	2.12	2.28	90	92.7
Monobutyltin	<0.029	0.13	<0.029	0.044	0.064	0.031	<0.029	<0.029	<0.029	х	Х
				Con	centration (mg/L)					
Ammonia (as N)	0.797	0.456	0.912	0.586	0.864	0.877	0.133	7.62	0.698	6.50	х
TOC	9.9	5.2	4.9	4.0	4.6	4.6	4.1	3.9	2.5	х	х
TSS	5.16	2.84	5.89	6.60	3.04	5.64	1.68	2.32	6.59	х	х
TPH	0.867	1.25	8.94	1.90	1.73	0.654	0.649	1.58	0.676	х	х

Bolded value exceeded the CMC.

Acronyms and qualifiers (omitted) are defined in the front of the tables section, in Section 3.4.1, and on page 463 of the laboratory report in Appendix E. See Table 8 for complete results.

x = No CMC and (or) Texas water quality standard values published for this parameter.

<#.## = The analyte was not detected at or above the MDL (= U-qualified). The value after the less-than symbol represents the MDL.</p>

Exhibit 3-5. Results for Metals, Monobutyltin, Ammonia, TOC, TSS, and TPH Detected Above LRLs in One or More Site Water Samples

		SIT	E WATER SAMPL	.ES			
Analyte	DMMU-7-4A	DMMU-7-4B	DMMU-8-5B	HI-REF	HI-ODMDS	СМС	TWQS Acute
Metals			Conce	entration (µg/L)			
Antimony	<1.00	<1.00	1.32	<1.00	<1.00	х	х
Arsenic	1.89	1.66	1.60	1.21	1.56	69	149
Cadmium	<0.250	0.278	<0.250	0.312	<0.250	40	40.0
Chromium	0.979	0.655	1.03	0.448	<0.400	х	х
Chromium, Hexavalent	18.8	7.48	58.4	7.62	9.69	1100	1090
Copper	2.09	1.40	1.73	<1.00	<1.00	4.8	13.5
Lead	1.16	0.722	0.866	<0.500	<0.500	210	133
Nickel	1.03	0.858	1.02	0.302	<0.250	74	118
Zinc	4.16	3.74	6.59	<1.00	1.11	90	92.7
Monobutyltin	<0.029	0.13	0.72	0.049	0.067	х	х
Others			Conce	ntration (mg/L)			
Ammonia (as N)	0.618	0.615	0.617	0.520	0.621	6.50	х
TOC	3.1	3.1	3.0	2.3	2.0	х	х
TSS	249	133	124	9.47	6.95	х	х

x = No CMC and (or) Texas water quality standard values published for this parameter.

Acronyms and qualifiers (omitted) are defined in the front of the tables section, in Section 3.4.1, and on page 463 of the laboratory report in Appendix E. See Table 8 for complete results.

<#.## = The analyte was not detected at or above the MDL (= U-qualified). The value after the less-than symbol represents the MDL.</pre>

3.4.2 Pesticides and Total PCBs

Pesticide analytes were reported below MDL (U-qualified) in site water and elutriate samples tested except for p,p'(4,4')-DDE in DMMU-1-E (0.00790 µg/L) and methoxychlor in DMMU-3-E (0.0101 µg/L). There are not CMC or TWQS values listed for p,p'(4,4')-DDE or methoxychlor. The MDLs for toxaphene were 0.300 µg/L among samples tested, which exceeded the CMC (0.21 µg/L) and TWQS (0.21 µg/L). The MDLs reported for toxaphene were below the TDL of 0.5 µg/L in accordance with the SAP (Appendix A). The laboratory included data qualifier C+ for pesticide analyte α -BHC in the samples tested. The laboratory included data qualifier B2 for pesticide analyte δ -BHC in elutriate sample DMMU-3 Duplicate and data qualifier P for pesticide analyte methoxychlor in elutriate sample DMMU-3.

Total PCBs were not detected above the MDL (U-qualified) in any sample.

Complete results for pesticides and Total PCBs are in Table 9.

3.4.3 PAHs

PAH analytes were not detected above the MDLs in elutriate samples from DMMU-1, DMMU-2, DMMU-4, DMMU-5, and DMMU-6. PAH analytes were not detected above the MDLs in site waters from DMMU-7, DMMU-8, the Reference, or the ODMDS. Four PAH analytes were detected in concentrations above the LRLs in elutriate sample DMMU-3. Two PAH analytes were detected in concentrations above the LRLs in elutriate sample DMMU-3 Duplicate. One PAH analyte was detected in concentrations above the MDL in elutriate samples DMMU-7 and DMMU-8. There are not CMC or TWQS values for the PAH analytes except phenanthrene. The concentration for phenanthrene in DMMU-3 elutriate (1.08 μ g/L) was below the TWQS (7.7 μ g/L).

Total LPAHs ranged from 1.66 μ g/L to 7.06 μ g/L among samples tested. Total HPAHs ranged from 2.49 to 2.81 μ g/L among samples tested. Total PAHs ranged from 4.16 μ g/L to 9.87 μ g/L among samples tested.

Complete results are presented in Table 10.

3.4.4 Semi-volatile Organic Compounds

Two of the 41 SVOC analytes (diethyl phthalate and di-n-butyl phthalate) were detected above the LRLs in the tested samples except for diethyl phthalate in site water samples DMMU-7-4A and DMMU-8-5B which were J-qualified. Bis(2-ethylhexyl) phthalate was detected above the MDL (J-qualified) in elutriate samples DMMU-1 and DMMU-7. Total phenol was detected above the MDL (J-qualified) in elutriate samples DMMU-3 Duplicate, DMMU-6, DMMU-7, and DMMU-8, and site water samples. There are not CMC or TWQS for the SVOC analytes tested except for pentachlorophenol. Concentrations for pentachlorophenol were below the MDLs (U-qualified) in the samples tested, and the MDLs were below the CMC (13 mg/L) and TWQS (15.1 mg/L). The laboratory included data qualifiers B, B2, C+, V, and (or) V2 for specific SVOC analytes in elutriate and site waters tested.

Complete results are in Table 11.

3.5 Water Column (Suspended Particulate Phase) Bioassays

SPP tests were performed with the atherinoid fish *Menidia beryllina* (inland silverside) and planktonic and juvenile life stages of the mysid crustacean *Americamysis bahia* (opossum shrimp). Elutriate test results were compared to results of the control (laboratory-prepared artificial seawater [Hawaiian Marine Mix]). The complete toxicity testing report by NWDLS is in Appendix G.

Results of the SPP tests are used to determine if STFATE modeling is required. For the eight project samples analyzed, survival in dilutions for the samples across all test species was greater than 50% in all SPP tests. As stated in the project SAP, "if less than 50% mortality occurs in the SPP treatments, it is not possible to calculate an LC $_{50}$. In such cases, the LC $_{50}$ is assumed to be >100%." Based on the results the LC $_{50}$ was >100 in the SPP tests.

Based on elutriate chemistry results, STFATE modeling was performed on sample DMMU-7 (prepared as the composite of sediment subsamples DMMU-7A through DMMU-7D). The elutriate concentration for ammonia of 7.62 mg/L exceeded the calculated CMC of 6.50 mg/L. Other sample results did not exceed the CMC for any other contaminant.

3.5.1 *Americamysis bahia* 96-Hour Bioassay

The 96-hour SPP tests with *A. bahia* were initiated on February 14, 2023 and terminated February 18, 2023. Survival in the site water controls for each project sample ranged from 96% to 100%, meeting the acceptability criterion of greater than or equal to (\geq) 90% survival. Mean survival in the 100% elutriate concentration ranged from 94% to 100% among the project elutriates and was 98% in the Reference. The estimated LC₅₀ was >100% for the eight project samples. Survival rates for the samples are summarized in Exhibit 3-6.

Summaries of the test conditions including survivorship raw data bench sheets, water quality measurements, and ammonia concentrations are provided in PDF pages 48 through 54 of the toxicity testing report (Appendix G). The results of the Reference toxicant test with *A. bahia* using potassium chloride are provided as PDF pages 55 through 68 of the NWDLS' toxicity testing report (Appendix G).

Exhibit 3-6. Summary of Survival Data for 96-hour SPP Tests Using Americamysis bahia

Sample ID	Concentration (%)	Mean Survival (% [± SD])	Statistically Significantly Less Than Control? (yes/no)	LC₅₀ (%)
REF (site water control)	, ,	98 (±4.5)		,
DMMU 1 (site water control)		100 (±0.0)		
DMMU 2 (site water control)		98 (±4.5)		
DMMU 3 (site water control)		96 (±8.9)		
DMMU 4 (site water control)		100 (±0.0)		
DMMU 5 (site water control)		100 (±0.0)		
DMMU 6 (site water control)		100 (±0.0)		
DMMU 7 (site water control)		100 (±0.0)		
DMMU 8 (site water control)		100 (±0.0)		
REF (elutriate)	100	98 (±4.5)	No	>100
DMMU 1 (elutriate)	100	98 (±4.5)	No	>100
DMMU 2 (elutriate)	100	98 (±4.5)	No	>100
DMMU 3 (elutriate)	100	98 (±4.5)	No	>100
DMMU 4 (elutriate)	100	100 (±0.0)	No	>100
DMMU 5 (elutriate)	100	94 (±8.9)	No	>100
DMMU 6 (elutriate)	100	100 (±0.0)	No	>100
DMMU 7 (elutriate)	100	100 (±0.0)	No	>100
DMMU 8 (elutriate)	100	100 (±0.0)	No	>100

Source: PDF Page 4 to 8 and pages 35 to 54 of the toxicology laboratory report by NWDLS (Appendix G)

3.5.2 *Menidia beryllina* 96-Hour Bioassay

The 96-hour SPP tests with M. beryllina were initiated on February 14, 2023 and terminated on February 18, 2023. Survival in the site water controls for each project sample ranged from 94% to 100%, meeting the acceptability criterion of \geq 90% survival. Mean survival in the 100% elutriate concentration ranged from 94% to 98% among the project elutriates and was 92% in the Reference. The estimated LC₅₀ values were >100% for the eight project samples. The mean survival results for these tests are summarized in Exhibit 3-7.

Summaries of the test conditions including survivorship raw data bench sheets, water quality measurements, and ammonia concentrations are provided in PDF pages 69 through 88 of the toxicity testing report (Appendix G). Results of the potassium chloride Reference toxicant test with *M. beryllina* are provided as PDF pages 89 through 100 of the toxicity testing report (Appendix G).

Exhibit 3-7. Summary of Survival Data for 96-hour SPP Tests Using Menidia beryllina

Sample ID	Concentration (%)	Mean Survival (% [± SD])	Statistically Significantly Less Than Control? (yes/no)	LC ₅₀ (%)
REF (site water control)		94 (±5.5)		
DMMU 1 (site water control)		98 (±4.5)		
DMMU 2 (site water control)		98 (±4.5)		
DMMU 3 (site water control)		94 (±8.9)		
DMMU 4 (site water control)		96 (±5.5)		
DMMU 5 (site water control)		100 (±0.0)		
DMMU 6 (site water control)		96 (±8.9)		
DMMU 7 (site water control)		96 (±8.9)		
DMMU 8 (site water control)		96 (±8.9)		
REF (elutriate)	100	92 (±8.4)	No	>100
DMMU 1 (elutriate)	100	96 (±5.5)	No	>100
DMMU 2 (elutriate)	100	98 (±4.5)	No	>100
DMMU 3 (elutriate)	100	98 (±4.5)	No	>100
DMMU 4 (elutriate)	100	98 (±4.5)	No	>100
DMMU 5 (elutriate)	100	98 (±4.5)	No	>100
DMMU 6 (elutriate)	100	94 (±13.4)	No	>100
DMMU 7 (elutriate)	100	96 (±8.9)	No	>100
DMMU 8 (elutriate)	100	96 (±8.9)	No	>100

Source: PDF Pages 4 to 8 and pages 69 to 88 of the toxicology laboratory report by NWDLS (Appendix G)

3.5.3 *Americamysis bahia* Plankton 48-Hour Bioassay

The 48-hour SPP tests with planktonic life stage *A. bahia* were initiated on February 14, 2023 and terminated on February 16, 2023. Survival in the controls for each project sample ranged from 96% to 100%, meeting the acceptability criterion of \geq 90% survival. Mean survival in the 100% elutriate concentration ranged from 94% to 100% among the project elutriates and was 100% in the Reference. The estimated LC₅₀ values were >100% for the eight project samples. The mean survivorship results for the samples are summarized in Exhibit 3-8.

Summaries of the test conditions including survivorship raw data bench sheets, water quality measurements, and ammonia concentrations are provided in PDF pages 9 through 28 in the toxicity testing report (Appendix G). Results of the 48-hour acute potassium chloride Reference toxicant test with *A. bahia* are provided as PDF pages 29 through 34 of the toxicity report (Appendix G).

Exhibit 3-8. Summary of Survival Data for 48-hour SPP Tests Using Planktonic Life Stage Americamysis bahia

Sample ID	Concentration (%)	Mean Survival (% [± SD])	Statistically Significantly Less Than Control? (yes/no)	LC ₅₀ (%)
REF (site water control)		98 (±4.5)		
DMMU 1 (site water control)		100 (±0.0)		
DMMU 2 (site water control)		96 (±5.5)		
DMMU 3 (site water control)		100 (±0.0)		
DMMU 4 (site water control)		98 (±4.5)		
DMMU 5 (site water control)		100 (±0.0)		
DMMU 6 (site water control)		100 (±0.0)		
DMMU 7 (site water control)		98 (±4.5)		
DMMU 8 (site water control)		100 (±0.0)		
REF (elutriate)	100	100 (±0.0)	No	>100
DMMU 1 (elutriate)	100	98 (±4.5)	No	>100
DMMU 2 (elutriate)	100	100 (±0.0)	No	>100
DMMU 3 (elutriate)	100	98 (±4.5)	No	>100
DMMU 4 (elutriate)	100	100 (±0.0)	No	>100
DMMU 5 (elutriate)	100	100 (±0.0)	No	>100
DMMU 6 (elutriate)	100	96 (±8.9)	No	>100
DMMU 7 (elutriate)	100	94 (±8.9)	No	>100
DMMU 8 (elutriate)	100	100 (±0.0)	No	>100

Source: PDF Pages 4 to 28 of the toxicology laboratory report by NWDLS (Appendix G)

3.6 Whole Sediment (Solid Phase) Bioassays

The SP toxicity tests were performed with the amphipod crustacean *Leptocheirus plumulosus* and the mysid crustacean *Americamysis bahia*.

3.6.1 Leptocheirus plumulosus 10-Day Bioassay

The 10-day SP tests with *L. plumulosus* were initiated on February 24, 2023 and terminated March 6, 2023. Mean survival in the control was 94%, which met the RIA recommended acceptability criterion of ≥90%. Mean survival in the project sediments ranged from 87% to 92% and was 91% in the Reference. Mean survival across project samples was less than 20% below the Reference, indicating that the samples met the LPC for benthic toxicity as defined in the RIA. Mean survival for the samples is summarized in Exhibit 3-9.

Summaries of the test conditions including raw survivorship data bench sheets, water quality parameters, and ammonia concentrations are summarized in PDF pages 101 through 116 of the toxicity report (Appendix G). The results of the 48-hour Reference toxicant test using cadmium chloride with *L. plumulosus* are provided as PDF page 117 of the toxicity report (Appendix G).

Exhibit 3-9. Summary of Survival Data for the 10-Day SP Tests Using Leptocheirus plumulosus

Sample ID	Mean Survival (%)	Standard Deviation (±%)	Significant Effect? (>20% Effect?)	Statistically Significantly Less Than Reference? (yes/no)	Exceeds LPC? (yes/no)
Control	94	6.5	-3.30; No		
REF (Reference)	91	4.2	0.00; No		
DMMU 1 Composite	92	2.7	-1.10; No	No	No
DMMU 2 Composite	89	7.4	2.20; No	No	No
DMMU 3 Composite	91	4.2	0.00; No	No	No
DMMU 4 Composite	90	3.5	1.10; No	No	No
DMMU 5 Composite	88	5.7	3.30; No	No	No
DMMU 6 Composite	87	5.7	4.40; No	No	No
DMMU 7 Composite	90	5.0	1.10; No	No	No
DMMU 8 Composite	91	4.2	0.00; No	No	No

LPC = limiting permissible concentration

Source: PDF Pages 101 to 116 of the toxicology laboratory report by NWDLS (Appendix G)

3.6.2 Americamysis bahia 10-Day Bioassay

The 10-day SP tests with *A. bahia* were initiated February 17, 2023 and terminated on February 27, 2023. The tests were validated by 91% mean survival in the control, meeting the acceptability criterion of ≥90%. Mean survival in the project sediments ranged from 87% to 93% and was 91% in the Reference. Project samples did not result in mean survival that was greater than 10% different from that of the Reference, indicating that the samples met the LPC for benthic toxicity as defined in the RIA. Mean survival for test samples is summarized in Exhibit 3-10.

Summaries of the test conditions including raw survivorship data bench sheets, water quality parameters, and ammonia concentrations are summarized in PDF pages 118 through 139 of the toxicity report (Appendix G). The results of the 7-day potassium chloride Reference toxicant test with *A. bahia* are provided as PDF pages 141 through 154 of the toxicity report (Appendix G).

Exhibit 3-10. Summary of Survival Data for the 10-Day SP Tests Using Americamysis bahia

Sample ID	Mean Survival (%)	Standard Deviation (±%)	Significant Effect? (>10% Effect?)	Statistically Significantly Less Than Reference? (yes/no)	Exceeds LPC? (yes/no)
Control	91	4.2	0.0; No		
REF (Reference)	91	4.2	0.0; No		
DMMU 1 Composite	93	5.7	-2.2; No	No	No
DMMU 2 Composite	90	6.1	1.1; No	No	No
DMMU 3 Composite	89	4.2	2.2; No	No	No
DMMU 4 Composite	90	5.0	1.1; No	No	No
DMMU 5 Composite	89	4.2	2.2; No	No	No
DMMU 6 Composite	87	5.7	4.4; No	No	No
DMMU 7 Composite	88	4.5	3.3; No	No	No
DMMU 8 Composite	90	3.5	1.1; No	No	No

LPC = limiting permissible concentration

Source: PDF Page101 and pages 118 to 139 of the toxicology laboratory report by NWDLS (Appendix G)

3.7 Bioaccumulation Potential Tests

The bioaccumulation potential tests were performed with the mollusk *Mercenaria mercenaria* (guahog clam) and polychaete *Alitta virens* (sand worm).

The 28-day bioaccumulation tests with *M. Mercenaria* and *A. virens* were initiated on March 3, 2023 and March 31, 2023, respectively. Mean survival in the control was 99% for *M. mercenaria* and 87% for *A. virens*. Mean survival in the Reference was 99% for *M. Mercenaria* and 96% for *A. virens*. Survival in the project sediment samples ranged from 91% to 100% in *M. Mercenaria* and from 89% to 100% for *A. virens*. Mean survival results for the samples are summarized in Exhibit 3-11.

Summaries of the test conditions including raw survivorship data bench sheets, water quality measurements, ammonia concentrations, and tissue weight for *M. mercenaria* and *A. virens* are provided as PDF pages 142 through 157, and pages 159 through 174, respectively, in the toxicity report (Appendix G).

Exhibit 3-11. Summary of Survival Data for Mercenaria mercenaria and Alitta virens

	Mean Surviv	ral (% [± SD])
Sample ID	M. mercenaria	A. virens
Control	99 (±2.2)	87 (±10.4)
HI-REF (Reference)	99 (±2.2)	96 (±4.2)
DMMU 1 Composite	98 (±2.7)	100 (±0.0)
DMMU 2 Composite	99 (±2.2)	99 (±2.2)
DMMU 3 Composite	100 (±0.0)	95 (±3.5)
DMMU 4 Composite	97 (±4.5)	97 (±4.5)
DMMU 5 Composite	99 (±2.2)	100 (±0.0)
DMMU 6 Composite	99 (±2.2)	93 (±7.6)
DMMU 7 Composite	91 (±4.2)	89 (±7.4)
DMMU 8 Composite	96 (±4.2)	95 (±3.5)

Source: PDF Pages 140 to 175 of the toxicology laboratory report by NWDLS (Appendix G)

3.8 Tissue Chemistry

Wet and dry weight tissue chemistry results for *M. mercenaria* and *A. virens* are presented in Tables 12 through 26. Tissue chemistry results for project samples are compared to the Reference and to applicable screening benchmarks. The laboratory reports for tissue chemistry analyses are in Appendix E. Complete results of statistical analyses and transformations for *M. mercenaria* and *A. virens* are in Appendices F-1 and F-2, respectively.

Please note that numerous results were reported with an H qualifier, which indicates a holding time exceedance. This is due to the LIMS which automatically assigns qualifiers based on the test and specific criteria maintained in the LIMS for analysis. The LIMS in this case did not distinguish the matrix of the samples tested, which were frozen tissue samples. As stated in Appendix B, footnote "h" of the Regional Implementation Agreement specifies that frozen tissues may be held for up to one year at -20 Deg C, and for this reason, the sample hold times were met as specified in the guidance.

3.8.1 Total Solids

Total solids were analyzed in *M. mercenaria* and *A. virens* tissues from the eight project samples along with the Reference and pre-exposure tissues. Analytical results for dry weight total solids in *M. mercenaria* and *A. virens* tissue are presented in Table 12.

Total solids in *M. mercenaria* ranged from 10.4% to 15.6% among project samples, the Reference, and pre-exposure tissue. Total solids in *A. virens* ranged from 9.43% to 15.0% among project samples, the Reference, and pre-exposure tissue.

3.8.2 Metals and TPH

Thirteen metals and TPH were tested in *M. mercenaria* and *A. virens* tissues from eight project samples along with the Reference and pre-exposure tissue.

Mercenaria mercenaria

Most metals tested in *M. mercenaria* tissue were detected in concentrations greater than the MDL (in one or more replicates) in one or more project samples. Mean concentrations for antimony, arsenic, chromium, copper, lead, selenium, thallium, and zinc were statistically significantly greater than those of the Reference tissue (as listed below).

- DMMU-1: antimony, arsenic, lead, selenium, and thallium
- DMMU-2: antimony, arsenic, chromium, lead, selenium, and thallium
- DMMU-3: antimony, arsenic, chromium, lead, and selenium
- DMMU-4: arsenic, chromium, lead, selenium, and thallium
- DMMU-5: antimony, arsenic, chromium, copper, lead, selenium, and thallium
- DMMU-6: antimony, arsenic, chromium, lead, selenium, and thallium
- DMMU-7: arsenic, lead, and selenium
- DMMU-8: antimony, arsenic, lead, selenium, and zinc

The results did not exceed the FDA action levels. Mean concentrations for copper in DMMU-5, lead in DMMU-2 and DMMU-5, and zinc in DMMU-8 exceeded the applicable ecological effects threshold. Mean concentrations of zinc in DMMU-8 also exceed the northern Gulf of Mexico background concentration.

Specific metals were detected in the sample and the associated method blanks (V-qualified) in one or more replicates, in one or more project samples, the Reference, and pre-exposure tissues, as listed below.

- Chromium: All DMMUs (except DMMU-8 Replicates 4 and 5), the Reference, and preexposure tissue.
- Copper, Nickel, and Zinc: All DMMUs, the Reference, and pre-exposure tissues.
- Lead: DMMU-8 (Replicates 4 and 5), the Reference, and pre-exposure tissues
- Silver: DMMU-4 (Replicate 5), DMMU-5, DMMU-6, DMMU-7, and DMMU-8 (Replicates 1, 2, and 3)
- Thallium: DMMU-4 (Replicate 5), DMMU-5, DMMU-6 (Replicates 1, 2, 4, and 5), DMMU-7, and DMMU-8 (Replicates 1, 2, and 3)

TPH mean wet weight concentrations in *M. mercenaria* tissues ranged from 10.4 mg/kg to 2,404 mg/kg and were highest in DMMU-7. Mean concentrations for TPH in the project samples, except for DMMU-2, were statistically significantly greater than that of the Reference. There is not a FDA action level for TPH.

The fact sheet from the Agency for Toxic Substances and Disease Registry (ATSDR 1999) states that TPH is a term used to describe a large family of several hundred chemical compounds originally from crude oil. Crude oil is used to make petroleum products, which can contaminate the environment. Because there are so many different chemicals in crude oil and in other petroleum products, it is not practical to measure each one separately. However, it is useful to measure the total amount of TPH at a site to evaluate and screen potential constituents of concern and intensity. Scientists do this by dividing TPH into groups of petroleum hydrocarbons that act alike in soil or water. These groups are called petroleum hydrocarbon fractions. Each fraction contains many individual chemicals, including both volatile and extractable petroleum hydrocarbons (VPHs and EPHs), encompassing the gasoline range organics ($>C_{12}-C_{23}$), diesel range organics ($>C_{12}-C_{23}$), and oil range organics ($>C_{28}-C_{35}$).

Generally, TPH testing provides a means to quantify the magnitude (in relative terms) of petroleum contamination that remains in the environment. For dredging projects, this exposure would come from biomagnification starting at low level organisms and working up to humans through a food chain. Upon their discharge into the environment, petroleum hydrocarbons can pose risks to human health, ecosystems, and groundwater. Since there are not FDA action levels for TPH resulting from the lack of scientific studies that document the effects of TPH on local marine-based organisms due to its large chemical composition, where mean concentrations for TPH were statistically significantly greater than that of the Reference, the effects of the TPH were addressed through PAH and SVOC analyses which provide an estimate of more toxic components found within the TPH fractions (results discussed in Section 3.8.3). PAHs and SVOCs were not identified as a concern for *M. mercenaria*.

Alitta virens

Most metals tested in *A. virens* tissue were detected in concentrations greater than the MDL (in one or more replicates) in one or more project samples. Mercury was not detected above the MDL (U-qualified) in any sample. Mean concentrations for cadmium (all project samples except DMMU-8), nickel (all project samples), silver (DMMU-4, DMMU-6, and DMMU-8), and thallium (DMMU-2, DMMU-3, DMMU-4, and DMMU-6), were statistically significantly greater than those of the Reference tissues. Sample mean results did not exceed the FDA action levels or screening criteria concentrations in *A. virens* tissues.

Chromium and zinc were detected in the method blank (B-qualified) in DMMU-8 (Replicate 5). Chromium, copper, lead, nickel, and zinc were detected in both the sample and the method blank (V-qualified) in one or more replicates, in one or more project samples, the Reference, and pre-exposure tissues.

TPH mean wet weight concentrations in *A. virens* tissues ranged from 76.7 mg/kg to 2,566 mg/kg and were highest in the Reference. Mean concentrations for TPH in the project samples were not statistically significantly greater than that of the Reference tissues. There is not a FDA action level for TPH.

Mean wet weight concentrations of metals and TPH in *M. mercenaria* and *A. virens* tissues are summarized in Exhibits 3-12 and 3-13, respectively. Analytical results for wet and dry weight metals and TPH in *M. mercenaria* and *A. virens* tissues are in Tables 13 through 16, respectively. Complete results of the ToxCalc runs for *M. mercenaria* and *A. virens* tissues are in Appendix F.

Exhibit 3-12. Mercenaria mercenaria Tissue: Summary of Mean Wet Weight Metals and TPH Results Detected above the MDL in One or More Samples

				Mean C	oncentration	of Replicates	(mg/kg)				_ (ĝ		
Analyte	DMMU 1	DMMU 2	DMMU 3	DMMU 4	DMMU 5	DMMU 6	DMMU 7	DMMU 8	HI-REF	Pre- exposure	FDA Action Level (mg/kg)	EET (mg/kg)	N. Gulf of Mexico Bkgd. (mg/kg)
Antimony	0.00320 (199%)	0.00239 (149%)	0.00247 (153%)	0.00233	0.00373 (232%)	0.00341 (212%)	0.00196	0.00221 (137%)	0.00161	0.00161	х	х	0.22-0.47
Arsenic	2.60 (215%)	2.34 (194%)	2.06 (171%)	2.11 (175%)	1.99 (165%)	1.94 (161%)	1.87 (155%)	2.04 (169%)	1.21	1.18	86	12.6	3.4-5.4
Beryllium	0.00095	0.00082	0.00052	0.00081	0.00122	0.00105	0.00054	0.00055	0.00135	0.00146	х	х	<0.14
Cadmium	0.0352	0.0382	0.0293	0.0325	0.0277	0.0304	0.0276	0.0252	0.0464	0.0441	4	1.0	0.15-0.83
Chromium	0.114	0.145 (457%)	0.088 (278%)	0.158 (498%)	0.366 (1149%)	0.217 (681%)	0.0556	0.0484	0.0318	0.0476	13	6.3	0.49-5.2
Copper	1.33	1.22	1.08	1.16	2.38 (200%)	1.04	1.06	1.02	1.19	1.29	x	0.2	0.58-2.8
Lead	0.094 (246%)	0.104 (270%)	0.096 (251%)	0.097 (254%)	0.145 (378%)	0.0864 (225%)	0.094 (244%)	0.0827 (216%)	0.0384	0.0448	1.7	0.1	<0.47
Mercury	0.00601	0.00530	0.00554	0.00546	0.00486	0.00574	0.00490	0.00500	0.00473	0.00480	1	0.3	<0.028
Nickel	0.218	0.217	0.176	0.260	0.233	0.288	0.152	0.138	0.358	0.377	80	2.2	0.7-3.1
Selenium	0.325 (184%)	0.306 (173%)	0.312 (177%)	0.271 (153%)	0.268 (151%)	0.264 (149%)	0.271 (153%)	0.264 (149%)	0.177	0.203	Х	14.2	0.5-1.5
Silver	0.0172	0.0108	0.0138	0.0135	0.0142	0.0177	0.0143	0.0125	0.0159	0.0177	Х	1.0	0.11-0.56
Thallium	0.000643 (212%)	0.000641 (211%)	0.000411	0.000564 (186%)	0.000499 (164%)	0.000572 (188%)	0.000291	0.000391	0.000304	0.000319	х	0.3	<0.47
Zinc	13.7	35.3	14.7	18.2	25.4	15.2	32.3	35.6 (304%)	11.7	13.5	х	11.6	7.0-30.0
TPH	170 (475%)	335	960 (2,685%)	218 (609%)	1886 (5,278%)	1951 (5,459%)	2404 (6,726%)	1955 (5,470%)	35.7	10.4	х	х	х

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the Reference tissue and includes at least one replicate result greater than the MDL. The concentration of a given analyte in project tissue relative to that of the Reference is given as a percent within parentheses (###%).

Bolded and italicized values indicate a mean concentration of project tissue that is statistically significantly greater than that of the Reference tissues and also exceed the ecological effects threshold (EET) or the upper boundary of the N. Gulf of Mexico background concentration.

x = No FDA action level and (or) ecological effects threshold/North Gulf of Mexico background criteria published for the given parameter. See Table 13 for complete results.

Exhibit 3-13. Alitta virens Tissue: Summary of Mean Wet Weight Metals and TPH Results Detected above the MDL in One or More Samples

				Mean Co	ncentration o	f Replicates (ı	ng/kg)				ر (ق		
Analyte	DMMU 1	DMMU 2	DMMU 3	DMMU 4	DMMU 5	DMMU 6	DMMU 7	DMMU 8	HI-REF	Pre- exposure	FDA Action Level (mg/kg)	EET (mg/kg)	N. Gulf of Mexico Bkgd. (mg/kg)
Antimony	0.00161	0.00161	0.00161	0.00161	0.00161	0.00290	0.00160	0.00166	0.00330	0.00265	х	x	<0.31
Arsenic	1.31	1.32	1.30	1.12	1.32	1.28	1.22	1.07	2.03	2.08	76	12.6	7.4-37.0
Beryllium	0.00135	0.00127	0.00121	0.00142	0.00135	0.00143	0.00133	0.00138	0.00107	0.00132	х	Х	<0.09
Cadmium	0.0461 (184%)	0.0493 (197%)	0.0529 (212%)	0.0471 (188%)	0.0470 (188%)	0.0523 (209%)	0.0507 (203%)	0.0448	0.0250	0.0241	3	27.8	0.34-1.4
Chromium	0.0416	0.0335	0.0391	0.0403	0.0383	0.0382	0.0392	0.0388	0.208	0.129	12	10.0	0.89-4.6
Copper	1.25	1.28	1.19	1.25	1.33	1.25	1.14	1.55	2.74	1.65	х	0.4	2.3-5.3
Lead	0.0390	0.0325	0.0392	0.0392	0.0354	0.0427	0.0407	0.0405	0.136	0.093	1.5	0.1	0.31-1.2
Nickel	0.383 (192%)	0.355 (178%)	0.373 (187%)	0.384 (193%)	0.349 (175%)	0.384 (193%)	0.346 (174%)	0.376 (188%)	0.199	0.189	70	2.2	0.53-3.5
Selenium	0.155	0.173	0.174	0.146	0.179	0.159	0.156	0.139	0.257	0.340	х	14.2	0.61-0.99
Silver	0.0184	0.0177	0.0175	0.0193 (109%)	0.0191	0.0222 (126%)	0.0185	0.0210 (119%)	0.0177	0.0229	х	1.0	<0.15
Thallium	0.000424	0.000483 (133%)	0.000507 (140%)	0.000471 (130%)	0.000335	0.000589 (162%)	0.000311	0.000429	0.000363	0.000466	х	0.3	<0.31
Zinc	11.5	11.8	12.4	10.7	11.7	11.5	11.7	9.4	13.5	27.2	х	0.3	14-16
TPH	76.7	617	947	609	563	332	527	349	2566	214	х	х	х

Bolded value indicates a mean concentration in project tissue that is statistically significantly greater than that of the Reference and includes one or more replication results greater than the LRL. The concentration of a given analyte in project tissue relative to that of the Reference is given as a percent within parentheses (###%).

x = No FDA action level and (or) ecological effects threshold/North Gulf of Mexico background criteria published for the given parameter. See Table 14 for complete results.

3.8.3 PAHs

PAHs were tested in *M. mercenaria* and *A. virens* tissues from DMMU 1, DMMU 3, DMMU-4, DMMU-5, DMMU 7, and DMMU 8, along with the Reference, and pre-exposure tissues.

Mercenaria mercenaria

One to four PAH analytes were detected in concentrations greater than the LRL in *M. mercenaria* tissues in one or more replicates in project tissues as follows:

- DMMU-3 fluorene
- DMMU-7 acenaphthene, fluoranthene, phenanthrene, and pyrene
- DMMU-8 anthracene

Mean adjusted concentrations of acenaphthene, fluoranthene, phenanthrene and pyrene in DMMU-7 and anthracene in DMMU-8, statistically significantly exceeded those of the Reference tissues. Mean concentrations of total LPAHs, total HPAHs, and total PAHs in DMMU-7, calculated from results of individual PAHs, also statistically significantly exceeded those of the Reference. These results did not exceed the ecological effects threshold except for acenaphthene and fluoranthene in DMMU-7. Additionally, the results did not exceed the northern Gulf of Mexico background concentration except for total HPAHs in DMMU-7. There are not applicable FDA action levels for the PAHs tested. The complete results of the ToxCalc runs for *M. mercenaria* are provided in Appendix F-1.

Alitta virens

One to four PAH analytes were detected in concentrations greater than the LRL in *A. virens* tissues in one or more replicates in project tissues, and adjusted mean concentrations of these analytes statistically significantly exceeded those of the Reference tissues as follows:

- DMMU-3 fluorene, phenanthrene, pyrene
- DMMU-5 benzo(a)pyrene
- DMMU-7 anthracene, fluoranthene, phenanthrene, pyrene

Mean concentrations of total LPAHs (DMMU-7), total HPAHs (DMMU-7), and total PAHs (DMMU-3 and DMMU-7), calculated from results of individual PAHs, also statistically significantly exceeded those of the Reference tissues. There are not applicable FDA action levels for the PAHs tested. These results did not exceed the ecological effects threshold or northern Gulf of Mexico background concentration. The complete results of the ToxCalc runs for *N. virens* are provided in Appendix F-2.

Mean wet weight concentrations of PAHs greater than the LRL in *M. mercenaria* and *A. virens* tissues are summarized in Exhibits 3-14 and 3-15. Analytical results for wet and dry weight PAHs in *M. mercenaria* and *A. virens* tissues are in Tables 17 through 20, respectively.

Exhibit 3-14. *Mercenaria mercenaria* Tissues: Summary of Mean Adjusted Wet Weight PAH Analytes Results Detected above the LRL in One or More Samples

		Mean Concentration	on of Replicates	(µg/kg)			
Analyte	DMMU-3	DMMU-7	DMMU-8	HI-REF	Pre- exposure	EET (µg/kg)	N. Gulf of Mexico Background (μg/kg)
Acenaphthene	2.42*	7.88 (335%)	2.40*	2.35*	2.41*	7.3	<20
Anthracene	2.42*	6.37*	2.98 (127%)	2.35*	2.41*	х	<20
Fluoranthene	2.66*	13.0 (502%)	2.64*	2.59*	2.41*	8.8	<20
Fluorene	4.04	6.37*	2.40*	2.35*	2.41*	x	<20
Phenanthrene	2.42*	8.02 (341%)	2.40*	2.35*	2.41*	х	<20
Pyrene	2.66*	8.18 (316%)	2.64*	2.59*	2.41*	х	<20
Total LPAHs	13.0	37.8 (268%)	15.0	14.1*	14.5*	х	60.00
Total HPAHs	24.2*	<i>75.0</i> (319%)	24.0	23.5*	27.3*	х	64.00
Total PAHs	37.2	113 (300%)	39.1	37.6*	41.8*	40000.0	178

Bolded values indicate a mean adjusted concentration of project tissue that is statistically significantly greater than that of the Reference tissue and includes at least one replicate result greater than the MDL. The concentration of a given analyte in project tissue relative to that of the Reference is given as a percent within parentheses (###%).

Italicized and **bolded values** indicate results that are statistically significantly greater than that of the Reference tissues and also exceed the ecological effects threshold and (or) the upper boundary of the N. Gulf of Mexico background concentration (see Section 7.5.3 of SERIM for details).

See Tables 17 and 18 for complete results.

^{*} Indicates the analyte was not detected above the MDL, all replicates were U-qualified.

x = No ecological effects threshold published for the given parameter.

Exhibit 3-15. Alitta virens Tissues: Summary of Mean Adjusted Wet Weight PAH Analytes Results Detected above the LRL in One or More Samples

Analyte		Mean Concen	tration of Replicat	es (µg/kg)			
	DMMU-3	DMMU-5	DMMU-7	HI-REF	Pre- exposure	EET (μg/kg)	N. Gulf of Mexic Background (μg/kg)
Anthracene	2.33*	2.33*	3.42 (144%)	2.38*	2.45*	х	<20
Benzo(a)pyrene	4.89*	5.32 (107%)	5.05*	4.99*	4.89*	х	<20
Fluoranthene	2.56*	2.56*	10.7 (410%)	2.62*	4.89*	12.8	<20
Fluorene	4.43 (186%)	2.33*	2.41*	2.38*	2.45*	х	<20
Phenanthrene	7.40 (311%)	2.33*	8.86 (372%)	2.38*	2.45*	14-17	<20
Pyrene	3.57 (137%)	2.56*	13.2 (504%)	2.62*	4.89*	х	<20
Total LPAHs	21.2	13.9	21.9 (153%)	14.3*	25.4	Х	60.00
Total HPAHs	24.2	23.5	41.0 (149%)	27.6*	48.9*	х	64.00
Total PAHs	45.4 (108%)	37.4	62.9 (150%)	41.9*	74.3	40000	178

Bolded values indicate a mean adjusted concentration of project tissue that is statistically significantly greater than that of the Reference tissue and includes at least one replicate result greater than the MDL. The concentration of a given analyte in project tissue relative to that of the Reference is given as a percent within parentheses (###%).

See Tables 18 for complete wet weight results.

^{*} Indicates the analyte was not detected above the MDL, all replicates were U-qualified. concentration for the analyte was statistically significantly greater than that of the Reference tissue.

x = No ecological effects threshold published for the given parameter.

MonobutyItin and SVOCs

Monobutyltin was tested in project sample DMMU 1, the Reference, and pre-exposure tissues. SVOCs including bis(2-ethylhexyl) phthalate, di-n-butyl phthalate, 2,4-dichlorophenol, 2,6-dinitrotoluene (2,6 DNT), diethyl phthalate, and hexachlorocyclopentadiene were tested in *M. mercenaria* and *A. virens* tissues in one or more project samples along with the Reference and pre-exposure tissues.

MonobutyItin

Monobutyltin was not detected above the MDL (U-qualified) in DMMU-1, the Reference, or the pre-exposure tissues for both species. There are not applicable FDA action levels, ecological effect threshold, or north Gulf of Mexico background concentrations for monobutyltin in either species.

Although tissue samples were previously frozen by NWDLS following the termination of the 28-day bioaccumulation test, and received frozen by the subcontract laboratory, the replicates were H- and H3-qualified, which indicates the samples were received, prepped, and analyzed beyond the specified holding time and does not meet regulatory requirements. Frozen samples are considered acceptable as retained or received by the laboratory, until the date and time the samples are thawed and prepped for analysis within the method specific holding time (refer to Section 3.8 for additional information). Specific replicates were F1 and F2-qualified which indicates the MS and MSD recovery exceeds control limits. Specific replicates were * qualified which indicates the laboratory calibration standard (LCS) and/or LCS Duplicate is outside acceptance limits, low biased.

Analytical results for wet and dry weight monobutyltin in *M. mercenaria* and *A. virens* tissue are in Tables 21 and 22.

SVOCs

Mercenaria mercenaria

The following SVOC analytes were detected in *M. mercenaria* tissues above the LRL in one or more replicates of the project samples tested:

- DMMU-2 di-n-butyl phthalate
- DMMU-3 bis(2-ethylhexyl) phthalate, di-n-butyl phthalate
- DMMU-5 di-n-butyl phthalate, diethyl phthalate, hexachlorocyclopentadiene
- DMMU-6 di-n-butyl phthalate
- DMMU-8 di-n-butyl phthalate
- Reference bis(2-ethylhexyl) phthalate, di-n-butyl phthalate, diethyl phthalate
- Pre-Exposure bis(2-ethylhexyl) phthalate, di-n-butyl phthalate

Adjusted mean concentrations for these SVOCs did not statistically significantly exceed those of the Reference. There are not applicable FDA action levels or north Gulf of Mexico background concentrations for these SVOCs. Adjusted mean concentrations for bis(2-ethylhexyl) phthalate in *M. mercenaria* were below the ecological effects threshold.

Three SVOC analytes were detected in both the sample and the method blank (V-qualified) in specific project samples, the Reference samples, and the pre-exposure tissues. Bis(2-ethylhexyl)

phthalate was detected in the method blank (B-qualified) in DMMU-8, and specific replicates in the Reference and pre-exposure tissues.

Alitta virens

The following SVOC analytes were detected in *A. virens* tissues above the LRL in one or more replicates of the project samples tested:

- DMMU-2 di-n-butyl phthalate
- DMMU-3 bis(2-ethylhexyl) phthalate, di-n-butyl phthalate
- DMMU-4 di-n-butyl phthalate
- DMMU-5 di-n-butyl phthalate, diethyl phthalate
- DMMU-6 di-n-butyl phthalate
- DMMU-7 di-n-butyl phthalate
- DMMU-8 bis(2-ethylhexyl) phthalate, di-n-butyl phthalate
- Reference bis(2-ethylhexyl) phthalate, di-n-butyl phthalate, diethyl phthalate
- Pre-Exposure bis(2-ethylhexyl) phthalate, di-n-butyl phthalate, diethyl phthalate

Adjusted mean concentrations for bis(2-ethylhexyl) phthalate (DMMU-8), di-n-butyl phthalate (DMMU-2, DMMU-4, and DMMU-7), and diethyl phthalate (DMMU-5) statistically significantly exceeded those of the Reference tissue. There are not applicable FDA action levels or screening criteria concentrations for these SVOCs in *A. virens* tissues.

Three SVOC analytes were V-qualified in one or more replicates in specific project samples, the Reference, and pre-exposure tissues. Bis(2-ethylhexyl) phthalate was B-qualified in the Reference Replicate 5, and pre-exposure tissue Replicates 1 and 2. Di-n-butyl phthalate was B-qualified in DMMU-5 except Replicate 2.

Mean wet weight concentrations of SVOC analytes greater than the LRL in *M. mercenaria* and *A. virens* tissues are summarized in Exhibit 3-16. Analytical results for wet and dry weight SVOCs in *M. mercenaria* and *A. virens* tissues are presented in Tables 23 through 26.

Exhibit 3-16. Mercenaria mercenaria and Alitta virens Tissues: Summary of Mean Adjusted Wet Weight SVOCs Results Detected Above the LRL

				Mean Cond	entration of	Replicates	(µg/kg)					N. Gulf of
Analyte	DMMU-1	DMMU-2	DMMU-3	DMMU-4	DMMU-5	DMMU-6	DMMU-7	DMMU-8	HI-REF	Pre- exposure	EET (µg/kg)	Mexico Background (µg/kg)
M. mercenaria												
Bis(2-ethylyhexyl) phthalate			25.2					6.73*	21.5	8.87	847.0	x
Di-n-butyl phthalate	4.85*	10.5	6.70	4.87*	5.44	8.66	6.37*	6.27	5.57	4.42	X	x
Diethyl phthalate					5.04				3.50	2.41*	X	x
Hexachlorocyclopentadiene					4.80				2.35*	2.41*	Х	х
A. virens												
Bis(2-ethylyhexyl) phthalate			32.0					45.1 (194%)	23.3	18.5	х	Х
Di-n-butyl phthalate	6.12	10.6 (228%)	5.09	7.23 (156%)	4.23	4.67	6.98 (151%)	6.15	4.63	12.9	х	Х
Diethyl phthalate					5.97 (136%)				4.39	3.14	х	Х

Bolded values indicate a mean adjusted concentration of project tissue that is statistically significantly greater than that of the Reference tissue and includes at least one replicate result greater than the MDL. The concentration of a given analyte in project tissue relative to that of the Reference is given as a percent within parentheses (###%).

See Tables 21 through 24 for complete results.

x = No ecological effects threshold and northern Gulf of Mexico background concentration published for the given parameter.

^{*} Indicates the analyte was not detected above the MDL, all replicates were U-qualified.

^{-- =} No Data/Not Analyzed

3.9 General Risk-Based Evaluations

When analyte concentrations in project tissues statistically significantly exceed those of the Reference tissue, general risk-based evaluations must be conducted. Subsection 6.3 of the Green Book and Subsection 10.2.3 of the RIA provide eight factors to be considered in risk-based evaluations to evaluate compliance with 40 CFR § 227.13(c)(3). Analyte concentrations in tissues that exceed these benchmarks warrant further evaluation.

Factor 1. Statistical significance of the results from tests on sediment from the dredging site when compared to Reference sediment results.

Exhibit 3-17 summarizes mean concentrations in project tissues of *M. mercenaria* including those that statistically significantly exceeded mean concentrations in the Reference. Mean results that statistically significantly exceeded the Reference are shown in bold.

Exhibit 3-18 summarizes mean concentrations in project tissues of *A. virens* including those that statistically significantly exceeded mean concentrations in the Reference. Mean results that statistically significantly exceeded the Reference are shown in bold.

Full results in *M. mercenaria* and *A. virens* project tissues with percentages of Reference concentrations are in Tables 13 through 26.

Exhibit 3-17. Analytical Results for *Mercenaria mercenaria* Wet Weight Tissue Compared to the Reference and Screening Benchmarks

Analyte	Mean Concentration	Percent of Reference	REF (Reference)	Ecological Effects Threshold: Bivalves	Northern Gulf of Mexico Bkgd.: Bivalves
M. mercenaria					
DMMU-1					
Antimony	0.00320	199%	0.00161	х	0.22-0.47
Arsenic	2.60	215%	1.21	12.6	3.4-5.4
Lead	0.094	246%	0.0384	0.1	<0.47
Selenium	0.325	184%	0.177	14.2	0.5-1.5
Thallium	0.000643	212%	0.000304	0.3	<0.47
TPH	170	475%	35.7	х	х
DMMU-2					
Antimony	0.00239	149%	0.00161	х	0.22-0.47
Arsenic	2.34	194%	1.21	12.6	3.4-5.4
Chromium	0.145	457%	0.0318	6.3	0.49-5.2
Lead	0.104	270%	0.0384	0.1	<0.47
Selenium	0.306	173%	0.177	14.2	0.5-1.5
Thallium	0.000641	211%	0.000304	0.3	<0.47
DMMU-3					
Antimony	0.00247	153%	0.00161	х	0.22-0.47
Arsenic	2.06	171%	1.21	12.6	3.4-5.4
Chromium	0.088	278%	0.0318	6.3	0.49-5.2

Analyte	Mean Concentration	Percent of Reference	REF (Reference)	Ecological Effects Threshold: Bivalves	Northern Gulf of Mexico Bkgd.: Bivalves
M. mercenaria					
Lead	0.096	251%	0.0384	0.1	<0.47
Selenium	0.312	177%	0.177	14.2	0.5-1.5
TPH	960	2685%	35.7	х	x
DMMU-4					
Arsenic	2.11	175%	1.21	12.6	3.4-5.4
Chromium	0.158	498%	0.0318	6.3	0.49-5.2
Lead	0.097	254%	0.0384	0.1	<0.47
Selenium	0.271	153%	0.177	14.2	0.5-1.5
Thallium	0.000564	186%	0.000304	0.3	<0.47
TPH	218	609%	35.7	х	x
DMMU-5					
Antimony	0.00373	232%	0.00161	х	0.22-0.47
Arsenic	1.99	165%	1.21	12.6	3.4-5.4
Chromium	0.366	1149%	0.0318	6.3	0.49-5.2
Copper	2.38	200%	1.19	0.2	0.58-2.8
Lead	0.145	378%	0.0384	0.1	<0.47
Selenium	0.268	151%	0.177	14.2	0.5-1.5
Thallium	0.000499	164%	0.000304	0.3	<0.47
TPH	1,886	5,278%	35.7	x	x
DMMU-6					
Antimony	0.00341	212%	0.00161	x	0.22-0.47
Arsenic	1.94	161%	1.21	12.6	3.4-5.4
Chromium	0.217	681%	0.0318	6.3	0.49-5.2
Lead	0.0864	225%	0.0384	0.1	<0.47
Selenium	0.264	149%	0.177	14.2	0.5-1.5
Thallium	0.000572	188%	0.000304	0.3	<0.47
TPH	1,951	5,459%	35.7	x	x
DMMU-7					
Arsenic	1.87	155%	1.21	12.6	3.4-5.4
Lead	0.094	244%	0.0384	0.1	<0.47
Selenium	0.271	153%	0.177	14.2	0.5-1.5
TPH	2404	6,726%	35.7	х	x
Acenaphthene	7.88	335%	2.35	7.3	<20
Fluoranthene	13.0	502%	2.59	8.8	<20
Phenanthrene	8.02	341%	2.35	х	<20
Pyrene	8.18	316%	2.59	x	<20
Total LPAHs	37.8	268%	14.1	x	60.00
Total HPAHs	75.0	319%	23.5	x	64.00

Analyte	Mean Concentration	Percent of Reference	REF (Reference)	Ecological Effects Threshold: Bivalves	Northern Gulf of Mexico Bkgd.: Bivalves
M. mercenaria					
Total PAHs	113	300%	37.6	40000.0	178
DMMU-8					
Antimony	0.00221	137%	0.00161	х	0.22-0.47
Arsenic	2.04	169%	1.21	12.6	3.4-5.4
Lead	0.0827	216%	0.0384	0.1	<0.47
Selenium	0.264	149%	0.177	14.2	0.5-1.5
Zinc	35.6	304%	11.7	11.6	7.0-30.0
TPH	1,955	5,470%	35.7	х	x
Anthracene	2.98	127%	2.35	х	<20

Results in bold are statistically significantly greater than those of the Reference tissue.

Italicized and bolded results exceeded the ecological effects threshold and (or) the North Gulf of Mexico background concentration.

Exhibit 3-18. Analytical Results for *Alitta virens* Wet Weight Tissue Compared to the Reference and Screening Benchmarks

Analyte	Mean Concentration	Percent of Reference	HI-REF (Reference)	Ecological Effects Threshold: Polychaeta	Northern Gulf of Mexico Bkgd.: Polychaeta
A. virens					
DMMU-1					
Cadmium	0.0461	184%	0.0250	27.8	0.34-0.14
Nickel	0.383	192%	0.199	2.2	0.53-3.5
DMMU-2					
Cadmium	0.0493	197%	0.0250	27.8	0.34-0.14
Nickel	0.355	178%	0.199	2.2	0.53-3.5
Thallium	0.000483	133%	0.000363	0.3	<0.31
Di-n-butyl phthalate	10.6	228%	4.63	х	х
DMMU-3					
Cadmium	0.0529	212%	0.0250	27.8	0.34-0.14
Nickel	0.373	187%	0.199	2.2	0.53-3.5
Thallium	0.000507	140%	0.000363	0.3	<0.31
Fluorene	4.43	186%	2.38	х	<20
Phenanthrene	7.40	311%	2.38	х	14-17
Pyrene	3.57	137%	2.38	х	<20
Total PAHs	45.4	108%	41.9	40000.0	178
DMMU-4					
Cadmium	0.0471	188%	0.0250	27.8	0.34-1.4

x = No background threshold published for the given analyte.

Analyte	Mean Concentration	Percent of Reference	HI-REF (Reference)	Ecological Effects Threshold: Polychaeta	Northern Gulf of Mexico Bkgd.: Polychaeta
A. virens					
Nickel	0.384	193%	0.199	2.2	0.53-3.5
Silver	0.0193	109	0.0177	1.0	<0.15
Thallium	0.000471	130%	0.000363	0.3	<0.31
Di-n-butyl phthalate	7.23	156%	4.63	х	х
DMMU-5					
Cadmium	0.0470	188%	0.0250	27.8	0.34-1.4
Nickel	0.349	175%	0.199	2.2	0.53-3.5
Benzo(a)pyrene	2.53	107%	2.38	x	<20
Diethyl phthalate	5.97	136%	4.39	x	x
DMMU-6					
Cadmium	0.0523	209%	0.0250	27.8	0.34-1.4
Nickel	0.384	193%	0.199	2.2	0.53-3.5
Silver	0.0222	126	0.0177	1.0	<0.15
Thallium	0.000589	162%	0.000363	0.3	<0.31
DMMU-7					
Cadmium	0.0507	203%	0.0250	27.8	0.34-0.14
Nickel	0.346	174%	0.199	2.2	0.53-3.5
Anthracene	3.42	144%	2.38		<20
Fluoranthene	10.7	410%	2.38	12.8	<20
Phenanthrene	8.86	372%	2.38	x	14-17
Pyrene	13.2	504%	2.38	x	<20
Total LPAHs	21.9	153%	14.3	x	60.00
Total HPAHs	41.0	149%	27.6	x	64.00
Total PAHs	62.9	150%	41.9	40000.0	178
Di-n-butyl phthalate	6.98	151%	4.63	х	х
DMMU-8					
Nickel	0.376	188%	0.199	2.2	0.53-3.5
Silver	0.0210	119	0.0177	1.0	<0.15
Bis(2-ethylhexyl) phthalate	45.1	194%	23.3	х	х

Results in bold are statistically significantly greater than those of the Reference tissue. x = No background threshold published for the given analyte.

Factor 2. Magnitude by which the bioaccumulation in organisms exposed to sediment from the dredging site exceeds bioaccumulation in organisms exposed to the Reference sediment.

Exhibit 3-19 compares mean concentrations of contaminants in *M. mercenaria* project tissues with applicable screening benchmarks. Of the analyte mean concentrations in tissues exposed to project sediment that statistically significantly exceeded those of the Reference, the following analytes also exceeded applicable screening benchmarks:

- DMMU-2 lead exceeded the EET
- DMMU-5 copper and lead exceeded the EET
- DMMU-7 acenapthene and fluoranthene exceeded the EET and Total HPAH exceeded the Northern Gulf of Mexico Background concentration
- DMMU-8 zinc exceeded the EET and the upper limit of the Northern Gulf of Mexico Background concentration.

Exhibit 3-20 compares mean concentrations of contaminants in *A. virens* project tissues with applicable screening benchmarks. Of the analyte mean concentrations in tissues exposed to project sediment that statistically significantly exceeded those of the Reference, none exceeded applicable screening benchmarks (Exhibit 3-20).

Exhibit 3-19. *Mercenaria mercenaria* Tissue Mean Concentrations Statistically Significantly Greater Than Those of the Reference, Expressed as a Percent of Screening Benchmarks

	Mean Concentration Relative to the EET and to the Northern Gulf of Mexico Background Concentration Effects Threshold:		Northern Gulf of Mexico Bkgd.:	
Analyte	(% of EET % of background)	Bivalves	Bivalves	
DMMU-1				
Antimony (0.00320 mg/kg)	(not applicable) (does not exceed)	х	0.22-0.47	
Arsenic (2.60 mg/kg)	(does not exceed) (does not exceed)	12.6	3.4-5.4	
Lead (0.094 mg/kg)	(does not exceed) (does not exceed)	0.1	<0.47	
Selenium (0.325 mg/kg)	(does not exceed) (does not exceed)	14.2	0.5-1.5	
Thallium (0.000643 mg/kg)	(does not exceed) (does not exceed)	0.3	<0.47	
TPH (170 mg/kg)	(not applicable) (not applicable)	х	х	
DMMU-2				
Antimony (0.00239 mg/kg)	(not applicable) (does not exceed)	х	0.22-0.47	
Arsenic (2.34 mg/kg)	(does not exceed) (does not exceed)	12.6	3.4-5.4	
Chromium (0.145 mg/kg)	(does not exceed) (does not exceed)	6.3	0.49-5.2	
Lead (0.104 mg/kg)	(104%) (does not exceed)	0.1	<0.47	
Selenium (0.306 mg/kg)	(does not exceed) (does not exceed)	14.2	0.5-1.5	

	Mean Concentration Relative to the EET and to the Northern Gulf of Mexico Background Concentration	Ecological Effects Threshold:	Northern Gulf of Mexico Bkgd.:
Analyte The Ulivery (0.000044 are allier)	(% of EET % of background)	Bivalves	Bivalves
Thallium (0.000641 mg/kg)	(does not exceed) (does not exceed)	0.3	<0.47
DMMU-3			
Antimony (0.00247 mg/kg)	(not applicable) (does not exceed)	Х	0.22-0.47
Arsenic (2.06 mg/kg)	(does not exceed) (does not exceed)	12.6	3.4-5.4
Chromium (0.088 mg/kg)	(does not exceed) (does not exceed)	6.3	0.49-5.2
Lead (0.096 mg/kg)	(does not exceed) (does not exceed)	0.1	<0.47
Selenium (0. 312 mg/kg)	(does not exceed) (does not exceed)	14.2	0.5-1.5
TPH (960 mg/kg)	(not applicable) (not applicable)	Х	х
DMMU-4			
Arsenic (2.11 mg/kg)	(does not exceed) (does not exceed)	12.6	3.4-5.4
Chromium (0.158 mg/kg)	(does not exceed) (does not exceed)	6.3	0.49-5.2
Lead (0.097 mg/kg)	(does not exceed) (does not exceed)	0.1	<0.47
Selenium (0.271 mg/kg)	(does not exceed) (does not exceed)	14.2	0.5-1.5
Thallium (0.000564 mg/kg)	(does not exceed) (does not exceed)	0.3	<0.47
TPH (218 mg/kg)	(not applicable) (not applicable)	х	x
DMMU-5			
Antimony (0.00373 mg/kg)	(not applicable) (does not exceed)	х	0.22-0.47
Arsenic (1.99 mg/kg)	(does not exceed) (does not exceed)	12.6	3.4-5.4
Chromium (0.366 mg/kg)	(does not exceed) (does not exceed)	6.3	0.49-5.2
Copper (2.38 mg/kg)	(1190%) (does not exceed)	0.2	0.58-2.8
Lead (0.145 mg/kg)	(145%) (does not exceed)	0.1	<0.47
Selenium (0.268 mg/kg)	(does not exceed) (does not exceed)	14.2	0.5-1.5
Thallium (0.000499 mg/kg)	(does not exceed) (does not exceed)	0.3	<0.47
TPH (1,886 mg/kg)	(not applicable) (not applicable)	х	х
DMMU-6			
Antimony (0.00341 mg/kg)	(not applicable) (does not exceed)	х	0.22-0.47
Arsenic (1.94 mg/kg)	(does not exceed) (does not exceed)	12.6	3.4-5.4
Chromium (0.217 mg/kg)	(does not exceed) (does not exceed)	6.3	0.49-5.2
Lead (0.0864 mg/kg)	(does not exceed) (does not exceed)	0.1	<0.47
Selenium (0.264 mg/kg)	(does not exceed) (does not exceed)	14.2	0.5-1.5

Analyte	Mean Concentration Relative to the EET and to the Northern Gulf of Mexico Background Concentration (% of EET % of background)	Ecological Effects Threshold: Bivalves	Northern Gulf of Mexico Bkgd.: Bivalves
Thallium (0.000572 mg/kg)	(does not exceed) (does not exceed)	0.3	<0.47
TPH (1,951 mg/kg)	(not applicable) (not applicable)	х	х
DMMU-7			
Arsenic (1.87 mg/kg)	(does not exceed) (does not exceed)	12.6	3.4-5.4
Lead (0.094 mg/kg)	(does not exceed) (does not exceed)	0.1	<0.47
Selenium (0.271 mg/kg)	(does not exceed) (does not exceed)	14.2	0.5-1.5
TPH (2404 mg/kg)	(not applicable) (not applicable)	х	х
Acenaphthene (7.88 µg/kg)	(108%) (does not exceed)	7.3	<20
Fluoranthene (11.8 μg/kg)	(151%) (does not exceed)	8.8	<20
Phenanthrene (8.02 µg/kg)	(not applicable) (does not exceed)	х	<20
Pyrene (7.43 µg/kg)	(not applicable) (does not exceed)	х	<20
Total LPAHs (37.8 μg/kg)	(not applicable) (does not exceed)	х	60.00
Total HPAHs (75.0 μg/kg)	(not applicable) (117%)	х	64.00
Total PAHs (113 μg/kg)	(does not exceed) (does not exceed)	40000.0	178
DMMU-8			
Antimony (0.00221 mg/kg)	(not applicable) (does not exceed)	х	0.22-0.47
Arsenic (2.04 mg/kg)	(does not exceed) (does not exceed)	12.6	3.4-5.4
Lead (0.0827 mg/kg)	(does not exceed) (does not exceed)	0.1	<0.47
Selenium (0.264 mg/kg)	(does not exceed) (does not exceed)	14.2	0.5-1.5
Zinc (35.6 mg/kg)	(307%) (117%)	11.6	7.0-30.0
TPH (1955 mg/kg)	(not applicable) (not applicable)	х	Х
Anthracene (2.98 mg/kg)	(not applicable) (does not exceed)	х	<20

Italicized and bolded results exceeded the ecological effects threshold and (or) the North Gulf of Mexico background concentration.

x = No ecological effects threshold or Northern Gulf of Mexico Background published for the given analyte.

Exhibit 3-20. Alitta virens Tissue Mean Concentrations Statistically Significantly Greater Than Those of the Reference, Expressed as a Percent of Screening Benchmarks

Analyte	Mean Concentration Relative to the EET and to the Northern Gulf of Mexico Background Concentration (% of EET % of background)	Ecological Effects Threshold: Polychaeta	Northern Gulf of Mexico Bkgd.: Polychaeta
DMMU-1			
Cadmium (0.0461 mg/kg)	(does not exceed) (does not exceed)	27.8	0.34-1.4
Nickel (0.383mg/kg)	(does not exceed) (does not exceed)	2.2	0.53-3.5
DMMU-2			
Cadmium (0.0493 mg/kg)	(does not exceed) (does not exceed)	27.8	0.34-1.4
Nickel (0.355 mg/kg)	(does not exceed) (does not exceed)	2.2	0.53-3.5
Thallium (0.000483 mg/kg)	(does not exceed) (does not exceed)	0.3	<0.31
Di-n-butyl phthalate (10.6 μg/kg)	(not applicable) (not applicable)	х	х
DMMU-3			
Cadmium (0.0529 mg/kg)	(does not exceed) (does not exceed)	27.8	0.34-1.4
Nickel (0.373 mg/kg)	(does not exceed) (does not exceed)	2.2	0.53-3.5
Thallium (0.000507 mg/kg)	(does not exceed) (does not exceed)	0.3	<0.31
Fluorene (4.43 µg/kg)	(not applicable) (does not exceed)	х	<20
Phenanthrene (7.40 µg/kg)	(not applicable) (does not exceed)	х	<20
Pyrene (3.57 µg/kg)	(not applicable) (does not exceed)	х	<20
Total PAHs (45.4 µg/kg)	(does not exceed) (does not exceed)	40000.0	178
DMMU-4			
Cadmium (0.0471 mg/kg)	(does not exceed) (does not exceed)	27.8	0.34-1.4
Nickel (0.384 µg/kg)	(does not exceed) (does not exceed)	2.2	0.53-3.5
Silver (0.0193 mg/kg)	(does not exceed) (does not exceed)	1.0	<0.15
Thallium (0.000471 mg/kg)	(does not exceed) (does not exceed)	0.3	<0.31
Di-n-butyl phthalate (7.23 μg/kg)	(not applicable) (not applicable)	x	х
DMMU-5			
Cadmium (0.0470 mg/kg)	(does not exceed) (does not exceed)	27.8	0.34-1.4
Nickel (0.349 mg/kg)	(does not exceed) (does not exceed)	2.2	0.53-3.5
Benzo(a)pyrene (5.32 μg/kg)	(not applicable) (does not exceed)	х	<20
Diethyl phthalate (5.97 μg/kg)	(not applicable) (not applicable)	х	Х

Analyte	Mean Concentration Relative to the EET and to the Northern Gulf of Mexico Background Concentration (% of EET % of background)	Ecological Effects Threshold: Polychaeta	Northern Gulf of Mexico Bkgd.: Polychaeta
DMMU-6		-	J
Cadmium (0.0523 mg/kg)	(does not exceed) (does not exceed)	27.8	0.34-1.4
Nickel (0.384 mg/kg)	(does not exceed) (does not exceed)	2.2	0.53-3.5
Silver (0.0222 mg/kg)	(does not exceed) (does not exceed)	1.0	<0.15
Thallium (0.000589 mg/kg)	(does not exceed) (does not exceed)	0.3	<0.31
DMMU-7			
Cadmium (0.0507 mg/kg)	(does not exceed) (does not exceed)	27.8	0.34-1.4
Nickel (0.346 mg/kg)	(does not exceed) (does not exceed)	2.2	0.53-3.5
Anthracene (3.42 μg/kg)	(not applicable) (does not exceed)	Х	<20
Fluoranthene (10.7 μg/kg)	(does not exceed) (does not exceed)	12.8	<20
Phenanthrene (8.86 µg/kg)	(not applicable) (does not exceed)	Х	<20
Pyrene (13.2 µg/kg)	(not applicable) (does not exceed)	х	<20
Total LPAHs (21.9 μg/kg)	(not applicable) (does not exceed)	Х	60.00
Total HPAHs (41.0 μg/kg)	(not applicable) (does not exceed)	Х	64.00
Total PAHs (62.9 μg/kg)	(does not exceed) (does not exceed)	40000.0	178
Di-n-butyl phthalate (6.98 μg/kg)	(not applicable) (not applicable)	х	х
DMMU-8			
Nickel (0.376 mg/kg)	(does not exceed) (does not exceed)	2.2	0.53-3.5
Silver (0.0210 mg/kg)	(does not exceed) (does not exceed)	1.0	<0.15
Bis(2-ethylhexyl) phthalate (45.1 μg/kg)	(not applicable) (does not exceed)	х	х

x = No ecological effects threshold or Northern Gulf of Mexico Background published for the given analyte.

Factor 3. Number of contaminants for which bioaccumulation in organisms exposed to sediment from the dredging site is statistically greater than bioaccumulation in organisms exposed to the Reference sediment.

M. mercenaria project tissues from DMMU-1 through DMMU-8 had three to seven metals each and TPH (all DMMUs except DMMU 2) that statistically significantly exceeded those of the Reference. *M. mercenaria* project tissues from DMMU-7 also had seven PAH analytes and one SVOC that statistically significantly exceeded those of the Reference. DMMU-8 had one PAH analyte that statistically significantly exceeded that of the Reference.

A. virens project tissue from DMMU 1 through DMMU-8 had mean concentrations of two to four metals each that statistically significantly exceeded those of the Reference. A. virens project tissue from DMMU-3, DMMU-5, and DMMU-7 had adjusted mean concentrations of two to seven PAH analytes each that statistically significantly exceeded those of the Reference. A. virens project tissue from DMMU-2, DMMU-4, DMMU-5, DMMU-7, and DMMU-8 had adjusted mean concentrations of one SVOC analyte each that statistically significantly exceeded those of the Reference.

Exhibit 3-21 lists the numbers of project tissue analytes per sample that statistically significantly exceeded those of the Reference.

Exhibit 3-21. Number of Tissue Analyte Concentrations Statistically Significantly Greater than Reference Concentrations

Sample ID	Number of Mean Concentrations for Analytes That Were Statistically Greater Than Those of the Reference		
Mercenaria mercenaria			
DMMU-1	6 (Antimony, Arsenic, Lead, Selenium, Thallium, TPH)		
DMMU-2	6 (Antimony, Arsenic, Chromium, Lead, Selenium, Thallium)		
DMMU-3	6 (Antimony, Arsenic, Chromium, Lead, Selenium, TPH)		
DMMU-4	6 (Arsenic, Chromium, Lead, Selenium, Thallium, TPH)		
DMMU-5	8 (Antimony, Arsenic, Chromium, Copper, Lead, Selenium, Thallium, TPH)		
DMMU-6	7 (Antimony, Arsenic, Chromium, Lead, Selenium, Thallium, TPH)		
DMMU-7	11 (Arsenic, Lead, Selenium, TPH, Acenaphthene, Fluoranthene, Phenanthrene, Pyrene, Total LPAHs, Total HPAHs, Total PAHs)		
DMMU-8	7 (Antimony, Arsenic, Lead, Selenium, Zinc, TPH, Anthracene)		
Alitta virens			
DMMU-1	2 (Cadmium, Nickel)		
DMMU-2	4 (Cadmium, Nickel, Thallium, Di-n-butyl phthalate)		
DMMU-3	7 (Cadmium, Nickel, Thallium, Fluorene, Phenanthrene, Pyrene, Total PAHs)		
DMMU-4	5 (Cadmium, Nickel, Silver, Thallium, Di-n-butyl phthalate)		
DMMU-5	4 (Cadmium, Nickel, Benzo(a)pyrene, Diethyl phthalate)		
DMMU-6	4 (Cadmium, Nickel, Silver, Thallium)		
DMMU-7	10 (Cadmium, Nickel, Anthracene, Fluoranthene, Phenanthrene, Pyrene, Total LPAHs, Total HPAHs, Total PAHs, Di-n-butyl phthalate)		
DMMU-8	3 (Nickel, Silver, Bis(2-ethylhexyl) phthalate)		

Factor 4. Number of species in which bioaccumulation organisms exposed to sediment from the dredging site is statistically greater than bioaccumulation in organisms exposed to the Reference sediment.

M. mercenaria project tissue from the project samples had mean concentrations of one to seven metals each and TPH (except DMMU-2) that statistically significantly exceeded those of the Reference. *M. mercenaria* project tissue from DMMU-7 also had seven PAHs and one SVOC that statistically significantly exceeded those of the Reference. DMMU-8 also had one PAH with an adjusted mean concentration that statistically significantly exceeded that of the Reference.

A. virens project tissue from the project samples had mean concentrations of two to four metals each that statistically significantly exceeded those of the Reference. A. virens project tissue from DMMU-3, DMMU-5 and DMMU-7 had adjusted mean concentrations of one to seven PAHs that statistically significantly exceeded those of the Reference. A. virens project tissue from DMMU-2, DMMU-4, DMMU-5, DMMU-7, and DMMU-8 had one SVOC each with adjusted mean concentrations that statistically significantly exceeded those of the Reference.

Factor 5. Toxicological importance of the contaminants whose bioaccumulation in organisms exposed to sediment from the dredging site statistically exceeds that from the Reference sediment.

A literature search was conducted between July 12, 2023, and July 31, 2023, that included review documents by the Agency for Toxic Substances Disease Registry ([ATSDR] 2001) and EPA (2000) as well as a search of the U.S. Army Engineer Research and Development Center's (ERDC) Environmental Residue Effects Database (ERED; https://ered.el.erdc.dren.mil/). Results of the data-mining effort are summarized in the following paragraphs. Analyte concentrations in tissues are given as wet weight values.

Antimony

The available literature on the effects of antimony on marine life is limited. For example, EPA's (2000) synopsis of contaminants of importance to bioaccumulation in benthic fauna does not address antimony. Further, a search of the ERED database revealed that none of the over 5,000 individual aquatic fauna endpoints were for antimony toxicity in invertebrates or other taxa.

Gough et al. (1979) summarized a past study that found that marine organisms concentrate antimony in their muscle tissue and that studies had indicated certain levels in the tissue that were toxic to some fish species. Gough et al. (1979) went on to state that, based on previous studies, 400 mg/kg of antimony may be considered an approximate lethal threshold in sea birds.

A comparison to antimony concentrations measured in tissues of wild marine taxa caught off Jacksonville, Florida, suggests that the antimony concentrations observed in *M. mercenaria* tissue in the present study are below the ranges of concentrations found in wild populations of benthic invertebrates (Exhibit 3-22).

Exhibit 3-22. Mean Antimony Concentrations in Project Tissue Samples Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida

Mean Concentration in Project Tissue That Exceeded the Reference (mg/kg)	Does Mean Concentration in Project Tissue Exceed Concentrations in Wild Taxa?	2010 Concentrations in of the Following Spo Jacksonville Wild Mantis Shrimp (Gibbesia neglecta) (mg/kg)	ecies Caught off
DMMU-1 = 0.00320 DMMU-2 = 0.00239 DMMU-3 = 0.00247 DMMU-5 = 0.00373 DMMU-6 = 0.00341 DMMU-8 = 0.00221 (M. mercenaria)	No (mantis shrimp) No (penaeid shrimp)	<0.004–0.005 (composited samples)	<0.004-<0.004 (n = 6 samples)

Source: Table 13 and concentrations in wild populations from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011)

Arsenic

Arsenic is a widely distributed element that occurs naturally in the marine environment as various chemical forms (Fattorini et al. 2006). These authors found that several marine taxonomic groups, including bivalves, generally bioaccumulate arsenic as complex organic compounds such as arsenobetaine, arsenocholine, and arsenoribosides. These forms of arsenic are non-toxic and

represent the result of transformation of toxic forms of arsenic to detoxified forms in the tissues of marine organisms. Fattorini et al. (2006) concluded their study of arsenic bioaccumulation in marine organisms by stating that although "an elevated variability of natural arsenic concentrations can be expected in [various taxa including mollusks], however, [their study] confirmed the predominance of organically non-toxic compounds."

The mean concentrations of arsenic in *M. mercenaria* tissue that exceeded concentrations in the Reference sample were less than any of the no-observed-adverse-effect levels (NOAELs) reported to produce population-level impacts in invertebrates (Exhibit 3-23). A search of over 5,000 toxicity endpoints in ERED produced the results shown in Exhibit 3-23.

Exhibit 3-23. Arsenic Concentrations in Project Tissue Samples Compared to Toxicity Values from Literature Review

Mean Concentrations in Tissue Samples That Exceeded a Reference (mg/kg)	Toxicity Measure & Value (mg/kg)	Percent Sample Result Greater Than Toxicity Value	Relevant Species & Reference	
		NOAEL		
	3.6	(does not exceed)	Mortality in mature <i>Mytilus edulis</i> (blue mussel) Spehar et al. (1980) and St. Jean et al. (2003) in ERED	
DMMU-1 = 2.60 DMMU-2 = 2.34 DMMU-3 = 2.06	3.6	(does not exceed)	Growth in mature <i>Mytilus edulis</i> (blue mussel) St. Jean et al. (2003) in ERED	
DMMU-4 = 2.11 DMMU-5 = 1.99 DMMU-6 = 1.94 DMMU-7 = 1.87	3.6	(does not exceed)	Mortality in mature <i>Stagnicola emarginatus</i> (St. Lawrence pondsnail) Spehar et al. (1980) in ERED	
DMMU-8 = 2.04 (<i>M. mercenaria</i>)	1.15–6.39	(does not exceed)	Growth in juvenile <i>Palaemonetes pugio</i> (daggerblade grass shrimp) Lindsey (1990) in ERED	
	3.8–9.8	(does not exceed)	Mortality in mature <i>Daphnia magna</i> (waterflea) Spehar et al. (1980) in ERED	

Only population-level effects (growth, reproduction, development, mortality) on bivalves and other mollusks are included. (Biochemical and behavioral effects are excluded since they do not necessarily equate to population-level effects.)

Source: Table 13 and NOAELs as listed above from ERED. See ERED at https://ered.el.erdc.dren.mil/references.cfm for more information on the references listed above.

A comparison to arsenic concentrations measured in tissues of wild marine taxa caught off Jacksonville and Fort Lauderdale, Florida, suggests that the arsenic concentrations observed in *M. mercenaria* tissue in the present study are at or below the ranges of concentrations found in wild populations of benthic invertebrates (Exhibits 3-24 and 3-25).

Exhibit 3-24. Mean Arsenic Concentrations in Project Tissue Samples Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida

Mean Concentration in	Does Mean	2010 Concentrations in the Edible Tissues of the Following Species Caught off Jacksonville, Florida		
Project Tissue That Exceeded a Reference (mg/kg)	Concentration in Project Tissue Exceed Concentrations in Wild Taxa?	Wild Mantis Shrimp (<i>Gibbesia neglecta</i>) (mg/kg)	Wild Penaeid Shrimp (mg/kg)	
DMMU-1 = 2.60 DMMU-2 = 2.34 DMMU-3 = 2.06 DMMU-4 = 2.11 DMMU-5 = 1.99 DMMU-6 = 1.94 DMMU-7 = 1.87 DMMU-8 = 2.04 (M. mercenaria)	No (mantis shrimp) No (penaeid shrimp)	12.90–15.70 (composited samples)	1.890–11.00 (<i>n</i> = 6 samples)	

Source: Table 13; concentrations in wild populations from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011)

Exhibit 3-25. Mean Arsenic Concentrations in Project Tissue Samples Compared to Concentrations in Wild Aquatic Species Caught off Fort Lauderdale, Florida

Mean Concentration in Project Tissue That Exceeded a Reference (mg/kg)	Does Mean Concentration in Project Tissue Exceed Concentrations in Wild Taxa?	2011 Concentrations in the Edible Tissues of the Following Species Caught off Fort Lauderdale, Florida Jonah Crab (Cancer borealis) (mg/kg)
DMMU-1 = 2.60 DMMU-2 = 2.34 DMMU-3 = 2.06 DMMU-4 = 2.11 DMMU-5 = 1.99 DMMU-6 = 1.94 DMMU-7 = 1.87 DMMU-8 = 2.04 (M. mercenaria)	No	106–122 (1 composited and 2 individual samples)

Source: Table 13; concentrations in wild populations from Subsection 4.8 and Table 31 of ANAMAR (2012)

<u>Cadmium</u>

Cadmium occurs naturally as a mineral and can be found in most soils, rock, and sediments. Cadmium is emitted to soil, water, and air during mining and refining and through the manufacture and application of fertilizers, during the combustion of fossil fuels, and via the incineration and disposal of wastes (ATSDR 2012). The mobility of cadmium through soils and sediments is controlled by such factors as pH and the amount of organic matter present. In general, cadmium binds strongly with carbon molecules but can enter the food web via uptake by plants and microbes. In water, cadmium exists as a hydrated ion or as ionic complexes with other inorganic or organic substances. Soluble forms are motile in water; insoluble forms are immobile and will adsorb to organic matter, especially humic acid (ATSDR 2012).

Cadmium bioaccumulates in all levels of the food web, including plants, oligochaete worms, birds, and mammals. Concentrations in vertebrates appear higher in organ tissues such as kidneys and liver than in muscle tissue. These organs can have concentrations as much as 20 times higher than the whole-body concentration. Organisms may sequester the metal in their tissues, but much of the total concentration of cadmium in organisms may actually be stored in unavailable forms as a possible method of detoxification (Klerks and Bartholomew 1991).

Cadmium uptake in *Mytilus edulis* (blue mussel) and *Palaemonetes pugio* (grass shrimp) showed a strong positive correlation with increased cadmium concentrations in sediment as reported in a study by Rule and Alden (1996). The uptake of cadmium by the northern quahog, *Mercenaria*, was lower compared to that of the mussel and shrimp during the Rule and Alden (1996) study. The mean concentration of cadmium in *A. virens* tissue samples DMMU-1 through DMMU-7 that exceeded that of the Reference were less than any of the NOAELs and lowest observed adverse effects levels (LOAELs) reported to produce population-level impacts in other marine invertebrates (Exhibit 3-26). A search of over 5,100 toxicity endpoints in ERED produced the results shown below.

Exhibit 3-26. Cadmium Concentrations in Project Tissue That Statistically Significantly Exceeded Those of the Reference Compared to Toxicity Values from Literature Review

Mean Concentrations in Project Tissue Sample That Exceeded Those of the Reference (mg/kg)	Toxicity Measure & Value (mg/kg)	Percent Sample Result Greater than Toxicity Value	Relevant Species & Reference
		NOAEL	
	0.5	(does not exceed)	Mortality in <i>Moina macrocopa</i> (a cladoceran crustacean) Hatakeyama and Yasuno (1981) in ERED
	0.9	(does not exceed)	Mortality in mature <i>Palaemonetes pugio</i> (daggerblade grass shrimp) Rule and Alden (1996) in ERED
	1	(does not exceed)	Growth in mature <i>Haliotis diversicolor</i> (small abalone) Haung et al. (2010) in ERED
DMMU-1 = 0.0461 DMMU-2 = 0.0493 DMMU-3 = 0.0529	4	(does not exceed)	Mortality in <i>Crassostrea gigas</i> (Pacific oyster) Ettajani et al. (2001) in ERED
DMMU-4 = 0.0471 DMMU-5 = 0.0470	20	(does not exceed)	Mortality in <i>Corbicula fluminea</i> (Asian clam) Barfield et al. (2001) in ERED
DMMU-6 = 0.0523 DMMU-7 = 0.0507 (<i>A. virens</i>)	28.7	(does not exceed)	Mortality in <i>Mytilus galloprovincialis</i> (Mediterranean mussel) Pavicic and Jarvenpaa (1974) in ERED
	30	(does not exceed)	Growth effects in <i>Mytilus edulis</i> (blue mussel) Poulsen et al. (1996) in ERED
	46	(does not exceed)	Growth in Saccostrea glomerata (Sydney rock oyster) Dillon (1984) (USACE Tech. Report D-82-2) in ERED
	50	(does not exceed)	Mortality in <i>Crassostrea virginica</i> (eastern oyster) Zaroogian (1980) in ERED
	114	(does not exceed)	Mortality in <i>Dreissena polymorpha</i> (zebra mussel) Kraak et al. (1992) in ERED

Mean Concentrations in Project Tissue Sample That Exceeded Those of the Reference (mg/kg)	Toxicity Measure & Value (mg/kg)	Percent Sample Result Greater than Toxicity Value LOAEL	Relevant Species & Reference
	0.708	(does not exceed)	Mortality in <i>Moina macrocopa</i> (a cladoceran crustacean) Hatakeyama and Yasuno (1981) in ERED
DMMU-1 = 0.0461 DMMU-2 = 0.0493 DMMU-3 = 0.0529 DMMU-4 = 0.0471 DMMU-5 = 0.0470 DMMU-6 = 0.0523 DMMU-7 = 0.0507 (A. virens)	1.29	(does not exceed)	Growth in <i>Americamysis bahia</i> (opossum shrimp) Carr et al. (1985) in ERED
	2.6	(does not exceed)	Mortality in mature <i>Palaemonetes pugio</i> (daggerblade grass shrimp) Vernberg et al. (1977) in ERED
	18	(does not exceed)	Reproduction in <i>Crassostrea virginica</i> (eastern oyster) Dillon (1984) (USACE Tech. Report D-82-2) in ERED
	25	(does not exceed)	Growth in Saccostrea glomerata (Sydney rock oyster) Dillon (1984) (USACE Tech. Report D-82-2) in ERED

Only population-level effects (growth, reproduction, mortality) on marine or estuarine invertebrates are included. (Biochemical and behavioral effects are excluded since they do not necessarily equate to population-level effects.) Sources: Table 14 and as listed above from ERED

The mean concentration of cadmium in *A. virens* tissue samples DMMU-1 through DMMU-7 that exceeded that of the Reference were less than the concentrations of this metal found in wild populations of mantis shrimp (*Gibbesia neglecta*), and the upper limit concentration for wild penaeid shrimp (Exhibit 3-27). Samples from these wild populations were collected by trawl in 2010 by ANAMAR (2011) and tested for cadmium and other contaminants in their edible tissues (muscle tissues) as part of a site designation survey.

The mean concentration of cadmium *in A. virens* tissue in three of the seven samples (DMMU-3, DMMU-6, and DMMU-7) that exceeded that of the Reference were greater than the upper limit concentrations of this metal found in wild Jonah crab (*Cancer borealis*) caught off Fort Lauderdale, Florida, in 2011 by ANAMAR (2012) as part of a site expansion designation survey (Exhibit 3-28).

The mean concentration of cadmium in *A. virens* tissue samples DMMU-1 through DMMU-7 were less than the concentrations found in wild northern quahog (*Mercenaria mercenaria*) sampled from the Indian River Lagoon (Florida) and analyzed by Trefry and Trocine (2011) (Exhibit 3-29).

Exhibit 3-27. Cadmium Concentration in Project Tissue Sample That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida

Mean Concentration in Project Tissue Sample That Exceeded That of the Reference	Concentration in Project	2010 Concentrations in the Edible Tissues of the Following Species Caught off Jacksonville, Florida Wild Mantis Shrimp (Gibbesia neglecta) Wild Penaeid Shrimp		
(mg/kg)	Taxa?	(mg/kg)	(mg/kg)	
DMMU-1 = 0.0461 DMMU-2 = 0.0493 DMMU-3 = 0.0529 DMMU-4 = 0.0471 DMMU-5 = 0.0470 DMMU-6 = 0.0523 DMMU-7 = 0.0507 (A. virens)	No (wild mantis shrimp) No (wild penaeid shrimp)	1.060–1.360 (<i>n</i> = 2 composited samples)	0.013–0.053 (n = 6 samples)	

Sources: Table 14; concentrations in wild species from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011).

Exhibit 3-28. Cadmium Concentration in Project Tissue Sample That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Fort Lauderdale, Florida

Mean Concentration in Project Tissue That Exceeded That of the Reference (mg/kg)	Does Mean Concentration in Project Tissue Exceed Concentrations in Wild Taxa?	2011 Concentrations in Edible Tissues of Wild Jonah Crab (<i>Cancer borealis</i>) Caught off Fort Lauderdale, Florida (mg/kg)
DMMU-1 = 0.0461 DMMU-2 = 0.0493 DMMU-3 = 0.0529 DMMU-4 = 0.0471 DMMU-5 = 0.0470 DMMU-6 = 0.0523 DMMU-7 = 0.0507 (A. virens)	Yes (DMMU-3, DMMU-6, and DMMU-7)	0.0170–0.0494 (<i>n</i> = 3 composited samples)

Sources: Table 14; concentrations in wild species from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011)

Exhibit 3-29. Cadmium Concentration in Project Tissue Sample That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Northern Quahog from Indian River Lagoon, Florida

Mean Concentration in Project Tissue That Exceeded That of the Reference (mg/kg)	Does Mean Concentration in Project Tissue Exceed Concentrations in Wild Clams?		1992 Concentrations in Wild Northern Quahog (<i>Mercenaria mercenaria</i>) (mg/kg)
DMMU-1 = 0.0461 DMMU-2 = 0.0493 DMMU-3 = 0.0529 DMMU-4 = 0.0471 DMMU-5 = 0.0470 DMMU-6 = 0.0523 DMMU-7 = 0.0507 (A. virens)	No	0.28 ± 0.15 (mean ± SD) 0.08–0.62 (range) (n = 22)	0.17 ± 0.25 (mean ± SD) 0.01–0.75 (range) (n = 22)

SD = standard deviation

Source: Table 14; concentrations in wild clams from Trefry and Trocine (2011)

Chromium

Chromium is relatively insoluble in water and has limited mobility under typical aquatic conditions because the trivalent form tends to bind with organic matter. Under typical pH (6 to 8) and oxygen conditions in aquatic habitats, the hexavalent form is dominant (75% to 85% of chromium), with the remaining form being trivalent chromium. There is little evidence of chromium bioaccumulation in aquatic food webs, even though sediments often contain elevated levels of the metal (USEPA 2000). The relationship between tissue concentration and chromium toxicity is complex because organisms can sequester chromium in a variety of forms, some being more toxic than others. Much of the total chromium concentration in organisms may be stored in unavailable forms as a possible method of detoxification (Klerks and Bartholomew 1991). Relevant NOAELs or LOAELs could not be found for comparison to the mean concentrations of total chromium, and hexavalent chromium, in *M. mercenaria* tissue.

The mean concentration of total chromium in *M. mercenaria* tissue project samples (DMMU-2 through DMMU-6) that exceeded those of the Reference were greater than the concentrations of total chromium found in wild populations of mantis shrimp (*Gibbesia neglecta*) and in penaeid shrimp caught off Jacksonville, Florida (Exhibit 3-30) in 2010 by ANAMAR (2011). The mean concentrations of chromium in *M. mercenaria* tissue samples were also greater than the concentrations of total chromium found in wild Jonah crab (*Cancer borealis*) caught off Fort Lauderdale, Florida, in 2011 by ANAMAR (2012) (Exhibit 3-31). However, the mean concentrations of total chromium in *M. mercenaria* tissue samples were much lower than the concentrations of total chromium found in wild northern quahog (*Mercenaria mercenaria*) sampled from the Indian River Lagoon and analyzed by Trefry and Trocine (2011) (Exhibit 3-32).

Exhibit 3-30. Chromium Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida

Mean Concentrations in		2010 Concentrations in the Edible Tissues of Following Species Caught off Jacksonville, Florida		
	Does Mean Concentration in Project Tissue Exceed Concentrations in Wild Taxa?	Wild Mantis Shrimp (<i>Gibbesia neglecta</i>) (mg/kg)	Wild Penaeid Shrimp (mg/kg)	
DMMU-2 = 0.145 DMMU-3 = 0.088 DMMU-4 = 0.158 DMMU-5 = 0.366 DMMU-6 = 0.217 (<i>M. mercenaria</i>)	Yes (mantis shrimp and penaeid shrimp)	0.02-0.04 ($n = 2$ composited samples)	0.03–0.08 (<i>n</i> = 6 samples)	

Sources: Table 13; concentrations in wild species from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011).

Exhibit 3-31. Chromium Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Fort Lauderdale, Florida

	Does Mean Concentration in Project Tissue Exceed Concentrations in Wild Taxa?	2011 Concentrations in Edible Tissues of Wild Jonah Crab (<i>Cancer borealis</i>) Caught off Fort Lauderdale, Florida (mg/kg)
DMMU-2 = 0.145 DMMU-3 = 0.088 DMMU-4 = 0.158 DMMU-5 = 0.366 DMMU-6 = 0.217 (<i>M. mercenaria</i>)	Yes	0.06–0.07 (<i>n</i> = 3 composited samples)

Sources: Table 13; concentrations in wild species from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011)

Exhibit 3-32. Chromium Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Northern Quahog from Indian River Lagoon, Florida

Mean Concentrations in Project Tissue Samples that Exceeded Those of the Reference (mg/kg)	Project Tissue	2006–2007 Concentrations in Wild Northern Quahog (<i>Mercenaria mercenaria</i>) (mg/kg)	1992 Concentrations in Wild Northern Quahog (<i>Mercenaria mercenaria</i>) (mg/kg)
DMMU-2 = 0.145 DMMU-3 = 0.088 DMMU-4 = 0.158 DMMU-5 = 0.366 DMMU-6 = 0.217 (M. mercenaria)	No	58 ± 20 (mean ± SD) 13–84 (range) (n = 22)	24 ± 17 (mean ± SD) 5–64 (range) (n = 22)

SD = standard deviation

Sources: Table 13; Concentrations in wild clams from Trefry and Trocine (2011)

<u>Copper</u>

Copper is found at low concentrations in many marine and estuarine habitats. Copper is a trace element that is essential to many aquatic organisms, but toxic concentrations are not much higher than those that allow optimum growth of organisms (Anzecc and Armcanz 2000). It is generally believed that the free hydrated copper ion (Cu²⁺), together with copper hydroxy species, are the most toxic inorganic species to aquatic organisms (Anzecc and Armcanz 2000).

Copper is readily accumulated by plants and animals. Toxic effects of metals occur when the rate of uptake exceeds the rates of physiological or biochemical detoxification and excretion. This is more important than absolute body burden. Ahsanullah and Williams (1991) reported that the marine amphipod *Allorchestes compressa* exposed to 10 µg/L of copper for 28 days accumulated 100 mg/kg of copper and experienced reduced growth.

Physiological effects cited in USEPA (2000) for copper in *Mytilus edulis*, a bivalve species similar to *M. mercenaria*, begin to occur at 12 mg/kg, which is more than four times the mean concentration found in project sample DMMU-5 (2.38 mg/kg).

The mean concentration of copper in *M. mercenaria* tissue exposed to project sample DMMU-5 that statistically significantly exceeded that of the Reference was less than the three NOAELs reported to produce population-level impacts in polychaetes (Exhibit 3-33). A search of over 5,000 toxicity endpoints in ERED produced the results shown in Exhibit 3-33.

Exhibit 3-33. Copper Mean Concentration in Project Tissue That Statistically Significantly Exceeded the Reference Compared to Toxicity Values from Literature Review

Mean Concentration in Project Tissue Samples DMMU-5 that Exceeded the Reference (mg/kg)	Toxicity Measure & Value (mg/kg)	Percent Sample Result Greater Than Toxicity Value NOAEL	Species & Reference
	6.422	(does not exceed)	Mortality in the polychaete <i>Cirriformia</i> <i>spirabrancha</i> Milanovich et al. (1976) in ERED
DMMU-5 = 2.38 (<i>M. mercenaria</i>)		(does not exceed)	Mortality in the polychaete <i>Australonereis</i> ehlersi King et al. (2004) in ERED
	38	(does not exceed)	Mortality in the polychaete <i>Aglaophamus</i> <i>australiensis</i> King et al. (2004) in ERED

Only population-level effects (growth, reproduction, mortality) on bivalves are included. (Biochemical and behavioral effects are excluded since they do not necessarily equate to population-level effects.)

Sources: Tables 13 and as listed above from ERED

Lead

Lead is a poisonous contaminant with substantial research available on its effects on aquatic species. Endpoint values for eastern oyster (*Crassostrea virginica*) and zebra mussel (*Dreissena polymorpha*) were found in the literature and are relevant for comparison to lead concentrations in *A. virens* tissue. The mean concentrations of lead in *M. mercenaria* tissue samples DMMU-1 through DMMU-8 are below the relevant NOAELs and LOAELs obtained from the literature (Exhibit 3-34).

Exhibit 3-34. Lead Concentrations in Project Tissue That Statistically Significantly Exceeded Those of the Reference Compared to Toxicity Values from Literature Review

Mean Concentrations in Project Tissue Samples that Exceeded Those of the Reference (mg/kg)	Toxicity Measure & Value (mg/kg)	Percent Sample Result Greater Than Toxicity Value	Relevant Species & Reference
		NOAE	L
DMMU-1 = 0.094 DMMU-2 = 0.104	2.28	(does not exceed)	Growth and mortality in <i>Crassostrea virginica</i> (Eastern Oyster) Zaroogian et al 1979 in ERED
DMMU-3 = 0.096 DMMU-4 = 0.097 DMMU-5 = 0.145	2.6	(does not exceed)	Reproduction in <i>Crassostrea virginica</i> (Eastern Oyster) Zaroogian et al 1979 in ERED
DMMU-6 = 0.0864 DMMU-7 = 0.094	34	(does not exceed)	Mortality in <i>Dreissena polymorpha</i> (Zebra Mussel) Kraak 1994 in ERED
DMMU-8 = 0.0827 (<i>M. mercenaria</i>)	35	(does not exceed)	Growth in <i>Dreissena polymorpha</i> (Zebra Mussel) Kraak 1994 in ERED
	·		L
DMMU-1 = 0.094 DMMU-2 = 0.104 DMMU-3 = 0.096 DMMU-4 = 0.097 DMMU-5 = 0.145 DMMU-6 = 0.0864 DMMU-7 = 0.094 DMMU-8 = 0.0827 (M. mercenaria)	200	(does not exceed)	Mortality in <i>Dreissena polymorpha</i> (Zebra Mussel) Kraak 1994 in ERED

Only population-level effects (growth, reproduction, mortality) on marine or estuarine invertebrates are included. (Biochemical and behavioral effects are excluded since they do not necessarily equate to population-level effects.) Sources: Table 13 and as listed above from ERED

The mean concentrations of lead in *M. mercenaria* tissue samples DMMU-1 through DMMU-8 that exceeded those of the Reference were greater than the concentrations of lead found in wild populations of mantis shrimp (*Gibbesia neglecta*) and in penaeid shrimp caught off Jacksonville, Florida, in 2010 by ANAMAR (2011) (Exhibit 3-35). The mean concentrations of lead in *M. mercenaria* tissue samples also exceeded the concentrations of lead found in wild Jonah crab (*Cancer borealis*) caught off Fort Lauderdale, Florida, in 2011 by ANAMAR (2012) (Exhibit 3-36). However, the mean concentrations of lead in *M. mercenaria* tissue samples were lower than the concentrations of lead found in wild northern quahog (*Mercenaria mercenaria*) sampled from the Indian River Lagoon and analyzed by Trefry and Trocine (2011) (Exhibit 3-37).

Exhibit 3-35. Lead Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida

Mean Concentrations in Project Tissue	Does Mean Concentration in	2010 Concentrations in the E Species Caught off Ja	
Samples That Exceeded Those of the Reference (mg/kg)	Project Tissue Exceed Concentrations in Wild Taxa?	Wild Mantis Shrimp (<i>Gibbesia neglecta</i>) (mg/kg)	Wild Penaeid Shrimp (mg/kg)
DMMU-1 = 0.094 DMMU-2 = 0.104 DMMU-3 = 0.096 DMMU-4 = 0.097 DMMU-5 = 0.145 DMMU-6 = 0.0864 DMMU-7 = 0.094 DMMU-8 = 0.0827 (M. mercenaria)	Yes (mantis shrimp and penaeid shrimp)	0.009–0.009 (n = 2 composited samples)	0.009–0.056 (<i>n</i> = 6 samples)

Sources: Table13; concentrations in wild species from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011).

Exhibit 3-36. Lead Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Fort Lauderdale, Florida

Mean Concentrations in Project Tissue Samples that Exceeded Those of the Reference (mg/kg)	Concentrations in Project	2011 Concentrations in Edible Tissues of Wild Jonah Crab (<i>Cancer borealis</i>) Caught off Fort Lauderdale, Florida (mg/kg)
DMMU-1 = 0.094 DMMU-2 = 0.104 DMMU-3 = 0.096 DMMU-4 = 0.097 DMMU-5 = 0.145 DMMU-6 = 0.0864 DMMU-7 = 0.094 DMMU-8 = 0.0827 (M. mercenaria)	Yes	0.0223–0.0257 (<i>n</i> = 3 composited samples)

Sources: Table 13; concentrations in wild species from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011)

Exhibit 3-37. Lead Concentrations in Project Tissue Samples That Statistically Significantly Exceeded Those of the Reference Compared to Concentrations in Wild Northern Quahog from Indian River Lagoon, Florida

Mean Concentrations in Project Tissue Samples that Exceeded Those of the Reference (mg/kg)		2006–2007 Concentrations in Wild Northern Quahog (<i>Mercenaria mercenaria</i>) (mg/kg)	1992 Concentrations in Wild Northern Quahog (<i>Mercenaria mercenaria</i>) (mg/kg)
DMMU-1 = 0.094 DMMU-2 = 0.104 DMMU-3 = 0.096 DMMU-4 = 0.097 DMMU-5 = 0.145 DMMU-6 = 0.0864 DMMU-7 = 0.094 DMMU-8 = 0.0827 (M. mercenaria)	No	33 ± 16 (mean ± SD) 10–70 (range) (n = 22)	8 ± 11 (mean ± SD) 1–42 (range) (n = 22)

SD = standard deviation

Sources: Table13; Concentrations in wild clams from Trefry and Trocine (2011)

Nickel

Nickel in the marine environment can partition to dissolved and particulate organic carbon. The bioavailability of nickel can also be influenced by the presence of calcium and magnesium (EPA 2000). The bioavailability of nickel in sediments is controlled by the concentration of acid-volatile sulfides. Bioaccumulation of nickel occurs to greatest extent in sediments when the ratio of simultaneously extracted metals to acid-volatile sulfide is greater than 1 (EPA 2000). Nickel is used in the production of stainless steel and is also used in other important industrial applications. In addition to point source releases from industrial practices, there are also nonpoint sources of nickel, such as natural weathering, atmospheric deposition, and surface runoff, that contribute to exposure to nickel in the aquatic environment (Brix et al. 2016).

The common cockle (*Cerastoderma edule*) is the only marine invertebrate species having NOAEL or LOAEL endpoint values that could be found in the literature. The mean concentration of nickel in *A. virens* tissue samples DMMU-1 through DMMU-8 were below the available NOAELs and LOAELs for bivalves obtained from the literature (Exhibit 3-38).

Exhibit 3-38. Nickel Concentration in Project Tissue That Statistically Significantly Exceeded That of the Reference Compared to Toxicity Values from Literature Review

Mean Concentration in Project Tissue Sample that Exceeded That of the Reference (mg/kg)	Toxicity Measure & Value (mg/kg)	Percent Sample Result Greater Than Toxicity Value	Relevant Species & Reference
	N ₁	OAEL	
DMMU-1 = 0.383 DMMU-2 = 0.355 DMMU-3 = 0.373 DMMU-4 = 0.384	79	(does not exceed)	Mortality in mature Cerastoderma edule (common cockle) Wilson (1983) in ERED
DMMU-5 = 0.349 DMMU-6 = 0.384 DMMU-7 = 0.346 DMMU-8 = 0.376 (A. virens)	575	(does not exceed)	Growth in mature Cerastoderma edule (common cockle) Wilson (1983) in ERED
	L	OAEL	
DMMU-1 = 0.383 DMMU-2 = 0.355 DMMU-3 = 0.373 DMMU-4 = 0.384 DMMU-5 = 0.349 DMMU-6 = 0.384 DMMU-7 = 0.346 DMMU-8 = 0.376 (A. virens)	575	(does not exceed)	Mortality in mature Cerastoderma edule (common cockle) Wilson (1983) in ERED

Only population-level effects (growth, reproduction, mortality) on marine or estuarine invertebrates are included. (Biochemical and behavioral effects are excluded since they do not necessarily equate to population-level effects.) Sources: Table 14 and as listed above from ERED

The mean concentration of nickel in *A. virens* tissue samples DMMU-1 through DMMU-8 that exceeded that of the Reference were greater than the concentrations of nickel found in wild populations of mantis shrimp (*Gibbesia neglecta*) and in penaeid shrimp caught off Jacksonville, Florida, in 2010 by ANAMAR (2011) (Exhibit 3-39). The mean concentration of nickel in *A. virens* tissue samples also exceeded the concentrations of nickel found in wild Jonah crab (*Cancer borealis*) caught off Fort Lauderdale, Florida, in 2011 by ANAMAR (2012) (Exhibit 3-40). However, the mean concentration of nickel in *A. virens* tissue samples were lower than the concentrations of nickel found in wild northern quahog (*Mercenaria mercenaria*) sampled from the Indian River Lagoon and analyzed by Trefry and Trocine (2011) (Exhibit 3-41).

Exhibit 3-39. Nickel Concentration in Project Tissue Sample That Statistically Significantly Exceeded That of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida

Mean Concentration in		2010 Concentrations in the E	
Project Tissue Sample that Exceeded That of the Reference (mg/kg)	Does Mean Concentration in Project Tissue Exceed Concentrations in Wild Taxa?	Wild Mantis Shrimp (<i>Gibbesia neglecta</i>) (mg/kg)	Wild Penaeid Shrimp (mg/kg)
DMMU-1 = 0.383 DMMU-2 = 0.355 DMMU-3 = 0.373 DMMU-4 = 0.384 DMMU-5 = 0.349 DMMU-6 = 0.384 DMMU-7 = 0.346 DMMU-8 = 0.376 (A. virens)	Yes (mantis shrimp and penaeid shrimp)	0.132–0.186 (<i>n</i> = 2 composited samples)	0.070–0.150 (n = 6 samples)

Sources: Table 14; concentrations in wild species from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011).

Exhibit 3-40. Nickel Concentration in Project Tissue Sample That Statistically Significantly Exceeded That of the Reference Compared to Concentrations in Wild Aquatic Species Caught off Fort Lauderdale, Florida

Mean Concentration in Project Tissue Sample that Exceeded That of the Reference (mg/kg)	Does Mean Concentrations in Project Tissue Exceed Concentrations in Wild Taxa?	2011 Concentrations in Edible Tissues of Wild Jonah Crab (<i>Cancer borealis</i>) Caught off Fort Lauderdale, Florida (mg/kg)
DMMU-1 = 0.383 DMMU-2 = 0.355 DMMU-3 = 0.373 DMMU-4 = 0.384 DMMU-5 = 0.349 DMMU-6 = 0.384 DMMU-7 = 0.346 DMMU-8 = 0.376 (A. virens)	Yes	0.140–0.188 (<i>n</i> = 3 composited samples)

Sources: Table 14; concentrations in wild species from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011)

Exhibit 3-41. Nickel Concentration in Project Tissue Sample That Statistically Significantly Exceeded That of the Reference Compared to Concentrations in Wild Northern Quahog from Indian River Lagoon, Florida

Mean Concentration in Project Tissue Sample that Exceeded That of the Reference (mg/kg)	Does Mean Concentration in Project Tissue Exceed Concentrations in Wild Clams?	2006–2007 Concentrations in Wild Northern Quahog (<i>Mercenaria mercenaria</i>) (mg/kg)	1992 Concentrations in Wild Northern Quahog (<i>Mercenaria mercenaria</i>) (mg/kg)
DMMU-1 = 0.383 DMMU-2 = 0.355 DMMU-3 = 0.373 DMMU-4 = 0.384 DMMU-5 = 0.349 DMMU-6 = 0.384 DMMU-7 = 0.346 DMMU-8 = 0.376 (A. virens)	No	15 ± 6 (mean ± SD) 4–25 (range) (n = 22)	6 ± 5 (mean ± SD) 1–52 (range) (n = 22)

SD = standard deviation

Sources: Table 14; Concentrations in wild clams from Trefry and Trocine (2011)

Selenium

Selenium is a naturally occurring metal in the marine environment and plays an essential role as a trace element in a variety of enzymatic and non-enzymatic biochemical processes in marine organisms (Prince et al. 2007). Selenium also plays a role in making arsenic and mercury biologically unavailable for more toxic interactions in marine organisms (Prince et al. 2007, Yang et al. 2008. Raymond and Ralston 2009). The available literature on the effects of selenium on marine life is limited. A search of the ERED database revealed that none of the over 5,000 individual aquatic fauna endpoints were for selenium toxicity in bivalves or other marine invertebrates (there are several NOAELs applicable for various sea turtles only). A comparison to selenium concentrations measured in tissues of wild northern quahog (Mercenaria mercenaria) collected from Indian River Lagoon, Florida, during the early 1990s and the mid-2000s suggests that the selenium concentrations observed in *M. mercenaria* tissue in the present study are within the range of concentrations found in wild populations of marine bivalves (Exhibit 3-42). The selenium concentration in *M. mercenaria* tissue exposed to project sediments DMMU-1 through DMMU-8 were also less than the concentrations of selenium analyzed from tissues of wild mantis shrimp (Gibbesia neglecta) and wild penaeid shrimp caught off Jacksonville, Florida, in 2010 by ANAMAR (2011) (Exhibit 3-43).

Exhibit 3-42. Selenium Mean Concentration in Project Tissue That Statistically Significantly Exceeded That of the Reference Compared to Concentrations in Wild *Mercenaria mercenaria* (Northern Quahog) from Indian River Lagoon, Florida

Mean Concentration in Project Tissue Sample that Exceeded the Reference (mg/kg)	Does Mean Concentration in Project Tissue Exceed Concentrations in Wild Clams?	2006–2007 Concentrations in Wild Clams (mg/kg)	1992 Concentrations in Wild Clams (mg/kg)
DMMU-1 = 0.325 DMMU-2 = 0.306 DMMU-3 = 0.312 DMMU-4 = 0.271 DMMU-5 = 0.268 DMMU-6 = 0.264 DMMU-7 = 0.271 DMMU-8 = 0.264 (M. mercenaria)	No	0.96 ± 0.41 (mean ± SD) 0.10–1.9 (range) (n = 22)	0.75 ± 0.44 (mean ± SD) 0.04–1.5 (range) (n = 22)

Sources: Table 13; concentrations in wild clams from Trefry and Trocine (2011)

Exhibit 3-43. Mean Selenium Concentrations in Project Tissue Samples Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida

	Does Mean Concentration in	2010 Concentrations in Species Caught off	n the Edible Tissues of Jacksonville, Florida
Mean Concentration in Project Tissue That Exceeded the Reference (mg/kg)	Project Tissue Exceed Concentrations in Wild Taxa?	Wild Mantis Shrimp (<i>Gibbesia neglecta</i>) (mg/kg)	Wild Penaeid Shrimp (mg/kg)
DMMU-1 = 0.325 DMMU-2 = 0.306 DMMU-3 = 0.312 DMMU-4 = 0.271 DMMU-5 = 0.268 DMMU-6 = 0.264 DMMU-7 = 0.271 DMMU-8 = 0.264 (M. mercenaria)	No (mantis shrimp) No (penaeid shrimp)	0.410–0.494 (composited samples)	0.387–1.070 (<i>n</i> = 6 samples)

Source: Table 13; Concentrations in wild populations from Subsection 4.10 and Tables 58 and 59a through 59c of ANAMAR (2011)

Silver

Silver does not appear to be a highly mobile element under typical conditions in most aquatic habitats. Tissue residue-toxicity relationships can also vary because organisms may sequester metal in different forms that might be analytically measurable as tissue residue but might be stored in available forms within the organism as a form of detoxification. Whole-body residues also might not be indicative of effects of concentrations at the organ level because concentrations in target organs, such as the kidneys and liver, can be 20 times greater than whole-body residues (EPA 2000).

Studies with various shellfish show effects ranging from 1,650 to 2,500 mg/kg or more, with no effects as high as at least 800 mg/kg (EPA 2000). The mean concentration of silver found in the *A. virens* tissues that were statistically significantly greater than that of the Reference were 0.0193 mg/kg (DMMU-4), 0.0222 mg/kg (DMMU-6), and 0.0210 mg/kg (DMMU-8), and significant less than the concentrations referenced above. A search of over 5,100 toxicity endpoints in ERED did not produce results relevant to polychaete worms.

The mean concentration of silver in *A. virens* tissue samples DMMU-4, DMMU-6, and DMMU-8 that exceeded that of the Reference were less than the maximum concentrations of this metal found in wild populations of mantis shrimp and penaeid shrimp caught off Jacksonville, Florida, collected in 2010 by ANAMAR (2011) and tested for silver in their edible tissues (muscle tissues) as part of a site designation survey. The mean concentration of silver in the *A. virens* tissue was also less than the maximum concentration of this metal found in edible tissue of wild Jonah crab caught off Fort Lauderdale, Florida, in 2011 by ANAMAR (2012) as part of a site expansion designation survey. The mean concentration of silver in the *A. virens* tissue sample was also less than the concentrations found in wild northern quahog sampled from the Indian River Lagoon and analyzed by Trefry and Trocine (2011).

See Exhibits 3-44 and 3-45 for comparisons of concentrations of silver in wild taxa off Jacksonville and off Fort Lauderdale, respectively, compared to the mean concentrations in *A. virens* tissue. Exhibit 3-46 compares the mean silver concentration in the project tissue with those measured in wild northern quahogs from the Indian River Lagoon, Florida.

Exhibit 3-44. Mean Silver Concentration in Project Tissue Compared to Concentrations in Wild Aquatic Species Caught off Jacksonville, Florida

Mean Concentration in		2010 Concentrations in E Caught off Jacks	
Project Tissues that Exceeded the Reference (mg/kg)	Does Mean Concentration in Project Tissue Exceed Maximum Concentrations in Wild Taxa?	Wild Mantis Shrimp (<i>Gibbesia neglecta</i>) (mg/kg)	Wild Penaeid Shrimp (mg/kg)
DMMU-4 = 0.0193 DMMU-6 = 0.0222 DMMU-8 = 0.0210 (A. virens)	No	0.118–0.140 (composited samples)	0.007–0.029 (n = 6 samples)

Source: Table 14; Concentrations in wild species from Subsection 4.10 and Table 59c of ANAMAR (2011)

Exhibit 3-45. Mean Silver Concentration in Project Tissue Compared to Concentrations in Wild Jonah Crab Caught off Fort Lauderdale, Florida

Mean Concentration in Project Tissues that Exceeded the Reference (mg/kg)	Does Mean Concentration in Project Tissue Exceed Maximum Concentrations in Wild Taxa?	2011 Concentrations in Edible Tissues of Wild Jonah Crab (<i>Cancer borealis</i>) Caught off Fort Lauderdale, Florida (mg/kg)
DMMU-4 = 0.0193 DMMU-6 = 0.0222 DMMU-8 = 0.0210	No	0.162–0.240 (n = 2 composited samples)

Source: Table 14; Concentrations in wild species from Table 31 of ANAMAR (2012)

Exhibit 3-46. Mean Silver Concentration in Project Tissue Compared to Concentrations in Wild Northern Quahog from Indian River Lagoon, Florida

Mean Concentration in Project Tissues that Exceeded the Reference (mg/kg)	Does Mean Concentration in Project Tissue Exceed Concentrations in Wild Clams?	2006–2007 Concentrations in Wild Clams (mg/kg)	1992 Concentrations in Wild Clams (mg/kg)
DMMU-4 = 0.0193 DMMU-6 = 0.0222 DMMU-8 = 0.0210 (A. virens)	No	0.85 ± 0.70 (mean ± SD) 0.19–2.7 (range) (n = 22)	0.91 ± 0.75 (mean ± SD) 0.05–2.9 (range) (n = 22)

SD = standard deviation

Source: Table 14; Concentrations in wild clams from Trefry and Trocine (2011)

Thallium

Thallium is a naturally occurring metal with several important industrial uses. The available literature on the effects of thallium on marine life is limited. A search of the ERED database revealed that none of the over 5,000 individual aquatic fauna endpoints were for thallium toxicity in bivalves or other marine invertebrates. No relevant NOAELs or LOAELs could be found for comparison to the mean concentrations of thallium in M. mercenaria or A. virens. There are several NOAELs and LOAELs applicable for population-level effects in fishes and crustaceans in the ERED database, ranging in tissue concentrations from 12.06 for a LOAEL for reproduction in a freshwater amphipod to 82.78 for a LOAEL for mortality in a freshwater amphipod. Element Concentrations Toxic Plants. Animals. and Man (Gouah to [https://pubs.usgs.gov/bul/1466/report.pdf]) suggests that the limit for animals is 0.003 mg/kg body weight. The mean concentrations for thallium in *M. mercenaria* tissues from project samples DMMU-1, DMMU-2, DMMU-4, DMMU-5, and DMMU-6 ranged from 0.000499 mg/kg to 0.000643 mg/kg, which are much lower than that of the body weight limit for animals. The mean concentrations for thallium in A. virens tissues from project samples DMMU-2, DMMU-3, DMMU-4, and DMMU-6 ranged from 0.000471 mg/kg to 0.000589 mg/kg, which are much lower than that of the body weight limit for animals.

<u>Zinc</u>

Zinc is considered to have fairly limited mobility under typical conditions in most aquatic habitats Tissue residue-toxicity relationships can also be variable because organisms sequester metals in different forms that are measurable as tissue residue but that can instead be stored in unavailable forms within the organism, possibly as a form of detoxification. Whole-body residues also might not be indicative of effects concentrations at the organ level because concentrations in target organs, such as the kidneys and liver, can be 20 times greater than whole-body residues (EPA 2000). After evaluating the effects of sample preparation techniques on measured concentrations of metals in the edible tissue of fish, Schmitt and Finger (1987) concluded that there was little direct value in measuring zinc (or copper, iron, or manganese) tissue residues in fish because they do not bioaccumulate to any appreciable extent. It has also been suggested that there is not compelling evidence to support any significant concern about zinc as a putative toxin in the environment. Further, there is considerable evidence that zinc deficiency is a serious, worldwide human health problem that outweighs the potential problems associated with accidental, self-imposed, or environmental exposure to excess zinc (EPA 2000). A search of over 5,000 toxicity

endpoints in ERED and other literature produced the following endpoint values relevant to population-level effects on *M. mercenaria* and zinc (Exhibit 3-47).

Mean concentrations for zinc in *M. mercenaria* tissue sample DMMU-8 (35.6 mg/kg) exceeded the EET for bivalves (11.6 mg/kg) and the northern Gulf of Mexico background concentration for bivalves (7.0-30.0 mg/kg). Mean concentrations for zinc in *M. Mercenaria* tissue sample DMMU-8 did not exceed the ERL (150 mg/kg) or the ERM (410 mg/kg) reported by Long et al. (1995) for this metal.

Mean concentrations for zinc in *M. mercenaria* tissue sample DMMU-8 (35.6 mg/kg) that significantly exceed the levels found in the Reference sample was greater than 6 of the NOAELs and LOAELs reported to produce population-level impacts in bivalves (Exhibit 3-47). Mortality in the bivalve *Mysella anomala* was reported to begin above 5 mg/kg of zinc. The *M. mercenaria* tissue sample that exceeded the Reference had a concentration 712% greater than the NOAEL for mortality in *Mysella anomala*. In comparison, the mean concentration for zinc in the Reference (11.7 mg/kg) and pre-exposure tissues (13.5 mg/kg) also exceeded the NOAEL for the bivalve *Mysella anomala*, amounting to 234% and 270%, respectively, of this endpoint value (5 mg/kg). The mean concentration for zinc in DMMU-8 was 137% greater than the NOAELs for Mortality and Growth in *Mytilus edulis* (26 mg/kg, respectively) (Exhibit 3-47). The mean concentration for zinc in DMMU-8 was 142% greater than the LOAEL for Growth in *Mytilus edulis* (25 mg/kg), and 137% greater than the LOAELs for Mortality and Development in *Mytilus edulis* (26 mg/kg, respectively) (Exhibit 3-47).

Exhibit 3-47. Zinc Concentrations in Project Tissues That Statistically Significantly Exceeded Those of the Reference Compared to Toxicity Values from Literature Review

Mean Concentrations in Project Tissue Samples that Exceeded the Reference (mg/kg)	Toxicity Measure & Value (mg/kg)	Percent Sample Result Greater than Toxicity Value	Relevant Species & Reference
	NOAEL		
	5	(712%)	Mortality in adult <i>Mysella anomala</i> (a bivalve) King et al. (2004) in ERED
	26	(137%)	Mortality in <i>Mytilus edulis</i> (blue mussel) St Jean et al. (2003) in ERED
	26	(137%)	Growth in <i>Mytilus edulis</i> (blue mussel) St Jean et al. (2003) in ERED
DMMU-8 = 35.6	55.8	(does not exceed)	Survival in <i>Mytilus edulis</i> (blue mussel) Kaitala (1988) in ERED
(M. mercenaria)	120	(does not exceed)	Mortality in <i>Dreissena polymorpha</i> (zebra mussel) Kraak et al. (1994) in ERED
	160	(does not exceed)	Lesions in <i>Scrobicularia plana</i> (peppery furrow shell) Riba et al. (2005) in ERED
	621	(does not exceed)	Growth in <i>Dreissena polymorpha</i> (zebra mussel) Kraak et al. (1994) in ERED
	1720.6	(does not exceed)	Lesions in <i>Crassostrea angulata</i> (Portuguese oyster) Riba et al. (2005) in ERED
	LOAEL		
	25	(142%)	Growth in <i>Mytilus edulis</i> (blue mussel) Grout and Levings (2001) in ERED
DMMU-8 = 35.6	26	(137%)	Mortality in <i>Mytilus edulis</i> (blue mussel) Grout and Levings (2001) in ERED
(M. mercenaria)	26	(137%)	Development in <i>Mytilus edulis</i> (blue mussel) Grout and Levings (2001) in ERED
	621	(does not exceed)	Mortality in <i>Dreissena polymorpha</i> (zebra mussel) Kraak et al. (1994) in ERED

Only population-level effects (growth, reproduction, mortality) are included. (Biochemical and behavioral effects are excluded since they do not necessarily equate to population-level effects.)

Sources: Table 13 and as listed above from ERED

Acenaphthene and Anthracene

Acenaphthene and anthracene are two of several low-molecular-weight PAHs. The available data on toxicity effects are limited and do not include marine life. Acenaphthene administered through absorption to juvenile *Lepomis macrochirus* (Bluegill) resulted in a NOAEL of 3500 μg/kg of body weight (converted from mg/kg) for mortality according to a study by Barrows et al. (1980). The concentration for acenaphthene is much higher concentrations than the 7.88 μg/kg observed in *M. mercenaria* tissue sample DMMU-7.

A search of the online database ERED found anthracene endpoint data only for the *Elliptio complanate* (molluscs, Eastern Elliptio) and *Rhepoxynius abronius* (crustacean). Anthracene was detected at a concentration of 2.6 mg/kg (2600 μg/kg) in the excised gill tissue of the *Elliptio complanate* (molluscs, Eastern Elliptio) according to a study by Cheney MA, Birdsall K, Kukor JJ. (2001). A whole-body concentration of 15.31 mg/kg (15,310 μg/kg) caused behavior and mortality effects to *Rhepoxynius abronius* (crustacean) at a concentration according to a study by Boese et al. (2001). The concentrations for anthracene in *M. mercenaria* tissue sample DMMU-8 (2.98 μg/kg) and in *A. virens* tissue sample DMMU-7 (3.42 μg/kg) are much lower than the concentrations in *Elliptio complanate*, *Rhepoxynius abronius*, and the juvenile *Lepomis macrochirus* (Bluegill).

Benzo(a)pyrene

Bioavailability of sediment-associated PAHs, including benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, and benzo(k)fluoranthene, has been observed to decline with increased contact time. A relationship has been established between dissolved organic matter (including the percentage of hydrophobic acids) and accumulation of benzo(a)pyrene and other PAHs. It has been observed that the bioavailability of benzo(a)pyrene and other PAHs decreases in waters with dissolved organic carbon having more hydrophobic acids. The reduced bioavailability has been observed for benzo(a)pyrene accumulation from field-collected sediments compared with laboratory-spiked sediments. Mean accumulation of benzo(a)pyrene declined by a factor of three in *Chironomus riparius* exposed to sediment stored for 1 week versus sediment stored for 8 weeks. The concentrations of benzo(a)pyrene in whole sediment and pore water were 0.27 to 80.9 ng/g and 0.004 to 0.913 mg/mL, respectively. Short-term exposures (24 hours) to 1 mg/L benzo(a)pyrene averaged 8.27 nanomoles in fish tissue. Of this total, 67% was accumulated in the gallbladder or gut, indicating rapid metabolism and excretion (USEPA 2000).

The bioaccumulation of benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, and benzo(k)fluoranthene can be influenced by lipid reserves. In an experiment reviewed in USEPA (2000), chironomid larvae rapidly accumulated benzo(a)pyrene from spiked sediment, and tissue concentrations were directly proportional to sediment concentrations. However, the level of benzo(a)pyrene in Bluegill (*Lepomis macrochirus*) that were fed contaminated chironomids was generally low, indicating either low uptake or rapid metabolism. According to another study reviewed by USEPA (2000), accumulation of hydrophobic chemicals like benzo(a)pyrene in aqueous systems appears to depend on the amount of chemical in solution and on the amount sorbed to particles entering the food chain. Uptake and accumulation of benzo(a)pyrene was reduced by 97% due to sorption to organic matter (USEPA 2000).

Studies that report body burdens of the parent compound may, depending on the species, grossly underestimate total bioaccumulation of benzo(a)pyrene and its metabolites. A study reviewed and summarized by USEPA (2000) concluded that the body burden of the parent compound may represent less than 10% of the actual total body burden of the parent plus metabolites. The

accumulation kinetics of benzo(a)pyrene suggest that uptake occurs largely via the sediment interstitial water and is controlled by desorption from sediment particles and dissolved organic matter. Accumulation of benzo(a)pyrene from water was not affected by the simultaneous presence of naphthalene or PCBs. It has been shown that the concentration of benzo(a)pyrene equivalents in American Gizzard Shad (*Dorosoma cepedianum*) increases when the fish ventilate water turbid with benzo(a)pyrene-spiked sediments. Also, turbid water, not sediment ingestion, appears to be a significant source of benzo(a)pyrene for American Gizzard Shad (USEPA 2000).

Studies with various mollusks exposed to 161 μ g/kg show only limited effects on mortality or development (USEPA 2000). The mean concentration found in the *A. virens* sample DMMU-5 was 2.53 μ g/kg.

Fluorene

Fluorene is one of several low molecular weight (LMW) PAHs. The available data on toxicity effects are limited and do not include marine life. NOAELs for fluorene using the freshwater amphipod *Hyalella azteca* include a concentration of 54,610 μ g/kg for mortality, 22,250 μ g/kg for growth, and 8,090 μ g/kg for reproduction (Schuler et al. 2007) (converted from mg/kg). Hellou et al. (2002) found a NOAEL for fluorene with *Oncorhynchus mykiss* (Rainbow Trout) at 1,800 μ g/kg for mortality (Hellou et al. 2002). These are much higher concentrations than the 4.43 μ g/kg observed in the *A. virens* tissue sample DMMU-3.

Fluoranthene

It is not clear if fluoranthene has carcinogenic effects on organisms according to Patnaik (1981). The International Agency for Research on Cancer stated that fluoranthene is "not classifiable as to its carcinogenicity to humans," although Busby et al. (1984) found that mice treated with fluoranthene exhibited a significantly higher incidence of lung tumors relative to a control. It is readily metabolized and excreted from live organisms (EPA 2000), although the rates of metabolism and excretion probably vary among taxa.

Eleven endpoint values, consisting of five NOAELs and six no LOAELs, for mortality and reproduction were obtained for fluoranthene from the literature search and applicable to this evaluation. These values resulted from studies on crustaceans and bivalves. The lowest individual NOAEL value was $40,450 \, \mu g/kg$ (for reproduction in the copepod *Schizopera knabeni*). The lowest individual LOAEL value was $220 \, \mu g/kg$ (for reproduction in the Blue Mussel, *Mytilus edulis*).

Project tissue sample from M. mercenaria and A. virens in DMMU-7 had mean concentrations of fluoranthene that statistically significantly exceeded that of the Reference. The mean concentration in both species is lower than the lowest endpoint value (LOAEL of 220 μ g/kg for reproduction in M. edulis). Exhibits 3-48 and 3-49 compare the maximum concentration of fluoranthene in project tissue sample DMMU-7 with NOAEL and LOAEL values, respectively. These values were obtained from published literature.

Exhibit 3-48. Fluoranthene Mean Concentration in Project Tissues Compared to NOAEL Values from Literature Review

Mean Concentration in DMMU-7 (µg/kg)	NOAEL Concentration (µg/kg)	Percent Sample Result Greater Than Toxicity Value	Species & Reference
DMMU-7 = 13.0	1,190,000	(does not exceed)	Mortality in <i>Diporeia</i> spp. (amphipod) Driscoll and Landrum (1997) in ERED
(M. mercenaria)	586,600	(does not exceed)	Mortality and reproduction in
DMMU-7 = 10.7	121,400	(does not exceed)	Schizopera knabeni and Coullana sp. (copepods)
(A. virens)	40,450	(does not exceed)	Lotufo 1998 in ÉRED
	68,700	(does not exceed)	Mortality in <i>Leptocheirus plumulosus</i> (amphipod) Driscoll et al. 1998 in ERED

Source: Table 17 and 18; NOAELs as listed above from ERED

Exhibit 3-49. Fluoranthene Mean Concentrations in Project Tissues Compared to LOAEL Values from Literature Review

Mean Concentration in DMMU-7 (µg/kg)		Percent Sample Result Greater Than Toxicity Value	Species & Reference
	788,800	(does not exceed)	Mortality and reproduction in
DMMU-7 = 13.0	262,900	(does not exceed)	Schizopera knabeni and Coullana sp. (copepods)
(M. mercenaria)	121,350	(does not exceed)	Lotufo 1998 in ERED
DMMU-7 = 10.7	252,800	(does not exceed)	Mortality in <i>Diporeia</i> spp. (amphipod)
(A. virens)	71,800	(does not exceed)	Driscoll et al. 1997 in ERED
(: #6/16)	220	(does not exceed)	Reproduction in <i>Mytilus edulis</i> (Blue Mussel) Eertman et al. 1995 in ERED

Source: Table 17 and 18; LOAELs as listed above from ERED

Phenanthrene

Phenanthrene is one of several LMW PAHs. The available data on toxicity effects are limited and do not include marine life. NOAELs for phenanthrene include a LOAEL of 214,000 μ g/kg for mortality in the freshwater amphipod *Diporeia* sp. and a NOAEL of 17,000 μ g/kg (converted from mg/kg) for mortality of *Carassius auratus* (Goldfish) (Landrum et al. 1994, Kishino and Kobayashi 1995). These are much higher concentrations than those observed in *M. mercenaria* tissues from DMMU-7 (8.02 μ g/kg) and *A. virens* tissues from DMMU-3 and DMMU-7 (7.40 μ g/kg and 8.86 μ g/kg, respectively).

Pyrene

The toxic effects of pyrene are dependent on attaining a certain molar concentration in the organism (Landrum et al. 1994). A comparison between the estimation of LC₅₀ values for aquatic invertebrates based on laboratory bioassays and the estimation of LC₅₀ values by means of

equilibrium-partitioning theory found that the equilibrium-partitioning approach greatly overestimated the toxicity of pyrene in sediments (by more than a factor of 10 [Landrum et al. 1994]). The available data on toxicity effects are limited and do not include population-level effects on marine life. A NOAEL of 1,080 μ g/kg pyrene was given by Roper et al. (1997) for survival in the Zebra Mussel (*Dreissena polymorpha*). The concentrations for pyrene found in *M. mercenaria* tissue sample DMMU-7 (8.18 μ g/kg) and *A. virens* tissue samples DMMU-3 (3.57 μ g/kg) and DMMU-7 (13.2 μ g/kg) were less than those associated with the NOAEL for the Zebra Mussel reported by Roper et al. (1997).

Total LMW PAHs, Total HMW PAHs and Total PAHs

Although there does not appear to be any standard accepted criteria for levels of total PAHs ingested by humans (EPA has however suggested daily intake amounts of *individual* PAH compounds that have been deemed unlikely to cause harmful health effects) (ATSDR 2014), some previously proposed criteria for total PAHs were obtained from Eisler (1987) and are summarized in Exhibit 3-50. These levels are derived from laboratory experiments using mice and rats. These criteria are controversial due to the lack of a standard representative PAH mixture for test purposes, the difficulty in quantification of the health risks caused by the additive or synergistic effects of individual PAH analytes and other sources, and the paucity of data on the effects of chronic exposure. In addition, generalizations were made on the effects of total PAHs based heavily on data derived from the known effects of just one PAH analyte (benzo[a]pyrene). Lastly, wide variations exist in the capacity of humans and other animals to metabolize carcinogens using enzymes, and this interaction between enzymes and carcinogenic PAH analytes is the most significant process leading to carcinogenesis from PAHs (Eisler 1987). The proposed criteria for total PAHs in human health protection are given in Exhibit 3-50.

Exhibit 3-50. Proposed Criteria for Ingestion of Total PAHs in Human Health Protection Obtained from a Literature Search

Criterion	Value	Notes
Daily intake in food	1.6–16.0 grams/day	Assumes 1600 grams/day of food intake, adult body mass of 70 kg, and a total PAH concentration
Yearly intake in food	4150.0 grams/year	of 1 to 10 μg/kg (fresh weight) in diet

Sources: Table 8 in Eisler (1987) as summarized from Lee and Grant (1981) and Pucknat (1981)

Although laboratory experiments using mice and rats have shown that both short-term and long-term PAH exposure can cause negative effects on the skin, body fluids, and immune system, these effects have not been well documented in humans. Similarly, although reproductive problems and birth defects in mice have been linked to the ingestion of high levels of PAHs, the effects of PAHs on human reproductive processes remain poorly understood. Despite the paucity of evidence showing a direct link between exposure to PAHs and health effects in humans, a small percentage of people who have been chronically exposed to PAHs have developed cancer (ATSDR 1996), and it is reasonable to assume that a correlation exists. Of the incidences of cancer among people with a history of chronic exposure, most involve either inhalation or topical adsorption as the primary exposure route; thus, the effects of PAH ingestion on humans is even more poorly known.

Because fishes are typically able to rapidly metabolize PAHs, concentrations of PAHs in fish tissues are usually low (Lawrence and Weber 1984, Eisler 1987). A study of three native fish species captured from the Kuwait Bay area found the highest levels of PAH contamination in tonguesole, a bottom dwelling species, suggesting that such species may be used to gauge the

level of PAH contamination in the area's sediments (Beg et al. 2009). It appears that the consumption of fish may not be an important contributor of PAHs in humans. However, PAHs can be generated during the cooking or smoking process, and the ingestion of fish skin tissues may be a significant contributor of benzo(a)pyrene. It is important to note that the speed at which PAH metabolites are eliminated is dependent on water temperature and on the species of fish.

HPAHs do not appear to accumulate in fish tissue according to West et al. (1984), with the exception of benzo(a)pyrene, which is found in higher amounts in the skin tissue of fish than in other tissues (USEPA 1980). Thus, it appears that the consumption of fish may not be an important contributor of PAHs in humans as long as the skin is not consumed. However, PAHs can be generated during the cooking or smoking process, and the ingestion of fish skin tissues may be a significant contributor of benzo(a)pyrene. It is important to note that the speed at which PAH metabolites are eliminated is dependent on water temperature and on the species of fish.

PAHs are much more toxic to crustaceans than they are to teleost (bony) fishes. In general, shellfish tend to metabolize PAHs much more slowly and to eliminate PAHs and PAH metabolites (some of which are toxic to other organisms and to people) slowly compared to the speed of these processes in fishes. In most cases, PAH concentrations that are acutely toxic to aquatic organisms are several orders of magnitude higher than concentrations in sediments from most contaminated sites, and their limited bioavailability typically makes them significantly less toxic than PAHs in solution (Neff 1980).

Twenty-five NOAEL values for total PAHs that are applicable to this evaluation were obtained from the literature search and, since there is not an universally accepted list of HPAHs, NOAELs pertaining strictly to HPAHs were not found. Therefore, all NOAELs found in the literature for individual PAH compounds relate to total PAHs. The range of individual NOAEL values was 18 to 25,000 µg/kg.

M. mercenaria and A. virens tissue samples from DMMU-7 had mean concentrations of total LPAHs, total HPAHs, and total PAHs that were statistically significantly greater than those of the Reference. A. virens tissue sample DMMU-3 had a mean concentration of total PAHs that was statistically significantly greater than those of the Reference. The concentrations of total LPAHs, total HPAHs, and total PAHs in M. mercenaria tissue sample DMMU-7 exceeded only three (13%) of the 24 individual NOAELs. The concentrations of total PAHs in A. virens tissue samples DMMU-3 and DMMU-7 exceeded only three (13%) of the 24 individual NOAELs. The concentrations of total LPAHs and total HPAHs in A. virens tissue sample DMMU-7 exceeded only one (4%) and two (8%) of the 24 individual NOAELs, respectively. Exhibit 3-51 compares the mean concentrations of total LPAHs, total HPAHs, and (or) total PAHs in M. mercenaria (DMMU-7) and A. virens tissues (DMMU-3 and DMMU-7) with NOAEL values obtained from the literature.

Exhibit 3-51. Maximum Concentrations of Total HPAHs and Total PAHs in Project Tissues Compared to NOAEL Values
Obtained from the Literature Review

Mean Concentrations in DMMU-3, DMMU-5, and DMMU-7 (μg/kg)	Toxicity Measure & Value (µg/kg)	Percent Sample Result Greater Than Toxicity Value	Species & Reference
	NOAEL		
	25000	(does not exceed)	Reproduction in eggs of
	1900	(does not exceed)	Oncorhynchus gorbuscha
	470	(does not exceed)	(Pink Salmon)
	200	(does not exceed)	Heintz et al. 1999 in ERED
(M. Mercenaria)	3400	(does not exceed)	
DMMU-7 Total LPAHs = 37.8	1626	(does not exceed)	
DMMU-7 Total HPAHs = 75.0	1260	(does not exceed)	
DMMU-7 Total PAHs = 113	1140	(does not exceed)	
Divilvio-7 Total PALIS = 113	848	(does not exceed)	
	668	(does not exceed)	
(A. virens)	454	(does not exceed)	Mortality in <i>Liza ramado</i>
DMMU-3 Total PAHs = 45.4	160	(does not exceed)	(Thinlipped Mullet)
DMMU-7 Total LPAHs = 21.9		(M. Mercenaria)	Milinkovitch et al. 2011
DMMU-7 Total HPAHs = 41.0		DMMU-7 Total LPAHs = 135%,	in ERED
DMMU-7 Total PAHs = 62.9		Total HPAHs = 268%, Total PAHs =404%	= = .
Divilvio 7 Total 1 74 15 62.5	20	(A. virens)	
	28	DMMU-3 Total PAHs = 162%	
		DMMU-7 Total LPAHs = (does not exceed), DMMU-7 Total HPAHs = 146%, DMMU-7 Total PAHs = 225%	

Mean Concentrations in DMMU-3, DMMU-5, and DMMU-7 (μg/kg)	Toxicity Measure & Value (μg/kg) NOAEL	Percent Sample Result Greater Than Toxicity Value	Species & Reference
	18	(<i>M. Mercenaria</i>) DMMU-7 Total LPAHs = 210%, Total HPAHs = 417%, Total PAHs = 628% (<i>A. virens</i>) DMMU-3 Total PAHs = 252% DMMU-7 Total LPAHs = 122% DMMU-7 Total HPAHs = 228% DMMU-7 Total PAHs = 349%	
	1900	(does not exceed)	
	1560	(does not exceed)	Montality on dayalanmant in ages of
	1420	(does not exceed)	Mortality or development in eggs of Oncorhynchus gorbuscha
	1060	(does not exceed)	(Pink Salmon)
	380	(does not exceed)	Brannon et al. 2006 in ERED
	300	(does not exceed)	
	200	(does not exceed)	
(M. Mercenaria)	380	(does not exceed)	Growth in eggs of <i>Oncorhynchus</i> tshawytscha (Chinook Salmon) Meador et al. 2006 in ERED
DMMU-7 Total LPAHs = 37.8 DMMU-7 Total HPAHs = 75.0	108	(does not exceed)	
DMMU-7 Total PAHs = 113 (A. virens) DMMU-3 Total PAHs = 45.4 DMMU-7 Total LPAHs = 21.9 DMMU-7 Total HPAHs = 41.0 DMMU-7 Total PAHs = 62.9	22	(<i>M. Mercenaria</i>) DMMU-7 Total LPAHs = 172% DMMU-7 Total HPAHs = 341% DMMU-7 Total PAHs = 514% (<i>A. virens</i>) DMMU-3 Total PAHs = 206% DMMU-7 Total LPAHs = (does not exceed), DMMU-7 Total HPAHs = 186%, DMMU-7 Total PAHs = 286%	Mortality, growth, and development in eggs of <i>Clupea pallasii</i> (Pacific Herring) Carls et al. 1999 in ERED

Bis(2-ethylhexyl) phthalate

Bis(2-ethylhexyl) phthalate is the primary synonym for substance Di(2-ethylhexyl) phthalate and commonly referred to as DEHP. DEHP is not found naturally in the environment and was widely used as a plasticizer to help make polyvinyl chloride products soft and flexible (CPSC 2010a). DEHP enters the environment predominantly through disposal of wastes into landfills. To a much lesser extent, it is volatized into air (from industrial and end uses of DEHP), carried in wastewater from industrial sources, and in effluent from municipal wastewater treatment plants (Bauer and Herrmann 1997; Clara et al. 2010; EPA 1981). It tends to absorb strongly to soils and sediments and to bioconcentrate in aquatic organisms (Staples et al. 1997; Wolfe et al. 1980); however, potential for DEHP to biomagnify in the food chain is expected to be minimized by metabolism (EPA 1979; Johnson et al. 1977; Mackintosh et al. 2004; Staples et al. 1997; Wofford et al. 1981). Biodegradation can occur under aerobic conditions (Sugatt et al. 1984). Sorption, bioaccumulation, and biodegradation are likely to be competing processes, with the dominant fate determined by local environmental conditions. The available data on toxicity effects are limited to rodents, primates, and human exposure and do not include population-level effects on marine life.

Bioconcentration of DEHP has been observed in invertebrates, fish, and terrestrial organisms. Mean bioconcentration factors have been reported for algae (3,173±3,149, two species), mollusks (1,469±949, five species), crustacea (1,164±1,182, four species), insects (1,058±772, three species), polychaetes (422, one species), fish (280±230, five species), and amphibians (605, one species) have been compiled by Staples et al. (1997). Residues of DEHP have been found in the organs of terrestrial animals such as rats, rabbits, dogs, cows, and humans (EPA 1979). Uptake of DEHP from soil by plants has also been reported (EPA 1986; O'Connor 1996). There is not a biomagnification factor given by the EPA or applicable to DEHP.

Diethyl Phthalate

Diethyl phthalate is a man-made colorless liquid with a slight aromatic odor and a bitter, disagreeable taste. Trade names include neantine, peilatinol A, and solvanol. Diethyl phthalate is manufactured for many uses. It is commonly used to make plastics more flexible. Because diethyl phthalate is not a part of the chain of chemicals (polymers) which makes up the plastics, it can be released fairly easily from these products. These plastics are found in products such as toothbrushes, automobile parts, tools, toys, and food packaging. Diethyl phthalate is also used in cosmetics, insecticides, and aspirin.

A search of the online database ERED found diethyl phthalate endpoint data only for *Lepomis macrochirus* (Bluegill). A whole-body concentration of 1.1 mg/kg caused mortality in Bluegill according to a study by Barrows et al. (1980). The concentration of diethyl phthalate in *A. virens* tissue from DMMU-5 (5.97 μ g/kg [= 0.00597 mg/kg]) is a fraction of the tissue concentration that caused negative effects in Bluegill as discussed above.

Di-n-butyl Phthalate

Di-n-butyl phthalate is an oily liquid that is odorless and can be clear to faintly yellow. This manmade compound is added to hard plastics to make them soft, especially in polyvinyl chloride plastics and nitrocellulose lacquers (ATSDR 2001). Di-n-butyl phthalate enters the air or sticks to dust particles from new carpets, drying paints, and nail polish. When the compound enters surface waters or soils, it tends to get broken down by bacteria and this process may take up to a month to complete, depending on temperature and other factors. Di-n-butyl phthalate appears to have a relatively low toxicity. Large amounts are needed to cause injury (ATSDR 2001).

A search of the online database ERED found di-n-butyl phthalate endpoint data only for crustaceans. A whole-body concentration of 0.5 mg/kg caused mortality in juvenile daggernose grass shrimp ($Palaemonetes\ pugio$) in a study by Laughlin et al. (1978). The mean concentration of di-n-butyl phthalate in $A.\ virens$ tissue samples DMMU-2 (10.6 µg/kg [= 0.0106 mg/kg]), DMMU-4 (7.23 µg/kg [= 0.00723 mg/kg]), and DMMU-7 (6.98 µg/kg [= 0.00698 mg/kg]), are a fraction of the tissue concentration that caused negative effects in the grass shrimp as discussed above.

Di-n-butyl phthalates and other butyl phthalates are used as a plasticizer in industry, a solvent for organic compounds, an antifoaming agent, a textile fiber lubricant, a fixative for fragrances, and an insect repellent (ATSDR 2001). Di-n-butyl phthalate has been reported to biologically degrade in fresh and marine water, with 50% to 100% degradation within 28 days in aerobic conditions and over 90% degradation within 30 days in anaerobic freshwater conditions (ATSDR 2001).

Data indicate that di-n-butyl phthalate can partition from food and water into a variety of organisms (ATSDR 2001). Studies using radioactively labeled di-n-butyl phthalate have shown accumulation of radioactivity in aquatic invertebrates and fishes. Numerous experiments have shown that the accumulation of di-n-butyl phthalate in the aquatic and terrestrial food chain is limited by biotransformation (i.e., transformation of chemical compounds within a living system), which progressively increases with trophic level (Staples et al. 1997, ATSDR 2001). In general, bioconcentration factors decrease for organisms that possess more advanced metabolic systems. Examples of mean bioconcentration factors (mg/g wet weight) include 3,399 for algae, 662 (±229 SD) for crustaceans, 624 (±144 SD) for insects, and 167 for fishes (Staples et al. 1997, ATSDR 2001).

Relevant NOAELs or LOAELs could not be found for comparison to the mean concentration of di-n-butyl phthalate in *A. virens* tissue.

TPH

Factors that determine health effects from exposure to TPH involve the form of compounds in the TPH, the duration of exposure (acute versus chronic), and the number of chemical substances in contact with the organism (Farrington 2014). In severe cases, TPH can coat the body of an organism, causing suffocation. Other types of damage to organisms involve cancerous tumors.

The presence of smaller compounds within TPH, such as benzene, toluene, and xylene, can affect the central nervous system (Farrington 2014). Exposure to TPH can lead to decreased resistance in a marine organism's ability to deal with other environmental stressors, such as variations in temperature or water quality. This has been well documented in corals that have been found to be damaged or have died following petroleum hydrocarbon exposure (Farrington 2014).

Mean concentrations for TPH in in *M. mercenaria* tissue samples DMMU-1 (170 mg/kg), DMMU-3 (960 mg/kg), DMMU-4 (218 mg/kg), DMMU-5 (1,886 mg/kg), DMMU-6 (1,951 mg/kg), DMMU-7 (2,404 mg/kg), and DMMU-8 (1,955 mg/kg) statistically significantly exceeded that of the Reference (35.7 mg/kg). Relevant NOAELs or LOAELs could not be found for comparison to the mean concentration of TPH in *M. mercenaria* tissue.

Factor 6. Phylogenetic diversity of the species in which bioaccumulation in organisms exposed to sediment from the dredging site statistically exceeds bioaccumulation in organisms exposed to the Reference sediment.

This factor addresses and discusses the phylogenetic diversity of the species in which bioaccumulation from the dredged material statistically exceeds bioaccumulation from the Reference material.

The species tested, *M. mercenaria* and *A. virens* are recommended in Section 12 of the Green Book and labeled as "examples of appropriate test species for determining potential bioaccumulation from whole sediment tests." The basic recommendations require that a deposit-feeding bivalve mollusk and a burrowing polychaete worm be tested. *A. virens* is an ecologically important infaunal member of the western North Atlantic region, provides adequate biomass for tissue analysis, and is a detritivore. *M. mercenaria* inhabits the western North and Central Atlantic including the Gulf of Mexico (Abbott 1968, Turgeon 2009) and therefore represents a native species in and around the project area. Although *M. mercenaria* and other members of the genus feed using a siphon (as with most bivalves), it is possible that the proximity of the incurrent siphon to the sediment surface allows some fine particulates and contaminants associated with sediment to be ingested. Regardless, the use of *M. mercenaria* for bioaccumulation testing conforms to recommendations in the Green Book regarding the use of a deposit-feeder.

Factor 7. Propensity for the contaminants with statistically significant bioaccumulation to biomagnify within aquatic food webs.

Biomagnification, the ability of a compound to accumulate in upper-level consumers, is dependent on the propensity of a given compound to biomagnify in lower-level organisms. Compounds in project tissues having mean values less than or equal to two times the Reference values have a low magnitude of difference in bioaccumulation levels, which suggests that the toxicological relevance of the measured statistically significant difference is negligible and may not warrant further examination of the ecological significance (Lotufo et al. 2011). Analyte concentrations in project tissue samples that exceeded those of the Reference by more than a factor of two are evaluated against the ecological effects' thresholds, which are regionally specific thresholds formulated to evaluate potential bioaccumulation-related adverse effects of sediments proposed for ocean disposal. The thresholds are concentrations of given compounds in tissues that are not expected to have unacceptable effects in marine organisms (EPA and USACE 2008).

Mean concentrations of metals, TPH, and PAHs (acenaphthene, anthracene, fluoranthene, phenanthrene, pyrene, total LPAHs, total HPAHs, and total PAHs) in *M. mercenaria* tissue from project samples listed below were detected at levels that were statistically significantly greater than the Reference mean value.

- DMMU-1: antimony, arsenic, lead, selenium, thallium, TPH
- DMMU-2: antimony, arsenic, chromium, lead, selenium, thallium
- DMMU-3: antimony, arsenic, chromium, lead, selenium, TPH
- DMMU-4: arsenic, chromium, lead, selenium, thallium, TPH
- DMMU-5: antimony, arsenic, chromium, copper, lead, selenium, thallium, TPH
- DMMU-6: antimony, arsenic, chromium, lead, selenium, thallium, TPH

- DMMU-7: arsenic, lead, selenium, TPH, acenaphthene, fluoranthene, phenanthrene, pyrene, total LPAHs, total HPAHs, total PAHs
- DMMU-8: antimony, arsenic, lead, selenium, zinc, TPH, anthracene

Of the tissues that were found to be statistically significantly greater than that of the Reference, the mean concentrations for copper in DMMU-5, lead in DMMU-2 and DMMU-5, and zinc in DMMU-1 also exceeded the applicable ecological effects thresholds. These mean results did not exceed the northern Gulf of Mexico background concentrations except for zinc in DMMU-8. Acenaphthene and fluoranthene in DMMU-7 also exceeded the applicable ecological effects threshold, and total HPAHs in DMMU-7 exceed the northern Gulf of Mexico background concentration.

Mean concentrations of cadmium, nickel, silver, thallium, fluorene, fluoranthene, phenanthrene, pyrene, total LPAHs, total HPAHs, total PAHs, bis(2-ethylhexyl) phthalate, di-n-butyl phthalate, and diethyl phthalate in *A. virens* tissue from project samples listed below were detected at levels that were statistically significantly greater than the applicable Reference values.

- DMMU-1: cadmium, nickel
- DMMU-2: cadmium, nickel, thallium, di-n-butyl phthalate
- DMMU-3: cadmium, nickel, thallium, fluorene, phenanthrene, pyrene, total PAHs
- DMMU-4: cadmium, nickel, silver, thallium, di-n-butyl phthalate
- DMMU-5: cadmium, nickel, benzo(a)pyrene, diethyl phthalate
- DMMU-6: cadmium, nickel, silver, thallium
- DMMU-7: cadmium, nickel, anthracene, fluoranthene, phenanthrene, pyrene, total LPAHs, total HPAHs, total PAHs, di-n-butyl phthalate
- DMMU-8: nickel, silver, bis(2-ethylhexyl) phthalate

The mean concentrations of metals, PAHs, or SVOCs in *A. virens* tissue did not exceed applicable ecological effects threshold or northern Gulf of Mexico background concentrations.

Antimony, Arsenic, Cadmium, Chromium, Copper, Lead, Nickel and Zinc

Each of these eight metals was given a biomagnification risk factor of 1 by Battelle (2005) for use in bioaccumulation risk assessment modeling for EPA Region 1 projects and has since been adopted by EPA Region 4 (ANAMAR 2015). This risk factor may also be applicable to this EPA Region 6 project as region-specific alternative risk factor could not be found during a literature search.

Silver

Little evidence exists to support the general occurrence of biomagnification of silver within marine or freshwater food webs. Silver uptake by aquatic organisms appears to be almost entirely from the dissolved form. When silver was bound to algal cell membranes, it could not be dislodged by either mechanical disruption or leaching at low pH; therefore, silver bound to algal cells is likely unassimilable by higher organisms (EPA 2000).

Selenium and Thallium

Selenium and thallium were not given a biomagnification risk factor by EPA Region 4 for use in bioaccumulation risk assessment modeling (Battelle 2005, ANAMAR 2015). However, the results

of studies by Hermanutz et al. (1992) and Coyle et al. (1993) were evaluated by EPA (2000), and it was concluded that selenium can biomagnify within aquatic ecosystems (EPA 2000). It is possible that selenium and thallium have similar biomagnification risk as other metals. If this is the case, then the biomagnification risk factor of 1 may be appropriate here as this value was given by EPA Region 4 for 11 other metal analytes (Battelle 2005, ANAMAR 2015).

Individual PAHs

Food chain multipliers for anthracene, acenaphthene, benzo(a)pyrene, fluorene, fluoranthene, phenanthrene, and pyrene in aquatic organisms were not found in the literature, including EPA (2000). These and other PAHs are readily metabolized and excreted from living organisms, indicating low biomagnification effects in the environment. The rates of metabolism and excretion probably vary among taxa (EPA 2000). These contaminants were given biomagnification risk factors of 1.005 (fluorene 1.054 (fluoranthene), 1.007 (phenanthrene), and 1.017 (pyrene) by EPA Region 4 for use in bioaccumulation risk assessment modeling (Battelle 2005, ANAMAR 2015). These risk factors may also be applicable to EPA Region 6.

Total LPAHs, Total HPAHs and Total PAHs

Many of these PAHs are readily metabolized and excreted from living organisms, indicating low biomagnification effects in the environment. The rates of metabolism and excretion probably vary among taxa (USEPA 2000). These groups of PAHs were not assigned a biomagnification risk factor by EPA Region 4 for use in bioaccumulation risk assessment modeling (Battelle 2005, ANAMAR 2015).

Diethyl phthalate

Diethyl phthalate has been detected in aquatic organisms and has been found to bioconcentrate modestly in these organisms (Camanzo et al. 1983; DeVault 1985; McFall et al. 1985a). The database is, however, too limited to determine a representative range of bioaccumulation potential throughout the food chain. Further data on the accumulation potential for diethyl phthalate, including biomagnification in terrestrial and aquatic food chains, does not seem necessary (ATSDR 1995).

Diethyl phthalate was not given a biomagnification risk factor by EPA Region 1 for use in bioaccumulation risk assessment modeling (Battelle 2005, ANAMAR 2015). There is not a published biomagnification risk factor for this compound applicable to EPA Region 6.

Di-n-butyl phthalate

Available data indicate that di-n-butyl phthalate tends to be taken up and metabolized by invertebrates and fishes. Numerous studies have shown that the accumulation of di-n-butyl phthalate in the aquatic and terrestrial food chain is limited by biotransformation, which progressively increases with trophic level (Staples et al. 1997). Therefore, di-n-butyl phthalate will not biomagnify through the food chain (ATSDR 2001).

Di-n-butyl phthalate was not given a biomagnification risk factor by EPA Region 1 for use in bioaccumulation risk assessment modeling (Battelle 2005, ANAMAR 2015). There is not a published biomagnification risk factor for this compound applicable to EPA Region 6.

Bis(2-ethylhexyl) phthalate

A biomagnification risk could be not found for this analyte.

TPH

A biomagnification risk could not be found for this analyte.

Factor 8. Magnitude of toxicity and number and phylogenetic diversity of species exhibiting greater mortality in the sediment from the dredging site than in the Reference sediment.

Significant toxicity was not observed in the bioaccumulation tests performed on the Harbor Island New Dock and Facilities sediments.

The mean percent survival in the 100% elutriate concentration of the 96-hour water column bioassays with *A. bahia* ranged from 94% to 100% among the project elutriates, was 98% in the Reference, and was not significantly different from that of the control (96% to 100%). The estimated LC_{50} was >100% for the eight project samples.

The mean percent survival in the 100% elutriate concentration of the 96-hour water column bioassays with M. beryllina ranged from 94% to 98% among the project elutriates, was 92% in the Reference, and was not significantly different from that of the control (94% to 100%). The estimated LC_{50} values were >100% for the eight project samples.

The mean percent survival in the 100% elutriate concentration of the 48-hour water column bioassays with planktonic *A. bahia* ranged from 94% to 100% among the project elutriates, was 100% in the Reference, and was not significantly different from that of the control (96% to 100%). The estimated LC_{50} values were >100% for the eight project samples.

Mean survival in the project sediments using *L. plumulosus* ranged from 87% to 92% and was not statistically different from that of the Reference (91%). Mean survival across the project samples was either equal to the Reference or less than 20% below the Reference, indicating that the samples met the LPC for benthic toxicity as defined in the RIA.

Mean survival in the project sediments using *A. bahia* ranged from 87% to 93% and was 91% in the Reference. Project samples did not result in mean survival that was greater than 10% different from that of the Reference, indicating that the samples met the LPC for benthic toxicity as defined in the RIA.

Survival in the project sediment samples for the 28-day bioaccumulation test ranged from 91% to 100% in *M. Mercenaria* and from 89% to 100% for *A. virens*.

Summary

The bioaccumulation potentials of contaminants were evaluated through 28-day whole sediment exposure testing using *M. mercenaria* and *A. virens* followed by chemical analysis of the tissues. Sample results did not exceed any applicable FDA action level in FDA (2001, 2020). Mean concentrations of analytes in project tissue samples found to be statistically significantly greater than those of the Reference were further evaluated. Project samples having replicate results below the MDL (U-qualified) did not require assessment and were not compared against the Reference or screening criteria.

Contaminant mean concentrations in *M. mercenaria* tissues in project samples DMMU-1 through DMMU-8 that were statistically significantly greater than those of the Reference did not exceed any applicable screening benchmarks with the exception of copper in DMMU-5, lead in DMMU-2

and DMMU-5, zinc in DMMU-8, acenaphthene, fluoranthene, and total HPAHs in DMMU-7. Nonetheless, such contaminant mean concentrations were further compared to toxicity endpoint values relevant to populations if appropriate endpoint values were available. NOAEL and LOAEL endpoint data that were found to be relevant to comparisons with the tissue concentrations in the test species, *M. mercenaria*, were greater than the mean concentrations in the project samples in all instances except for zinc in DMMU-8, and total LPAHs, total HPAHs, and total PAHs in DMMU-7.

- Zinc in M. mercenaria tissue from DMMU-8 (35.6 mg/kg) that significantly exceed the levels found in the Reference sample was greater than 6 of the NOAELs and LOAELs reported to produce population-level impacts in bivalves (Exhibit 3-47). The mean concentration was greater than the Mortality in the bivalve *Mysella anomala* (5 mg/kg) (Exhibit 3-47); the NAOELs for Mortality and Growth in *Mytilus edulis* (26 mg/kg, respectively) (Exhibit 3-47); the LOAEL for Growth in *Mytilus edulis* (25 mg/kg) and the LOAELs for Mortality and Development in *Mytilus edulis* (26 mg/kg, respectively).
- Total LPAHs (37.8 μg/kg), total HPAHs (65.6 μg/kg) and total PAHs (103 μg/kg) in *M. mercenaria* tissue from DMMU-7 were less than 87% of the 24 NOAEL values obtained from the literature (Exhibit 3-51). Currently, there is not an accepted standard for relative concentrations of individual PAHs or even a universal agreement as to which individual PAH molecules are included in total HPAHs and total PAHs. Thus, NOAELs for these PAH groups are difficult to assess as to their appropriateness for comparisons with the project tissue results.

Contaminant mean concentrations in *A. virens* tissues in project samples DMMU-1 through DMMU-8 that were statistically significantly greater than those of the Reference did not exceed any applicable screening benchmarks.

Nonetheless, such contaminant mean concentrations were further compared to toxicity endpoint values relevant to populations, if appropriate endpoint values were available. NOAEL and LOAEL endpoint data that were found to be relevant to comparisons with the tissue concentrations in the test species, *A. virens*, were greater than the mean concentrations in the project samples in all instances except for the following:

- Total PAHs in DMMU-3 (45.4 μg/kg) was less than 87% of the 24 NOAEL values obtained from the literature (Exhibit 3-51).
- Total LPAHs in DMMU-7 (21.9 μg/kg) was less than 96% of the 24 NOAEL; total HPAHs (41.0 μg/kg) and total PAHs in DMMU-7 (62.9 μg/kg) were less than 87% of the 24 NOAEL values obtained from the literature (Exhibit 3-51).

A final step in the evaluative process goes beyond assessing the individual test results to look at the complete set of results to provide an opportunity for an integrated assessment of the contaminants.

Although some of the contaminants that bioaccumulated in the tests are toxicologically important, in no case did they accumulate to toxicologically important concentrations. The materials tested met the minimum acceptable levels for bioaccumulation criteria. Thus, considering the factors in the Green Book, an evaluation of the solid phase bioaccumulation test results for the dredge material taken as a whole would not indicate a different outcome from that shown by the individual test results, i.e., the material does not have the potential for significant undesirable effects due to bioaccumulation.

Accounting for the above information, a potential for significant undesirable effects due to bioaccumulation as a result of the presence of individual chemicals or of the solid phase of the dredged material as a whole does not exist. Therefore, it is concluded that the solid phase of the material proposed for disposal meets the ocean disposal requirements of 40 CFR § 227.6(c)(3) and § 227.27(b), and the LPC for bioaccumulation is met in accordance with RIA Subsection 10.2.3.

4 ADDAMS MODEL

Simulations of the STFATE module of the ADDAMS model were run to establish compliance of the water column toxicity for the CDP Inner Harbor project sediment samples.

Based on elutriate chemistry results, sample DMMU-7 (prepared as the composite of sediment subsamples DMMU-7A through DMMU-7D) was selected for modeling Tier II Water Quality Criteria. The elutriate concentration for ammonia of 7.62 mg/L exceeded the calculated CMC of 6.17 mg/L. The CMC was determined using a saltwater ammonia CMC calculator using pH, temperature and salinity readings from the site water following sample collection. Other sample results did not exceed the CMC for any contaminant.

Based on the LC_{50} results, the project samples had LC_{50} values that did not statistically exceed the corresponding site water control sample. Therefore, STFATE modeling for Tier III toxicology is not required for this project.

STFATE model input parameters used in the module are shown in Exhibits 4-1 through 4-7. The files used in the model runs are included in Appendix H.

Evaluation Type: Tier II Water Quality Results

Exhibit 4-1. Simulation Type: Descent, Collapse, and Diffusion

Coefficients			
Parameter	Keyword	Value	
Settling Coefficient	BETA	0.000*	
Apparent Mass Coefficient	CM	1.000*	
Drag Coefficient	CD	0.500*	
Form Drag for Collapsing Cloud	CDRAG	1.000*	
Skin Friction for Collapsing Cloud	CFRIC	0.010*	
Drag for an Ellipsoidal Wedge	CD3	0.100*	
Drag for a Plate	CD4	1.000*	
Friction Between Cloud and Bottom	FRICTN	0.010*	
4/3 Law Horizontal Diffusion Dissipation Factor	ALAMDA	0.0225	
Unstratified Water Vertical Diffusion Coefficient	AKYO	Pritchard Expression	
Cloud/Ambient Density Gradient Ratio	GAMA	0.250*	
Turbulent Thermal Entrainment	ALPHAO	0.235*	
Entrainment in Collapse	ALPHAC	0.100*	
Stripping Factor	CSTRIP	0.003*	

^{*} Model default value

Exhibit 4-2. Site Description for New Work ODMDS

Parameter	Value	Units
Number of Grid Points (left to right)	25	n/a
Number of Grid Points (top to bottom)	50	n/a
Spacing Between Grid Points (left to right)	250	ft
Spacing Between Grid Points (top to bottom)	250	ft
Constant Water Depth	50*	ft
Roughness Height at Bottom of Disposal Site	0.005**	ft
Slope of Bottom in X-Direction	0	deg.
Slope of Bottom in Z-Direction	0	deg.
Number of Points in Ambient Density Profile Point	3	n/a
Ambient Density at Depth = 0 ft	1.023	g/cc
Ambient Density at Depth = 25 ft	1.024	g/cc
Ambient Density at Depth = 50 ft	1.026	g/cc
Distance from the Top Edge of Grid (upper left corner of site)	1,000	ft
Distance from the Left Edge of Grid (upper left corner of site)	1,000	ft
Distance from the Top Edge of Grid (lower right corner of site)	11,000	ft
Distance from the Left Edge of Grid (lower right corner of site)	6,000	ft
Location of Disposal Point from Top of Grid	4,500	ft
Location of Disposal Point from Left Edge of Grid	3,400	ft
Number of Depths for Transport-Diffusion Output	2 (0 and 50)	<u>#</u>

^{*} Mean water depth from Section 2.4.1 of the Corpus Christi SMMP (2018)

Exhibit 4-3. Current Velocity Data

Parameter	Value	Units
X-Direction Velocity	1.1	ft/sec
Z-Direction Velocity	0	ft/sec

Current velocity was taken from the Corpus Christi ODMDS EIS (EPA 1988).

Exhibit 4-4. Material Data

Parameter	Value	Units
Dredging Site Water Density (average)	1.024	g/cc
Number of Layers	1	n/a
Material Velocity at Disposal (X-Dir.)	6.2	ft/s
Material Velocity at Disposal (Z-Dir.)	6.2	ft/s

Exhibit 4-5. Output Options

Parameter	Value	Units
Duration of Simulation	14,400	Seconds
Long-Term Time Step	600	Seconds

^{**} Model default value

Exhibit 4-6. Disposal Operation Data

Parameter	Value, Cutter/Hopper	Value, Mechanical	Units
Length of Disposal Vessel	390	315	ft
Width of Disposal Vessel	76	53	ft
Pre-Disposal Draft	28	25	ft
Post-Disposal Draft	15	10	ft
Time Needed to Empty the Disposal Bin (sec.)	60	60	sec
Dredging Disposal Volume	13,500	9,000	yd ³

Volumetric Fraction Determination and Water Quality Criteria

Volumetric fractions for samples from DMMU-7 were determined using a spreadsheet developed at ERDC. The spreadsheet is included in Appendix H along with the STFATE input and output files. The calculations are based on grain sizes (Table 3) and total solids (Table 4), as presented in Exhibit 4-7, along with specific gravity and Atterberg limits. For the grain size, the average of the four subsamples (DMMU-7A through DMMU-7D) were used in the spreadsheet to determine the volumetric fractions for entry into the STFATE model. Specific gravity and Atterberg limits were not determined from the Harbor Island samples. For specific gravity, a default value of 2.65 was entered in the STFATE model for silt and clay, which are the two predominant grain size classifications present. For Atterberg limits, a value of 0 was entered for the liquid limit, which is the most conservative value for modeling. In addition, calculations in the ERDC spreadsheet can be used for either mechanical or cutter dredging with sediment transport for disposal. Exhibit 4-7 contains a summary of the volumetric fractions and dilutions of the dredge material required to meet disposal criteria.

Exhibit 4-7. Volumetric Fractions and Water Quality Criteria of Dredge Material

Analyte	DMMU-7		
Gravel	0		
Sand	51.7		
Silt	40.6		
Clay	7.7		
Solids, %	71.9		
Specific gravity	2.65		
Liquid limit	0		
Type of Dredging	Hopper/Cutter	Mechanical	
Volumetric Fraction - Clumps	0.00000	0.00000	
Volumetric Fraction – Coarse	0.06418	0.20573	
Volumetric Fraction - Silt	0.05040	0.16156	
Volumetric Fraction – Clay	0.00956	0.03064	
Volumetric Fraction – Water	0.87587	0.60207	
Contaminant Concentration (Ammonia) mg/L	<u>7.62</u>		
Conc. required to meet CMC (Ammonia) µg/L	<u>6.17</u>		
Dilution required to meet CMC	<u>1.1</u>		

Italicized parameters were calculated from Table 3 of this report or entered as described in the previous paragraph.

<u>Values underlined and shown with a yellow shaded background</u> were provided by the chemistry or toxicology laboratory, and the dilution required was calculated to allow entry into the simulation.

Volumetric fractions were determined using a spreadsheet developed at ERDC. The spreadsheet is provided in Appendix H with the filename *PCCA HI Resample Volumetric Fractions.xlsx*.

Two Tier II models were conducted for sample DMMU-7 using a cutter dredge or mechanical dredge scenario and testing to determine whether the dredge material meets the 4-hour water quality criteria. Modeling inputs included using the ODMDS parameters and disposal operations detailed in Exhibits 4-1 through 4-7. Exhibit 4-8 includes graphs for Tier II models showing the CMC (pink line), the maximum concentration across the entire grid (red line), and the maximum concentration outside the ODMDS (blue line) for the project sample DMMU-7. Input and output files are provided electronically in Appendix H.

The results of the Tier II modeling indicate that the dredged material from DMMU-7 may be disposed of without restriction to a maximum of 13,500 cy per load for hopper or cutter dredging, or 9,000 cy per load for mechanical dredging. In addition, the material from the other dredging sites may also be disposed without restrictions up to the maximum volumes of 13,500 cy per load for hopper or cutter dredging, or 9,000 cy per load for mechanical dredging without restrictions of the disposal location. Exhibit 4-9 is a map of the Corpus Christi New Work ODMDS with boundaries and the modeled disposal point.

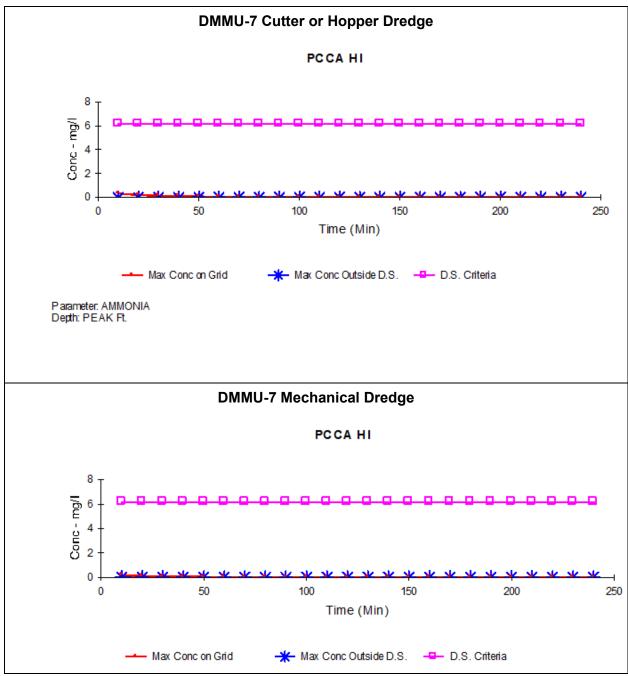


Exhibit 4-8. Four-Hour Criteria and Disposal Site (D.S.) Boundary Criteria after Initial Mixing

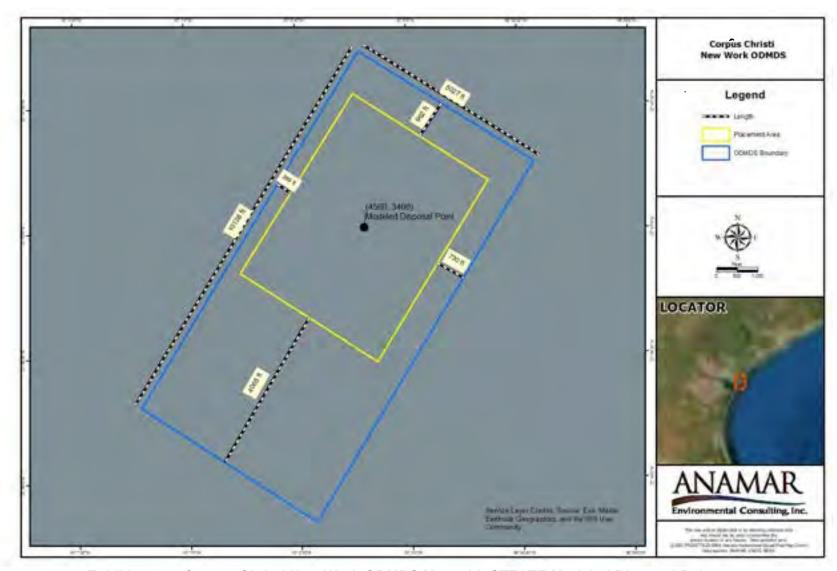


Exhibit 4-9. Corpus Christi New Work ODMDS Map with STFATE Modeled Disposal Point

5 REFERENCES

Note: References from the Environmental Residue Effects Database (ERED) can be found at https://ered.el.erdc.dren.mil/references.cfm.

- Abbott, R.T. 1968. A Guide to Field Identification. Seashells of North America. Golden Press, Western Publishing Co., Inc., Racine, WI.
- Ahsanullah, M. and A.R. Williams. 1991. Sublethal effects and bioaccumulation of cadmium, chromium, copper and zinc in the marine amphipod *Allorchestes compressa*. Marine Biology 108:59–65.
- ANAMAR Environmental Consulting, Inc. 2011. Site Designation Studies for a New Ocean Dredged Material Disposal Site off Jacksonville, Florida: Spring and Fall 2010 Survey Results. Submitted to USACE Jacksonville District, Jacksonville, FL.
- ANAMAR Environmental Consulting, Inc. 2012. Final Report, Site Designation Study for the Port Everglades Harbor Ocean Dredged Material Disposal Site Expansion: May 2011 Survey Results. Submitted to USACE Jacksonville District, Jacksonville, FL.
- ANAMAR Environmental Consulting, Inc. 2015. A Guide to Regional Input Values for the BRAMS Program Modules BEST and Trophic Trace, Final Report. Submitted to USACE Wilmington District, Wilmington, NC, and EPA Region 4, Atlanta, GA.
- Andersen ME, Krishnan K. 1994. Relating *in vitro* to *in vivo* exposures with physiologically-based tissue dosimetry and tissue response models. In: Salem H, ed. Animal test alternatives. Aberdeen Proving Ground, MD: U.S. Army Chemical Research Development and Engineering Center.
- Anzecc & Armcanz. (Australian and New Zealand Environment and Conservation Council and Agriculture Resource Management Council of Australia and New Zealand). 2000. National water quality management strategy, Australian and New Zealand guidelines for fresh and marine water quality. Anzecc & Armcanz, Canberra, Australia.
- Agency for Toxic Substances and Disease Registry (ATSDR). 1996. Agency for Toxic Substances and Disease Registry ToxFAQs: Polycyclic Aromatic Hydrocarbons (PAHs). Agency for Toxic Substances and Disease Registry, Division of Toxicology/Toxicology Information Branch, Atlanta, GA. Available online at http://www.atsdr.cdc.gov/tfacts69.pdf.
- ATSDR. 1995. *Toxicological Profile for Diethyl Phthalate*. AGSDR, Division of Toxicology/Toxicology Information Branch, Atlanta, GA. Accessible online at https://www.atsdr.cdc.gov/toxprofiles/tp135.pdf.
- ATSDR. 2001. *Toxicological Profile for Di-n-butyl Phthalate*. AGSDR, Division of Toxicology/Toxicology Information Branch, Atlanta, GA. Accessible online at https://www.atsdr.cdc.gov/toxprofiles/tp135.pdf.

- ATSDR. 2012. *Toxicological Profile for Cadmium*. ATSDR, Division of Toxicology/Toxicology Information Branch, Atlanta, GA. Available online at https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf.
- ATSDR. 2014. Public Health Statement for Polycyclic Aromatic Hydrocarbons (PAHs).
- Barrows, M.E., Petrocelli, S.R., Macek, K.J., and Carroll, J.J. 1980. Bioconcentration and elimination of selected water pollutants by bluegill sunfish (*Lepomis macrochirus*). *Dynamics, Exposure and Hazard Assessment of Toxic Chemicals* 370-392.
- Battelle. 2005. Final Evaluation of EPA Region 1 Bioaccumulation Risk Assessment Model. Submitted to EPA, Oceans and Coastal Protection Division, Washington, DC.
- Bauer MJ, Herrmann R. 1997. Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Sci Total Environ 208:49-57.
- Beg, M.U., Gevao, B., Al-Jandal, N., Beg, K.R., Butt, S.A., Ali, N.A., and Al-Hussaini M. 2009. Polycyclic aromatic hydrocarbons in three varieties of fish from Kuwait Bay. *Polycyclic Aromatic Hydrocarbons*, 29(2):75-89.
- Boese BL, Ozertich RJ, Lamberson JO, Swartz RC, Cole FA, Pelletier J, Jones J. 2001. Toxicity and phototoxicity of mixtures of highly lipophilic PAH compounds in marine sediment: can the ΣPAH model be extrapolated? Archives of Environmental Contamination and Toxicology 36:270-280.
- Brix, K.V., C.E. Schlekat, and E.R. Garman. 2016. The mechanisms of nickel toxicity in aquatic environments: an adverse outcome pathway analysis. *Environmental Toxicology and Chemistry* 36(5):1128–1137.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables. NOAA, OR&R Report 08-1, Office of Response and Restoration Division, Seattle, WA.
- Busby WF, Goldman ME, Newberne PM, et al. 1984. Tumorigenicity of fluoranthene in a newborn mouse lung adenoma bioassay. Carcinogenesis 5:1311-1316.
- Camanzo J, Rice CP, Jude DJ, et al. 1983. Organic priority pollutants in nearshore fish from 14 Lake Michigan tributaries and embayments. J Great Lakes Res 13:296-309.
- Cheney MA, Birdsall K, Kukor JJ. 2001. Uptake and diverse effects of polycyclic aromatic hydrocarbons on the metabolic activity of Elliptio complanata measured by calorespirometry. Environmental Toxicology and Chemistry 20:1031-1036.
- Clara M, Windhofer G, Hartl W, et al. 2010. Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere 78(9):1078-1084. http://doi.org/10.1016/j.chemosphere.2009.12.052.
- Coyle, J.J., Buckler, D.R., Ingersoll, C.G., Fairchild, J.F., and May, T.W. 1993. Effect of dietary selenium on the reproductive success of bluegills (*Lepomis macrochirus*). *Environmental Toxicology and Chemistry*, 12(3):551-565.

- CPSC. 2010a. Memorandum to Michael Babich from Kent Carlson regarding the toxicity review of di(2-ethylhexyl) phthalate (DEHP). Bethesda, MD: U.S. Consumer Product Safety Commission.
- DeVault DS. 1985. Contaminants in fish from Great Lakes Harbors and Tributary Mouths. Arch Environ Contam Toxicol 14:587-594.
- Eisler, R. 1987. *Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review.* U.S. Fish and Wildlife Service Biological Report No. 85 (Contaminant Hazard Reviews Report No. 11), Patuxent Wildlife Research Center, Laurel, MD. Available online at https://www.pwrc.usgs.gov/eisler/CHR 11 PAHs.pdf.
- EPA. 1979. Water-related environmental fate of 129 priority pollutants. Vol. II. Halogenated aliphatic hydrocarbons, halogenated ethers, monocyclic aromatics, phthalate esters, polycyclic aromatic hydrocarbons, nitrosamines, and miscellaneous compounds. Washington, DC: U.S. Environmental Protection Agency. EPA440479029a. PB80204373.
- EPA. 1981. An exposure and risk assessment for phthalate esters: Di(2-ethylhexyl) phthalate, di-n-butyl phthalate, dimethyl phthalate, diethyl phthalate, di-n-octyl phthalate, butyl benzyl phthalate. Washington, DC: U.S. Environmental Protection Agency. EPA440481020. PB85211936.
- EPA. 1986. Method 8060: Phthalate esters. Test methods for evaluating solid waste. U.S. Environmental Protection Agency. SW-846.
- EPA. 1989. Ambient Water Quality Criteria for Ammonia (Saltwater) 1989. EPA Office of Water Regulations and Standards Criteria and Standards Division, Washington, DC. Available online at https://www.epa.gov/sites/production/files/2019-02/documents/ ambient-wgc-ammonia-saltwater-1989.pdf.
- EPA. 1994. Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods. EPA publication 600/R-94/025, EPA Office of Research and Development, Narragansett, RI.
- EPA. 2000. Bioaccumulation Testing and Interpretation for the Purpose of Sediment Quality Assessment, Status and Needs. EPA-823-R-00-002, EPA Bioaccumulation Analysis Workshop, Washington, DC.
- EPA. 2006. National Recommended Water Quality Criteria. EPA Region 4, Water Management Division, Wetlands, Coastal & Nonpoint Source Branch, Atlanta, GA.
- EPA. 2015. National Recommended Water Quality Criteria [online resource]. Available online at http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm#altable.
- EPA and USACE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal, Testing Manual [Green Book]. EPA 503-8-91-001. EPA Office of Marine and Estuarine Protection, Washington, DC, and Department of the Army, USACE, Washington, DC.

- EPA and USACE. 1998. Evaluation of Dredged Material for Discharge in Waters of the U.S. Testing Manual [ITM]. EPA 823-B-98-004. EPA Office of Water and Office of Science and Technology, Washington, DC, and Department of the Army, USACE, Operations, Construction, and Readiness Division, Washington, DC.
- EPA and USACE. 2003. Ocean Dredged Material Disposal Program, Regional Implementation Agreement for Testing and Reporting Requirements for Ocean Disposal of Dredged Material off the Louisiana and Texas Coasts under Section 103 of the Marine Protection, Research, and Sanctuaries Act. EPA Region 6, Dallas, TX; USACE Galveston District, Galveston, TX; and USACE New Orleans District, New Orleans, LA.
- EPA and USACE. 2008. Southeast Regional Implementation Manual (SERIM), Requirements and Procedures for Evaluation of the Ocean Disposal of Dredged Material in Southeast U.S. Atlantic and Gulf Coast Waters. EPA 904-B-08-001. EPA Region 4, Atlanta, GA, and USACE South Atlantic Division, Atlanta, GA.
- Farrington, J.W. 2014. Oil pollution in the marine environment II: fates and effects of oil spills. Environment: Science and Policy for Sustainable Development 2014(56):16–31.
- Fattorini, D., A. Notti, and F. Regoli. 2006. Characterization of arsenic content in marine organisms from temperate, tropical, and polar environments. *Chemistry and Ecology* 22(5):405–414.
- FDA. 2001. Chapter 9: Environmental Chemical Contaminants and Pesticides. In: U.S. Department of Health and Human Services (ed.), Fish and Fishery Products Hazards and Controls Guidance, Third Edition.
- FDA. 2020. Chapter 9: Environmental Chemical Contaminants and Pesticides. In: U.S. Department of Health and Human Services (ed.), Fish and Fishery Products Hazards and Controls Guidance, Fourth Edition [online document]. Available online at https://www.fda.gov/downloads/food/guidanceregulation/ucm251970.pdf.
- Gough, L.P., H.T. Shacklette, and A.A. Case. 1979. *Element Concentrations Toxic to Plants, Animals, and Man*. Geological Survey Bulletin 1466, U.S. Department of the Interior, US Government Printing Office, Washington, D.C. Available online at http://pubs.usgs.gov/bul/1466/report.pdf.
- Hellou, J., Leonard, J., and Anstey, C. 2002. Dietary exposure of finfish to aromatic contaminants and tissue distribution. *Archives of Environmental Contamination and Toxicology*, 42:470-476.
- Hermanutz, R.O., Allen, K.N., Roush, T.H., and Hedtke, S.F. 1992. Effects of elevated selenium concentrations on bluegills (*lepomis macrochirus*) in outdoor experimental streams. *Environmental Toxicology and Chemistry*, 11(2):217-224.
- Johnson BT, Heitkamp MA, Jones JR. 1977. Dynamics of phthalic acid esters in aquatic organisms. Fate of pollutants in the air and water environments: Part 2. Chemical and biological fate of pollutants in the environment. New York, NY: John Wiley & Sons. 283-300A.

- Kishino, T. and Kobayashi, K. 1995. Relation between toxicity and accumulation of chlorophenols at various pH, and their absorption mechanism in fish. Water Research, 29(2):431-442.
- Klerks P.L., and P.R. Bartholomew. 1991. Cadmium accumulation and detoxification in a Cdresistant population of the oligochaete *Limnodrilus hoffmeisteri*. *Aquatic Toxicology* 19:97–112.
- Landrum, P.F., W.S. Dupuis, and J. Kukkonen. 1994. Toxicokinetics and toxicity of sediment associated pyrene and phenanthrene in Diporeia spp.: Examination of equilibrium-partitioning theory and residue-based effects for assessing hazards. Environ. Toxicol. Chem. 13:1769-1780.
- Laughlin, R.B. Jr., J.M. Neff, Y.C. Hrung, T.C. Goodwin, and C.S. Giam. 1978. The effects of three phthalate esters on the larval development of the grass shrimp *Palaemonetes pugio* (Holthuis). *Water, Air, & Soil Pollution* 9:323–336.
- Lawrence, J.F., and Weber, D.F. 1984. Determination of polycyclic aromatic hydrocarbons in some Canadian commercial fish, shellfish, and meat products by liquid chromatography with confirmation by capillary gas chromatography-mass spectrometry. *Journal of Agricultural and Food Chemistry*, 32(4):789-794.
- Lee, D.R. 1980. Reference Toxicants in Quality Control of Aquatic Bioassays. Pp. 188–199. In: A.L. Buikema and J. Cairns (Eds.), Aquatic Invertebrate Bioassays. ASTM Special Technical Publication 715, American Society for Testing and Materials, Philadelphia, PA.
- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. *Environmental Management* 19:81–87.
- Lotufo, G.R., T.J. Estes, P.R. Schroeder, J.M. Corbino, E.J. Glisch, and R.F. Mach. 2011. Water Quality and Sediment Evaluation for Inner Harbor Navigation Canal Lock replacement Project, New Orleans, Louisiana. Environmental Laboratory ERDC/EL TR-11-8, prepared for U.S. Army Corps of Engineers, Washington, DC.
- Mackintosh CE, Maldonado J, Hongwu J, et al. 2004. Distribution of phthalate esters in a marine aquatic food web: Comparison to polychlorinated biphenyls. Environ Sci Technol 38(7):2011-2020.
- McFall JA, Antoine SR, DeLeon IR. 1985a. Base-neutral extractable organic pollutants in biota and sediments from Lake Pontchartrain. Chemosphere 14(10):1561-1569.
- Neff, J.M. 1980. Polycyclic aromatic hydrocarbons in the aquatic environment. *Biological Conservation*, 18(1).
- O'Connor GA. 1996. Organic compounds in sludge-amended soils and their potential for uptake by crop plants. Sci Total Environ 185(1-3):71-81. http://doi.org/10.1016/0048-9697(95)05043-4.

- Patnaik, P. 1999. A comprehensive guide to the properties of hazardous chemical substances (2nd ed.). Wiley.
- Plumb, R.H. 1981. Procedures for Handling and Chemical Analysis of Sediment and Water Samples. Great Lakes Laboratory, State University College at Buffalo, Buffalo, NY. Submitted to EPA and USACE Technical Committee on Criteria for Dredged and Fill Material, EPA, Grosse Ile, MI, and U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Pucknat, A.W. 1981. *Health Impacts of Polynuclear Aromatic Hydrocarbons*. Environmental Health Review No. 5, Noyes Data Corporation, Park Ridge, NJ.
- Prince, R.C., J. Gailer, D.E. Gunson, R.J. Turner, G.N. George, and I.J. Pickering. 2007. Strong poison revisited. Journal of Inorganic Biochemistry 101:1891–1893.
- Raymond, L.J. and Ralston, N.V.C. 2009. Selenium's importance in regulatory issues regarding mercury. *Fuel Processing Technology* 90(11):1333-1338.
- Roper, J., D.S. Cherry, J.W. Simmers, and H.E. Tatem. 1997. Bioaccumulation of toxicants in the zebra mussel, *Dreissena polymorpha*, at the Times Beach Confined Disposal Facility, Buffalo, New York. *Environmental Pollution* 94:117–129.
- Rule, J.H. and R.W. Alden III. 1996. Interactions of Cd and Cu in anaerobic estuarine sediments. II. Bioavailability, body burdens and respiration effects as related to geochemical partitioning. *Environmental Toxicology and Chemistry* 15:466–471.
- Schmitt, C.J. and S.E. Finger. 1987. The effects of sample preparation on measured concentrations of eight elements in edible tissues of fish from streams contaminated by lead mining. *Archives of Environmental Contamination and Toxicology* 16:185–207.
- Schuler, L.J., Landrum, P.F., and Lydy, M.J. 2007. Response spectrum of pentachlorobenzene and fluoranthene for *Chironomus tentans* and *Hyalella azteca*. *Environmental Toxicology and Chemistry*, 26(6):1248-1257.
- Staples CA, Peterson DR, Parkerton TF, et al. 1997. The environmental fate of phthalate esters: A literature review. Chemosphere 35(4):667-749.
- Sugatt RH, O'Grady DP, Banerjee S, et al. 1984. Shake flask biodegradation of 14 commercial phthalate esters. Appl Environ Microbiol 47(4):601-606.
- Texas Commission on Environmental Quality. 2018. Chapter 307. Texas Surface Water Quality Standards Rule Project No. 2016-002-307-OW [online resource]. Available online at https://www.tceq.texas.gov/assets/public/waterquality/standards/tswqs2018/2018swqs allsections nopreamble.pdf.
- Trefry, J.H. and R.P. Trocine. 2011. Metals in sediments and clams from the Indian River Lagoon, Florida: 2006–7 versus 1992. *Florida Scientist* 74:43–62.

- Turgeon, D.D., W.G. Lyons, P. Mikkelsen, G. Rosenberg, and F. Moretzsohn. 2009. Bivalvia (Mollusca) of the Gulf of Mexico. 711-744 pp. In: D.L. Felder and D.K. Camp (eds.) *Gulf of Mexico, Origin, Waters, and Biota. Volume 1, Biodiversity*. Texas A&M University Press, College Station, TX.
- Yang, D., Chen, Y., Gunn, J.M., and Belzile, N. 2008. Selenium and mercury in organisms: interactions and mechanisms. Environmental Reviews 16:71-92.
- West, W.R., P.A. Smith, P.W. Stoker, G.M. Booth, T. Smith-Oliver, B.E. Butterworth, and M.L. Lee. 1984. Analysis and genotoxicity of a PAC-polluted river sediment. Pp. 1395–1411. In: M. Cooke and A.J. Dennis (eds.) *Polynuclear Aromatic Hydrocarbons: Mechanics, Methods and Metabolism.* Battelle Press, Columbus, OH.
- Wofford HW, Wilsey CD, Neff GS. 1981. Bioaccumulation and metabolism of phthalate esters of oysters, brown shrimp, and sheepshead minnows. Ecotoxicol Environ Saf 5:202-210.
- Wolfe NL, Burns LA, Steen WC. 1980. Use of linear free energy relationships and an evaluative model to assess the fate and transport of phthalate esters in the aquatic environment. Chemosphere 9:393-402.

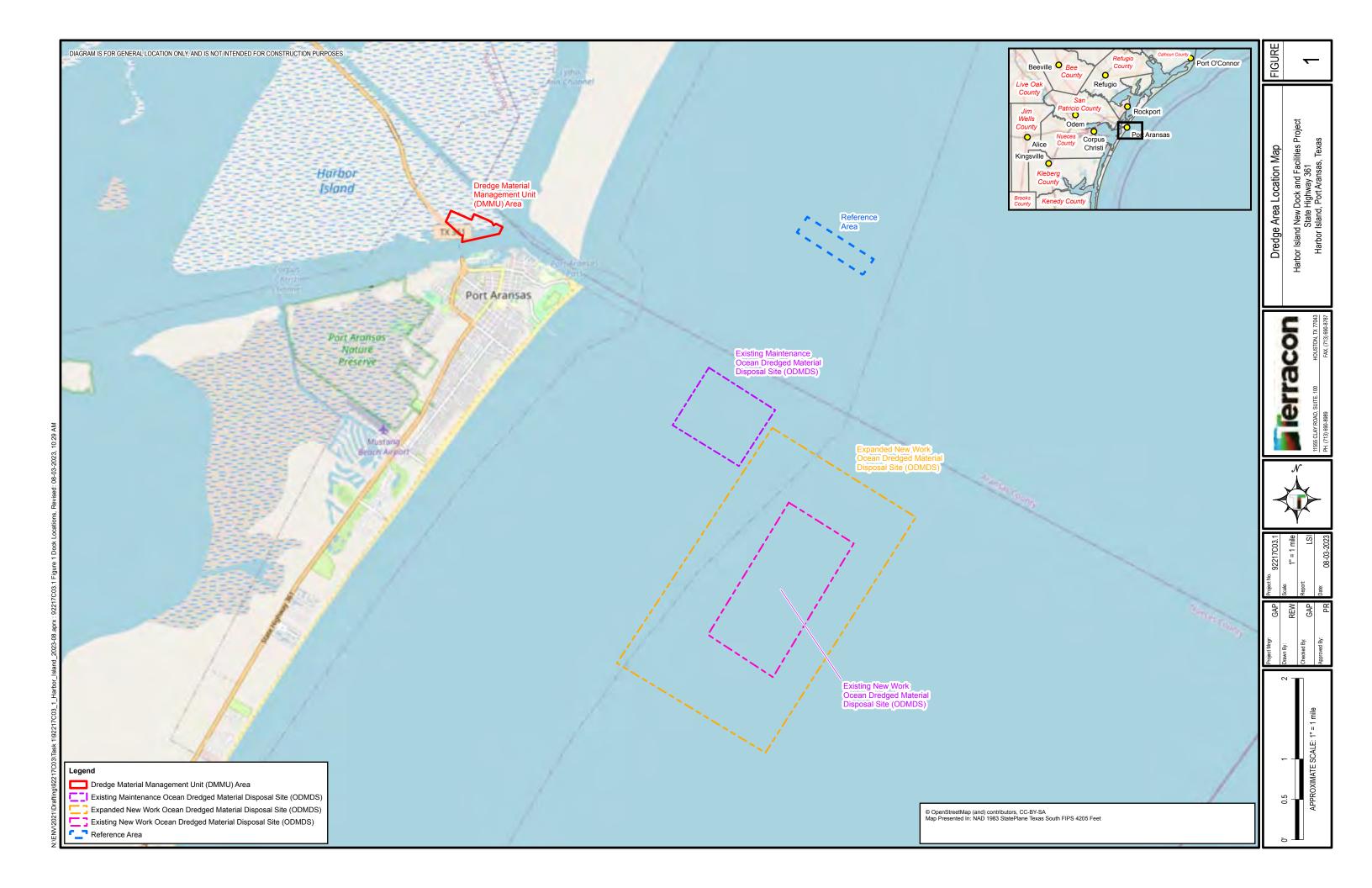

FIGURES

Figure 1 – Dredge Area Location Map

Figure 2.1 – Dredge Sample Locations (Harbor Island DMMUs)

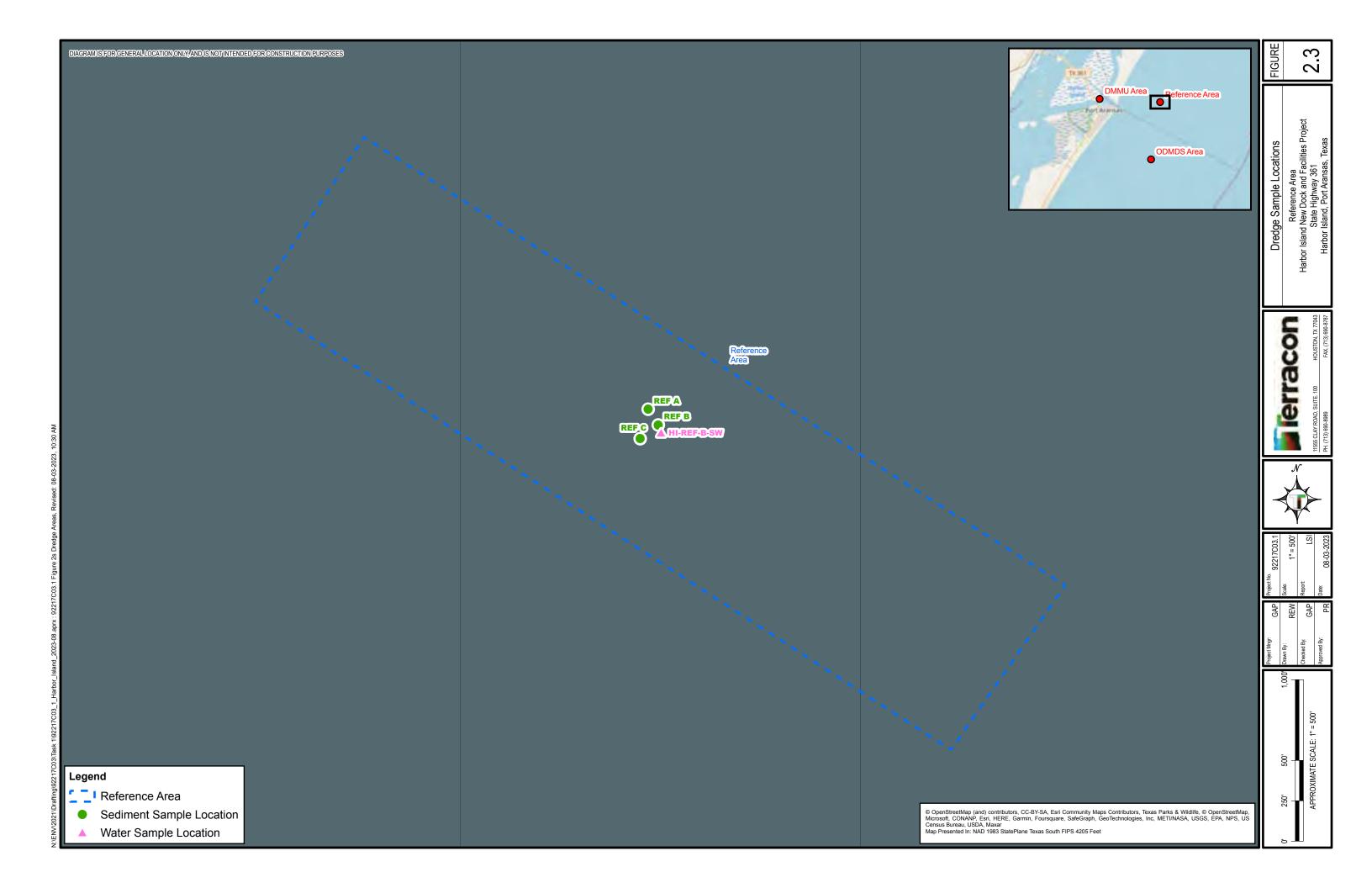

Figure 2.2 – Dredge Sample Locations (New Work ODMDS)

Figure 2.3 – Dredge Sample Locations (Reference Area)

TABLES

- Table 1A Terrestrial Core Sample Summary and Field Data
- Table 1B Marine Core Sample and Grab Sample Summary
- Table 1B Reference and ODMDS Grab Sample Summary
- Table 2 Site Water Sample Summary Including Water Column Measurements
- Table 3 Results of Physical Analyses for Sediment Samples
- Table 4 Analytical Results for Dry Weight Metals, Ammonia, Total Cyanide, TPHs, Total Solids, TOC, Organotins, and pH in Sediment Samples
- Table 5 Analytical Results for Dry Weight Pesticides and Total PCBs in Sediment Samples
- Table 6 Analytical Results for Dry Weight PAHs in Sediment Samples
- Table 7 Analytical Results for Dry Weight SVOCs in Sediment Samples
- Table 8 Analytical Results for Metals, Ammonia, Organotins, TOCs, Total Cyanide, TSSs, TPHs, and Salinity in Site Water and Elutriates

 Generated from Sediment
- Table 9 Analytical Results for Pesticides and Total PCBs in Site Water and Elutriates Generated from Sediment
- Table 10 Analytical Results for PAHs in Water and Elutriates Generated from Sediment
- Table 11 Analytical Results for SVOCs in Water and Elutriates Generated from Sediment
- Table 12 Analytical Results for Total Solids in *Mercenaria* Tissues and *Alitta* virens Tissues
- Table 13 Analytical Results for Wet Weight Metals and TPHs in *Mercenaria*Tissues
- Table 14 Analytical Results for Wet Weight Metals and TPHs in *Alitta virens*Tissues
- Table 15 Analytical Results for Dry Weight Metals and TPHs in *Mercenaria*mercenaria Tissues

TABLES (continued)

- Table 16 Analytical Results for Dry Weight Metals and TPHs in *Alitta virens*Tissues
- Table 17 Analytical Results for Wet Weight PAHs in *Mercenaria mercenaria*Tissues
- Table 18 Analytical Results for Wet Weight PAHs in *Alitta virens* Tissues
- Table 19 Analytical Results for Dry Weight PAHs in *Mercenaria mercenaria*Tissues
- Table 20 Analytical Results for Dry Weight PAHs in Alitta virens Tissues
- Table 21 Analytical Results for Wet Weight Total PCBs in *Mercenaria*mercenaria Tissues and Alitta virens Tissues
- Table 22 Analytical Results for Dry Weight Total PCBs in *Mercenaria*mercenaria Tissues and Alitta virens Tissues
- Table 23 Analytical Results for Wet Weight Organotins in *Mercenaria*mercenaria Tissues
- Table 24 Analytical Results for Wet Weight Organotins in *Alitta virens* Tissues
- Table 25 Analytical Results for Dry Weight Organotins in *Mercenaria*mercenaria Tissues
- Table 26 Analytical Results for Dry Weight Organotins in *Alitta virens* Tissues
- Table 27 Analytical Results for Wet Weight SVOCs in *Mercenaria mercenaria*Tissues
- Table 28 Analytical Results for Wet Weight SVOCs in *Alitta virens* Tissues
- Table 29 Analytical Results for Dry Weight SVOCs in *Mercenaria mercenaria*Tissues
- Table 30 Analytical Results for Dry Weight SVOCs in *Alitta virens* Tissues

TABLE 1ATerrestrial Core Sample Summary and Field Data

DMMU	Composite ID	Subsample ID	Date	Sampling Start & End (CST)	Sediment Elevation* (ft, MLLW)	Latitude (NAD 83)	Longitude (NAD 83)	Sampling Method	Field Description of Sample	Weather
		DMMU1-1A (0 to -30')	1/16/23	1330-1420	0 to -30	27.84750	-97.07075	Auger	Discarded +10' to 0'. Silty sand, gray, soft, wet, fine-grain w/ shell fragments. No living organisms, no debris observed, no odor detected.	05-10 knots SE, sunny
DMMU 1	DMMU 1	DMMU1-1B (0 to -30')	1/17/23	0910-0940	0 to -30	27.84653	-97.07135	Auger	Discarded +10' to 0'. Silty sand, gray, soft, wet, fine-grainw/ shell fragments. No living organisms, no debris observed, no odor detected.	5 10 knote E. elevely
		DMMU1-1C (0 to -30')	1/17/23	1400-1440	0 to -30	27.84601	-97.07001	Auger	Discarded +10' to 0'. Silty sand, gray, soft, wet, fine-grain. No living organisms, no debris observed, no odor detected.	5-10 knots E, cloudy
		DMMU2-1A (-30' to -60')	1/16/23	1600-1720	-30 to -60	27.84750	-97.07075	Auger	Sand, gray, wet, soft, fine-grain w/ shell fragments (-30' to -45'). Clayey sand, gray to tan, moist, firm, no to low plasticity, limonite modeling, glaucontic; shell fragments (-45' to -60'). No living organisms, no debris observed, no odor detected.	05-10 knots SE, sunny
DMMU 2	DMMU 2	DMMU2-1B (-30' to -60')	1/17/23	1040-1130	-30 to -60	27.84653	-97.07135	Auger	Silty sand, gray, wet, soft, fine-grain w/ shell fragments. No living organisms, no debris observed, no odor detected.	5 10 knote E. eloudy
		DMMU2-1C (-30' to -60')	1/17/23	1545-1630	-30 to -60	27.84601	-97.07001	Auger	Silty sand, gray, wet, fine-grain w/ shell fragments (-30' to -55'). Sandy clay, gray to tan, moist, firm, low plasticity w/ shell fragments (-55' to -60'). No living organisms, no debris observed, no odor detected.	5-10 knots E, cloudy
		DMMU3-2A DUP (0 to -30')	1/19/23	1330-1400	0 to -30	27.84632	-97.06806	Auger	Discarded +10' to 0'. Silty sand, gray, wet,soft, fine-grain w/ shell fragments. No living organisms, no debris observed, hydrocarbon odor detected. Collected one 5-gallon bucket for duplicate lab analysis. Homogenized before containerizing.	5-10 knots West, sunny
DMMU 3	DMMU 3	DMMU3-2A (0 to -30)	1/19/23	1445-1520	0 to -30	27.84629	-97.06808		Moved drill rig slightly from duplicate sample location to collect 2nd core for full testing. Discarded +10' to 0'. Silty sand, gray, wet, soft, fine-grain w/ shell fragments. No living organisms, no debris observed, hydrocarbon odor detected.	
		DMMU3-2B DUP (0 to -30')	1/20/23	0900-0930	0 to -30	27.84557	-97.06748	Auger	Discarded +10' to 0'. Silty sand, gray, wet, soft, fine-grain w/ shell fragments. No living organisms, no debris observed, no odor detected.	>20 knote NE sloudy
		DMMU3-2B (0 to -30')	1/20/23	1040-1100	0 to -30	27.84555	-97.06751	Auger	Moved drill rig slightly from duplicate sample location to collect 2nd core for full testing. Discarded +10' to 0'. Silty sand, gray, wet, soft, fine-grain w/ shell fragments. No living organisms, no debris observed, no odor detected.	>20 knots NE, cloudy

TABLE 1A (continued)

Terrestrial Core Sample Summary and Field Data

DMMU	Composite ID	Subsample ID	Date	Sampling Start & End (CST)	Sediment Elevation* (ft, MLLW)	Latitude (NAD 83)	Longitude (NAD 83)	Sampling Method	Field Description of Sample	Weather
DMMU 4	DMMU 4	DMMU4-2A (-30 to -60)	1/19/23	1630-1700	-30 to -60	27.84629	-97.06808	Auger	Silty sand, gray, wet, soft, fine-grain w/ shell fragments (-30' to -45'). Sandy clay, tan,moist, firm, low to medium plasticityfine-grain w/ shell fragments (45' to -60'). No living organisms, no debris observed, no odor detected.	5-10 knots West, sunny
	DIVINIO 4	DMMU4-2B (-30 to -60)	1/20/23	1200-1250	-30 to -60	27.84555	-97.06751	Auger	Silty sand, gray, low plasticity, wet, fine-grain w/ shell fragments. (-30' to -50'); Sandy clay, tan-gray, low to medium plasticity w/ shell fragments (-50' to -60'). No living organisms, no debris observed, no odor detected.	>20 knots NE, cloudy
		DMMU5-3A (0 to -30)	1/18/23	0850-0940	0 to -30	27.84646	-97.06570	Auger	Discarded +10' to 0'. Silty sand, gray, wet, soft, fine-grain w/ shell fragments. No living organisms, no debris observed, no odor detected.	10-15 knot winds from the
DMMU 5	DMMU 5	DMMU5-3B (0 to -30)	1/18/23	1310-1400	0 to -30	27.84594	-97.06344	Auger	Discarded +10' to 0'. Silty sand, gray, soft, wet, fine-grain w/ shell fragments. No living organisms, no debris observed, oily sheen present, hydrocarbon odor detected.	NNE, sunny
		DMMU5-3C (0 to -30)	1/19/23	0845-0920	0 to -30	27.84564	-97.06524	Auger	Discarded +10' to 0'. Silty sand, gray, soft, wet, fine-grain w/ shell fragments. No living organisms, no debris observed, no odor detected.	5-10 knots West, sunny
		DMMU6-3A (-30 to -60)	1/18/23	1045-1115	-30 to -60	27.84646	-97.06570	Auger	Silty sand, gray, wet, soft, fine-grain w/ shell fragments. No living organisms, no debris observed, no odor detected (-30' to -60').	10-15 knot winds from the
DMMU 6	DMMU 6	DMMU6-3B (-30 to -60)	1/18/23	1505-1545	-30 to -60	27.84594	-97.06344	Auger	Silty sand, gray, wet, soft, fine-grain w/ shell fragments(-30' to -55'); Sandy clay, gray, moist, firm w/ shell fragments (-55' to -60'). No living organisms, no debris observed, no odor detected.	NNE, sunny
		DMMU6-3C (-30 to -60)	1/19/23	1015-1110	-30 to -60	27.84564	-97.06524	Auger	Silty sand, gray, wet, soft w/ shell fragments (-30' to -45'); Sandy clay, tan-gray, moist, firm, low to moderate plasticity w/ shell fragments (-45' to -60'). No living organisms, no debris observed, no odor detected.	5-10 knots West, sunny

^{*} feet mean lower low water is a pre-determined depth referenced in the SAP and relative to Harbor Island land elevation at the time of sampling.

Source: ANAMAR Environmental Consulting, Inc.

TABLE 1BMarine Core Sample and Grab Sample Summary

									Metrics Per C	ore Samp	le				
DMMU / Subsample ID	Date	Time (CST)	Latitude (NAD 83)	Longitude (NAD 83)	Project Depth (feet, MLLW)	Water Depth (feet)	Water Surface Elevation ¹ (feet, MLLW)	Top of Core Elevation ² (feet, MLLW)	Bottom of Core Elevation (feet, MLLW)	Core Number	Core Penetration (feet)	Average Recovery Length (feet)	Average Recovery per Core (%)	Weather/Tidal Cycle	Notes*
DMMU7 4A	1/17/23	1412-1615	27.84423	-97.06849	-60	13.5	1.36	-12.1	-60	1	48.0	44.5	93	05-10 knots SE, calm to 1' sea state, mid-incoming tide, partly cloudy	Wet, unconsolidated, silty sand to silty clay (0 to 32'), olive gray; green/gray to tan/gray, sandy clay (33' to 38; silty sand, orange brown w/ shell hash (38' to 40'); tan silty sand to sandy clay (40' to 48').
DMMU7 4B	1/18/23	0925-1145	27.84452	-97.06590	-60	14.0	0.92	13.1	-60.0	1	47.0	39.0	83	10-15 knots NW, calm to 1' sea state, low to mid-incoming tide, partly cloudy	Very wet, unconsolidated, silty fine sediment with some shell, gray (0-15'); wet, gray fine sand to clayey sand (15' to 20'); silty clay to soft clay, gray (21'to 35'); tan to brown silty sand with shells (35' to 40'); fine sand, gray- green (40' to 46'); stiff clay gray to brown (46' to 47').
DMMU7 4C	1/16/23	1637-1800	27.84430	-97.06507	-60	45.5	1.50	-44.0	-60	1	16.0	13.8	86	05-10 knots SE, calm sea state, high- slack tide, sunny	Silty sand clay with shell hash, olive gray 0-5', sand to sandy-clay gray with shells 5' to 16'.
DMMU7 4D	1/17/23	0920-1115	27.84456	-97.06770	-60	16.4	0.89	-15.5	-60.5	1	45.0	37.0	82	5-10 knots E,calm to 1" sea state, mid- incoming, cloudy	Wet, unconsolidated silty sand, olive gray 0 to 5'; wet, soft silty clay, olive gray some shells, 5' to 25'; sandy clay to wet silty clay gray-green to tan 25' to 32.5'; gray silty clay 32.5 to 40'; tan, sandy clay 41' to 45', discarded 0.5' below project detph.
DMMU8 5A	1/18/23	1410-1620	27.84337	-97.06827	-60	42.9	1.60	-41.3	-60.3	1	19.0	19.0	100	0 to 5 knots N, calm sea state, mid to high-incoming, partly cloudy	Sandy clay, gray, tan to green (0 to 7'); fine sand with shell hash, tan (7' to 11'); silty sand, tan, brown to light gray, (11' to 19'). Discarded 0.3' below project depth.
DMMU8 5B		0815-0910				51.6	0.21	-51.4	-61.4	1	10.0	10.0	100	5-10 knots W, calm	Wet, silty sand with shells, tan to gray, (0 to 4'); silty clay to fine sand, dense, gray (5' to 10'). Discarded 1.4' below project depth.
DMMU8 5B	1/19/23	0915-1000	27.84384	-97.06617	-60	51.6	0.21	-51.4	-61.4	2	10.0	10.0	100	sea state, low- incoming, sunny	Wet, silty sand with shells, tan to gray, (0 to 6'); silty clay to fine sand, dense, gray (6' to 10'). Discarded 1.4' below project depth. Collected second core for additional volume needed for composite and toxicology analysis.

TABLE 1B (continued)

Marine Core Sample and Grab Sample Summary

									Metrics Per C	ore Samp	le				
DMMU / Subsample ID	Date	Time (CST)	Latitude (NAD 83)	Longitude (NAD 83)	Project Depth (feet, MLLW)	Water Depth (feet)	Water Surface Elevation ¹ (feet, MLLW)	Top of Core Elevation ² (feet, MLLW)	Bottom of Core Elevation (feet, MLLW)	Core Number	Core Penetration (feet)	Average Recovery Length (feet)	Average Recovery per Core (%)	Weather/Tidal Cycle	Notes*
DMMU8 5C	1/20/23	0915-1020	27.84432	-97.06453	-60	44.6	0.23	-44.4	-60	1	16.0	16.0	100	>20 knots NE, 1-2' sea state, low- incoming, cloudy	Wet, unconsolidated, silty sand, gray-green to tan-brown (0 to 7'); fine sand with shell, gray to dark gray (8' tp 9'); silty sand to fine sand, tan-gray to light gray (9' to 16'). Discarded 4" below project depth.
			27.84476	-97.06197	-60	61.5	1.34	-60.4						0-15 knots NE, 1-2'	Water depth measurement only. Water depth was greater than project depth (-60.4'). No sample collected.
DMMU8 5D	1/19/23	1115-1415	27.84490	-97.06226	-60	68.3	1.51	-66.8						sea state, mid to high incoming tide, sunny	Repositioned lift boat ~10' from original 5D station as possible. Water depth measurement only. Water depth was greater than project depth (-66.8'). No sample collected.
	1/27/23	1405-1433	27.84474	-97.06227	-60	61.0	0.70	-60.3							Grab samples with double van Veen sampler. Fine sand, shells, rocks, clay clumps, gray, orange to light brown; ~3-gallons collected.

Water surface elevation is based on real-time tide height data at MLLW from NOAA Station ID 8775237 at the Port Aransas, Texas.

Source: ANAMAR Environmental Consulting, Inc.

² Calculated as water surface elevation minus water depth.

^{*}Unless otherwise noted, no living organisms or organic debris observed, no oil present, no odor detected.

TABLE 1CReference and ODMDS Grab Sample Summary

Sources: ANAMAR

											Metrics Grab Sampling
		omposite ample ID	Subsample ID	Date	Sampling Start & End (CST)	Latitude ¹ (°N, NAD 83)	Longitude ¹ (°W, NAD 83)	Water Depth (feet)	Water Surface Elevation ² (feet, MLLW)	Top of Sediment Elevation ³ (feet, MLLW)	Description/ Notes
			ODMDS- A		1230-1235	27.79054	-96.99917	45.0	0.68	-44.3	Sample collected with a double van Veen; sand fine to coarse and silt, oyster shell fragments, sand crab, light brown to olive gray in color, 5-10 knot winds from the NE, 2-3 ft seas, cloudy skies, low to slack tide. Composite in field for sample collection
		ODMDS	ODMDS-B	1/27/23	1305-1310	27.78853	-96.99727	45.0	0.44	-44.6	Sample collected with a double van Veen; sand fine to coarse and silt, shell fragments, light brown to olive gray in color; 5-10 knot winds from the NE, 2-3 ft seas, cloudy skies, low incoming tide. Composite in field for sample collection.
			ODMDS-C		1240-1255	27.78780	-97.00035	45.0	0.64	-44.4	Sample collected with a double van Veen; sand fine to coarse and silt, oyster shell fragments, sand crab, light brown to olive gray in color, 5-10 knot winds from the NE. 2-3 ft seas, cloudy skies, low to slack tide. Composite in field for sample collection
			REF A		0920-1000	27.84198	-96.99379	45.0	0.80	-44.2	Sample collected with a double van Veen. Silty-clay with fine sand, light brown and olive gray in color with shells; sand crab worms/worm castings observed. Collected ~15 gallons. Highoutgoing tide with 5-10 knot winds from the NE, 2-3 ft seas, cloudy skes.
	RE	FERENCE	REF B	1/27/23	1053-1125	27.84171	-96.99360	45.0	0.78	-44.2	Sample collected with a double van Veen. Silty-clay with fine sand and shells, light brown and olive gray in color; collected ~15 gallons. Mid-outgoing tite; 5-10 knot winds from the NE, 2 3 ft seas, cloudy skies.
			REF C		1003-1050	27.84148	-96.99395	45.0	0.74	-44.3	Sample collected with a double van Veen. Multiple drops required, sample was washing out from bottom (shells). Silty-clay with fine sand and shells, light brown and olive gray in cold small conch, sand crab, and worms observed; collected ~15 gallons. Mid-outgoing tide, 5-10 knot winds from the NE, 2-3 ft sees, cloudy skies.
		¹ Coordinates were refere	enced to North America	an Datum of 19	983, Texas So	outh Central State	e Plane, US Surv	ey Feet.	•	•	
		² Feet mean lower low wa Aransas, Texas.	ater calculated from wa	ater depth (mea	asured by lea	dline) and tide he	eight using real-ti	me data/N	lational Ocean	ic and Atmosp	heric Administration (NOAA) Tide Station # 8775237 in Port
N	otes	³ Sediment elevation data	was calculated as wa	iter surface ele	vation minus	water depth.					
		* Unless otherwise noted, ff = feet	no living organisms o	r organic debri	s observed, n	o oil present, no	odor detected.				
		π = reet Reference and ODMDS a	s listed in Table 2 in th	ne SAP							
		Courses ANAMAD	io notou iii Tubio Z III li	JAI .							

TABLE 2Site Water Sample Summary Including Water Column Measurements

DMMU:			DMN	/IU 7				DMMU 8			Reference		ODMDS	
Sample ID:	DI	MMU-7-4A-S	w	DI	MMU-7-4B-S	w	DI	/MU-8-5B-S	w	ı	REF-B-SW	c	DMDS-B-SW	,
Date		01/25/2023			01/25/2023			01/25/2023			01/27/2023		01/27/2023	
Sampling Start/End Times (CST)		09:30-11:20			12:50-14:17			14:55-15:45			11:25-12:00		13:10-13:26	
Depth of Water (feet)		4			10			54.0			45		45	
Time of Measurement (CST)	9:20		11:25	12:46		14:20	15:50	14:48			11:28		13:15	
Depth of Measurement (feet)	1		2	1		5.5	1	27			23		23	
Water Temperature (°C)	15.2		14.7	15.7		16	15.8	15.9			15.7		16	
pH (units)	7.86		8.11	8.12		8.11	8.12	8.11			8.16		8.14	
Salinity (ppt)														
Sp. Conductivity (mS/cm)	47.2		47.4	45.8		47.2	47.5	46.4			47.4		49	
Dissolved Oxygen (mg/L)	10.81		7.59	9.73		9.39	6.85	6.72			8.32		6.73	
Dissolved Oxygen (%)														
Turbidity (NTU)	156		176	153		129	122.0	130			5.2		3.8	
Oxidation Reduction Potential (mV)														
Total Dissolved Solids (g/L)														
Latitude (°N, NAD 83)		27.844282			27.844748			27.843810			27.841575		27.788773	
Longitude (°W, NAD 83)		-97.069047			-97.065872			-97.066049			-96.993548		-96.996975	
Sampling Method	Su	ıbmersible puı	mp	Sı	ıbmersible puı	mp	Su	bmersible pur	mp	Sub	omersible pump	Su	bmersible pun	ıp
Field Description of Sample		vn in color, no ial or odor obs			n in color, no s ial or odor obs			in color, no s al or odor obs			; no suspended materia odor observed		r; no suspende r odor observe	
Weather/Tidal Cycle		ing tide, calm inds from the skies		Low outgoi >15 knot w	ing tide, calm rinds from the skies	1-2 ft seas, NW, sunny	Mid outgoii	ng tide, calm 1 sunny skies	I-2 ft seas,		tgoing tide with 5-10 known te NE, 2-3 ft seas, cloud skies		ming tide with the S, 1-2 ft se skies	
General Conditions and Observations		rail to water. ns before sam		Purged 10	gallons before	e sampling.	Purged 10	gallons before	e sampling	depth at 23' b 3' above s	arameters collected mid elow surface and at lea- ediment surface. Eight site water kit provided b the lab.	depth at 23' 3' above see	parameters coll below surface diment surface rovided by the	and at least . Site water

Salinity calculated using the formula: (Sp. Conductivity (ms/cm)^1.0878)*0.4665

(--) or (cells shaded grey) = no reading taken

Source: ANAMAR Environmental Consulting, Inc.

TABLE 3Results of Physical Analyses for Sediment Samples

	DMMU Location:		DMMU-1 0 ft. to -30 ft. MLLW (Surficial Terrestrial)			DMMU-2 -30 ft. to -60 ft. MLLW (Subsurface Terrestrial)			DMMU-3 0 ft. to -30 ft. MLLW (Surficial Terrestrial)	
	Sample ID:	DMMU-1-1A	DMMU-1-1B	DMMU-1-1C	DMMU-2-1A	DMMU-2-1B	DMMU-2-1C	DMMU-3-2A	DMMU-3-2A (Duplicate)	DMMU-3-2B
Sediment Desci	ription	Sand, silty, mostly fine- grained sand-sized quartz, little silt, gray	Sand, silty, mostly fine- grained sand-sized quartz, little silt, tan	Sand, silty, mostly fine- grained sand-sized quartz, little silt, gray	Sand, silty, mostly fine- grained sand-sized quartz, some silt, trace clay, tan	Sand, silty, mostly fine- grained sand-sized quartz, some silt, gray	Sand, silty, mostly fine- grained sand-sized quartz, some silt, few clay, gray	Sand, silty, mostly fine- grained sand-sized quartz, little silt, gray	Sand, silty, mostly fine- grained sand-sized quartz, little silt, gray	Sand, silty, mostly fine- grained sand-sized quartz, little silt, gray
% Gravel (Particles ≥4.75	60 mm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% Coarse Sand	l	0.1	0.5	0.6	0.0	0.6	0.8	0.2	0.1	0.4
% Medium Sand	d	0.5	0.9	3.4	1.2	1.9	3.0	0.6	0.8	0.8
% Fine Sand		79.6	81.0	67.8	65.3	67.1	55.7	83.7	83.1	80.9
% Sand (total) (Particles 0.075	i-4.749 mm)	80.2	82.4	71.8	66.5	69.6	59.5	84.5	84.0	82.1
% Silt (Particles 0.005	5-0.074 mm)	19.4	17.2	27.3	32.2	29.7	33.4	15.0	15.6	17.1
% Clay (Particles <0.00	•	0.4	0.4	0.9	1.3	0.7	7.1	0.5	0.4	0.8
% Silt & Clay (c	combined)	19.8	17.6	28.2	33.5	30.4	40.5	15.5	16.0	17.9
USCS Classifica	ation	SM	SM	SM	SM	SM	SM	SM	SM	SM
% Passing Sieve Size	Metric Equivalent (mm)									
#4	4.75	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
#10	2.00	99.9	99.5	99.4	100.0	99.4	99.2	99.8	99.9	99.6
#20	0.85	99.6	98.9	97.5	99.5	98.4	97.5	99.5	99.4	99.2
#40	0.425	99.4	98.6	96.0	98.8	97.5	96.2	99.2	99.1	98.8
#50	0.297	99.1	98.2	95.3	98.5	96.9	95.7	98.9	98.8	98.6
#70	0.210	96.8	95.6	93.0	97.7	94.1	94.5	96.8	96.5	96.1
#100	0.149	69.8	71.9	73.2	88.0	76.1	84.1	69.1	71.8	73.8
#140	0.105	38.0	31.3	45.1	61.3	53.3	60.6	33.5	32.8	31.5
#200	0.075	19.8	17.6	28.2	33.5	30.4	40.5	15.5	16.0	17.9
		5.1 @ 0.0511 mm.	4.7 @ 0.0513 mm.	13.1 @ 0.0499 mm.	10.0 @ 0.0509 mm.	17.8 @ 0.0475 mm.	28.4 @ 0.0448 mm.	3.3 @ 0.0515 mm.	1.3 @ 0.0521 mm.	3.3 @ 0.0515 mm.
		2.0 @ 0.0365 mm.	2.0 @ 0.0366 mm.	8.4 @ 0.0359 mm.	7.1 @ 0.0363 mm.	15.8 @ 0.0339 mm.	26.2 @ 0.0321 mm.	1.8 @ 0.0366 mm.	1.0 @ 0.0369 mm.	1.5 @ 0.0367 mm.
Hydrometer Rea	adings	1.2 @ 0.0259 mm.	1.6 @ 0.0259 mm.	5.5 @ 0.0256 mm.	5.3 @ 0.0258 mm.	15.2 @ 0.0240 mm.	24.6 @ 0.0229 mm.	1.1 @ 0.0260 mm.	0.6 @ 0.0261 mm.	1.0 @ 0.0260 mm.
(% less than the	_	0.4 @ 0.0134 mm.	1.2 @ 0.0134 mm.	2.5 @ 0.0134 mm.	2.4 @ 0.0134 mm.	8.6 @ 0.0128 mm.	23.3 @ 0.0119 mm.	0.7 @ 0.0134 mm.	0.3 @ 0.0135 mm.	1.0 @ 0.0134 mm.
sizes)	-	0.4 @ 0.0095 mm.	0.8 @ 0.0095 mm.	1.3 @ 0.0095 mm.	1.9 @ 0.0095 mm.	4.2 @ 0.0093 mm.	20.7 @ 0.0085 mm.	0.4 @ 0.0095 mm.	0.3 @ 0.0095 mm.	0.8 @ 0.0095 mm.
		0.5 @ 0.0067 mm.	0.5 @ 0.0067 mm.	1.0 @ 0.0067 mm.	1.3 @ 0.0067 mm.	0.9 @ 0.0066 mm.	10.0 @ 0.0064 mm.	0.5 @ 0.0067 mm.	0.4 @ 0.0067 mm.	0.8 @ 0.0067 mm.
		0.3 @ 0.0033 mm.	0.3 @ 0.0033 mm.	0.8 @ 0.0033 mm.	1.2 @ 0.0033 mm.	0.6 @ 0.0033 mm.	3.7 @ 0.0033 mm.	0.4 @ 0.0033 mm.	0.5 @ 0.0033 mm.	0.7 @ 0.0033 mm.
		0.1 @ 0.0014 mm.	0.1 @ 0.0014 mm.	0.5 @ 0.0014 mm.	0.1 @ 0.0014 mm.	0.7 @ 0.0014 mm.	3.8 @ 0.0013 mm.	0.1 @ 0.0014 mm.	0.4 @ 0.0014 mm.	0.4 @ 0.0014 mm.

TABLE 3 (continued)Results of Physical Analyses for Sediment Samples

	DMMU Location:	-30 ft. to -6	MU-4 60 ft. MLLW e Terrestrial)		DMMU-5 0 ft. to -30 ft. MLLW (Surficial Terrestrial)			DMMU-6 -30 ft. to -60 ft. MLLW (Subsurface Terrestrial)	
	Sample ID:	DMMU-4-2A	DMMU-4-2B	DMMU-5-3A	DMMU-5-3B	DMMU-5-3C	DMMU-6-3A	DMMU-6-3B	DMMU-6-3C
Sediment Des	scription	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, gray	Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray	Sand, silty, mostly fine-grained sand-sized quartz, some silt, gray	Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, gray	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, gray	Sand, silty, mostly fine-grained sand-sized quartz, little silt, trace clay, gray
% Gravel (Particles ≥4.	750 mm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% Coarse Sar	nd	0.0	0.6	0.1	0.1	0.0	0.0	0.0	0.0
% Medium Sa	and	1.8	0.9	0.9	0.9	0.3	0.6	0.6	0.4
% Fine Sand		61.8	65.2	82.1	69.3	74.0	65.4	66.5	72.2
% Sand (total (Particles 0.0)	l) 75-4.749 mm)	63.6	66.7	83.1	70.3	74.3	66.0	67.1	72.6
•	05-0.074 mm)	34.2	30.3	16.4	29.1	24.8	32.3	31.5	26.4
% Clay (Particles <0.	005 mm)	2.2	3.0	0.5	0.6	0.9	1.7	1.4	1.0
% Silt & Clay	(combined)	36.4	33.3	16.9	29.7	25.7	34.0	32.9	27.4
USCS Classif	fication	SM	SM	SM	SM	SM	SM	SM	SM
% Passing Sieve Size	Metric Equivalent (mm)								
#4	4.75	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
#10	2.00	100.0	99.4	99.9	99.9	100.0	100.0	100.0	100.0
#20	0.85	99.4	98.9	99.4	99.5	99.9	99.8	99.7	99.8
#40	0.425	98.2	98.5	99.0	99.0	99.7	99.4	99.4	99.6
#50	0.297	97.6	98.3	98.7	98.8	99.5	99.3	99.2	99.5
#70	0.210	96.3	96.7	96.6	97.5	98.1	98.3	98.4	98.8
#100	0.149	80.8	79.7	75.0	82.4	82.8	87.1	86.6	87.2
#140	0.105	55.4	51.0	34.8	45.5	49.0	57.7	60.5	47.0
#200	0.075	36.4	33.3	16.9	29.7	25.7	34.0	32.9	27.4
		21.3 @ 0.0486 mm.	19.6 @ 0.0472 mm.	7.1 @ 0.0508 mm.	8.0 @ 0.0508 mm.	4.0 @ 0.0513 mm.	12.3 @ 0.0504 mm.	12.7 @ 0.0502 mm.	5.7 @ 0.0507 mm.
		18.6 @ 0.0347 mm.	18.0 @ 0.0336 mm.	3.8 @ 0.0363 mm.	3.3 @ 0.0364 mm.	2.0 @ 0.0365 mm.	9.1 @ 0.0359 mm.	10.2 @ 0.0357 mm.	3.3 @ 0.0361 mm.
Hydrometer F	Readings	16.7 @ 0.0247 mm.	16.0 @ 0.0240 mm.	1.3 @ 0.0259 mm.	1.5 @ 0.0259 mm.	1.6 @ 0.0259 mm.	7.0 @ 0.0255 mm.	9.3 @ 0.0253 mm.	2.8 @ 0.0256 mm.
(% less than t		14.9 @ 0.0128 mm.	13.3 @ 0.0125 mm.	0.9 @ 0.0134 mm.	1.0 @ 0.0134 mm.	1.6 @ 0.0134 mm.	4.9 @ 0.0133 mm.	8.3 @ 0.0131 mm.	2.3 @ 0.0132 mm.
sizes)		13.2 @ 0.0091 mm.	8.5 @ 0.0091 mm.	0.9 @ 0.0094 mm.	0.6 @ 0.0095 mm.	1.3 @ 0.0094 mm.	2.8 @ 0.0094 mm.	5.5 @ 0.0093 mm.	1.8 @ 0.0094 mm.
		3.3 @ 0.0066 mm.	3.9 @ 0.0066 mm.	0.6 @ 0.0067 mm.	0.6 @ 0.0067 mm.	0.9 @ 0.0067 mm.	1.8 @ 0.0067 mm.	2.6 @ 0.0066 mm.	1.2 @ 0.0066 mm.
		0.9 @ 0.0033 mm.	2.2 @ 0.0033 mm.	0.4 @ 0.0033 mm.	0.5 @ 0.0033 mm.	0.8 @ 0.0033 mm.	1.6 @ 0.0033 mm.	1.0 @ 0.0033 mm.	0.9 @ 0.0033 mm.
		0.1 @ 0.0014 mm.	2.4 @ 0.0013 mm.	0.1 @ 0.0014 mm.	0.1 @ 0.0014 mm.	0.5 @ 0.0014 mm.	0.6 @ 0.0014 mm.	0.6 @ 0.0014 mm.	0.6 @ 0.0014 mm.

TABLE 3 (continued)

Results of Physical Analyses for Sediment Samples

	DMMU Location:		DMN Existing Depth (Shallow M	to -60 ft. MLLW			DMM Existing Depth (Marine			Reference (Reference Area)	ODMDS (Corpus Christi New Work ODMDS)
	Sample ID:	DMMU-7-4A	DMMU-7-4B	DMMU-7-4C	DMMU-7-4D	DMMU-8-5A	DMMU-8-5B	DMMU-8-5C	DMMU-8-5D	REF (Composite)	ODMDS (Composite)
Sediment Des	cription	Sand, silty, mostly fine- grained sand-sized quartz, some silt, few clay, brown	Silt, some fine-grained sand-sized quartz, trace clay, gray	Sand, silty, mostly fine- grained sand-sized quartz, some silt,trace clay, tan	Silt, some fine-grained sand-sized quartz, little clay, tan	Sand, silty, mostly fine- grained sand-sized quartz, little silt, few clay, tan	Sand, silty, mostly fine- grained sand-sized quartz, some silt, trace clay, tan	Sand, silty, mostly fine- grained sand-sized quartz, some silt, tan	Silt, some fine to coarse- grained sand-sized quartz, few clay, tan	Sand, silty, mostly fine- grained sand-sized quartz, some silt, trace clay, tan	Sand, silty, mostly fine- grained sand-sized quartz, little silt, tan
% Gravel (Particles ≥4.7	750 mm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% Coarse San	ıd	0.0	0.0	1.1	0.0	0.0	0.0	1.7	2.3	0.0	1.0
% Medium Sar	nd	0.0	4.4	4.4	0.1	0.2	0.2	0.4	6.6	0.1	2.3
% Fine Sand		57.4	40.9	58.1	40.3	66.2	63.9	68.5	34.4	59.7	73.0
% Sand (total) (Particles 0.07		57.4	45.3	63.6	40.4	66.4	64.1	70.6	43.3	59.8	76.3
% Silt (Particles 0.00	05-0.074 mm)	35.2	51.9	35.2	40.1	27.3	31.8	28.5	47.3	39.1	23.3
% Clay (Particles <0.0	005 mm)	7.4	2.8	1.2	19.5	6.3	4.1	0.9	9.4	1.1	0.4
% Silt & Clay ((combined)	42.6	54.7	36.4	59.6	33.6	35.9	29.4	56.7	40.2	23.7
USCS Classific	cation	SM	ML	SM	ML	SM	SM	SM	ML	SM	SM
% Passing Sieve Size	Metric Equivalent (mm)										
#4	4.75	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
#10	2.00	100.0	100.0	98.9	100.0	100.0	100.0	98.3	97.7	100.0	99.0
#20	0.85	100.0	97.7	96.5	100.0	99.9	99.9	98.1	94.1	100.0	97.6
#40	0.425	100.0	95.6	94.5	99.9	99.8	99.8	97.9	91.1	99.9	96.7
#50	0.297	100.0	94.7	93.7	99.9	99.7	99.7	97.8	89.7	99.9	96.0
#70	0.210	99.7	93.8	91.5	99.7	99.2	99.2	96.9	88.1	99.8	90.9
#100	0.149	87.6	86.1	76.2	95.6	78.4	84.9	82.0	80.6	98.9	68.7
#140	0.105	64.4	67.4	54.9	78.1	42.5	52.9	48.9	68.0	89.9	42.9
#200	0.075	42.6	54.7	36.4	59.6	33.6	35.9	29.4	56.7	40.2	23.7
		20.3 @ 0.0485 mm.	31.2 @ 0.0472 mm.	15.3 @ 0.0490 mm.	35.6 @ 0.0464 mm.	14.8 @ 0.0495 mm.	21.8 @ 0.0491 mm.	11.6 @ 0.0509 mm.	37.1 @ 0.0473 mm.	15.4 @ 0.0496 mm.	6.6 @ 0.0510 mm.
		16.4 @ 0.0347 mm.	28.1 @ 0.0337 mm.	11.4 @ 0.0351 mm.	31.6 @ 0.0332 mm.	12.8 @ 0.0352 mm.	18.9 @ 0.0350 mm.	8.9 @ 0.0362 mm.	32.8 @ 0.0339 mm.	11.8 @ 0.0355 mm.	2.4 @ 0.0367 mm.
Hydrometer R	eadings	13.5 @ 0.0248 mm.	26.6 @ 0.0239 mm.	10.5 @ 0.0249 mm.	30.0 @ 0.0236 mm.	12.3 @ 0.0249 mm.	18.0 @ 0.0248 mm.	7.3 @ 0.0257 mm.	30.1 @ 0.0241 mm.	9.1 @ 0.0254 mm.	0.3 @ 0.0261 mm.
(% less than th		10.6 @ 0.0129 mm.	23.1 @ 0.0125 mm.	8.8 @ 0.0129 mm.	28.5 @ 0.0122 mm.	10.8 @ 0.0129 mm.	16.1 @ 0.0129 mm.	5.2 @ 0.0134 mm.	23.6 @ 0.0127 mm.	6.7 @ 0.0132 mm.	0.3 @ 0.0135 mm.
sizes)		9.6 @ 0.0091 mm.	20.1 @ 0.0089 mm.	7.0 @ 0.0092 mm.	25.4 @ 0.0087 mm.	9.3 @ 0.0092 mm.	13.7 @ 0.0092 mm.	1.5 @ 0.0095 mm.	22.0 @ 0.0090 mm.	3.9 @ 0.0094 mm.	0.3 @ 0.0095 mm.
,		8.0 @ 0.0065 mm.	8.8 @ 0.0065 mm.	1.6 @ 0.0066 mm.	22.3 @ 0.0063 mm.	8.8 @ 0.0065 mm.	8.0 @ 0.0066 mm.	1.0 @ 0.0067 mm.	15.6 @ 0.0065 mm.	2.0 @ 0.0067 mm.	0.4 @ 0.0067 mm.
		6.6 @ 0.0033 mm.	0.9 @ 0.0033 mm.	0.8 @ 0.0033 mm.	13.1 @ 0.0032 mm.	0.9 @ 0.0033 mm.	1.1 @ 0.0033 mm.	0.7 @ 0.0033 mm.	1.8 @ 0.0033 mm.	0.5 @ 0.0033 mm.	0.5 @ 0.0033 mm.
		0.1 @ 0.0014 mm.	0.1 @ 0.0014 mm.	0.5 @ 0.0014 mm.	1.1 @ 0.0014 mm.	0.1 @ 0.0014 mm.	0.5 @ 0.0014 mm.	0.5 @ 0.0014 mm.	0.6 @ 0.0014 mm.	0.4 @ 0.0014 mm.	0.4 @ 0.0014 mm.

Note: Total distribution does not necessarily add up to 100% for each sample due to rounding. Some sieve openings differ slightly from phi mm scale.

Unified Soil Classification System (USCS) classes:

Source: Results from Taylor Engineering, Inc.

Compiled by: ANAMAR Environmental Consulting, Inc.

ML = Inorganic silts, very fine sands, rock four, silty or clayey fine sands. SM = Silty sand.

TABLE 4Analytical Results for Dry Weight Metals, Ammonia, Total Cyanide, TPHs, Total Solids, TOCs, Organotins, and pH in Sediment Samples

			DMMU:						to -3	MMU-1 0 ft. MLLV I Terrestr											to -6	MMU-2 60 ft. MLL\ ce Terrest					
		Sa	mple ID:		DMI	MU-1-1A			DMN	/IU-1-1B			DMN	/U-1-1C			DMI	MU-2-1A			DMI	MU-2-1B			DMN	/IU-2-1C	
Analysta	Maximum Conc.	TEL ma/kg	ERL ma/kg	Result	ualifier	MDL	I DI	Result	Qualifier	MDI	LDI	Result	Qualifier	MDL	LDI	Result	ualifier	MDL	l Di	Result	ualifier	MDL	I DI	Result	Qualifier	MDL	LDI
Analyte Metals	mg/kg	mg/kg	mg/kg	mg/kg	ð	MDL	LRL	mg/kg	g	MDL	LRL	mg/kg	Ø	MDL	LRL	mg/kg	Ø	MDL	LRL	mg/kg	Ø	MIDL	LRL	mg/kg	Ø	MDL	LRL
Antimony	<0.0375	х	х	<0.0277	11	0.0277	0.0556	<0.0276	U	0.0276	0.0554	<0.0279	U	0.0279	0.0560	<0.0298	U	0.0298	0.0598	<0.0302	11	0.0302	0.0606	<0.0350	U	0.0350	0.0703
Arsenic	6.20	7.24	8.2	0.891		0.00277	0.0330	0.666		0.00276	0.0334	1.05		0.0273	0.0279	3.07		0.00298	0.0338	1.69		0.00302	0.0302	2.40		0.00350	0.0350
Beryllium	0.521	х	X	0.0436		0.00277	0.0277	0.000		0.00270	0.0270	0.0692		0.000560	0.0273	0.167		0.00230	0.0230	0.151		0.000606	0.0302	0.211		0.000703	
Cadmium	0.133	0.676	1.2	0.0132	.1	0.00277	0.0556	0.0105	.1	0.00276	0.0554	0.0443	.1	0.00279	0.0560	0.0607		0.00298	0.0598	0.0570	.1	0.00302	0.0606	0.0585	.1	0.00350	0.0703
Chromium	7.36	52.3	81	1.10		0.00833	0.167	0.886		0.00830	0.166	1.52		0.00838	0.168	3.85		0.00895	0.179	3.74		0.00908	0.182	4.63		0.0105	0.210
Chromium (III)	6.55	х	X	0.953	J	0.142	5.17	<0.139	U	0.139	5.17	1.19	J	0.142	5.17	3.61	J	0.153	5.18	3.74	J	0.153	5.18	3.72	J	0.178	5.21
Chromium (VI)	1.78	X	X	0.150	J	0.133	5.00	1.50	J	0.131	5.00	0.334	J	0.134	5.00	0.248	J	0.144	5.00	<0.144	Ū	0.144	5.00	0.909	J	0.168	5.00
Copper	5.90	18.7	34	0.568	V	0.0111	0.0556	0.502	V	0.0110	0.0554	1.39	V	0.0112	0.0560	3.22	V	0.0119	0.0598	2.64	V	0.0121	0.0606	2.91	V	0.0140	0.0703
Lead	9.37	30.24	46.7	1.23		0.00277	0.0277	1.19		0.00276	0.0276	1.36		0.00279	0.0279	3.11		0.00298	0.0298	2.46		0.00302	0.0302	2.80		0.00350	0.0350
Mercury	0.029	0.13	0.15	0.00962	J	0.00916	0.0183	<0.00966	U	0.00966	0.0193	<0.00902	U	0.00902	0.0180	<0.00940	U	0.00940	0.0188	<0.00947	U	0.00947	0.0189	<0.00936	U	0.00936	0.0187
Nickel	6.82	15.9	20.9	0.998		0.0556	0.0556	0.818		0.0554	0.0554	1.57		0.0560	0.0560	3.40		0.0598	0.0598	2.54		0.0606	0.0606	3.59		0.0703	0.0703
Selenium	1.41	Х	х	0.312		0.0556	0.111	0.266		0.0554	0.110	0.375		0.0560	0.112	0.703		0.0598	0.119	0.755		0.0606	0.121	0.612		0.0703	0.140
Silver	0.039	0.73	1	0.00472	J	0.00139	0.0277	0.00415	J	0.00138	0.0276	0.00844	J	0.00140	0.0279	0.0125	J	0.00149	0.0298	0.00847	J	0.00151	0.0302	0.0113	J	0.00175	0.0350
Thallium	0.079	х	х	0.0241	J	0.00139	0.0277	0.0220	J	0.00138	0.0276	0.0404		0.00140	0.0279	0.0499		0.00149	0.0298	0.0382		0.00151	0.0302	0.0515		0.00175	0.0350
Zinc	27.9	124	150	3.48		0.0556	0.111	2.69		0.0554	0.110	3.34		0.0560	0.112	8.13		0.0598	0.119	5.43		0.0606	0.121	7.30		0.0703	0.140
Others																											
Ammonia (as nitrogen)	261	Х	Х	8.26	J	6.70	13.4	6.74	J	6.69	13.4	12.8	J	6.70	13.4	8.71	J	7.40	14.8	15.1		7.31	14.6	17.3		8.58	17.2
Cyanide, Total	<0.0439	Х	X	<0.0320	U	0.0320	0.0640	<0.0325	U	0.0325	0.0651	<0.0323	U	0.0323	0.0646	<0.0363	U	0.0363	0.0727	<0.0358	U	0.0358	0.0716	<0.0423	U	0.0423	0.0846
Petroleum Hydrocarbons, Total	2068	х	x	78.4		6.2	25	71.8		6.20	25	75.5		6.20	25	74.5		6.20	25	76.6		6.20	25	78.4		6.20	25
Analysis	Maximum Conc.	TEL %	ERL	Result	ualifier	MDI	LDI	Result	Qualifier	MDI		Result	Qualifier	MDI	LDI	Result	ualifier	MDI	LDI	Result	ualifier	MDI	LDI	Result	Qualifier	MDI	l Di
Analyte Solids, Total	% 85.5		%	% 74.4	V	MDL 0.100	LRL 0.100	% 74.6	<i>y</i>	MDL 0.100	LRL 0.100	% 74.4	<u> </u>	MDL 0.100	LRL 0.100	% 67.5	<u></u> ∨	MDL 0.100	LRL 0.100	% 67.8	ď	MDL 0.100	LRL 0.100	% 58.0	V	MDL 0.100	0.100
Carbon, Total Organic	1.29	X	X X	<0.0594	V H II	0.100	0.100	<0.0514	V H II	0.100	0.100	<0.0569	H, U	0.100	0.100	0.0584	H	0.100	0.100	<0.0529	V H II	0.100	0.100		H, U	0.100	0.0598
	Maximum Conc.	TEL	ERL	Result	nalifier			Result	alifier			Result	alifier			Result	ıalifier			Result	ıalifier			Result	ıalifier		
Analyte	μg/kg	μg/kg	μg/kg	μg/kg	đ	MDL	LRL	μg/kg	ಠ	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	б	MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	ಠ	MDL	LRL
Monobutyltin	1.6	Х	Х	0.39	J, *	0.35	1.3	0.63	J, *	0.35	1.3	1.6	*	0.37	1.4		U, I, *	0.52	1.5	0.39	J, *	0.38	1.4	1.1	J, *	0.44	1.7
Dibutyltin	1.4	Х	Х	<0.26	U, *	0.26	1.3	<0.26	U, *	0.26	1.3		J, P, *		1.4		U, *	0.29	1.5		U, *	0.28	1.4		U, *	0.32	1.7
Tributyltin	1.3	Х	Х	<0.58	U, *	0.58	1.3	<0.58	U, *	0.58	1.3	<0.62	U, *	0.62	1.4	<0.65	U, *	0.65	1.5	<0.63	U, *	0.63	1.4	<0.72	U, *	0.72	1.7
Analyte	pH Range	TEL pH	ERL pH units	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL
pH	7.88 - 9.04	v	X	8.16	H	IIIDL	0.100	8.84	<u>.</u> Н	IIIDL	0.100	8.27	<u> </u>	IIIDL	0.100	8.19	Н	IIIDL	0.100	8.03	<u>.</u> Н	IIIDL	0.100	8.23	H	IIIDE	0.100

TABLE 4 (continued)Analytical Results for Dry Weight Metals, Ammonia, Total Cyanide, TPHs, Total Solids, TOCs, Organotins, and pH in Sediment Samples

DMMU:						to -30	MMU-3) ft. MLLV I Terrestr										/IU-4 ft. MLLW Terrestr									to -30	IMU-5 ft. MLL\ Terresti					
Sample ID:		DMM	U-3-2A				MU-3-2A plicate)			DMN	/IU-3-2B			DMM	U-4-2A			DMI	MU-4-2B			DMM	U-5-3A			DMN	IU-5-3B			DMMU	J-5-3C	
Analyte	Result mg/kg	ualifier	MDL	LRL	Result mg/kg	~	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL
Metals	ilig/kg	G	MIDL	LIXL	ilig/kg	G	WIDE	LIXL	ilig/kg	U	WIDL	LIXL	ilig/kg	G	WIDE	LIXL	ilig/kg	G	WIDE	LIXL	ilig/kg	G	WIDL	LIXL	ilig/kg	G	WIDE	LIXL	ilig/kg	G	WIDL	LIXL
Antimony	<0.0285	U	0.0285	0.0571	<0.0279) U	0.0279	0.0560	<0.0276	U	0.0276	0.0554	<0.0313	U	0.0313	0.0627	<0.0285	U	0.0285	0.0572	<0.0268	U	0.0268	0.0537	<0.0277	U	0.0277	0.0554	<0.0285	U (0.0285	0.0572
Arsenic	0.741			0.0285	0.269			0.0279	0.793		0.00276	0.0276	2.78			0.0313	1.17			0.0285	0.867			0.0268	0.790			0.0277	0.744		0.00285	
Beryllium	0.0341			0.0114	0.0189			0.0112	0.0373		0.000554		0.131		0.000627		0.117		0.000572		0.0412		.000537		0.0626		0.000554		0.0410		.000572	
Cadmium	0.0141	J	0.00285	0.0571	0.0108	J	0.00279	0.0560	0.0220	J	0.00276	0.0554	0.100		0.00313	0.0627	0.0312	J	0.00285	0.0572	0.0319	J (0.00268	0.0537	0.0220	J	0.00277	0.0554	0.0131			0.0572
Chromium	0.748		0.00855	0.171	0.402	V	0.00838	0.168	0.939		0.00829	0.166	2.73		0.00938	0.188	2.63		0.00856	0.171	1.10	(0.00804	0.161	1.12		0.00830	0.166	0.868	C	0.00856	0.171
Chromium (III)	0.228	J	0.144	5.17	0.402	J	0.140	5.17	<0.141	U	0.141	5.17	2.50	J	0.162	5.19	2.39	J	0.151	5.17	1.10	J	0.142	5.16	0.612	J	0.143	5.17	0.868	J	0.141	5.17
Chromium (VI)	0.520	J	0.135	5.00	<0.132	U	0.132	5.00	0.966	J	0.132	5.00	0.230	J	0.153	5.00	0.249	J	0.143	5.00	<0.134	U	0.134	5.00	0.510	J	0.135	5.00	<0.133	U	0.133	5.00
Copper	0.459	V	0.0114	0.0571	0.326	V	0.0112	0.0560	0.633	V	0.0110	0.0554	2.00	V	0.0125	0.0627	2.06	V	0.0114	0.0572	0.652	V	0.0107	0.0537	0.812	V	0.0111	0.0554	0.437	V (0.0114	0.0572
Lead	1.32		0.00285	0.0285	0.438		0.00279	0.0279	0.983		0.00276	0.0276	2.36		0.00313	0.0313	2.17		0.00285	0.0285	1.06	(0.00268	0.0268	1.18		0.00277	0.0277	0.866	C	0.00285	0.0285
Mercury	<0.00929	U	0.00929	0.0186	<0.00994	4 U	0.00994	0.0199	<0.00964	U	0.00964	0.0193	<0.00979	U	0.00979	0.0196	<0.00991	U	0.00991	0.0198	<0.00926	U (0.00926	0.0185	<0.00945	U	0.00945	0.0189	<0.00913	U 0	0.00913	0.0183
Nickel	0.679		0.0571	0.0571	0.418		0.0560	0.0560	0.819		0.0554	0.0554	3.64		0.0627	0.0627	2.03		0.0572	0.0572	0.918		0.0537	0.0537	1.18			0.0554	0.768			0.0572
Selenium	0.269		0.0571	0.114	0.0829		0.0560	0.112	0.288		0.0554	0.110	0.550		0.0627	0.125	0.422		0.0572	0.114	0.320		0.0537	0.107	0.302		0.0554	0.111	0.286		0.0572	0.114
Silver	0.00730		0.00143	0.0285	0.00229		0.00140	0.0279	0.00630			0.0276	0.0121		0.00156	0.0313	0.0105	J		0.0285	0.00820		0.00134	0.0268	0.00697			0.0277	0.00479			0.0285
Thallium	0.0235	J		0.0285	0.00916	i J		0.0279	0.0285		0.00138	0.0276	0.0570		0.00156	0.0313	0.0328			0.0285	0.0311			0.0268	0.0298		0.00138		0.0241		0.00143	0.0285
Zinc	2.28		0.0571	0.114	0.955		0.0560	0.112	2.20		0.0554	0.110	5.61		0.0627	0.125	4.51		0.0572	0.114	2.52		0.0537	0.107	3.15		0.0554	0.111	2.68	(0.0572	0.114
Others																												10.0				
Ammonia (as nitrogen)	<6.91	U	6.91	13.8	<6.71	U	6.71	13.4	6.78	J	6.73	13.5	9.86	J	7.66	15.3	8.01	J	7.15	14.3	<6.71	U	6.71	13.4	9.91	J	6.81	13.6	7.26	J	6.83	13.7
Cyanide, Total	<0.0333	U	0.0333	0.0666	<0.0330) U	0.0330	0.0660	<0.0334	U	0.0334	0.0667	<0.0384	U	0.0384	0.0768	<0.0355	U	0.0355	0.0711	<0.0331	U	0.0331	0.0662	<0.0336	U	0.0336	0.0673	<0.0341	U (0.0341	0.0683
Petroleum Hydrocarbons, Total	2068		62	250	144.1		6.20	25	77.9		6.20	25	83.1		6.20	25	74.6		6.20	25	79.5		6.20	25	292.4		6.20	25	71.5		6.20	25
	Result	ualifier			Result				Result	ualifier			Result	ualifier			Result	ualifier			Result	ualifier			Result	ualifier			Result	ualifier		
Analyte	<u>%</u>	Ø	MDL	LRL	%	<u> </u>	MDL	LRL	%	Ø	MDL	LRL	%	Ø	MDL	LRL	<u>%</u>	ğ	MDL	LRL	%		MDL	LRL	%	<u> </u>	MDL	LRL	%		MDL	LRL
Solids, Total	72.2	. v	0.100	0.100	74.3		0.100	0.100	74.2	V	0.100	0.100	65.1	. V	0.100	0.100	69.7	. V	0.100	0.100	74.0		0.100	0.100	72.9	V	0.100	0.100	73.2		0.100	0.100
Carbon, Total Organic	<0.0547	H, U	0.0547	0.0547	<0.0517	H, U	0.0517	0.0517	<0.0596	H, U	0.0596	0.0596	<0.0567	H, U	0.0567	0.0567	<0.0522	H, U	0.0522	0.0522	<0.0518	H, U	0.0518	0.0518	<0.0522	H, U	0.0522	0.0522	<0.0578	H, U (0.0578	0.0578
Analyte	Result µg/kg	ùalifier	MDL	LRL	Result	_	MDL	LRL	Result	λualifier	MDL	LRL	Result	ùalifier	MDL	LRL	Result μg/kg	ùalifier	MDL	LRL	Result	ùalifier	MDL	LRL	Result	λualifier	MDL	LRL	Result	ùalifier	MDL	LRL
Monobutyltin	0.70	ď	0.35	1.3	μ g/kg <0.37		0.37	1.4	μ g/kg 0.67	<u>.</u>	0.36	1.4	μ g/kg 0.41	<u>ā</u>	0.41	1.6		. <u></u>. Ј, Р	0.37	1.4	μ g/kg 0.63		0.35	1.3	μ g/kg 0.51	. J, *	0.38	1.4	μ g/kg 0.53		0.32	1.2
Dibutyltin	<0.26	U	0.35	1.3	<0.27	U	0.27	1.4	<0.26	Ü	0.36	1.4	<0.30	Ü	0.30	1.6	<0.27	U	0.27	1.4			0.26	1.3	<0.28		0.38	1.4	<0.24		0.24	1.2
Tributyltin	<0.57	U	0.57	1.3	<0.61	U	0.61	1.4	<0.59	U	0.59	1.4	<0.68	U	0.68	1.6	<0.61	U	0.61	1.4	<0.58			1.3	<0.63			1.4	<0.53		0.53	1.2
-	Result pH	ualifier			Result pH	ıalifier			Result pH	ualifier			Result pH	ualifier			Result pH	alifier			Result pH	ıalifier			Result pH	alifier			Result pH	ıalifier		
Analyte	units	Ø	MDL	LRL	units		MDL	LRL		ā	MDL	LRL	units	ā	MDL	LRL	units	ā	MDL	LRL	units		MDL	LRL		ð	MDL	LRL			MDL	LRL
рН	8.47	Н		0.100	8.83	Н		0.100	9.04	Н		0.100	8.09	Н		0.100	8.43	Н		0.100	8.81	Н		0.100	8.92	Н		0.100	8.70	Н		0.100

TABLE 4 (continued)Analytical Results for Dry Weight Metals, Ammonia, Total Cyanide, TPHs, Total Solids, TOCs, Organotins, and pH in Sediment Samples

DMMU:						0 to	MMU-6 -60 ft. MLL ace Terres													ng Depth	MU-7 n to -60 ft. Marine Are		N					
Sample ID:		DMI	MU-6-3A			DM	MU-6-3B			DMI	MU-6-3C			DM	MU-7-4A			DMI	MU-7-4B			DMI	MU-7-4C			DMI	MU-7-4D	
	Result	ualifier			Result	ualifier			Result	ualifier			Result	ualifier			Result	ualifier			Result	ualifier			Result	ualifier		
Analyte	mg/kg	Ø	MDL	LRL	mg/kg	Ø	MDL	LRL	mg/kg	ā	MDL	LRL	mg/kg	Ø	MDL	LRL	mg/kg	Ø	MDL	LRL	mg/kg	Ø	MDL	LRL	mg/kg	ā	MDL	LRL
Metals	10.0070		0.0070	0.0540	10.0070		0.0070	0.0550	-0.0074		0.0074	0.0550	10.0005		0.0005	0.0504	10.0075		0.0075	0.0750	-0.0077		0.0077	0.0554	10.0044		0.0044	0.0400
Antimony	<0.0273	U	0.0273 0.00273	0.0548	<0.0276	U	0.0276	0.0553	<0.0274	U	0.0274	0.0550	<0.0265	U	0.0265	0.0531	<0.0375 3.96	U	0.0375	0.0752	<0.0277	U	0.0277	0.0554	<0.0241	U	0.0241	0.0483
Arsenic	0.740		0.00273	0.0273	1.10		0.00276	0.0276	1.16			0.0274	2.53		0.00265	0.0265			0.00375	0.0375	2.13 0.105		0.00277	0.0277	0.657	-	0.00241	0.0241
Beryllium	0.0698		0.000548	0.0109	0.127 0.0900		0.000553	0.0110	0.121 0.0227		0.000550	0.0110	0.240		0.000531	0.0106	0.521 0.133		0.000752	0.0150	0.105		0.000554	0.0111	0.191			0.00964
Cadmium Chromium	0.0212 1.37	J 	0.00273	0.0548	2.18		0.00276	0.0553 0.166	2.79	J 	0.00274	0.0550 0.165	0.0518 3.60	J 	0.00265	0.0531	7.36		0.00375 0.0113	0.0752 0.225	1.29	J 	0.00277	0.0554 0.166	0.0104 1.65	J 	0.00241	0.0483 0.145
Chromium (III)	1.04		0.00820	5.16	0.948	 I	0.00828	5.17	1.01	 	0.00824	5.16	2.19	.1	0.00790	5.16	6.55		0.0113	5.23	1.08	.1	0.00830	5.17	1.42		0.00724	5.14
Chromium (VI)	0.326	.J	0.130	5.00	1.23	.I	0.145	5.00	1.78	.l	0.132	5.00	1.41	, l	0.132	5.00	0.810	.l	0.183	5.00	0.209	.1	0.140	5.00	0.229	.I	0.124	5.00
Copper	1.04	V	0.0109	0.0548	2.56	V	0.0110	0.0553	1.60	V	0.132	0.0550	2.71	V	0.132	0.0531	5.90	V	0.0150	0.0752	1.11	V	0.131	0.0554	1.11	V	0.00964	0.0483
Lead	1.20		0.00273	0.0273	2.94		0.00276	0.0276	2.15		0.00274	0.0274	4.41		0.00265	0.0265	9.37	<u> </u>	0.0187	0.187	1.42		0.00277	0.0277	1.82		0.00241	0.0241
Mercury	<0.00891	U	0.00891	0.0178	<0.00977	U	0.00977	0.0195	<0.00932	U	0.00932	0.0186	<0.00924	U	0.00924	0.0185	0.0296		0.0130	0.0259	0.0158		0.00696	0.0139	<0.00839	U	0.00839	0.0168
Nickel	1.35		0.0548	0.0548	2.24		0.0553	0.0553	1.81		0.0550	0.0550	4.18		0.0531	0.0531	6.82		0.0752	0.0752	1.26		0.0554	0.0554	1.19		0.0483	0.0483
Selenium	0.285		0.0548	0.109	0.422		0.0553	0.110	0.466		0.0550	0.110	0.832		0.0531	0.106	1.41		0.0752	0.150	0.303		0.0554	0.111	0.805		0.0483	0.0964
Silver	0.00459	J	0.00137	0.0273	0.0169	J	0.00138	0.0276	0.00747	J	0.00137	0.0274	0.0163	J	0.00133	0.0265	0.0394		0.00188	0.0375	0.00249	J	0.00138	0.0277	0.00463	J	0.00121	0.0241
Thallium	0.0178	J	0.00137	0.0273	0.0576		0.00138	0.0276	0.0302		0.00137	0.0274	0.0467		0.00133	0.0265	0.0790		0.00188	0.0375	0.0128	J	0.00138	0.0277	0.0277		0.00121	0.0241
Zinc	2.41		0.0548	0.109	7.78		0.0553	0.110	5.56		0.0550	0.110	12.9		0.0531	0.106	27.9		0.0752	0.150	3.27		0.0554	0.111	4.27		0.0483	0.0964
Others																												
Ammonia (as nitrogen)	6.99	J	6.57	13.1	7.28	J	6.84	13.7	<6.76	U	6.76	13.5	124		6.66	13.3	261		9.17	18.3	14.1		6.61	13.2	50.3		5.98	12.0
Cyanide, Total	<0.0314	U	0.0314	0.0628	<0.0342	U	0.0342	0.0684	<0.0322	U	0.0322	0.0645	<0.0321	U	0.0321	0.0643	<0.0439	U	0.0439	0.0878	<0.0319	U	0.0319	0.0639	<0.0289	U	0.0289	0.0578
Petroleum Hydrocarbons, Total	73.1		6.20	25	79.3		6.20	25	71.8		6.20	25	80.4		6.20	25	69.2		6.20	25	78.9		6.20	25	75.0		6.20	25
Analyte	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL
Solids, Total	75.8	V	0.100	0.100	73.1	<u>∪</u>	0.100	0.100	73.8	<u> </u>	0.100	0.100	74.8	<u>∪</u> ∨	0.100	0.100	54.2	V	0.100	0.100	75.3		0.100	0.100	83.2	<u>∪</u> ∨	0.100	0.100
Carbon, Total Organic		H, U	0.0569	0.0569		H, U	0.0544	0.0544		H, U	0.0594	0.0594	1.29	- Н	0.0513	0.0513		H, U	0.0528	0.0528			0.0545	0.0545	< 0.0579	H, U	0.0579	0.0579
	Result	ralifier	0.000	0.0000	Result	ralifier 3	0.0011	0.0011	Result	ralifier .	0.0001	0.0001	Result	nalifier	0.0010	0.0010	Result	ralifier	0.0020	0.0020	Result	nalifier :	0.00 10	0.0010	Result	nalifier :	0.0070	0.0010
Analyte	μg/kg	đ	MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	đ	MDL	LRL
Monobutyltin		U, *	0.36	1.3		U, *	0.36	1.4	<0.38	U	0.38	1.4	<0.39	U, *	0.39	1.5		J, *	0.41	1.5		J, P, *	0.32	1.2		U, *	0.33	1.2
Dibutyltin		U, *	0.26	1.3		U, *	0.26	1.4	<0.28	U	0.28	1.4	<0.28	U, *	0.28	1.5		U, *	0.30	1.5	<0.24	U, *	0.24	1.2		U, *	0.24	1.2
Tributyltin	<0.59	U, *	0.59	1.3	<0.59	U, *	0.59	1.4	<0.63	U	0.63	1.4	<0.64	U, *	0.64	1.5	1.3	J, *	0.67	1.5	<0.53	U, *	0.53	1.2	<0.54	U, *	0.54	1.2
Analyte	Result pH units	Qualifier	MDL	LRL	Result pH units	Jualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL
pH	8.48	Н	IIIDE	0.100	8.47	Н	IIIDL	0.100	8.58	<u> </u>	HIDL	0.100	8.47	H	IIIDE	0.100	8.43	Н	IIIDL	0.100	7.88	Н	IIIDL	0.100	8.54	Н	IIIDL	0.100
рп	0.48	П		0.100	0.47	П		0.100	ō.ეგ	П		0.100	0.47	П		0.100	0.43	П		0.100	7 .88	П		0.100	0.54	П		0.100

TABLE 4 (continued)Analytical Results for Dry Weight Metals, Ammonia, Total Cyanide, TPHs, Total Solids, TOCs, Organotins, and pH in Sediment Samples

DMMU:							Exist	ing Depth	MU-8 to -60 ft. M e Area)	LLW									ference ence Area)		(Corpus (OMDS New Work	ODMDS)
Sample ID:		DMN	MU-8-5A			DMI	MU-8-5B			DMI	MU-8-5C			DMN	MU-8-5D			I	REF			OI	OMDS	
Analyte	Result mg/kg	Qualifier	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL	Result mg/kg	Qualifier	MDL	LRL
Metals	mg/kg	<u> </u>	IIIDE	LIVE	mg/kg	<u> </u>	11102	LIVE	mg/kg		IIIDL	LIVE	mg/kg	<u> </u>	IIIDL	LIVE	mg/kg		III DE	LIVE	mg/kg	<u> </u>	11102	LIVE
Antimony	<0.0242	U	0.0242	0.0485	<0.0246	U	0.0246	0.0493	<0.0279	U	0.0279	0.0559	<0.0286	U	0.0286	0.0572	<0.0297	U	0.0297	0.0596	<0.0270	U	0.0270	0.0542
Arsenic	0.295		0.00242	0.0242	1.23		0.00246	0.0246	6.20		0.0139	0.139	1.71		0.00286	0.0286	1.71		0.00297	0.0297	1.39		0.0135	0.135
Beryllium	0.217		0.000485	0.00967	0.145		0.000493	0.00982	0.130		0.000559	0.0111	0.224		0.00286	0.0571	0.176		0.00298	0.0594	0.0655		0.00271	0.0541
Cadmium	0.00315	J	0.00242	0.0485	0.0214	J	0.00246	0.0493	0.0353	J	0.00279	0.0559	0.0336	J	0.00286	0.0572	0.0152	J	0.00297	0.0596	0.00909	J	0.00270	0.0542
Chromium	2.32	V	0.00726	0.145	2.24	V	0.00738	0.148	1.52	V	0.00837	0.167	4.16		0.00857	0.171	2.91		0.00893	0.179	1.27		0.00812	0.162
Chromium (III)	2.13	J	0.121	5.15	1.86	J	0.122	5.15	1.19	J	0.138	5.17	4.16	J	0.147	5.17	2.32	J	0.153	5.18	1.13	J	0.137	5.16
Chromium (VI)	0.187	J	0.114	5.00	0.379	J	0.115	5.00	0.326	J	0.130	5.00	<0.138	U	0.138	5.00	0.587	J	0.144	5.00	0.144	J	0.129	5.00
Copper	0.962	V	0.00967	0.0485	1.28	V	0.00982	0.0493	1.45	V	0.0111	0.0559	4.44	V	0.0114	0.0572	1.68	V	0.0119	0.0596	0.435	V	0.0108	0.0542
Lead	2.27		0.00242	0.0242	2.62		0.00246	0.0246	2.33		0.00279	0.0279	2.94		0.00286	0.0286	2.73		0.00297	0.0297	1.70		0.00270	0.0270
Mercury	0.0141	J	0.00994	0.0199	0.0139	J	0.0100	0.0200	<0.00995	U	0.00995	0.0199	<0.00987	U	0.00987	0.0197	0.0121	J	0.00991	0.0198	<0.00999	U	0.00999	0.0200
Nickel	1.64		0.0485	0.0485	2.22		0.0493	0.0493	1.74		0.0559	0.0559	5.00		0.0572	0.0572	3.03		0.0596	0.0596	1.17		0.0542	0.0542
Selenium	0.377		0.0485	0.0967	0.699		0.0493	0.0982	0.449		0.0559	0.111	0.626		0.0572	0.114	0.458		0.0596	0.119	0.363		0.0542	0.108
Silver	<0.00121	U	0.00121	0.0242	0.00403	J	0.00123	0.0246	<0.00140	U	0.00140	0.0279	0.008	J	0.00143	0.0286	0.00851	J	0.00149	0.0297	0.00411	J	0.00135	0.0270
Thallium	0.0223	J	0.00121	0.0242	0.0212	J	0.00123	0.0246	0.024	J	0.00140	0.0279	0.0397		0.00143	0.0286	0.0295	J	0.00149	0.0297	0.0218	J	0.00135	0.0270
Zinc	3.41		0.0485	0.0967	4.49		0.0493	0.0982	4.83		0.0559	0.111	10.2		0.0572	0.114	11.3		0.0596	0.119	5.47		0.0542	0.108
Others																								
Ammonia (as nitrogen)	6.53	J	5.83	11.7	6.65	J	5.93	11.9	<6.71	U	6.71	13.4	15.9		6.93	13.9	13.4	J	7.23	14.5	<6.60	U	6.60	13.2
Cyanide, Total	<0.0290	U	0.0290	0.0579	<0.0294	U	0.0294	0.0588	<0.0331	U	0.0331	0.0661	<0.0349	U	0.0349	0.0697	<0.0362	U	0.0362	0.0724	<0.0331	U	0.0331	0.0662
Petroleum Hydrocarbons, Total	76.3		6.20	25	75.2		6.20	25	73.2		6.20	25	71.7	U	6.20	25	81.7	U	6.20	25	<1.86	U	1.86	25
Analyte	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL
Solids, Total	85.5	V	0.100	0.100	84.2	V	0.100	0.100	74.1	V	0.100	0.100	71.7	H, V	0.100	0.100	69.0	H, V	0.100	0.100	75.6	H, V	0.100	0.100
Carbon, Total Organic	<0.0542	H, U	0.0542	0.0542	<0.0512	H, U	0.0512	0.0512	<0.0593	H, U	0.0593	0.0593	<0.0583	H, U	0.0583	0.0583	<0.0597	H, U	0.0597	0.0597	<0.0548	H, U	0.0548	0.0548
Analyte	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
Monobutyltin	0.59	J, *	0.31	1.2	<0.30	U	0.30	1.2	<0.37	U	0.37	1.4	<0.39	U	0.39	1.5	<0.40	U	0.40	1.5	<0.34	U, *	0.34	1.3
Dibutyltin	<0.23	U, *	0.23	1.2	<0.22	U	0.22	1.2	<0.27	U	0.27	1.4	<0.28	U	0.28	1.5	<0.29	U	0.29	1.5	<0.25	U, *	0.25	1.3
Tributyltin	<0.50	U, *	0.50	1.2	<0.50	U	0.50	1.2	<0.61	U	0.61	1.4	<0.63	U	0.63	1.5	<0.66	U	0.66	1.5	<0.56	U, *	0.56	1.3
	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL	Result pH units	Qualifier	MDL	LRL
Allalyto	8.19	H	MDL	0.100	8.05	<u></u> Н	IIIDE	0.100	8.91	<u></u> Н	IIIDL	0.100	8.75	U	IIIDL	0.100	8.53	U	IIIDL	0.100	8.41	<u></u> Н	MDL	0.100

< #.## = The analyte was not detected (ND) at or above the MDL. The value indicates the MDL.

Qualifiers: H = The parameter was analyzed outside the method specified holding time. I = The MRL/MDL or LOQ/LOD is elevated due to matrix interference. J = Estimated value - The reported value is between the detection limit and reporting limit.

P = The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results. U = Indicates that the compound was analyzed for but not detected. V = Analyte was detected in both sample and method blank.

Sources: All results from NWDLS with the exception of the organotins, cyanide, and TOC results which came from ALS; TEL and ERL values from Buchman (2008). Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 5Analytical Results for Dry Weight Pesticides and Total PCBs in Sediment Samples

			DMMU:						to -30	MU-1 ft. MLLV Terrestr											to -6	MU-2 0 ft. MLL e Terres					
		Saı	mple ID:		DMM	IU-1-1A			DMM	U-1-1B			DMM	IU-1-1C			DMM	U-2-1A			DMM	IU-2-1B			DMM	U-2-1C	
Analyte	Maximum Conc. µg/kg	TEL μg/kg	ERL µg/kg	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
Aldrin	<0.553	Х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Chlordane (technical)	<0.553	2.26	0.5	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
α (cis)-Chlordane	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
γ (trans)-Chlordane	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
p,p' (4,4')-DDD	<0.553	1.22	2	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
p,p' (4,4')-DDE	<0.553	2.07	2.2	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
p,p' (4,4')-DDT	<0.553	1.19	1	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Dieldrin	<0.553	0.72	0.02	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Endosulfan I	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Endosulfan II	<0.553	х	Х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Endosulfan Sulfate	<0.553	х	Х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Endrin	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Endrin Aldehyde	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Endrin Ketone	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Heptachlor	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Heptachlor Epoxide	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
α-ВНС	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
β-ВНС	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
δ-ВНС	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
γ-BHC (Lindane)	<0.553	0.32	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Methoxychlor	<0.553	х	х	<0.390	U	0.390	1.30	<0.398	U	0.398	1.33	<0.401	U	0.401	1.34	<0.445	U	0.445	1.48	<0.443	U	0.443	1.48	<0.518	U	0.518	1.73
Toxaphene	<27.7	0.1	х	<19.5	U	19.5	19.5	<19.9	U	19.9	19.9	<20.1	U	20.1	20.1	<22.2	U	22.2	22.2	<22.1	U	22.1	22.1	<25.9	U	25.9	25.9
PCBs, Total	<1.84	21.6	22.7	<1.34	C+, U	1.34	2.69	<1.34	C+, U	1.34	2.68	<1.34	C+, U	1.34	2.69	<1.48	C+, U	1.48	2.96	<1.48	C+, U	1.48	2.95	<1.73	C+, U	1.73	3.45

TABLE 5 (continued)Analytical Results for Dry Weight Pesticides and Total PCBs in Sediment Samples

DMMU:		DMMU-3 0 to -30 ft. MLLW (Surficial Terrestrial) DMMU-3-2A (Duplicate) DMMU-3-2) to -60	/IU-4 ft. MLLW Terrestr										/IU-5 ft. MLLW Ferrestria					
Sample ID:	ı	DMMU	J-3-2A							DMM	U-3-2B			DMM	U-4-2A			DMM	U-4-2B			DMMU	J-5-3A			рмми	U-5-3B			DMMU	J-5-3C	
	Result µg/kg	Qualifier	MDL	LRL	Result μg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result μg/kg	Qualifier	MDL	LRL	Result μg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
Aldrin <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Chlordane (technical)	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
α (cis)-Chlordane	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
γ (trans)-Chlordane	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
p,p' (4,4')-DDD <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
p,p' (4,4')-DDE <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
p,p' (4,4')-DDT <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Dieldrin <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Endosulfan I	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Endosulfan II	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Endosulfan Sulfate <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Endrin <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Endrin Aldehyde <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Endrin Ketone <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Heptachlor <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Heptachlor Epoxide <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
α-BHC <	<0.409 (C+, U	0.409	1.36	<0.395	C+, U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	C+, U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
β-ВНС <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
δ-BHC <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
γ-BHC (Lindane)	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Methoxychlor <	<0.409	U	0.409	1.36	<0.395	U	0.395	1.32	<0.397	U	0.397	1.32	<0.453	U	0.453	1.51	<0.425	U	0.425	1.42	<0.405	U	0.405	1.35	<0.412	U	0.412	1.37	<0.410	U	0.410	1.37
Toxaphene	<20.4	U	20.4	20.4	<19.8	C+, U	19.8	19.8	<19.8	C+, U	19.8	19.8	<22.7	C+, U	22.7	22.7	<21.2	C+, U	21.2	21.2	<20.3	U	20.3	20.3	<20.6	U	20.6	20.6	<20.5	U	20.5	20.5
PCBs, Total	<1.32	U	1.32	2.64	<1.25	U	1.25	2.50	<1.31	U	1.31	2.63	<1.50	U	1.50	3.00	<1.35	U	1.35	2.71	<1.35	C+, U	1.35	2.70	<1.37		1.37	2.74	<1.37	C+, U	1.37	2.73

TABLE 5 (continued)Analytical Results for Dry Weight Pesticides and Total PCBs in Sediment Samples

	DMMU:							IU-6 ft. MLL\ Terrest												_	-	/IU-7 to -60 ft. arine Are		1					
	Sample ID:		DMMU	J-6-3A			DMMU	J-6-3B			DMMU	J-6-3C			DMMU	J-7-4A			DMMU	J-7-4B			DMMU	J-7-4C			DMMU	-7-4D	
Analyte		Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
Aldrin		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Chlordane (technical)		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
α (cis)-Chlordane		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
γ (trans)-Chlordane		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
p,p' (4,4')-DDD		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
p,p' (4,4')-DDE		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
p,p' (4,4')-DDT		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Dieldrin		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Endosulfan I		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Endosulfan II		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Endosulfan Sulfate		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Endrin		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Endrin Aldehyde		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Endrin Ketone		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Heptachlor		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Heptachlor Epoxide		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
α-ВНС		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
β-ВНС		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
δ-ВНС		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
γ-BHC (Lindane)		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Methoxychlor		<0.396	U	0.396	1.32	<0.410	U	0.410	1.37	<0.406	U	0.406	1.35	<0.401	U	0.401	1.34	<0.553	U	0.553	1.84	<0.398	U	0.398	1.33	<0.350	U	0.350	1.17
Toxaphene		<19.8	U	19.8	19.8	<20.5	U	20.5	20.5	<20.3	U	20.3	20.3	<20.0	U	20.0	20.0	<27.7	U	27.7	27.7	<19.9	U	19.9	19.9	<17.5	U	17.5	17.5
PCBs, Total		<1.32	C+, U	1.32	2.64	<1.37	C+, U	1.37	2.74	<1.35	C+, U	1.35	2.71	<1.34	C+, U	1.34	2.67	<1.84	C+, U	1.84	3.69	<1.33	C+, U	1.33	2.66	<1.20	C+, U	1.20	2.40

TABLE 5 (continued)Analytical Results for Dry Weight Pesticides and Total PCBs in Sediment Samples

DN	ими:							Existi	DMM ng Depth (Marin	to -60 ft. I	MLLW									erence ence Area)	(Cor	ous Ch	OMDS risti New OMDS)	Work
Samp	le ID:		DMM	IU-8-5A			DMM	U-8-5B			DMM	U-8-5C			DMM	U-8-5D			н	-REF			HI-C	DMDS	
Analyte		Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
Aldrin		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Chlordane (technical)		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
α (cis)-Chlordane		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
γ (trans)-Chlordane		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
p,p' (4,4')-DDD		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
p,p' (4,4')-DDE		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
p,p' (4,4')-DDT		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Dieldrin		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Endosulfan I		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Endosulfan II		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Endosulfan Sulfate		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Endrin		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Endrin Aldehyde		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Endrin Ketone		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Heptachlor		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Heptachlor Epoxide		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
α-BHC		<0.345	U	0.345	1.15	<0.348	C+, U	0.348	1.16	<0.377	C+, U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	C+, U	0.395	1.32
β-ВНС		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
δ-ВНС		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
γ-BHC (Lindane)		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Methoxychlor		<0.345	U	0.345	1.15	<0.348	U	0.348	1.16	<0.377	U	0.377	1.26	<0.418	U	0.418	1.39	<0.434	U	0.434	1.45	<0.395	U	0.395	1.32
Toxaphene		<17.3	U	17.3	17.3	<17.4	C+, U	17.4	17.4	<18.9	C+, U	18.9	18.9	<20.9	C+, U	20.9	20.9	<21.7	C+, U	21.7	21.7	<19.7	U	19.7	19.7
PCBs, Total		<1.17	U	1.17	2.34	<1.15	U	1.15	2.30	<1.26	U	1.26	2.52	<1.39	C+, U	1.39	2.79	<1.45	C+, U	1.45	2.90	<1.31	C+, U	1.31	2.62

Bolded values meet or exceed the TEL and (or) ERL.

< #.## = The analyte was not detected (ND) at or above the MDL. The value indicates the MDL.

Qualifier definitions: C+ = The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report. U = Non-detected compound.

Sources: Results from NWDLS; TEL and ERL values from Buchman (2008).

Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 6Analytical Results for Dry Weight PAHs in Sediment Samples

			DMMU:						o -30	MU-1 ft. MLL Terrest											to -6	MU-2 0 ft. ML e Terre:					
		Sa	mple ID:		DMM	U-1-1A			DMM	U-1-1B			DMM	U-1-1C			DMM	U-2-1A			DMM	U-2-1B		I	DMM	U-2-1C	
Analyte	Maximum Conc. µg/kg	TEL μg/kg	ERL µg/kg	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result μg/kg	Qualifier	MDL	LRL	Result μg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
Acenaphthene ^{LPAH}	416	6.71	16	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Acenaphthylene ^{LPAH}	323	5.87	44	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Anthracene ^{LPAH}	276	46.9	85.3	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Benzo(a)anthracene	31.3	74.8	261	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Benzo(a)pyrene ^{HPAH}	7.37	88.8	430	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Benzo(b&k)fluoranthene ^{HPAH}	13.2	х	х	<3.28	U	3.28	6.56	<3.12	U	3.12	6.24	<3.18	U	3.18	6.36	<3.62	U	3.62	7.22	<3.66	U	3.66	7.30	<4.18	U	4.18	8.38
Benzo(g,h,i)perylene	22.3	х	х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Chrysene ^{HPAH}	36.7	108	384	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Dibenzo(a,h)anthracene ^{HPAH}	<16.8	6.22	63.4	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Fluoranthene HPAH	81.3	113	600	5.04		1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Fluorene ^{LPAH}	1190	21.2	19	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Indeno(1,2,3-cd)pyrene ^{HPAH}	2.53	х	х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Naphthalene ^{LPAH}	5.83	34.6	160	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Phenanthrene LPAH	522	86.7	240	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Pyrene ^{HPAH}	90.3	153	665	3.75		1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Total LPAHs	2485	312	552	9.84				9.36				9.54				10.9				11.0				12.5			
Total HPAHs	329	655	1700	21.9				15.6				15.9				18.1				18.3				20.9			
Total PAHs	2814	1684	4022	31.8				25.0				25.4				29.0				29.3				33.4			

TABLE 6 (continued)Analytical Results for Dry Weight PAHs in Sediment Samples

DMMU:					0 to -: (Surfici		ILLW estrial)									/IU-4 ft. MLLV Terrest									-30	MU-5 ft. MLL Terrest					
Sample ID:		DMMU-	-3-2A			OMMU- (Duplic		l	DMM	U-3-2E	3	[ОММ	U-4-2A		D	ммс	J-4-2B			ММ	U-5-3A			ММ	U-5-3B		D	MMU-	-5-3C	
Analyte	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	DL LRL	Result µg/kg	~	MDL	LRL	Result	~~	MDL		Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	==	MDL	LRL	Result µg/kg	ï	MDL		Result µg/kg	ä	ИDL	LRL
Acenaphthene ^{LPAH}	416	A, H	16.8	33.7	3.71		.56 3.12	1.00		1.64	3.28	<1.80			3.60	<1.74			3.47	<1.62		1.62	3.24	12.6		1.64	3.27	<1.56		1.56	
Acenaphthylene ^{LPAH}	323	A, H	16.8	33.7	5.87	1	.56 3.12	<1.64	U	1.64	3.28	2.03	J	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	4.35		1.64	3.27	<1.56	U ´	1.56	3.12
Anthracene ^{LPAH}	<16.8	A, H, U	16.8	33.7	3.65	1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	23.1		1.64	3.27	<1.56	U ′	1.56	3.12
Benzo(a)anthracene	31.3	A, H, J	16.8	33.7	<1.56	U 1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	17.2		1.64	3.27	<1.56	U ´	1.56	3.12
Benzo(a)pyrene ^{HPAH}	<16.8	A, H, U	16.8	33.7	<1.56	U 1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	2.94	J	1.64	3.27	<1.56	U ′	1.56	3.12
Benzo(b&k)fluorantheneHPAH	<16.8	A, H, U	16.8	33.7	<1.56	U 1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<3.24	U	3.24	6.48	5.10		3.28	6.54	<3.12	U 3	3.12	6.24
Benzo(g,h,i)peryleneHPAH	22.3	A, H, J	16.8	33.7	<1.56	U 1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	1.78	J	1.64	3.27	<1.56	U ′	1.56	3.12
Chrysene ^{HPAH}	36.7	A, H	16.8	33.7	<1.56	U 1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	7.95		1.64	3.27	<1.56	U ´	1.56	3.12
Dibenzo(a,h)anthracene	<16.8	A, H, U	16.8	33.7	<1.56	U 1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U ´	1.56	3.12
Fluoranthene HPAH	81.3	A, H	16.8	33.7	2.52	J 1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	3.80		1.64	3.27	<1.56	U ′	1.56	3.12
Fluorene ^{LPAH}	1190	Н	42.1	84.1	11.1	1	.56 3.12	<1.64	U	1.64	3.28	4.00		1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	5.38		1.64	3.27	<1.56	U ′	1.56	3.12
Indeno(1,2,3-cd)pyreneHPAH	<16.8	A, H, U	16.8	33.7	<1.56	U 1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U 1	1.56	3.12
Naphthalene LPAH	<16.8	A, H, U	16.8	33.7	<1.56	U 1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U ′	1.56	3.12
Phenanthrene ^{LPAH}	522	A, H	16.8	33.7	4.39	1	.56 3.12	<1.64	U	1.64	3.28	2.74	J	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	20.1		1.64	3.27	<1.56	U ´	1.56	3.12
Pyrene ^{HPAH}	90.3	A, H	16.8	33.7	3.22	1	.56 3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	11.1		1.64	3.27	<1.56	U 1	1.56	3.12
Total LPAHs	2485				30.3			9.84				14.2				10.4				9.72				67.2				9.36			
Total HPAHs	329				16.7			14.8				16.2				15.7				16.2				53.2				15.6			
Total PAHs	2814				46.9			24.6				30.4				26.1				25.9				120				25.0			

TABLE 6 (continued)Analytical Results for Dry Weight PAHs in Sediment Samples

DMMU:						to -60	MU-6) ft. MLL e Terres											l	_	Depth	MU-7 to -60 ft larine Ar		w					
Sample ID:		DMMU	U-6-3A			DMM	U-6-3B			DMM	U-6-3C			DMM	U-7-4A			DMM	U-7-4B			DMM	U-7-4C			DMM	U-7-4D	
Analyte	Resul t µg/kg	Qualifier	MDL	LRL	Resul t µg/kg	Qualifier	MDL	LRL	Resul t µg/kg	Qualifier	MDL		Resul t µg/kg	Qualifier	MDL	LRL	Resul t µg/kg	Qualifier	MDL	LRL	Resul t µg/kg	Qualifier	MDL		Resul t µg/kg	Qualifier	MDL	LRL
Acenaphthene ^{LPAH}	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	21.3		1.59	3.18	5.31		2.16	4.33	<1.53	U	1.53	3.06	γ9/κ9 <1.48	U	1.48	2.96
Acenaphthylene ^{LPAH}	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	3.66		1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	1.86	J	1.48	2.96
Anthracene ^{LPAH}	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	276		15.9	31.8	2.19	J	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Benzo(a)anthracene	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	12.8		1.59	3.18	2.17	J	2.16	4.33	<1.53	U	1.53	3.06	2.23	J	1.48	2.96
Benzo(a)pyrene ^{HPAH}	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	7.37		1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	2.85	J	1.48	2.96
Benzo(b&k)fluoranthene	<3.08	U	3.08	6.16	<3.32	U	3.32	6.64	<3.20	U	3.20	6.40	13.2		3.18	6.36	5.29	J	4.32	8.66	<3.06	U	3.06	6.12	5.04	J	2.96	5.92
Benzo(g,h,i)perylene ^{HPAH}	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	3.22		1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	2.97		1.48	2.96
Chrysene HPAH	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	14.8		1.59	3.18	2.30	J	2.16	4.33	<1.53	U	1.53	3.06	2.52	J	1.48	2.96
Dibenzo(a,h)anthracene HPAH	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Fluoranthene HPAH	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	78.9		4.77	9.55	10.3		2.16	4.33	<1.53	U	1.53	3.06	6.37		1.48	2.96
Fluorene ^{LPAH}	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	28.5		1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Indeno(1,2,3-cd)pyrene ^{HPAH}	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	2.53	J	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	2.22	J	1.48	2.96
Naphthalene ^{LPAH}	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	1.63	J	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Phenanthrene ^{LPAH}	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	129		4.77	9.55	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Pyrene ^{HPAH}	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	59.1		4.77	9.55	9.39		2.16	4.33	<1.53	U	1.53	3.06	5.39		1.48	2.96
Total LPAHs	9.24				9.96				9.60				460				16.1				9.18				9.26			
Total HPAHs	15.4				16.6				16.0				194				38.1				15.3				31.1			
Total PAHs	24.6				26.6				25.6				654				54.2				24.5				40.3			

TABLE 6 (continued)

Analytical Results for Dry Weight PAHs in Sediment Samples

DMMU:							Existi	ng Depth	MU-8 to -60 ft. l e Area)	MLLW							(erence ence Area	ı)	(Corp	us Chi	MDS risti New ' MDS)	Work
Sample ID:		DMM	U-8-5A			DMM	IU-8-5B			DMN	IU-8-5C			DMM	IU-8-5D			н	I-REF			HI-C	DMDS	
Analyte	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
Acenaphthene ^{LPAH}	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	2.24	J	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Acenaphthylene ^{LPAH}	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Anthracene ^{LPAH}	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Benzo(a)anthracene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Benzo(a)pyrene ^{HPAH}	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Benzo(b&k)fluoranthene	<2.92	U	2.92	5.84	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<3.48	U	3.48	6.98	<3.62	U	3.62	7.24	<3.10	U	3.10	6.22
Benzo(g,h,i)perylene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Chrysene ^{HPAH}	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Dibenzo(a,h)anthracene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Fluoranthene HPAH	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Fluorene ^{LPAH}	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Indeno(1,2,3-cd)pyreneHPAH	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Naphthalene LPAH	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	5.83		1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Phenanthrene ^{LPAH}	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	3.79		1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Pyrene ^{HPAH}	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11
Total LPAHs	8.76				8.34				16.7				10.4				10.9				9.30			
Total HPAHs	14.6				12.5				14.6				17.4				18.1				15.5			
Total PAHs	23.4				20.9				31.3				27.8				29.0				24.8			

Bolded values meet or exceed the TEL and (or) ERL.

LPAH = Low molecular weight PAH as defined in the *Regional Implementation Agreement* by USEPA/USACE (2003).

HPAH = High molecular weight PAH as defined in the Regional Implementation Agreement by USEPA/USACE (2003).

For calculating total PAHs, U-qualified results use the MDL and J-qualified results use the value reported by the laboratory.

Qualifiers: A = Detection limit elevated due to abundance of non-target analyte. H = The parameter was analyzed outside the method specified holding time. J = Estimated value - The reported value is between the detection limit and reporting limit. U = Indicates that the compound was analyzed for but not detected.

Sources: Results from NWDLS; TEL and ERL values from Buchman (2008).

Compiled by: ANAMAR Environmental Consulting, Inc.

< #.## = The analyte was not detected (ND) at or above the MDL. The value indicates the MDL.

TABLE 7Analytical Results for Dry Weight SVOCs in Sediment Samples

			DMMU:							/IU-1 ft. MLLW Γerrestri												/IU-2 ft. MLLV Terrest					
		Sar	mple ID:		DMMU	J-1-1A			DMMU	J-1-1B			DMMU	I-1-1C			DMMU	J-2-1A			DMMU	J-2-1B			DMMU	-2-1C	
	Maximum Conc.	TEL	ERL	Result	ualifier			Result	ualifier			Result	ualifier			Result	ualifier			Result	ualifier			Result	Qualifier		
Analyte	μg/kg	μg/kg	μg/kg	μg/kg	ā	MDL	LRL	μg/kg	Ø	MDL	LRL	μg/kg	Ø	MDL	LRL	μg/kg	Ø	MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg		MDL	LRL
1,2,4-Trichlorobenzene	<16.8	Х	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
1,2-Dichlorobenzene	<16.9	Х	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
1,2-Diphenylhydrazine	<16.8	Х	Х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
1,3-Dichlorobenzene	<16.9	Х	Х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
1,4-Dichlorobenzene	<16.9	Х	Х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
2,4,6-Trichlorophenol	<33.7	Х	X	<3.28	U	3.28	6.56	<3.12	U	3.12	6.24	<3.18	U	3.18	6.37	<3.61	U	3.61	7.22	<3.65	U	3.65	7.31	<4.19	U	4.19	8.37
2,4-Dichlorophenol	8.75	Х	X	<3.28	U	3.28	6.56	<3.12	U	3.12	6.24	<3.18	U	3.18	6.37	<3.61	U	3.61	7.22	<3.65	U	3.65	7.31	<4.19	U	4.19	8.37
2,4-Dimethylphenol	<33.7	Х	X	<3.28	U	3.28	6.56	<3.12	U	3.12	6.24	<3.18	U	3.18	6.37	<3.61	U	3.61	7.22	<3.65	U	3.65	7.31	<4.19	U	4.19	8.37
2,4-Dinitrophenol	<33.7	Х	Х	<3.28	U	3.28	6.56	<3.12	U	3.12	6.24	<3.18	U	3.18	6.37	<3.61	U	3.61	7.22	<3.65	U	3.65	7.31	<4.19	U	4.19	8.37
2,4-Dinitrotoluene (2,4-DNT)	<16.8	X	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
2,6-Dinitrotoluene (2,6-DNT)	18.5	X	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
2-Chloronaphthalene	<16.8	Х	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
2-Chlorophenol	<33.8	Х	X	<3.28	U	3.28	6.56	<3.12	U	3.12	6.24	<3.18	U	3.18	6.37	<3.61	U	3.61	7.22	<3.65	U	3.65	7.31	<4.19	U	4.19	8.37
2-Nitrophenol	<33.7	Х	X	<3.28	U	3.28	6.56	<3.12	U	3.12	6.24	<3.18	U	3.18	6.37	<3.61	U	3.61	7.22	<3.65	U	3.65	7.31	<4.19	U	4.19	8.37
3,3'-Dichlorobenzidine	<2.16	Х	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
4,6-Dinitro-o-Cresol	<135	Х	X	<13.1	U	13.1	26.2	<12.5	U	12.5	24.9	<12.7	U	12.7	25.5	<14.4	U	14.4	28.9	<14.6	U	14.6	29.2	<16.7	U	16.7	33.5
4-Bromophenyl phenyl ether (BDE-3)	<16.8	Х	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
4-Chlorophenyl phenyl ether	<16.8	Х	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
4-Nitrophenol	<16.8	Х	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Benzidine	<2.16	х	х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Bis(2-Chloroethoxy) methane	<16.8	х	х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Bis(2-Chloroethyl) ether	<16.8	Х	Х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Bis(2-chloroisopropyl) ether	<16.8	Х	Х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Bis(2-ethylhexyl) phthalate	18.8	182	х	2.32	V, J	1.64	3.28	2.26	V, J	1.56	3.12	2.06	V, J	1.59	3.18	1.89	V, J	1.81	3.61	2.00	V, J	1.83	3.65	2.42	V, J	2.09	4.19
Butyl benzyl phthalate	<16.8	х	х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Diethyl phthalate	4.64	х	X	2.75	V, J	1.64	3.28	1.73	V, J	1.56	3.12	2.32	V, J	1.59	3.18	2.10	V, J	1.81	3.61	2.17	V, J	1.83	3.65	3.57	V, J	2.09	4.19
Dimethyl phthalate	<16.8	х	Х	<1.64	Ú	1.64	3.28	<1.56	Ú	1.56	3.12	<1.59	Ú	1.59	3.18	<1.81	Ú	1.81	3.61	<1.83	Ú	1.83	3.65	<2.09	Ú	2.09	4.19
Di-n-butyl phthalate	120	х	Х	5.75	V	1.64	3.28	5.03	V	1.56	3.12	4.39	V	1.59	3.18	6.35	V	1.81	3.61	8.89	V	1.83	3.65	11.4	V	2.09	4.19
Di-n-octyl phthalate	<16.8	х	Х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Hexachlorobenzene	<16.8	Х	Х	<1.64	Ū	1.64	3.28	<1.56	Ū	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Hexachlorobutadiene	<16.9	X	х	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Hexachlorocyclopentadiene	3.96	X	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	Ū	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Hexachloroethane	<16.9	X	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Isophorone	<16.8	X	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
Nitrobenzene	<16.8	X	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
N-Nitrosodimethylamine	<16.8	X	X	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
N-Nitrosodi-n-propylamine	<16.8	x	×	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
N-Nitrosodiphenylamine	<16.8	X	×	<1.64	U	1.64	3.28	<1.56	U	1.56	3.12	<1.59	U	1.59	3.18	<1.81	U	1.81	3.61	<1.83	U	1.83	3.65	<2.09	U	2.09	4.19
P-Chloro-m-Cresol	<33.7	X	X	<3.28	U	3.28	6.56	<3.12	U	3.12	6.24	<3.18	U	3.18	6.37	<3.61	Ш	3.61	7.22	<3.65	- 11	3.65	7.31	<4.19	U	4.19	8.37
Pentachlorophenol	<33.7	X	X	<3.28	U	3.28	6.56	<3.12	U	3.12	6.24	<3.18	U	3.18	6.37	<3.61	U	3.61	7.22	<3.65	IJ	3.65	7.31	<4.19	U	4.19	8.37
													U								IJ			ł			
Phenol, Total	11.3	Х	Х	<3.28	U	3.28	6.56	<3.12	U	3.12	6.24	<3.18	U	3.18	6.37	<3.61	U	3.61	7.22	<3.65	U	3.65	7.31	<4.19	U	4.19	8.37

TABLE 7 (continued)Analytical Results for Dry Weight SVOCs in Sediment Samples

DMMU:						DMMU -30 ft. icial Te		I)									MU-4 ft. MLLV Terrest										U-5 MLLV errestri					
Sample ID:		DMMU-3	3-2A			DMMU (Dupli				DMMU	-3-2B			DMMU	-4-2A			DMML	J-4-2B			OMMU	-5-3A		D	MMU-	5-3B		D	MMU-	5-3C	
Analyte	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	l Ri	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL		Result	Qualifier	MDL	LRL	Result μg/kg	Qualifier	MDL	I RI
1,2,4-Trichlorobenzene	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56			3.12
1,2-Dichlorobenzene	<16.9	A, U	16.9	33.8	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56			3.12
1,2-Diphenylhydrazine	<16.8	A, H, U	16.8	33.7	<1.56	Ū	1.56	3.12	<1.64	Ū	1.64	3.28	<1.80	U	1.80	3.60	<1.74	Ū	1.74	3.47	<1.62	Ū	1.62	3.24	<1.64	U	1.64	3.27	<1.56			3.12
1,3-Dichlorobenzene	<16.9	A, U	16.9	33.8	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U		3.12
1,4-Dichlorobenzene	<16.9	A, U	16.9	33.8	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56			3.12
2,4,6-Trichlorophenol	<33.7	A, H, U	33.7	67.3	<3.12	U	3.12	6.24	<3.28	U	3.28	6.56	<3.60	U	3.60	7.19	<3.47	U	3.47	6.94	<3.24	U	3.24	6.49	<3.27	U	3.27	6.54	<3.12	U	3.12	6.23
2,4-Dichlorophenol	<33.7	A, H, U	33.7	67.3	8.75		3.12	6.24	<3.28	U	3.28	6.56	<3.60	U	3.60	7.19	<3.47	U	3.47	6.94	<3.24	U	3.24	6.49	<3.27	U	3.27	6.54	<3.12			6.23
2,4-Dimethylphenol	<33.7	A, H, U	33.7	67.3	<3.12	U	3.12	6.24	<3.28	U	3.28	6.56	<3.60	U	3.60	7.19	<3.47	U	3.47	6.94	<3.24	U	3.24	6.49	<3.27	U	3.27	6.54	<3.12	U	3.12	6.23
2,4-Dinitrophenol	<33.7	A, H, U	33.7	67.3	<3.12	C+, U	3.12	6.24	<3.28	U	3.28	6.56	<3.60	U	3.60	7.19	<3.47	U	3.47	6.94	<3.24	U	3.24	6.49	<3.27	U	3.27	6.54	<3.12	U	3.12	6.23
2,4-Dinitrotoluene (2,4-DNT)	<16.8	A, H, U	16.8	33.7	<1.56	C+, U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U	1.56	3.12
2,6-Dinitrotoluene (2,6-DNT)	<16.8	A, H, U	16.8	33.7	18.5		1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U	1.56	3.12
2-Chloronaphthalene	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U	1.56	3.12
2-Chlorophenol	<33.8	A, U	33.8	67.5	<3.12	U	3.12	6.24	<3.28	U	3.28	6.56	<3.60	U	3.60	7.19	<3.47	U	3.47	6.94	<3.24	U	3.24	6.49	<3.27	U	3.27	6.54	<3.12	U	3.12	6.23
2-Nitrophenol	<33.7	A, H, U	33.7	67.3	<3.12	U	3.12	6.24	<3.28	U	3.28	6.56	<3.60	U	3.60	7.19	<3.47	U	3.47	6.94	<3.24	U	3.24	6.49	<3.27	U	3.27	6.54	<3.12	U	3.12	6.23
3,3'-Dichlorobenzidine	<1.69	CQ, U	1.69	3.38	<1.56	CQ, U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U	1.56	3.12
4,6-Dinitro-o-Cresol	<135	A, H, U	135	269	<12.5	U	12.5	25.0	<13.1	U	13.1	26.2	<14.4	U	14.4	28.8	<13.9	U	13.9	27.8	<13.0	U	13.0	25.9	<13.1	U	13.1	26.2	<12.5	U	12.5	24.9
4-Bromophenyl phenyl ether (BDE-3)	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U	1.56	3.12
4-Chlorophenyl phenyl ether	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56			3.12
4-Nitrophenol	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U	1.56	3.12
Benzidine	<1.69	CQ, U	1.69	3.38		CQ, U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U		3.24	<1.64	U	1.64	3.27	<1.56	U		3.12
Bis(2-Chloroethoxy) methane	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56			3.12
Bis(2-Chloroethyl) ether	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U		3.12
Bis(2-chloroisopropyl) ether	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U		3.12
Bis(2-ethylhexyl) phthalate	18.8	A, H, J, V	16.8	33.7	2.15	V, J	1.56	3.12	2.57	V, J	1.64	3.28	2.51	V, J	1.80	3.60	2.26	V, J	1.74	3.47	<1.62	B, U	1.62	3.24	2.36	V, J	1.64	3.27		V, J		3.12
Butyl benzyl phthalate	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56	U		3.12
Diethyl phthalate	<16.8	A, H, U	16.8	33.7	2.86	V, J	1.56	3.12	2.86	V, J	1.64	3.28	2.97	V, J	1.80	3.60	2.48	V, J	1.74	3.47	2.13	V, J	1.62	3.24	4.64	V	1.64	3.27				3.12
Dimethyl phthalate	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56			3.12
Di-n-butyl phthalate	120	A, H	16.8	33.7	13.6	V	1.56	3.12	14.1	V	1.64	3.28	13.7	V	1.80	3.60	14.2	V	1.74	3.47	6.45	V		3.24	7.08	V	1.64	3.27	6.49			3.12
Di-n-octyl phthalate	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56			3.12
Hexachlorobenzene	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56			3.12
Hexachlorobutadiene	<16.9	A, U	16.9	33.8	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	<1.64	U	1.64	3.27	<1.56			3.12
Hexachlorocyclopentadiene	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U	1.62	3.24	3.96		1.64	3.27	<1.56	U		3.12
Hexachloroethane	<16.9	A, U	16.9	33.8	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U		3.24	<1.64	U	1.64	3.27	<1.56			3.12
Isophorone	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U		3.24	<1.64	U	1.64	3.27	<1.56			3.12
Nitrobenzene	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U		3.60	<1.74	U		3.47	<1.62	U		3.24	<1.64	U		3.27	<1.56			3.12
N-Nitrosodimethylamine	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U ,.	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U		3.24	<1.64	U	1.64	3.27	<1.56			3.12
N-Nitrosodi-n-propylamine	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U		3.24	<1.64	U	1.64	3.27	<1.56			3.12
N-Nitrosodiphenylamine	<16.8	A, H, U	16.8	33.7	<1.56	U	1.56	3.12	<1.64	U	1.64	3.28	<1.80	U	1.80	3.60	<1.74	U	1.74	3.47	<1.62	U		3.24	<1.64	U	1.64	3.27	<1.56			3.12
P-Chloro-m-Cresol	<33.7	A, H, U	33.7	67.3	<3.12	U	3.12	6.24	<3.28	U	3.28	6.56	<3.60	U	3.60	7.19	<3.47	U	3.47	6.94	<3.24	U		6.49	<3.27	U	3.27	6.54	<3.12			6.23
Pentachlorophenol	<33.7	A, H, U	33.7	67.3	<3.12	U	3.12	6.24	<3.28	U	3.28	6.56	<3.60	U		7.19	<3.47	U	3.47	6.94	<3.24	U		6.49	<3.27	U		6.54	<3.12			6.23
Phenol, Total	<33.7	A, H, U	33.7	67.3	4.50	J	3.12	6.24	3.92	J	3.28	6.56	<3.60	U	3.60	7.19	<3.47	U	3.47	6.94	<3.24	U	3.24	6.49	4.43	J	3.27	6.54	<3.12	U	3.12	6.23

TABLE 7 (continued)Analytical Results for Dry Weight SVOCs in Sediment Samples

DMMU:) to -60	MU-6 ft. MLL\ Terrest													ng Depth	MU-7 to -60 ft. larine Are							
Sample ID:		DMM	J-6-3A			DMMU	J-6-3B			DMMU	U-6-3C			DMM	U-7-4A			DMM	U-7-4B			DMM	U-7-4C			DMMU	-7-4D	
Analyte	Result µg/kg	Qualifier	MDL	LRL	Result	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
1,2,4-Trichlorobenzene	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
1,2-Dichlorobenzene	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
1,2-Diphenylhydrazine	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	C+, U	1.53	3.06	<1.48	C+, U	1.48	2.96
1,3-Dichlorobenzene	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
1,4-Dichlorobenzene	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
2,4,6-Trichlorophenol	<3.08	U	3.08	6.17	<3.32	U	3.32	6.63	<3.20	U	3.20	6.39	<3.18	U	3.18	6.36	<4.33	U	4.33	8.66	<3.06	U	3.06	6.12	<2.96	U	2.96	5.92
2,4-Dichlorophenol	<3.08	U	3.08	6.17	<3.32	U	3.32	6.63	<3.20	U	3.20	6.39	<3.18	U	3.18	6.36	<4.33	U	4.33	8.66	<3.06	U	3.06	6.12	<2.96	U	2.96	5.92
2,4-Dimethylphenol	<3.08	U	3.08	6.17	<3.32	U	3.32	6.63	<3.20	U	3.20	6.39	<3.18	U	3.18	6.36	<4.33	U	4.33	8.66	<3.06	U	3.06	6.12	<2.96	U	2.96	5.92
2,4-Dinitrophenol	<3.08	U	3.08	6.17	<3.32	U	3.32	6.63	<3.20	U	3.20	6.39	<3.18	U	3.18	6.36	<4.33	U	4.33	8.66	<3.06	U	3.06	6.12	<2.96	U	2.96	5.92
2,4-Dinitrotoluene (2,4-DNT)	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
2,6-Dinitrotoluene (2,6-DNT)	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
2-Chloronaphthalene	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
2-Chlorophenol	<3.08	U	3.08	6.17	<3.32	U	3.32	6.63	<3.20	U	3.20	6.39	<3.18	U	3.18	6.36	<4.33	U	4.33	8.66	<3.06	U	3.06	6.12	<2.96	U	2.96	5.92
2-Nitrophenol	<3.08	U	3.08	6.17	<3.32	U	3.32	6.63	<3.20	U	3.20	6.39	<3.18	U	3.18	6.36	<4.33	U	4.33	8.66	<3.06	U	3.06	6.12	<2.96	U	2.96	5.92
3,3'-Dichlorobenzidine	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
4,6-Dinitro-o-Cresol	<12.3	U	12.3	24.7	<13.3	U	13.3	26.5	<12.8	U	12.8	25.6	<12.7	U	12.7	25.5	<17.3	U	17.3	34.6	<12.2	U	12.2	24.5	<11.8	U	11.8	23.7
4-Bromophenyl phenyl ether (BDE-3)	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
4-Chlorophenyl phenyl ether	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
4-Nitrophenol	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Benzidine	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Bis(2-Chloroethoxy) methane	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Bis(2-Chloroethyl) ether	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Bis(2-chloroisopropyl) ether	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Bis(2-ethylhexyl) phthalate	1.66	V, J	1.54	3.08	<1.66	B, U	1.66	3.32	<1.60	B, U	1.60	3.20	<1.59	B, U	1.59	3.18	<2.16	B, U	2.16	4.33	2.48	V, J	1.53	3.06	<1.48	B, U	1.48	2.96
Butyl benzyl phthalate	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Diethyl phthalate	<1.54	B, U	1.54	3.08	<1.66	B, U	1.66	3.32	<1.60	B, U	1.60	3.20	<1.59	B, U	1.59	3.18	<2.16	B, U	2.16	4.33	<1.53	B, U	1.53	3.06	<1.48	B, U	1.48	2.96
Dimethyl phthalate	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Di-n-butyl phthalate	3.32	V	1.54	3.08	5.64	V	1.66	3.32	3.03	V, J	1.60	3.20	3.77	V	1.59	3.18	4.12	V, J	2.16	4.33	6.86	V	1.53	3.06	4.65	V	1.48	2.96
Di-n-octyl phthalate	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Hexachlorobenzene	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Hexachlorobutadiene	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Hexachlorocyclopentadiene	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Hexachloroethane	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Isophorone	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
Nitrobenzene	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
N-Nitrosodimethylamine	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
N-Nitrosodi-n-propylamine	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
N-Nitrosodiphenylamine	<1.54	U	1.54	3.08	<1.66	U	1.66	3.32	<1.60	U	1.60	3.20	<1.59	U	1.59	3.18	<2.16	U	2.16	4.33	<1.53	U	1.53	3.06	<1.48	U	1.48	2.96
P-Chloro-m-Cresol	<3.08	U	3.08	6.17	<3.32	U	3.32	6.63	<3.20	U	3.20	6.39	<3.18	U	3.18	6.36	<4.33	U	4.33	8.66	<3.06	U	3.06	6.12	<2.96	U	2.96	5.92
Pentachlorophenol	<3.08	U	3.08	6.17	<3.32	U	3.32	6.63	<3.20	U	3.20	6.39	<3.18	U	3.18	6.36	<4.33	U	4.33	8.66	<3.06	U	3.06	6.12	<2.96	U	2.96	5.92
Phenol, Total	<3.08	U	3.08	6.17	3.61	J	3.32	6.63	3.37	J	3.20	6.39	<3.18	U	3.18	6.36	4.77	J	4.33	8.66	4.72	J	3.06	6.12	3.39	J	2.96	5.92

TABLE 7 (continued)

Analytical Results for Dry Weight SVOCs in Sediment Samples

DMMU:	Column C														erence nce Area)		ODMDS (Corpus Christi New Work ODMDS)								
Sample ID:		DMI	/IU-8-5A			DMMU-8-5B				DMM	U-8-5C		DMMU-8-5D				HI-REF				HI-ODMDS				
		ualifier				ualifier				ualifier				ualifier			Result	ualifier			Result	ualifier			
Analyte														ā			μg/kg	ā	MDL	LRL	μg/kg	ā	MDL	LRL	
1,2,4-Trichlorobenzene																	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
1,2-Dichlorobenzene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
1,2-Diphenylhydrazine	<1.46	C+, U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
1,3-Dichlorobenzene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
1,4-Dichlorobenzene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
2,4,6-Trichlorophenol	<2.92	U	2.92	5.84	<2.78	U	2.78	5.57	<3.25	U	3.25	6.49	<3.49	U	3.49	6.97	<3.62	U	3.62	7.24	<3.11	U	3.11	6.22	
2,4-Dichlorophenol	<2.92	U	2.92	5.84	<2.78	U	2.78	5.57	<3.25	U	3.25	6.49	<3.49	U	3.49	6.97	<3.62	U	3.62	7.24	<3.11	U	3.11	6.22	
2,4-Dimethylphenol	<2.92	U	2.92	5.84	<2.78	U	2.78	5.57	<3.25	U	3.25	6.49	<3.49	U	3.49	6.97	<3.62	U	3.62	7.24	<3.11	U	3.11	6.22	
2,4-Dinitrophenol	<2.92	U	2.92	5.84	<2.78	C+, U	2.78	5.57	<3.25	C+, U	3.25	6.49	<3.49	U	3.49	6.97	<3.62	U	3.62	7.24	<3.11	U	3.11	6.22	
2,4-Dinitrotoluene (2,4-DNT)	<1.46	U	1.46	2.92	<1.39	C+, U	1.39	2.78	<1.62	C+, U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
2,6-Dinitrotoluene (2,6-DNT)	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	1.66	J	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
2-Chloronaphthalene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
2-Chlorophenol	<2.92	U	2.92	5.84	<2.78	U	2.78	5.57	<3.25	U	3.25	6.49	<3.49	U	3.49	6.97	<3.62	U	3.62	7.24	<3.11	U	3.11	6.22	
2-Nitrophenol	<2.92	U	2.92	5.84	<2.78	U	2.78	5.57	<3.25	U	3.25	6.49	<3.49	U	3.49	6.97	<3.62	U	3.62	7.24	<3.11	U	3.11	6.22	
3,3'-Dichlorobenzidine	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
4,6-Dinitro-o-Cresol	<11.7	U	11.7	23.4	<11.1	U	11.1	22.3	<13.0	U	13.0	26.0	<13.9	U	13.9	27.9	<14.5	U	14.5	29.0	<12.4	U	12.4	24.9	
4-Bromophenyl phenyl ether (BDE-3)	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
4-Chlorophenyl phenyl ether	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
4-Nitrophenol	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Benzidine	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Bis(2-Chloroethoxy) methane	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Bis(2-Chloroethyl) ether	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Bis(2-chloroisopropyl) ether	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Bis(2-ethylhexyl) phthalate	2.02	V, J	1.46	2.92	2.12	V, J	1.39	2.78	3.37	V	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	B, U	1.55	3.11	
Butyl benzyl phthalate	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Diethyl phthalate	<1.46	B, U	1.46	2.92	1.95	V, J	1.39	2.78	2.43	V, J	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Dimethyl phthalate	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Di-n-butyl phthalate	2.18	V, J	1.46	2.92	11.0	V	1.39	2.78	13.1	V	1.62	3.25	<1.74	B, U	1.74	3.49	3.54	V, J	1.81	3.62	<1.55	U	1.55	3.11	
Di-n-octyl phthalate	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Hexachlorobenzene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Hexachlorobutadiene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Hexachlorocyclopentadiene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Hexachloroethane	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Isophorone	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
Nitrobenzene	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
N-Nitrosodimethylamine	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	C+, U	1.55	31.1	
N-Nitrosodi-n-propylamine	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25	<1.74	U	1.74	3.49	<1.81	U	1.81	3.62	<1.55	U	1.55	3.11	
N-Nitrosodiphenylamine	<1.46	U	1.46	2.92	<1.39	U	1.39	2.78	<1.62	U	1.62	3.25		C+, U	1.74	3.49	<1.81	C+, U	1.81	3.62	<1.55	U	1.55	3.11	
P-Chloro-m-Cresol	<2.92	U	2.92	5.84	<2.78	U	2.78	5.57	<3.25	U	3.25	6.49	<3.49	U	3.49	6.97	<3.62	U	3.62	7.24	<3.11	U	3.11	6.22	
Pentachlorophenol	<2.92	U	2.92	5.84	<2.78	U	2.78	5.57	<3.25	U	3.25	6.49	<3.49	U	3.49	6.97	<3.62	U	3.62	7.24	<3.11	U	3.11	6.22	
Phenol, Total	3.84	J	2.92	5.84	3.68	J	2.78	5.57	<3.25	U	3.25	6.49	<3.49	U	3.49	6.97	<3.62	U	3.62	7.24	11.3	V	3.11	6.22	

< #.## = The analyte was not detected (ND) at or above the MDL. The value indicates the MDL.

Qualifiers: A = Detection limit elevated due to abundance of non-target analyte. B = Analyte was found in the associated method blank. C+ = The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report. CQ = Internal Standard response Isss than 50% calibration response. J = Estimated value - The reported value is between the detection limit and reporting limit. U = Indicates that the compound was analyzed for but not detected.

V = Analyte was detected in both sample and method blank.

Sources: Results from NWDLS; TEL and ERL values from Buchman (2008). Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 8Analytical Results for Metals, Ammonia, Organotins, TOCs, Total Cyanide, TSSs, TPHs, and Salinity in Site Water and Elutriates Generated from Sediment

	DMMU: Sample ID:			DMMU-1 0 to -30 ft. MLLW (Surficial Terrestrial)					IMU-2 0 ft. MLLV ce Terrest		DMMU-3 0 to -30 ft. MLLW (Surficial Terrestrial)									-30 to -6	MMU-4 60 ft. MLL ce Terres		DMMU-5 0 to -30 ft. MLLW (Surficial Terrestrial)				
					DMMU-1-E				DMMU-2-E				DMMU-3-E				DMMU- 3-E Duplicate				DMMU-4-E				DMMU-5-E		
	Maximum Conc.	СМС		Result	ualifier			Result	ualifier			Result	ualifier			Result	ıalifier			Result	ualifier			Result	ualifier		
Analyte	μg/L	μg/L	μg/L	μg/L	ā	MDL	LRL	μg/L	ā	MDL	LRL	μg/L	Ø	MDL	LRL	μg/L	ਰ	MDL	LRL	μg/L	ਰ	MDL	LRL	μg/L	Ø	MDL	LRL
Metals																											
Antimony	1.54	X	X	1.54	V2, J	1.00	5.00	<1.00	B2, U	1.00	5.00	<1.00	B2, U	1.00	5.00	<1.00	U	1.00	5.00	<1.00	B2, U	1.00	5.00	<1.00	B2, U	1.00	5.00
Arsenic	9.28	69	149	4.46		0.500	2.50	3.22		0.500	2.50	5.53		0.500	2.50	5.18		0.500	2.50	2.39	J	0.500	2.50	3.09		0.500	2.50
Beryllium	0.0560	Х	Х	<0.0500	B2, U	0.0500	1.00	<0.0500	B2, U	0.0500	1.00	<0.0500	B2, U	0.0500	1.00	<0.0500	B2, U	0.0500	1.00	<0.0500	B2, U	0.0500	1.00	<0.0500	B2, U	0.0500	1.00
Cadmium	0.312	40	40.0	0.267	J	0.250	5.00	0.263	J	0.250	5.00	<0.250	U	0.250	5.00	<0.250	U	0.250	5.00	<0.250	U	0.250	5.00	<0.250	U	0.250	5.00
Chromium	1.03	Х	Х	<0.400	U	0.400	15.0	0.670	J	0.400	15.0	<0.400	U	0.400	15.0	<0.400	B2, U	0.400	15.0	<0.400	U	0.400	15.0	<0.400	U	0.400	15.0
Chromium (III)	<1.90	Х	X	<1.90	U	1.90	18.0	<1.90	U	1.90	18.0	<1.90	U	1.90	18.0	<1.90	U	1.90	18.0	<1.90	U	1.90	18.0	<1.90	U	1.90	18.0
Chromium (VI)	58.4	1100	1090	0.0251	V2	0.00150	0.00300	0.0248	V2	0.00150	0.00300	0.0258	V2	0.00150	0.00300	0.0126	V2	0.00150	0.00300	0.00208	V2, J	0.00150	0.00300	0.0297	V2	0.00150	0.00300
Copper	2.09	4.8	13.5	<1.00	B, B2, U	1.00	5.00	<1.00	B, B2, U	1.00	5.00	1.08	V, V2, J	1.00	5.00	<1.00	B, B2, U	1.00	5.00	<1.00	B, B2, U	1.00	5.00	<1.00	B, B2, U	1.00	5.00
Lead	1.16	210	133	<0.500	U	0.500	2.50	<0.500	U	0.500	2.50	<0.500	U	0.500	2.50	<0.500	U	0.500	2.50	<0.500	U	0.500	2.50	<0.500	U	0.500	2.50
Mercury	<0.150	1.8	2.1	<0.150	U	0.150	0.200	<0.150	U	0.150	0.200	<0.150	U	0.150	0.200	<0.150	U	0.150	0.200	<0.150	U	0.150	0.200	<0.150	U	0.150	0.200
Nickel	3.03	74	118	3.03	V2, J	0.250	5.00	1.78	V2, J	0.250	5.00	2.90	V2, J	0.250	5.00	0.849	V2, J	0.250	5.00	1.27	V2, J	0.250	5.00	0.895	V2, J	0.250	5.00
Selenium	<1.65	290	564	<1.65	U	1.65	10.0	<1.65	U	1.65	10.0	<1.65	U	1.65	10.0	<1.65	U	1.65	10.0	<1.65	U	1.65	10.0	<1.65	U	1.65	10.0
Silver	<0.150	1.9	2	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50
Thallium	<0.150	х	х	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50
Zinc	6.59	90	92.7	4.89	V2, J	1.00	10.0	2.15	V2, J	1.00	10.0	5.24	V2, J	1.00	10.0	3.20	V2, J	1.00	10.0	1.76	V2, J	1.00	10.0	2.26	V2, J	1.00	10.0
Others																											
Monobutyltin	0.72	Х	х	<0.029	U	0.029	0.050	0.13		0.029	0.050	<0.029	U	0.029	0.050	0.044	J	0.029	0.050	0.064		0.029	0.050	0.031	J	0.029	0.050
Dibutyltin	<0.0073	х	х	<0.0073	U	0.0073	0.050	<0.0073	U	0.0073	0.050	<0.0073	U	0.0073	0.050	<0.0073	U	0.0073	0.050	<0.0073	U	0.0073	0.050	<0.0073	U	0.0073	0.050
Tributyltin	<0.012	0.42	0.24	<0.012	U	0.012	0.050	<0.012	U	0.012	0.050	<0.012	U	0.012	0.050	<0.012	U	0.012	0.050	<0.012	U	0.012	0.050	<0.012	U	0.012	0.050
Analyte	Maximum Conc. mg/L	CMC mg/L	TWQS Acute mg/L	Result mg/L	Qualifier	MDL	LRL	Result mg/L	Qualifier	MDL	LRL	Result mg/L	Qualifier	MDL	LRL	Result mg/L	Qualifier	MDL	LRL	Result mg/L	Qualifier	MDL	LRL	Result mg/L	Qualifier	MDL	LRL
Ammonia (as nitrogen)	7.62	Х	х	0.797		0.0200	0.0500	0.456		0.0200	0.0500	0.912		0.0200	0.0500	0.586		0.100	0.250	0.864		0.0200	0.0500	0.877		0.100	0.250
Carbon, Total Organic	9.9	х	х	9.9		0.35	1.00	5.2		0.35	1.00	4.9		0.35	1.00	4.0		0.35	1.00	4.6		0.35	1.00	4.6		0.35	1.00
Cyanide, Total	<0.0005	0.001	0.0056	<0.0005	U	0.0005	0.020	<0.0005	U	0.0005	0.020	<0.0005	U	0.0005	0.020	<0.0005	U	0.0005	0.020	<0.0005	U	0.0005	0.020	<0.0005	U	0.0005	0.020
Residual-nonfilterable (TSS)	249	Х	Х	5.16		1.00	1.00	2.84		1.00	1.00	5.89		1.00	1.00	6.60	V2	1.00	1.00	3.04		1.00	1.00	5.64		1.00	1.00
Petroleum Hydrocarbons, Total	8.94	х	х	0.867	J	0.470	2.15	1.25	J	0.470	2.15	8.94		0.470	2.15	1.90	J	0.470	2.15	1.73	J	0.470	2.15	0.654	J	0.470	2.15
Analyte	Maximum Conc. ppt	CMC ppt	TWQS Acute ppt		Qualifier	MDL	LRL	Result ppt	Qualifier	MDL	LRL	Result ppt	Qualifier	MDL	LRL	Result ppt	Qualifier	MDL	LRL	Result ppt	Qualifier	MDL	LRL	Result ppt	Qualifier	MDL	LRL
Salinity	30.4	Х	Х																								

TABLE 8 (continued)

Analytical Results for Metals, Ammonia, Organotins, TOCs, Total Cyanide, TSSs, TPHs, and Salinity in Site Water and Elutriates

D	мми:		-30 to -60	MU-6 Oft. MLLV e Terrest						ng De	DMMU-7 pth to -0 w Marin	60 ft. M							Exist	ing Dep	MMU-8 oth to -60 rine Area		_W		(R		ence ce Area	n)	(Corpus	ODMDS Christi Ne ODMDS)	w Work
Samp	ole ID:		DMN	/U-6-E		DN	MU-7-4	A-W		MMU	-7-4B-W	1		DMN	IU-7-E		D	MMU-	-8-5B-V	N		DMN	/U-8-E			HI-RE	F-B-W		HI-C	DMDS-B	-w
	F	Result	alifier			Result	alifier		Result	alifier			Result	alifier			Result	alifier			Result	alifier			Result	alifier			Result	аптег	
Analyte		μg/L	õ	MDL	LRL	μg/L	g WD	L LRL	μg/L	ð	MDL	LRL	μg/L	ð	MDL	LRL	μg/L	ð	MDL	LRL	μg/L	ð	MDL	LRL	μg/L	ð	MDL	LRL		₹ MDL	LRL
Metals																															
Antimony		1.07	V2, J	1.00	5.00	<1.00	U 1.0	5.00	<1.00	U	1.00	5.00	<1.00	B2, U	1.00	5.00	1.32	J	1.00	5.00	<1.00	U	1.00	5.00	<1.00	U	1.00	5.00	<1.00	U 1.00	5.00
Arsenic		0.943	J	0.500	2.50	1.89	J 0.50	0 2.50	1.66	J	0.500	2.50	9.28		0.500	2.50	1.60	J	0.500	2.50	2.88		0.500	2.50	1.21	J	0.500	2.50	1.56	J 0.500	2.50
Beryllium	<	<0.0500	B2, U	0.0500	1.00	<0.0500	U 0.05	00 1.00	0.0560	J	0.0500	1.00	<0.0500	B2, U	0.0500	1.00	<0.0500	U	0.0500	1.00	<0.0500	B, B2, U	0.0500	1.00	<0.0500	U	0.0500	1.00	<0.0500	U 0.0500	0 1.00
Cadmium		<0.250	U	0.250	5.00	<0.250	U 0.2	5.00	0.278	J	0.250	5.00	<0.250	U	0.250	5.00	<0.250	U	0.250	5.00	<0.250	U	0.250	5.00	0.312	J	0.250	5.00	<0.250	U 0.250	5.00
Chromium		0.941	J	0.400	15.0	0.979	J 0.40	0 15.0	0.655	J	0.400	15.0	<0.400	U	0.400	15.0	1.03	J	0.400	15.0	<0.400	B2, U	0.400	15.0	0.448	J	0.400	15.0	<0.400	U 0.400	15.0
Chromium (III)		<1.90	U	1.90	18.0	<1.90	U 1.9	18.0	<1.90	U	1.90	18.0	<1.90	U	1.90	18.0	<1.90	U	1.90	18.0	<1.90	U	1.90	18.0	<1.90	U	1.90	18.0	<1.90	U 1.90	18.0
Chromium (VI)	(0.0239	V2	0.00150	0.00300	18.8	1.5	3.00	7.48		1.50	3.00	0.0103	V2	0.00150	0.00300	58.4		1.50	3.00	0.00286	V2, J	0.00150	0.00300	7.62		1.50	3.00	9.69	1.50	3.00
Copper		<1.00	B, B2, U	1.00	5.00	2.09	V, J 1.0	5.00	1.40	V, J	1.00	5.00	<1.00	B, B2, U	1.00	5.00	1.73	V, J	1.00	5.00	1.12	V2, J	1.00	5.00	<1.00	B, U	1.00	5.00	<1.00	U 1.00	5.00
Lead		<0.500	U	0.500	2.50	1.16	J 0.50	0 2.50	0.722	J	0.500	2.50	<0.500	U	0.500	2.50	0.866	J	0.500	2.50	<0.500	U	0.500	2.50	<0.500	U	0.500	2.50	<0.500	U 0.500	2.50
Mercury		<0.150	U	0.150	0.200	<0.150	U 0.1	0.200	<0.150	U	0.150	0.200	<0.150	U	0.150	0.200	<0.150	U	0.150	0.200	<0.150	U	0.150	0.200	<0.150	U	0.150	0.200	<0.150	U 0.150	0.200
Nickel		2.16	V2, J	0.250	5.00	1.03	J 0.2	5.00	0.858	J	0.250	5.00	2.41	V2, J	0.250	5.00	1.02	J	0.250	5.00	2.02	V2, J	0.250	5.00	0.302	J	0.250	5.00	<0.250	U 0.250	5.00
Selenium		<1.65	U	1.65	10.0	<1.65	U 1.6	5 10.0	<1.65	U	1.65	10.0	<1.65	U	1.65	10.0	<1.65	U	1.65	10.0	<1.65	U	1.65	10.0	<1.65	U	1.65	10.0	<1.65	U 1.65	10.0
Silver		<0.150	U	0.150	2.50	<0.150	U 0.1	0 2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U 0.150	2.50
Thallium		<0.150	U	0.150	2.50	<0.150	U 0.1	0 2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U	0.150	2.50	<0.150	U 0.150	2.50
Zinc		2.09	V2, J	1.00	10.0	4.16	J 1.0	0 10.0	3.74	J	1.00	10.0	2.12	V2, J	1.00	10.0	6.59	J	1.00	10.0	2.28	V2, J	1.00	10.0	<1.00	U	1.00	10.0	1.11	J 1.00	10.0
Others																															
Monobutyltin		<0.029	U	0.029	0.050	<0.029	U 0.02	9 0.050	0.13	-	0.029	0.050	<0.029	U	0.029	0.050	0.72	*	0.029	0.050	<0.029	U	0.029	0.050	0.049	JP,*	0.029	0.050	0.067	* 0.029	0.050
Dibutyltin	<	<0.0073	U	0.0073	0.050	<0.0073	U 0.00	73 0.050	<0.0073	U	0.0073	0.050	<0.0073	U	0.0073	0.050	<0.0073	U, *	0.0073	0.050	<0.0073	U	0.0073	0.050	<0.0073	U,*	0.0073	0.050	<0.0073	J,* 0.0073	3 0.050
Tributyltin		<0.012	U	0.012	0.050	<0.012	U 0.0	2 0.050	<0.012	U	0.012	0.050	<0.012	U	0.012	0.050	<0.012	U, *	0.012	0.050	<0.012	U	0.012	0.050	<0.012	U,*	0.012	0.050	<0.012 l	J,* 0.012	2 0.050
Analyte		Result mg/L	Qualifier	MDL	LRL	Result mg/L	Qualifier W	L LRL	Result mg/L	Qualifier	MDL		Result mg/L	Qualifier	MDL	LRL	Result mg/L		MDL	LRL	Result mg/L	Qualifier	MDL	LRL	Result mg/L	Qualifier	MDL		Result mg/L	Qualifier JDM MDL	. LRL
Ammonia (as nitrogen)		0.133		0.0200	0.0500	0.618		0.0500			0.0200		7.62		0.400	1.00	0.617		0.0200		0.698		0.100	0.250	0.520		0.0200		0.02.		0 0.0500
Carbon, Total Organic		4.1		0.35	1.00	3.1	0.3		3.1	-	0.35	1.00	3.9		0.35	1.00	3.0		0.35	1.00	2.5		0.35	1.00	2.3		0.35	1.00		0.35	
Cyanide, Total		<0.0005	U	0.0005	0.020	<0.0005		0.020	<0.0005	U	0.0005		<0.0005	U	0.0005	0.020	<0.0005		0.0005		<0.0005	U	0.0005	0.020	<0.0005	U	0.0005	0.020	<0.0005	U 0.000	5 0.020
Residual-nonfilterable (TS Petroleum Hydrocarbons Total	•	1.68 0.649	 J	1.00 0.470	1.00 2.15		1.0 J 0.4	0 1.00 9 2.15	133 0.976	 J	1.00 0.479	1.00 2.15	2.32 1.58	 J	1.00 0.470	1.00 2.15	124 <0.484		1.00 0.484	1.00 2.15	6.59 0.676	V2 J	1.00 0.470	1.00 2.15	9.47	 U	1.00 0.489	1.00 2.15		1.00 J 0.489	
Analyte		Result ppt	Qualifier	MDL	LRL			L LRL	Result ppt	Qualifier	MDL		Result ppt	Qualifier	MDL	LRL				LRL	Result ppt	Qualifier	MDL	LRL	Result ppt	Qualifier	MDL			_	. LRL
Salinity E = elutriate sample W = site w						28.9	1.0	1.00	28.6		1.00	1.00					29.0		1.00	1.00					29.2		1.00	1.00	30.4	1.00	1.00

E = elutriate sample, W = site water sample

Qualifiers: B = Analyte was found in the associated method blank. B2 = The analyte was detected in the associated leach blank. J = Estimated value - The reported value is between the detection limit and reporting limit. P = The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results. U = Indicates that the compound was analyzed for but not detected. V = Analyte was detected in both sample and method blank. V2 = The analyte was detected in the sample and the associated leach blank. * = The result is an outlier.

Sources: All results from NWDLS with the exception of the organotin, cyanide, and TOC results which came from ALS; CMC values from EPA (2015); Texas surface water quality (acute) standards from Texas Commission on Environmental Quality (2018). Compiled by: ANAMAR Environmental Consulting, Inc.

Bolded values meet or exceed the CMC and (or) Texas surface water quality (acute) standard.

< #.## = The analyte was not detected (ND) at or above the MDL. The value indicates the MDL.

TABLE 9Analytical Results for Pesticides and Total PCBs in Site Water and Elutriates Generated from Sediment

			DMMU:		to -3	MMU-1 0 ft. MLLV Il Terrestr			0 to -6	MMU-2 60 ft. MLI ce Terres				(0 to -30	MU-3 ft. MLLW Terrestria	,) to -6	MMU-4 60 ft. MLL ce Terres			to -3	MMU-5 D ft. MLL\ I Terrestr	
			Sample ID:		DM	IMU-1-E			DM	MU-2-E			DM	MU-3-E				MU- 3-E iplicate			DM	MU-4-E			DM	MU-5-E	
Analyte	Maximum Conc. μg/L	CMC µg/L	TWQS Acute µg/L	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL
Aldrin	<0.00600	1.3	1.3	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Chlordane (technical)	<0.00600	0.09	0.09	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
α (cis)-Chlordane	<0.00600	х	x	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
γ (trans)-Chlordane	<0.00600	X	x	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
p,p' (4,4')-DDD	<0.00600	Х	x	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
p,p' (4,4')-DDE	0.0079	х	x	0.00790		0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
p,p' (4,4')-DDT	<0.00600	0.13	0.13	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Dieldrin	<0.00600	0.71	0.71	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Endosulfan I	<0.00600	0.034	0.034	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Endosulfan II	<0.00600	0.034	0.034	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Endosulfan Sulfate	<0.00600	х	0.034	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Endrin	<0.00600	0.037	0.037	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Endrin Aldehyde	<0.00600	х	x	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Endrin Ketone	<0.00600	х	x	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Heptachlor	<0.00600	0.053	0.053	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Heptachlor Epoxide	<0.00600	0.053	х	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
α-BHC	<0.00600	х	x	<0.00600	C+, U	0.00600	0.00600	<0.00600	C+, U	0.00600	0.00600	<0.00600	C+, U	0.00600	0.00600	<0.00599	C+, U	0.00599	0.00599	<0.00600	C+, U	0.00600	0.00600	<0.00600	C+, U	0.00600	0.00600
β-ВНС	<0.00600	х	х	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
δ-ВНС	<0.00600	х	х	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	B2, U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
γ-BHC (Lindane)	<0.00600	0.16	0.16	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Methoxychlor	0.0101	х	х	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600	0.0101	Р	0.00600	0.00600	<0.00599	U	0.00599	0.00599	<0.00600	U	0.00600	0.00600	<0.00600	U	0.00600	0.00600
Toxaphene	<0.300	0.21	0.21	<0.300	U	0.300	0.300	<0.300	U	0.300	0.300	<0.300	U	0.300	0.300	<0.300	U	0.300	0.300	<0.300	U	0.300	0.300	<0.300	U	0.300	0.300
PCBs, Total	<0.00600	Х	10	<0.00600	U	0.00600	0.120	<0.00600	U	0.00600	0.120	<0.00600	U	0.00600	0.120	<0.00599	U	0.00599	0.120	<0.00600	U	0.00600	0.120	<0.00600	U	0.00600	0.120

TABLE 9 (continued)

Analytical Results for Pesticides and Total PCBs in Site Water and Elutriates Generated from Sediment

DMMU:	DMMU-6 -30 to -60 ft. MLLW (Subsurface Terrestrial)	DMMU-7 Existing Depth to -60 ft. MLL (Shallow Marine Area)	w	DMMU-8 Existing Depth to -60 ft. MLLW (Marine Area)	Reference (Reference Area)	ODMDS (Corpus Christi New Work ODMDS)
Sample ID:	DMMU-6-E	DMMU-7-4A-W DMMU-7-4B-W	DMMU-7-E	DMMU-8-5B-W DMMU-8-E	HI-REF-B-W	HI-ODMDS-B-W
Analyte	Result a MDL LRL	Result en pg/L Ø MDL LRL pg/L Ø MDL LRL	Result in MDL LRL	Result en Hg/L Ø MDL LRL	hg/r Q WDr rur MDr rur MDr rur	Result en MDL LRL
Aldrin	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Chlordane (technical	<pre><0.00600 U 0.00600 0.00600</pre>	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
α (cis)-Chlordane	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
γ (trans)-Chlordane	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
p,p' (4,4')-DDD	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
p,p' (4,4')-DDE	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
p,p' (4,4')-DDT	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<pre><0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599</pre>	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Dieldrin	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Endosulfan I	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Endosulfan II	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Endosulfan Sulfate	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Endrin	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Endrin Aldehyde	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Endrin Ketone	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Heptachlor	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Heptachlor Epoxide	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
α-BHC	<0.00600 C+, U 0.00600 0.00600	<0.00600 C+, U 0.00600 0.00600 <0.00600 C+, U 0.00600 0.0060	0 <0.00600 C+, U 0.00600 0.00600	<pre><0.00600 C+, U 0.00600 0.00600 <0.00599 C+, U 0.00599 0.00599</pre>	<0.00600 C+, U 0.00600 0.00600	<0.00600 C+, U 0.00600 0.00600
β-ВНС	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
δ-ВНС	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 B2, U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
γ-BHC (Lindane)	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Methoxychlor	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00600 U 0.00600 0.0060	0 <0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600 <0.00599 U 0.00599 0.00599	<0.00600 U 0.00600 0.00600	<0.00600 U 0.00600 0.00600
Toxaphene	<0.300 U 0.300 0.300	<0.300 U 0.300 0.300 <0.300 U 0.300 0.300	<0.300 U 0.300 0.300	<0.300 U 0.300 0.300 <0.300 U 0.300 0.300	<0.300 U 0.300 0.300	<0.300 U 0.300 0.300
PCBs, Total	<0.00600 U 0.00600 0.120	<0.00600 U 0.00600 0.120 <0.00600 U 0.00600 0.120	<0.00600 U 0.00600 0.120	<0.00600 U 0.00600 0.120 <0.00597 U 0.00597 0.119	<0.00600 U 0.00600 0.120	<0.00600 U 0.00600 0.120

E = elutriate sample, W = site water sample

Bolded values meet or exceed the CMC and (or) Texas surface water quality (acute) standard.

< #.## = The analyte was not detected (ND) at or above the MDL. The value indicates the MDL.

Qualifier definitions: B2 = Analyte was detected in the associated leach blank. C+ = The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report. P = Difference between GC column results greater than the method requirement. Higher result reported. U = Indicates that the compound was analyzed for but not detected.

Sources: Results from NWDLS; CMC values from EPA (2015); Texas surface water quality (acute) standards from Texas Commission on Environmental Quality (2018).

TABLE 10Analytical Results for PAHs in Site Water and Elutriates Generated from Sediment

			DMMU:		to -3	MMU-1 0 ft. MLL I Terrest			0 to -6	MMU-2 60 ft. MLI ce Terres					0 to -30	MU-3 ft. MLLW Terrestria	al)				0 to -6	MMU-4 60 ft. MLI ce Terres			to -3	MMU-5 0 ft. MLL I Terrest	
		Sa	ample ID:		DM	MU-1-E			DM	MU-2-E			DM	MU-3-E				MU- 3-E plicate			DM	MU-4-E			DM	MU-5-E	
Analyte	Maximum Conc. μg/L	CMC µg/L	TWQS Acute µg/L	Result μg/L	Qualifier	MDL	LRL	Result μg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL
Acenaphthene ^{LPAH}	1.29	х	x	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	1.29		0.281	0.562	0.744		0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Acenaphthylene ^{LPAH}	0.579	х	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	0.579		0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Anthracene ^{LPAH}	<0.281	х	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Benzo(a)anthracene	<0.281	x	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Benzo(a)pyrene ^{HPAH}	<0.281	x	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Benzo(b&k)fluoranthene	<0.562	х	х	<0.562	U	0.562	1.12	<0.562	U	0.562	1.12	<0.562	U	0.562	1.12	<0.559	U	0.559	1.12	<0.562	U	0.562	1.12	<0.562	U	0.562	1.12
Benzo(g,h,i)perylene ^{HPAH}	<0.281	х	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Chrysene ^{HPAH}	<0.281	х	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Dibenzo(a,h)anthracene HPAH	<0.281	х	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Fluoranthene ^{HPAH}	<0.281	х	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Fluorene ^{LPAH}	3.55	х	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	3.55		0.281	0.562	2.06		0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Indeno(1,2,3-cd)pyrene ^{HPAH}	<0.281	х	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Naphthalene ^{LPAH}	0.328	х	х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Phenanthrene ^{LPAH}	1.08	х	7.7	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	1.08		0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Pyrene ^{HPAH}	<0.281	х	Х	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Total LPAHs	7.06	х	х	1.69				1.69				7.06				3.92				1.69				1.69			
Total HPAHs	2.81	х	X	2.81				2.81				2.81				2.79				2.81				2.81			
Total PAHs	9.87	х	х	4.50				4.50				9.87				6.71				4.50				4.50			

TABLE 10 (continued)

Analytical Results for PAHs in Site Water and Elutriates Generated from Sediment

DMMU:		to -60	MU-6 0 ft. ML e Terre					E	ixisting [(Shal	epth	MU-7 to -60 //arine /		N						Existing	g Depth	MU-8 to -60 ft. e Area)	MLL	w		(R		erence nce Are	ea)	(Corpus	s Chi	MDS risti Nev MDS)	w Work
Sample ID:		DMN	/U-6-E		D	MMU	I-7-4A-W	V	D	MMU	-7-4B-V	V		DMN	ИU-7-Е		D	мми	U-8-5B-V	N		DMN	1U-8-E			HI-R	EF-B-W		н	-ODI	MDS-B-	w
Analyte	Result μg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result μg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL	Result µg/L	Qualifier	MDL	LRL
Acenaphthene ^{LPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Acenaphthylene ^{LPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Anthracene ^{LPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Benzo(a)anthracene	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Benzo(a)pyrene ^{HPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Benzo(b&k)fluoranthene	<0.562	U	0.562	1.12	<0.278	U	0.278	1.11	<0.280	U	0.280	1.12	<0.562	U	0.562	1.12	<0.279	U	0.279	1.12	<0.561	U	0.561	1.12	<0.279	U	0.279	1.12	<0.277	U	0.277	1.11
Benzo(g,h,i)perylene ^{HPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Chrysene ^{HPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Dibenzo(a,h)anthracene	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Fluoranthene ^{HPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Fluorene ^{LPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Indeno(1,2,3-cd)pyrene ^{HPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Naphthalene ^{LPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	0.328	J	0.281	0.562	<0.279	U	0.279	0.559	0.299	J	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Phenanthrene ^{LPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Pyrene ^{HPAH}	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U	0.280	0.561	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.280	U	0.280	0.561	<0.279	U	0.279	0.559	<0.277	U	0.277	0.554
Total LPAHs	1.69				1.67				1.68				1.73				1.67				1.70				1.67				1.66			
Total HPAHs	2.81				2.50				2.52				2.81				2.51				2.80				2.51				2.49			
Total PAHs	4.50				4.17				4.20				4.54				4.19				4.50				4.19				4.16			

E = elutriate sample, W = site water sample

LPAH = Low molecular weight PAH as defined in the *Regional Implementation Agreement* by USEPA/USACE (2003).

HPAH = High molecular weight PAH as defined in the *Regional Implementation Agreement* by USEPA/USACE (2003).

< #.## = The analyte was not detected (ND) at or above the MDL. The value indicates the MDL. For calculating total PAHs, U-qualified results use the MDL and J-qualified results use the value reported by the laboratory.

Qualifier definitions: J = Estimated value - the reported value is between the detection limit and reporting limit. U = Indicates that the compound was analyzed for but not detected.

Sources: Results from NWDLS; CMC values from EPA (2015); Texas surface water quality (acute) standards from Texas Commission on Environmental Quality (2018).

Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 11Analytical Results for SVOCs in Site Water and Elutriates Generated from Sediment

			DMMU:		0 to -30	MU-1 ft. MLLW Terrestria			-30 to -60	MU-2 ft. MLLV Terresti	-				0 to -30 f	MU-3 ft. MLLW Ferrestrial	<u> </u>				0 to -6	IMU-4 0 ft. MLL' ce Terrest			0 to -30	MU-5 ft. MLLW Terrestri	
			Sample ID:		DMN	/IU-1-E			DMM	U-2-E			DMN	1U-3-E				IU- 3-E licate			DMN	/IU-4-E			DMN	1U-5-E	
Accelete	Maximum Conc.	CMC	TWQS Acute	Result	ualifier	MDI		Result	ualifier	MDI	- 6:	Result	ualifier	MDI		Result	ualifier	MDI	1.01	Result	ualifier	MDI		Result	ualifier	MDI	
Analyte	μg/L	μg/L	μg/L	μg/L	<u> </u>	MDL 0.281	0.562	µg/L	<u> </u>	MDL	LRL	µg/L	<u>o</u>	MDL	LRL	μg/L	<u> </u>	MDL	LRL	µg/L	<u>. С</u> .	MDL	LRL	µg/L	<u> </u>	MDL	LRL 0.562
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	<0.281 <0.281	X	X	<0.281	U	0.281	0.562	<0.281 <0.281	U	0.281	0.562 0.562	<0.281 <0.281	IJ	0.281	0.562 0.562	<0.279 <0.279	U	0.279	0.559	<0.281 <0.281	U	0.281	0.562 0.562	<0.281 <0.281	U	0.281	0.562
1,2-Dichloroberizerie	<0.281	X	X X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
1,3-Dichlorobenzene	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
1,4-Dichlorobenzene	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
2.4,6-Trichlorophenol	<1.12	X	X	<1.12	U	1.12	2.25	<1.12	U	1.12	2.25	<1.12	U U	1.12	2.25	<1.11	U	1.11	2.24	<1.12	U	1.12	2.25	<1.12	U	1.12	2.25
2,4-Dichlorophenol	<0.560	X	X	<0.560	U	0.560	0.562	<0.560	U	0.560	0.562	<0.560	U	0.560	0.562	<0.557	U	0.557	0.559	<0.560	U	0.560	0.562	<0.560	U	0.560	0.562
2,4-Dimethylphenol	<0.560	X	X	<0.560	U	0.560	1.12	<0.560	U	0.560	1.12	<0.560	U U	0.560	1.12	<0.557	U	0.557	1.12	<0.560	U	0.560	1.12	<0.560	U	0.560	1.12
2,4-Dimethylphenol	<4.50	X	X	<4.50	U	4.50	4.50	<4.50	U	4.50	4.50	<4.50	IJ	4.50	4.50	<4.47	U	4.47	4.47	<4.50	U	4.50	4.50	<4.50	U	4.50	4.50
2,4-Dinitrophenol	<0.281	X		<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
2,6-Dinitrotoluene (2,6-DNT)	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
2-Chloronaphthalene	<0.281	X	X X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
2-Chlorophenol	<0.261	X		<0.560	U	0.560	1.12	<0.560	U	0.560	1.12	<0.560	U	0.560	1.12	<0.279	U	0.557	1.12	<0.560	U	0.560	1.12	<0.560	U	0.560	1.12
2-Nitrophenol	<0.560	X	X X	<0.560	U	0.560	1.12	<0.560	U	0.560	1.12		U	0.560	1.12	<0.557	U	0.557	1.12	<0.560	U	0.560	1.12	<0.560	U	0.560	1.12
3.3'-Dichlorobenzidine		X		<0.381	U	0.360	0.562		U	0.300	0.562	<0.560 <0.281	U	0.380	0.562	<0.337	U	0.337	0.559	<0.300	U	0.380	0.562	<0.380	U	0.380	0.562
4.6-Dinitro-o-Cresol	<0.281 <0.560	X	X	<0.560	U	0.560	1.12	<0.281 <0.560	U	0.560	1.12	<0.560	U U	0.560	1.12	<0.279	U	0.557	1.12	<0.560	U	0.560	1.12	<0.560	U	0.560	1.12
,	<0.380	X	X	<0.381	U	0.360	0.562	<0.380	U	0.300	0.562	<0.381	U	0.380	0.562	<0.337	U	0.337	0.559	<0.300	U	0.380	0.562	<0.380	U	0.380	0.562
4-Bromophenyl phenyl ether (BDE-3)	<0.281	X	X X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
4-Chlorophenyl phenyl ether 4-Nitrophenol	<4.50	X	X	<4.50	U	4.50	4.50	<4.50	U	4.50	4.50	<4.50	U	4.50	4.50	<4.47	U	4.47	4.47	<4.50	U	4.50	4.50	<4.50	U	4.50	4.50
Benzidine	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Bis(2-Chloroethoxy) methane	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Bis(2-Chloroethyl) ether	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Bis(2-chloroisopropyl) ether	<0.281	×	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Bis(2-ethylhexyl) phthalate	0.365	X	X	0.365	1	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Butyl benzyl phthalate	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Diethyl phthalate	1.15	X	X	0.824	V, V2	0.281	0.562	0.837	V. V2	0.281	0.562	0.898	V, V2	0.281	0.562	1.08	V, V2	0.279	0.559	0.834	V, V2	0.281	0.562	0.787	V, V2	0.281	0.562
Dimethyl phthalate	<0.281	×	x		B, B2, U		0.562	<0.281	B, B2, U	0.281	0.562		B, B2, U		0.562		B, B2, U		0.559		v, vz B, B2, U		0.562		B, B2, U	0.281	0.562
Di-n-butyl phthalate	9.59	×	x	4.21	V, V2	0.281	0.562	3.34	V. V2	0.281	0.562	7.87	V, V2	0.281	0.562	1.68	V, V2	0.279	0.559	4.89	V, V2	0.281	0.562	9.59	V, V2	0.281	0.562
Di-n-octyl phthalate	<0.281	X	X	<0.281	V, VZ	0.281	0.562	<0.281	V, V2	0.281	0.562	<0.281	U, VZ	0.281	0.562	<0.279	V, VZ	0.279	0.559	<0.281	U, VZ	0.281	0.562	<0.281	U, VZ	0.281	0.562
Hexachlorobenzene	<0.281	X	X	<0.281	C+, U	0.281	0.562	<0.281	C+. U	0.281	0.562	<0.281	C+, U	0.281	0.562	<0.279	C+, U	0.279	0.559	<0.281	C+, U	0.281	0.562	<0.281	C+, U	0.281	0.562
Hexachlorobutadiene	<0.281	x	x	<0.281	11	0.281	0.562	<0.281	[]	0.281	0.562	<0.281	11	0.281	0.562	<0.279	11	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Hexachlorocyclopentadiene	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Hexachloroethane	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Isophorone	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
Nitrobenzene	<0.281	X	X	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	0.559	<0.281	U	0.281	0.562	<0.281	U	0.281	0.562
N-Nitrosodimethylamine	<0.281	X		<0.281	U		2.25	<0.281	U				U	0.281	2.25			0.279			U	0.281			U	0.281	2.25
•	<0.281		X	<0.281	U	0.281	0.562		U	0.281	2.25 0.562	<0.281	U	0.281	0.562	<0.279	U	0.279	2.24	<0.281 <0.281	U	0.281	2.25 0.562	<0.281	U	0.281	0.562
N-Nitrosodi-n-propylamine		X	X		C+, U	0.281	0.562	<0.281		0.281		<0.281	C+, U	0.281		<0.279	C+ II	0.279	0.559			0.281		<0.281		0.281	
N-Nitrosodiphenylamine	<0.281	X	X	<0.281	U+, U	0.281		<0.281 <0.560	C+, U		0.562	<0.281	U+, U	0.281	0.562	<0.279	C+, U		0.559		C+, U	0.281	0.562	<0.281	C+, U		0.562
P-Chloro-m-Cresol	<0.560	X 12	X 15.1	<0.560		0.560	1.12		U	0.560	1.12	<0.560			1.12	<0.557	U	0.557	1.12	<0.560	U		1.12	<0.560	U	0.560	1.12
Pentachlorophenol	<0.560	13	15.1	<0.560	C+, U	0.560	1.12	<0.560	C+, U	0.560	1.12	<0.560	C+, U	0.560	1.12	<0.557	C+, U	0.557	1.12		C+, U	0.560	1.12	<0.560	C+, U	0.560	1.12
Phenol, Total	1.07	Х	Х	<0.560	B2, U	0.560	1.12	<0.560	B2, U	0.560	1.12	<0.560	B2, U	0.560	1.12	1.01	V2, J	0.557	1.12	<0.560	B2, U	0.560	1.12	<0.560	B2, U	0.560	1.12

TABLE 11 (continued)

Analytical Results for SVOCs in Water and Elutriates Generated from Sediment

DMMU:			MU-6 ft. MLLV Terrestr							DMM g Depth t allow Ma	o -60 ft		v					Exis	ing Deptl	IMU-8 h to -60 ft. ne Area)	MLLW			(Re	Reference		(Corpu	ODM us Chris ODMI	ti New	Work
Sample ID:		DMM	U-6-E			DMMU	J-7-4A-W		1	DMMU-7-	4B-W			DMM	U-7-E		DM	MU-8-5B-	W		DMMU-	8-E		ı	II-REF-B-	V	H	II-ODME	S-B-W	1
	Result	ualifier			Result	ualifier			Result	ualifier			Result	ualifier			Result			Result	ualifier			Result	ualifier		Result	ualifier		
Analyte 1.2.4-Trichlorobenzene	μg/L	<u>a</u>	MDL 0.281	LRL	μg/L	đ	MDL	LRL	μg/L			LRL 0.561	μg/L	0	MDL 0.281	LRL	μg/L <u>δ</u>	MDL	LRL 0.559	μg/L			LRL	ı J	ỡ MDI U 0.27		µg/L		MDL	LRL 0.554
1,2-Dichlorobenzene	<0.281	U	0.281	0.562 0.562	<0.278	U	0.278 0.278	0.557 0.557	<0.280 <0.280			0.561	<0.281 <0.281	U	0.281	0.562 0.562	<0.279 U		0.559	<0.280 <0.280			0.561 0.561	*	U 0.27		<0.277 <0.277		0.277 0.277	0.554
1,2-Dichioroberizerie	<0.281	U	0.281	0.562	<0.278 <0.278	U	0.278	0.557	<0.280			0.561	<0.281	U	0.281	0.562	<0.279 U		0.559	<0.280			0.561		U 0.27		<0.277		0.277	0.554
· · · · · · · · · · · · · · · · · · ·	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280			0.561	<0.281	U	0.281	0.562	<0.279 U		0.559	<0.280			0.561		U 0.27		<0.277		0.277	0.554
1.4-Dichlorobenzene	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280			0.561	<0.281	U	0.281	0.562	<0.279 L		0.559	<0.280			0.561		U 0.27		<0.277		0.277	0.554
2,4,6-Trichlorophenol	<1.12	U	1.12	2.25	<1.11	U	1.11	2.23	<1.12		12	2.24	<1.12	U	1.12	2.25	<1.11 L		2.23	<1.12			2.24		U 1.11	2.23	<1.10		1.10	2.22
2,4-Dichlorophenol	<0.560	U	0.560	0.562	<0.555	U	0.555	1.11	<0.559		559	1.12	<0.560	U	0.560	0.562	<0.556 L		1.12	<0.559			0.561		U 0.55	1.12	<0.552		0.552	1.11
•	<0.560	U	0.560	1.12	<0.555	U	0.555	1.11	<0.559	U 0.		1.12	<0.560	U	0.560	1.12	<0.556 L		1.12	<0.559		.559	1.12		U 0.55	1.12	<0.552		0.552	1.11
2,4-Dinitrophenol	<4.50	U	4.50	4.50	1	C+. U		4.46			49	4.49	<4.50	U	4.50	4.50	<4.47 C+		4.47	<4.49			4.49		+, U 4.47	4.47			4.44	4.44
,	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U C	.280	0.561		U 0.27	0.559	<0.277	U (0.277	0.554
2,6-Dinitrotoluene (2,6-DNT)	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280			0.561	<0.281	U	0.281	0.562	<0.279 U		0.559	<0.280			0.561		U 0.27		<0.277		0.277	0.554
	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280			0.561	<0.281	U	0.281	0.562	<0.279 L		0.559	<0.280			0.561		U 0.27		<0.277		0.277	0.554
•	<0.560	U	0.560	1.12	<0.555	U	0.555	1.11	<0.559		559	1.12	<0.560	U	0.560	1.12	<0.556 L		1.12	<0.559		.559	1.12		U 0.55		<0.552		0.552	1.11
-	<0.560	U	0.560	1.12	<0.555	U	0.555	1.11	<0.559	U 0.	559	1.12	<0.560	U	0.560	1.12	<0.556 L	0.556	1.12	<0.559	U 0	.559	1.12	<0.556	U 0.55	1.12	<0.552		0.552	1.11
3.3'-Dichlorobenzidine	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U 0	.280	0.561		U 0.27	0.559	<0.277	U (0.277	0.554
4,6-Dinitro-o-Cresol	<0.560	U	0.560	1.12	<0.555			1.11	<0.559	C+, U 0.	559	1.12	<0.560	U	0.560	1.12	<0.556 C+	U 0.556	1.12	<0.559	U 0	.559	1.12	<0.556 C	+, U 0.55	1.12	<0.552	C+, U (0.552	1.11
4-Bromophenyl phenyl ether (BDE-3)	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	Ú 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U 0	.280	0.561	<0.279	U 0.27	0.559	<0.277	Ú	0.277	0.554
4-Chlorophenyl phenyl ether	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U 0	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
4-Nitrophenol	<4.50	U	4.50	4.50	<4.46	U	4.46	4.46	<4.49			4.49	<4.50	U	4.50	4.50	<4.47 L	4.47	4.47	<4.49	U 4	1.49	4.49	<4.47	U 4.47	4.47	<4.44	U	4.44	4.44
Benzidine	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U 0	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
Bis(2-Chloroethoxy) methane	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U 0	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
• • • • • • • • • • • • • • • • • • • •	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U C	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U C	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
Bis(2-ethylhexyl) phthalate	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	0.290	J	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U C	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
Butyl benzyl phthalate	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U C	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
Diethyl phthalate	0.686 \	/, V2	0.281	0.562	0.522	V, J	0.278	0.557	0.611	V 0.:	280	0.561	0.939	V, V2	0.281	0.562	0.476 V,	J 0.279	0.559	1.15	V, V2	.280	0.561	0.685	V 0.27	0.559	0.770	V (0.277	0.554
Dimethyl phthalate	<0.281 B,	B2, U	0.281	0.562	<0.278	B, U	0.278	0.557	<0.280	B, U 0.:	280	0.561	<0.281	B, B2, U	0.281	0.562	<0.279 B,	U 0.279	0.559	<0.280 E	B, B2, U 0	.280	0.561	<0.279 E	3, U 0.27	0.559	<0.277	B, U (0.277	0.554
Di-n-butyl phthalate	4.03 \	/, V2	0.281	0.562	1.19	V	0.278	0.557	1.88	V 0.:	280	0.561	3.82	V, V2	0.281	0.562	1.67 \	0.279	0.559	1.56	V, V2	.280	0.561	0.865	V 0.27	0.559	1.12	V (0.277	0.554
Di-n-octyl phthalate	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U 0	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
Hexachlorobenzene	<0.281	C+, U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	C+, U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	C+, U 0	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
Hexachlorobutadiene	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U C	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
Hexachlorocyclopentadiene	<0.281	U	0.281	0.562	<0.278	C+, U	0.278	0.557	<0.280	C+, U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 C+	U 0.279	0.559	<0.280	U C	.280	0.561	<0.279 C	+, U 0.27	0.559	<0.277	C+, U (0.277	0.554
Hexachloroethane	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U C	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
Isophorone	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U C	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
Nitrobenzene	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U C	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
N-Nitrosodimethylamine	<0.281	U	0.281	2.25	<0.278	U	0.278	2.23	<0.280	U 0.:	280	2.24	<0.281	U	0.281	2.25	<0.279 L	0.279	2.23	<0.280	U C	.280	2.24	<0.279	U 0.27	2.23	<0.277	U (0.277	2.22
N-Nitrosodi-n-propylamine	<0.281	U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	U C	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
	<0.281	C+, U	0.281	0.562	<0.278	U	0.278	0.557	<0.280	U 0.:	280	0.561	<0.281	C+, U	0.281	0.562	<0.279 L	0.279	0.559	<0.280	C+, U 0	.280	0.561	<0.279	U 0.27	0.559	<0.277	U (0.277	0.554
P-Chloro-m-Cresol	<0.560	U	0.560	1.12	<0.555	U	0.555	1.11	<0.559	U 0.	559	1.12	<0.560	U	0.560	1.12	<0.556 L	0.556	1.12	<0.559	U C	.559	1.12	<0.556	U 0.55	1.12	<0.552	U (0.552	1.11
Pentachlorophenol	<0.560	C+, U	0.560	1.12	<0.555	U	0.555	1.11	<0.559	U 0.	559	1.12	<0.560	C+, U	0.560	1.12	<0.556 L	0.556	1.12	<0.559	C+, U 0	.559	1.12	<0.556	U 0.55	1.12	<0.552	U (0.552	1.11
Phenol, Total	0.669	V2, J	0.560	1.12	0.803	J	0.555	1.11	1.07	J 0.	559	1.12	0.610	V2, J	0.560	1.12	0.971	0.556	1.12	0.779	V2, J	.559	1.12	0.766	J 0.55	1.12	0.872	J (0.552	1.11

E = elutriate sample, W = site water sample

< #.## = The analyte was not detected (ND) at or above the MDL. The value indicates the MDL.

Qualifiers: B = Analyte was found in the associated method blank. B2 = The analyte was detected in the associated leach blank. C+ = The associated qualibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report. J = Estimated value - The reported value is between the detection limit and reporting limit. U = Indicates that the compound was analyzed for but not detected in both sample and method blank. V2 = Analyte was detected in the sample and the associated leach blank.

Sources: Results from NWDLS; CMC values from EPA (2015); Texas surface water quality (acute) standards from Texas Commission on Environmental Quality (2018).

TABLE 12Analytical Results for Wet Weight Total Solids in *Mercenaria mercenaria* and *Alitta virens* Tissues

Analyte:			<i>mercenaria</i> Solids				<i>virens</i> Solids	
, 	Result	Qualifier	<u> </u>		Result	Qualifier	<u> </u>	
Sample-Replicate #	%	g	MDL	LRL	%	g	MDL	LRL
DMMU-1 Rep. 1	13.6	V	0.100	0.100	11.0	V	0.100	0.100
DMMU-1 Rep. 2	13.9	V	0.100	0.100	11.0	V	0.100	0.100
DMMU-1 Rep. 3	14.2	V	0.100	0.100	10.7	V	0.100	0.100
DMMU-1 Rep. 4	14.8	V	0.100	0.100	11.2	V	0.100	0.100
DMMU-1 Rep. 5	15.6	V	0.100	0.100	9.95	V	0.100	0.100
DMMU-2 Rep. 1	13.9	V	0.100	0.100	10.5	V	0.100	0.100
DMMU-2 Rep. 2	13.9	V	0.100	0.100	11.0	V	0.100	0.100
DMMU-2 Rep. 3	14.6	V	0.100	0.100	10.4	V	0.100	0.100
DMMU-2 Rep. 4	14.2	V	0.100	0.100	11.2	V	0.100	0.100
DMMU-2 Rep. 5	14.5	V	0.100	0.100	10.7	V	0.100	0.100
DMMU-3 Rep. 1	12.1	V	0.100	0.100	11.1	V	0.100	0.100
DMMU-3 Rep. 2	14.3	V	0.100	0.100	11.6	V	0.100	0.100
DMMU-3 Rep. 3	13.8	V	0.100	0.100	10.8	V	0.100	0.100
DMMU-3 Rep. 4	14.4	V	0.100	0.100	10.4	V	0.100	0.100
DMMU-3 Rep. 5	14.6	V	0.100	0.100	11.0	V	0.100	0.100
DMMU-4 Rep. 1	15.0	V	0.100	0.100	9.65	V	0.100	0.100
DMMU-4 Rep. 2	12.4	V	0.100	0.100	9.81	V	0.100	0.100
DMMU-4 Rep. 3	14.3	V	0.100	0.100	10.1	V	0.100	0.100
DMMU-4 Rep. 4	14.4	V	0.100	0.100	10.2	V	0.100	0.100
DMMU-4 Rep. 5	12.9	V	0.100	0.100	10.1	V	0.100	0.100
DMMU-5 Rep. 1	13.8	V	0.100	0.100	11.3	V	0.100	0.100
DMMU-5 Rep. 2	13.5	V	0.100	0.100	10.3	V	0.100	0.100
DMMU-5 Rep. 3	14.3	V	0.100	0.100	11.7	V	0.100	0.100
DMMU-5 Rep. 4	14.5	V	0.100	0.100	12.5	V	0.100	0.100
DMMU-5 Rep. 5	13.2	V	0.100	0.100	11.1	V	0.100	0.100
DMMU-6 Rep. 1	11.2	V	0.100	0.100	11.7	V	0.100	0.100
DMMU-6 Rep. 2	14.8	V	0.100	0.100	11.2	V	0.100	0.100
DMMU-6 Rep. 3	13.9	V	0.100	0.100	10.4	V	0.100	0.100
DMMU-6 Rep. 4	13.9	V	0.100	0.100	10.8	V	0.100	0.100
DMMU-6 Rep. 5	14.0	V	0.100	0.100	10.7	V	0.100	0.100
DMMU-7 Rep. 1	13.7	V	0.100	0.100	9.43	V	0.100	0.100
DMMU-7 Rep. 2	11.1	V	0.100	0.100	11.1	V	0.100	0.100
DMMU-7 Rep. 3	11.9	V	0.100	0.100	11.2	V	0.100	0.100
DMMU-7 Rep. 4	12.4	V	0.100	0.100	10.3	V	0.100	0.100
DMMU-7 Rep. 5	13.1	V	0.100	0.100	10.3	V	0.100	0.100
DMMU-8 Rep. 1	13.1	V	0.100	0.100	11.1	V	0.100	0.100
DMMU-8 Rep. 2	13.5	V	0.100	0.100	12.3	V	0.100	0.100
DMMU-8 Rep. 3	13.0	V	0.100	0.100	10.2	V	0.100	0.100
DMMU-8 Rep. 4	11.3	V	0.100	0.100	10.2	V	0.100	0.100
DMMU-8 Rep. 5	12.8	V	0.100	0.100	9.83	V	0.100	0.100
REF Rep. 1	11.2	H, V	0.100	0.100	14.5	H, V	0.100	0.100
REF Rep. 2	10.8	H, V	0.100	0.100	14.0	H, V	0.100	0.100
REF Rep. 3	10.5	H, V	0.100	0.100	12.8	H, V	0.100	0.100
REF Rep. 4	10.4	H, V	0.100	0.100	10.7	H, V	0.100	0.100
REF Rep. 5	10.7	H, V	0.100	0.100	15.0	H, V	0.100	0.100
Pre-exposure Rep. 1	10.8	H, V	0.100	0.100	12.7	H, V	0.100	0.100
Pre-exposure Rep. 2	12.4	H, V	0.100	0.100	13.2	H, V	0.100	0.100
Pre-exposure Rep. 3	11.4	H, V	0.100	0.100	13.9	H, V	0.100	0.100

H = The parameter was analyzed outside the method specified holding time. V = Analyte was detected in both sample and method blank.

Note: For H-qualified data, since samples were frozen tissues, standard holding time does not apply.

Source: Results from NWDLS

TABLE 13Analytical Results for Wet Weight Metals and TPHs in *Mercenaria mercenaria* Tissues

	Analyte:		Ant	timony			Ar	senic			Bei	yllium			Cac	lmium			Chr	omium			Co	pper			Le	ead	
			ē				ē				ē				ē				<u>.</u>				ē				ē		
Sample-Replicate #		Result	ualif	MDI	LRL	Result mg/kg	inalif	MDL	LRL	Result mg/kg	inalif	MDI	LRL	Result mg/kg	ina lif	MDL	LRL	Result mg/kg	ina lif	MDL	LRL	Result mg/kg	iualif	MDL	LRL	Result	lualif	MDL	LRL
DMMU-1 Rep. 1		mg/kg 0.00236	J	0.00161	0.0200	2.40		0.0123	0.0500	0.000300	J	0.000200	0.00400	0.0304	-	0.000632	0.0200	0.0451	V, J	0.00147	0.0600	1.15	V	0.00174	0.0200	mg/kg 0.0762		0.00151	0.0100
DMMU-1 Rep. 2		0.00254	J	0.00161	0.0200	2.56		0.0123	0.0500	0.000540	J	0.000200	0.00400	0.0352	-	0.000632	0.0200	0.0686	V	0.00147	0.0600	1.45	V	0.00174	0.0200	0.0761		0.00151	0.0100
DMMU-1 Rep. 3 DMMU-1 Rep. 4		0.00309 <0.00523	IJ	0.00162 0.00523	0.0201 0.0649	2.67 3.16		0.0123 0.00799	0.0502 0.0325	0.000823 0.00104	J	0.000201 0.000649	0.00402 0.0130	0.0360 0.0412	 J	0.000635 0.00205	0.0201 0.0649	0.0772 0.101	V V, J	0.00148 0.00477	0.0602 0.195	1.36 1.47	V	0.00175 0.00565	0.0201 0.0649	0.0943 0.105		0.00152 0.00490	0.0100 0.0325
DMMU-1 Rep. 5		0.00280	Ĵ	0.00161	0.0200	2.19		0.0123	0.0500	0.00206	J	0.000200	0.00400	0.0332		0.000632	0.0200	0.280	V	0.00147	0.0600	1.24	v	0.00174	0.0200	0.120		0.00151	0.0100
DMMU-1 Mean		0.00320				2.60				0.00095				0.0352 76				0.114				1.33				0.094			
% of Reference DMMU-2 Rep. 1		199 0.00229	J	0.00162	0.0201	215 2.36		0.0123	0.0502	0.000582	J	0.000201	0.00402	0.0370		0.000635	0.0201	359 0.0841	V	0.00148	0.0602	112 1.37	V	0.00175	0.0201	246 0.0986		0.00152	0.0100
DMMU-2 Rep. 2		0.00239	J	0.00160	0.0199	2.53		0.0123	0.0498	0.000598	J	0.000199	0.00398	0.0397		0.000629	0.0199	0.126	V	0.00146	0.0598	1.32	V	0.00173	0.0199	0.105		0.00150	0.00996
DMMU-2 Rep. 3 DMMU-2 Rep. 4		0.00228 0.00251	J	0.00161 0.00162	0.0200 0.0201	2.42 2.19		0.0123 0.0123	0.0500 0.0502	0.000880 0.000562	J	0.000200 0.000201	0.00400 0.00402	0.0374 0.0389		0.000632 0.000635	0.0200 0.0201	0.208 0.199	V	0.00147 0.00148	0.0600 0.0602	1.20 1.09	V	0.00174 0.00175	0.0200 0.0201	0.0980 0.0951		0.00151 0.00152	0.0100 0.0100
DMMU-2 Rep. 5		0.00251	J	0.00161	0.0201	2.18		0.0123	0.0502	0.00148	J	0.000201	0.00402	0.0378	_	0.000632	0.0201	0.110	V	0.00148	0.0600	1.13	v	0.00174	0.0201	0.122		0.00151	0.0100
DMMU-2 Mean		0.00239				2.34				0.00082				0.0382				0.145				1.22				0.104			
% of Reference DMMU-3 Rep. 1		0.00250	1	0.00161	0.0200	194 1.79		0.0123	0.0500	61 0.000640		0.000200	0.00400	82 0.0286	_	0.000632	0.0200	457 0.0564	V, J	0.00147	0.0600	102 0.904	V	0.00174	0.0200	270 0.0917		0.00151	0.0100
DMMU-3 Rep. 2		0.00256	Ĵ	0.00160	0.0198	2.18		0.0122	0.0496	0.000496	J	0.000198	0.00397	0.0320	_	0.000627	0.0198	0.0931	V	0.00147	0.0595	1.16	v	0.00173	0.0198	0.107		0.00150	0.00992
DMMU-3 Rep. 3		0.00232	J	0.00162	0.0202	2.00		0.0124	0.0504	0.000484	J	0.000202	0.00403	0.0269	-	0.000637	0.0202	0.0949	V	0.00148	0.0605	1.10	V	0.00175	0.0202	0.0941		0.00152	0.0101
DMMU-3 Rep. 4 DMMU-3 Rep. 5		0.00266 0.00230	J J	0.00160 0.00161	0.0198 0.0200	2.17 2.18		0.0122 0.0123	0.0496 0.0500	0.000615 0.000380	J I	0.000198 0.000200	0.00397 0.00400	0.0291 0.0301	_	0.000627 0.000632	0.0198 0.0200	0.113 0.0844	V	0.00146 0.00147	0.0595 0.0600	1.06 1.17	V	0.00173 0.00174	0.0198 0.0200	0.101 0.0885		0.00150 0.00151	0.00992 0.0100
DMMU-3 Mean		0.00230	J	5.50101	5.0200	2.06		0.0120	0.0000	0.00052	J	0.000200	0.00400	0.0293		0.000002	0.0200	0.088	v	0.00147	0.0000	1.08	v	0.00174	0.0200	0.096		0.00101	0.0100
% of Reference		153				171				39				63				278				90	.,,			251			
DMMU-4 Rep. 1 DMMU-4 Rep. 2		0.00254 0.00186	J J	0.00161 0.00161	0.0200 0.0200	2.38 2.10		0.0123 0.0123	0.0500 0.0500	0.000600 0.000220	J J	0.000200 0.000200	0.00400 0.00400	0.0392 0.0283	-	0.000632 0.000632	0.0200 0.0200	0.0504 0.0410	V, J V, J	0.00147 0.00147	0.0600 0.0600	1.10 0.984	V	0.00174 0.00174	0.0200 0.0200	0.0894 0.0756		0.00151 0.00151	0.0100 0.0100
DMMU-4 Rep. 3		0.00203	J	0.00160	0.0199	1.79		0.0123	0.0498	0.000996	J	0.000199	0.00398	0.0295	_	0.000629	0.0199	0.158	V	0.00146	0.0598	0.806	V	0.00173	0.0199	0.0774		0.00150	0.00996
DMMU-4 Rep. 4		0.00240	J	0.00161	0.0200	2.16		0.0123	0.0500	0.00128	J	0.000200	0.00400	0.0321		0.000632	0.0200	0.186	V	0.00147	0.0600	0.944	V	0.00174	0.0200	0.106		0.00151	0.0100
DMMU-4 Rep. 5 DMMU-4 Mean		0.00284	J	0.00161	0.0200	2.10 2.11		0.0123	0.0500	0.000940 0.00081	J	0.000200	0.00400	0.0334 0.0325		0.000632	0.0200	0.357 0.158	V	0.00147	0.0600	1.95 1.16	V	0.00174	0.0200	0.139 0.097		0.00151	0.0100
% of Reference		145				175				60				70				498				97				254			
DMMU-5 Rep. 1		0.00388	J	0.00161 0.00160	0.0200	2.08		0.0246	0.100 0.0496	0.00114	J	0.000200	0.00400	0.0286	-	0.000632	0.0200	0.244	V	0.00147	0.0600	2.51	V	0.00174 0.00173	0.0200	0.163	-	0.00151	0.0100 0.00992
DMMU-5 Rep. 2 DMMU-5 Rep. 3		0.00270 0.00361	J	0.00160	0.0198 0.0198	2.28 1.88		0.0122 0.0122	0.0496	0.000377 0.00143	J	0.000198 0.000198	0.00397 0.00397	0.0314 0.0286	-	0.000627 0.000627	0.0198 0.0198	0.0915 0.357	V	0.00146 0.00146	0.0595 0.0595	1.31 2.28	V	0.00173	0.0198 0.0198	0.0880 0.151		0.00150 0.00150	0.00992
DMMU-5 Rep. 4		0.00412	J	0.00162	0.0201	1.87		0.0123	0.0502	0.00165	J	0.000201	0.00402	0.0266		0.000635	0.0201	0.670	V	0.00148	0.0602	2.57	V	0.00175	0.0201	0.166		0.00152	0.0100
DMMU-5 Rep. 5 DMMU-5 Mean		0.00432 0.00373	J	0.00161	0.0200	1.84 1.99		0.00246	0.0100	0.00152 0.00122	J	0.000200	0.00400	0.0232 0.0277		0.000632	0.0200	0.465 0.366	V	0.00147	0.0600	3.25 2.38	V	0.00174	0.0200	0.157 0.145		0.00151	0.0100
% of Reference		232				165				91				60				1149				200				378			
DMMU-6 Rep. 1		0.00230	J	0.00160	0.0198	2.11		0.0122	0.0496	0.000675	J	0.000198	0.00397	0.0325		0.000627	0.0198	0.118	V	0.00146	0.0595	1.09	٧	0.00173	0.0198	0.0820		0.00150	0.00992
DMMU-6 Rep. 2 DMMU-6 Rep. 3		0.00232 <0.00802	J	0.00161 0.00802	0.0200 0.0996	1.85 2.08		0.0123 0.0123	0.0500 0.0498	0.00164 <0.000996	J	0.000200 0.000996	0.00400 0.0199	0.0294 0.0303	 .l	0.000632 0.00315	0.0200 0.0996	0.382 0.128	V V, J	0.00147 0.00732	0.0600 0.299	1.05 1.09	V	0.00174 0.00867	0.0200 0.0996	0.0901 0.0825		0.00151 0.00752	0.0100 0.0498
DMMU-6 Rep. 4		0.00217	J	0.00160	0.0199	1.84		0.0123	0.0498	0.000757	J	0.000199	0.00398	0.0294	_	0.000629	0.0199	0.205	V	0.00146	0.0598	0.967	V	0.00173	0.0199	0.0889		0.00150	0.00996
DMMU-6 Rep. 5		0.00222	J	0.00161	0.0200	1.82		0.0123	0.0500	0.00118	J	0.000200	0.00400	0.0302	-	0.000632	0.0200	0.251	V	0.00147	0.0600	1.02	V	0.00174	0.0200	0.0886		0.00151	0.0100
DMMU-6 Mean % of Reference		0.00341 212				1.94 161				0.00105 78				0.0304 65				0.217 681				1.04 87				0.0864 225			
DMMU-7 Rep. 1		0.00217	J	0.00160	0.0199	1.85		0.0123	0.0498	0.000518	J	0.000199	0.00398	0.0298	-	0.000629	0.0199	0.0479	V, J	0.00146	0.0598	1.07	V	0.00173	0.0199	0.0961		0.00150	0.00996
DMMU-7 Rep. 2 DMMU-7 Rep. 3		0.00200 0.00178	J	0.00159 0.00161	0.0198 0.0200	1.64 1.95		0.0122 0.00246	0.0494 0.0100	0.000375 0.000300	J	0.000198 0.000200	0.00395 0.00400	0.0254 0.0273	-	0.000625 0.000632	0.0198 0.0200	0.0410 0.0441	V, J	0.00145 0.00147	0.0593 0.0600	1.01 1.11	V	0.00172 0.00174	0.0198 0.0200	0.0979 0.0849		0.00149 0.00151	0.00988 0.0100
DMMU-7 Rep. 3 DMMU-7 Rep. 4		0.00178	J	0.00161	0.0200	1.95		0.00246	0.0100	0.000300	J	0.000200	0.00400	0.0273	-	0.000632	0.0200	0.0441	V, J V, J	0.00147	0.0602	0.985	V	0.00174	0.0200	0.0849		0.00151	0.0100
DMMU-7 Rep. 5		0.00176	J	0.00161	0.0200	1.97		0.00246	0.0100	0.000840	J	0.000200	0.00400	0.0293		0.000632	0.0200	0.0877	V	0.00147	0.0600	1.14	V	0.00174	0.0200	0.100		0.00151	0.0100
DMMU-7 Mean % of Reference		0.00196 122				1.87 155				0.00054 40				0.0276 59				0.0556 175				1.06 89				0.094 244			
DMMU-8 Rep. 1		0.00237	J	0.00158	0.0196	2.03		0.0121	0.0490	0.000725	J	0.000196	0.00392	0.0243		0.000620	0.0196	0.0429	V, J	0.00144	0.0588	1.02	V	0.00171	0.0196	0.0976		0.00148	0.00980
DMMU-8 Rep. 2		0.00206	J	0.00161	0.0200	2.13		0.0123	0.0500	0.000540	J	0.000200	0.00400	0.0277	-	0.000632	0.0200	0.0515	V, J	0.00147	0.0600	1.11	V	0.00174	0.0200	0.0807		0.00151	0.0100
DMMU-8 Rep. 3 DMMU-8 Rep. 4		0.00206 0.00184	J ,I	0.00161 0.00161	0.0200 0.0200	1.85 1.95		0.0123 0.00246	0.0500 0.0100	0.000380 0.000740	J J	0.000200 0.000200	0.00400 0.00400	0.0279 0.0221	-	0.000632 0.000632	0.0200 0.0200	0.0479 0.0554	V, J J	0.00147 0.00147	0.0600 0.0600	1.04 0.997	V	0.00174 0.00174	0.0200 0.0200	0.0814 0.0754	 V	0.00151 0.00151	0.0100 0.0100
DMMU-8 Rep. 5		0.00272	J	0.00161	0.0200	2.26		0.0246	0.100	0.000340	J	0.000200	0.00400	0.0242		0.000632	0.0200	0.0441	J	0.00147	0.0600	0.925	V	0.00174	0.0200	0.0786	V	0.00151	0.0100
DMMU-8 Mean		0.00221				2.04				0.00055				0.0252				0.0484				1.02				0.0827			
% of Reference REF Rep. 1		137 <0.00161	U	0.00161	0.0200	169 1.24		0.00246	0.0100	40 0.00120	J	0.000200	0.00400	54 0.0450		0.000632	0.0200	152 0.0415	V, J	0.00147	0.0600	85 1.42	V	0.00174	0.0200	216 0.0463	V	0.00151	0.0100
REF Rep. 2		<0.00162	U	0.00162	0.0201	1.22		0.00247	0.0100	0.00147	J	0.000201	0.00402	0.0508	-	0.000635	0.0201	0.0310	V, J	0.00148	0.0602	1.25	V	0.00175	0.0201	0.0389	V	0.00152	0.0100
REF Rep. 3 REF Rep. 4		<0.00159 <0.00161	U	0.00159 0.00161	0.0198 0.0200	1.29 1.07		0.00243 0.0123	0.00988 0.0500	0.00144 0.00148	J	0.000198 0.000200	0.00395	0.0455 0.0452		0.000625 0.000632	0.0198 0.0200	0.0248 0.0352	V, J	0.00145 0.00735	0.0593 0.300	0.984 1.13	V	0.00172 0.00870	0.0198 0.100	0.0317 0.0360	V V	0.00149	0.00988 0.0100
REF Rep. 5		<0.00161	U	0.00161	0.0200	1.07		0.0123	0.0500	0.00148	J	0.000200	0.00400 0.00400	0.0452	_	0.000632	0.0200	0.0352	V, J V, J	0.00735	0.300	1.13	V	0.00870	0.100	0.0389	V	0.00151 0.00151	0.0100
REF Mean		0.00161				1.21				0.00135				0.0464				0.0318				1.19				0.0384			
Pre-exposure Rep. 1 Pre-exposure Rep. 2		<0.00162 <0.00160	U	0.00162 0.00160	0.0201 0.0198	1.04 1.22		0.00247 0.00244	0.0100 0.00992	0.00124 0.00181	J	0.000201 0.000198	0.00402 0.00397	0.0419 0.0429		0.000635 0.000627	0.0201 0.0198	0.0424 0.0682	V, J V	0.00148 0.00146	0.0602 0.0595	1.03 1.40	V	0.00175 0.00173	0.0201 0.0198	0.0322 0.0486	V V	0.00152 0.00150	0.0100 0.00992
Pre-exposure Rep. 2		<0.00160	U	0.00161	0.0198	1.22		0.00244	0.0100	0.00181	J	0.000198	0.00397	0.0429	-	0.000627	0.0200	0.0002	V V, J	0.00146	0.0600	1.40	V	0.00173	0.0198	0.0486	V	0.00150	0.00992
Pre-exposure Mean		0.00161				1.18				0.00146				0.0441				0.0476				1.29				0.0448			
FDA Action Level Eco. Effects Threshold		x x				86 12.6				x x				4 1.0				13 6.3				x 0.2				1.7 0.1			
North Gulf of Mexico Bk	gd	0.22-0.47				3.4-5.4				× <0.14				0.15-0.83				0.49-5.2				0.58-2.8				<0.47			
Can of monioo be	o	J.LL J.71				55.4				-5.17				55 0.00				0. 10 0.2				0.00 Z.0				0.77		$\overline{}$	

TABLE 13 (continued)

Analytical Results for Wet Weight Metals and TPHs in Mercenaria mercenaria Tissues

	Analyte:		Me	ercury				Nickel			Sele	enium			Si	lver			Tha	allium				Zinc		Total	Petroleum Hy	drocarbons (T	ГРНs)
			<u>ē</u>				<u>-</u>				ē				<u>.</u>				<u>.</u>				ē				ē		
Sample-Replicate#		Result mg/kg	ualif	MDL	LRL	Result mg/kg	ona lif	MDL	LRL	Result mg/kg	ualif	MDL	LRL	Result mg/kg	Sualif	MDL	LRL	Result mg/kg	Sualif	MDL	LRL	Result mg/kg	Sualif	MDL	LRL	Result mg/kg	Sualif	MDL	LRL
DMMU-1 Rep. 1		<0.00492	U	0.00492	0.00984	0.161	<u> </u>	0.000354	0.0200	0.291		0.0220	0.0400	0.0196	-	0.000142	0.0100	0.000500	J	0.000138	0.0100	8.62	V	0.0376	0.200	157		38.3	90.7
DMMU-1 Rep. 2 DMMU-1 Rep. 3		0.00633 0.00614	J J	0.00465 0.00465	0.00930 0.00930	0.176 0.210	V	0.000354 0.000355	0.0200 0.0201	0.317 0.362		0.0220 0.0221	0.0400 0.0402	0.0172 0.0182	-	0.000142 0.000143	0.0100 0.0100	0.000540 0.000723	J .l	0.000138 0.000139	0.0100 0.0100	8.51 21.5	V	0.0376 0.0377	0.200 0.201	206 177		41.1 41.2	97.3 97.7
DMMU-1 Rep. 4		0.00556	J	0.00488	0.00976	0.263	V	0.00115	0.0649	0.337	-	0.0714	0.130	0.0173	J	0.000461	0.0325	0.000714	J	0.000448	0.0325	12.1	V	0.0244	0.130	144		40.9	96.9
DMMU-1 Rep. 5 DMMU-1 Mean		0.00708	J	0.00480	0.00960	0.281	V	0.000354	0.0200	0.318 0.325		0.0220	0.0400	0.0138 0.0172		0.000142	0.0100	0.000740 0.000643	J	0.000138	0.0100	17.7 13.7	V	0.0376	0.200	164 170		41.9	99.4
% of Reference		127				61				184				108				212				117				475			
DMMU-2 Rep. 1 DMMU-2 Rep. 2		0.00573 0.00560	J	0.00488 0.00500	0.00976 0.0100	0.172 0.210	V	0.000355 0.000353	0.0201 0.0199	0.320 0.326		0.0221 0.0219	0.0402 0.0398	0.0134 0.0120	-	0.000143 0.000141	0.0100 0.00996	0.000683 0.000618	J	0.000139 0.000137	0.0100 0.00996	43.4 44.4	V	0.0754 0.0748	0.402 0.398	51.0 504	J 	40.2 41.2	95.2 97.7
DMMU-2 Rep. 2		<0.00465	Ü	0.00465	0.00930	0.251	v	0.000354	0.0200	0.302		0.0220	0.0400	0.0110	_	0.000141	0.0100	0.000660	J	0.000138	0.0100	26.2	v	0.0376	0.200	72.9	J	40.0	94.9
DMMU-2 Rep. 4 DMMU-2 Rep. 5		0.00566	J	0.00492 0.00476	0.00984 0.00952	0.232 0.221	V	0.000355 0.000354	0.0201 0.0200	0.289 0.295		0.0221 0.0220	0.0402 0.0400	0.00924	J	0.000143 0.000142	0.0100 0.0100	0.000602 0.000640	J	0.000139 0.000138	0.0100 0.0100	10.5 52.1	V	0.0377 0.0751	0.201 0.400	332 714		41.5 39.8	98.4 94.3
DMMU-2 Rep. 5 DMMU-2 Mean		0.00530	<u>J</u>	0.00476	0.00932	0.221	V	0.000354	0.0200	0.295		0.0220	0.0400	0.00834	J	0.000142	0.0100	0.000641	J	0.000136	0.0100	35.3	V	0.0751	0.400	335		39.6	94.3
% of Reference DMMU-3 Rep. 1		112		0.00405	0.00000	61 0.146	V	0.000354	0.0200	173 0.263		0.0220	0.0400	68 0.0150		0.000142	0.0100	211 0.000320		0.000138	0.0100	301 20.7	V	0.0376	0.200	937 965		40.3	95.4
DMMU-3 Rep. 1		<0.00465 0.00509	J	0.00465 0.00469	0.00930 0.00937	0.146	V	0.000354	0.0200	0.203	-	0.0220	0.0397	0.0130	_	0.000142	0.00992	0.000320	J	0.000138	0.0100	9.78	V	0.0376	0.200	3200		42.0	99.6
DMMU-3 Rep. 3		0.00628	J	0.00472	0.00945	0.175	V	0.000357	0.0202	0.313		0.0222	0.0403	0.0106	-	0.000143	0.0101	0.000343	J	0.000139	0.0101	8.29	V	0.0379	0.202	280		41.6	98.6
DMMU-3 Rep. 4 DMMU-3 Rep. 5		0.00498 0.00672	J	0.00488 0.00465	0.00976 0.00930	0.170 0.194	V	0.000351 0.000354	0.0198 0.0200	0.320 0.338	-	0.0218 0.0220	0.0397 0.0400	0.0160 0.0133	-	0.000141 0.000142	0.00992 0.0100	0.000556 0.000400	J	0.000137 0.000138	0.00992 0.0100	18.3 16.6	V	0.0373 0.0376	0.198 0.200	164 189		40.4 42.0	95.8 99.6
DMMU-3 Mean		0.00554				0.176				0.312				0.0138				0.000411				14.7				960			
% of Reference DMMU-4 Rep. 1		117 0.00485	J	0.00469	0.00937	49 0.251	V	0.000354	0.0200	177 0.309		0.0220	0.0400	87 0.0183	-	0.000142	0.0100	135 0.000560	J	0.000138	0.0100	126 32.4	V	0.0376	0.200	2685 161		41.4	98.0
DMMU-4 Rep. 2		<0.00500	U	0.00500	0.0100	0.207	V	0.000354	0.0200	0.257		0.0220	0.0400	0.0111	-	0.000142	0.0100	0.000460	J	0.000138	0.0100	19.5	V	0.0376	0.200	171		39.7	94.0
DMMU-4 Rep. 3 DMMU-4 Rep. 4		0.00644 0.00631	J J	0.00488 0.00472	0.00976 0.00945	0.236 0.295	V	0.000353 0.000354	0.0199 0.0200	0.229 0.290		0.0219 0.0220	0.0398 0.0400	0.0103 0.0129	-	0.000141 0.000142	0.00996 0.0100	0.000478 0.000660	J	0.000137 0.000138	0.00996 0.0100	16.3 8.28	V	0.0374 0.0376	0.199 0.200	320 231		38.4 40.7	91.1 96.3
DMMU-4 Rep. 5		<0.00472	Ü	0.00472	0.00945	0.310	V	0.000354	0.0200	0.270		0.0220	0.0400	0.0148	V	0.000142	0.0100	0.000660	V, J	0.000138	0.0100	14.7	V	0.0376	0.200	205	-	40.2	95.2
DMMU-4 Mean % of Reference		0.00546 115				0.260 73				0.271 153				0.0135 85				0.000564 186				18.2 156				218 609			
DMMU-5 Rep. 1		<0.00476	U	0.00476	0.00952	0.200	V	0.000354	0.0200	0.288	-	0.0220	0.0400	0.0173	V	0.000142	0.0100	0.000500	V, J	0.000138	0.0100	65.7	V	0.0751	0.400	301		40.7	96.3
DMMU-5 Rep. 2 DMMU-5 Rep. 3		<0.00488 <0.00500	U U	0.00488 0.00500	0.00976 0.0100	0.148 0.228	V	0.000351 0.000351	0.0198 0.0198	0.278 0.279		0.0218 0.0218	0.0397 0.0397	0.0160 0.0137	V	0.000141 0.000141	0.00992 0.00992	0.000417 0.000536	V, J V, J	0.000137 0.000137	0.00992 0.00992	32.9 13.2	V	0.0373 0.0373	0.198 0.198	2440 2150		41.0 39.7	97.1 94.0
DMMU-5 Rep. 4		<0.00300	U	0.00300	0.00992	0.351	V	0.000351	0.0201	0.266	-	0.0210	0.0402	0.0137	V	0.000141	0.0100	0.000582	V, J	0.000137	0.0100	7.70	V	0.0377	0.201	2170		41.4	98.0
DMMU-5 Rep. 5 DMMU-5 Mean		<0.00469 0.00486	U	0.00469	0.00937	0.237 0.233	V	0.000354	0.0200	0.228 0.268		0.0220	0.0400	0.0107 0.0142	V	0.000142	0.0100	0.000460 0.000499	V, J	0.000138	0.0100	7.27 25.4	V	0.00751	0.0400	2370 1886		42.0	99.6
% of Reference		103				65				151				89				164				216				5278			
DMMU-6 Rep. 1 DMMU-6 Rep. 2		0.00681 <0.00480	J	0.00465 0.00480	0.00930 0.00960	0.251 0.349	V	0.000351 0.000354	0.0198 0.0200	0.270 0.282		0.0218 0.0220	0.0397 0.0400	0.0137	V	0.000141 0.000142	0.00992 0.0100	0.000496 0.000600	V, J V, J	0.000137 0.000138	0.00992 0.0100	17.4 12.6	V	0.0373 0.0376	0.198 0.200	2060 605	-	41.0 41.4	97.1 98.0
DMMU-6 Rep. 2 DMMU-6 Rep. 3		0.00504	J	0.00480	0.00984	0.349	V	0.000334	0.0200	0.208	-	0.0220	0.199	0.0117 0.0118	V V, J	0.000707	0.0498	<0.000687	B, U	0.000138	0.0100	15.4	V	0.0374	0.200	1170	_	40.3	95.6
DMMU-6 Rep. 4 DMMU-6 Rep. 5		0.00567 0.00640	J	0.00465 0.00476	0.00930 0.00952	0.298 0.278	V	0.000353 0.000354	0.0199 0.0200	0.283 0.276		0.0219 0.0220	0.0398 0.0400	0.0100 0.0111	V	0.000141 0.000142	0.00996 0.0100	0.000538 0.000540	V, J V, J	0.000137 0.000138	0.00996 0.0100	19.6 10.8	V	0.0374 0.0376	0.199 0.200	2900 3020	-	38.5 40.9	91.2 96.9
DMMU-6 Mean		0.00574	J	0.00476	0.00932	0.278	V	0.000354	0.0200	0.264		0.0220	0.0400	0.0117	V	0.000142	0.0100	0.000540	V, J	0.000136	0.0100	15.2	V	0.0376	0.200	1951		40.9	90.9
% of Reference		121		0.00402	0.00004	80		0.000353	0.0400	149		0.0040	0.0200	73		0.000144	0.00000	188	V 1	0.000427	0.00000	129		0.0274	0.400	5459		44.4	00.0
DMMU-7 Rep. 1 DMMU-7 Rep. 2		<0.00492 <0.00465	U U	0.00492 0.00465	0.00984 0.00930	0.152 0.137	V	0.000353 0.000350	0.0199 0.0198	0.276 0.277		0.0219 0.0217	0.0398 0.0395	0.0152 0.0186	V	0.000141 0.000140	0.00996 0.00988	0.000359 0.000237	V, J V, J	0.000137 0.000136	0.00996 0.00988	26.1 67.2	V	0.0374 0.0742	0.199 0.395	2930 2720	_	41.4 41.3	98.0 97.8
DMMU-7 Rep. 3		<0.00469	U	0.00469	0.00937	0.148	V	0.000354	0.0200	0.269		0.0220	0.0400	0.0131	V	0.000142	0.0100	0.000240	V, J	0.000138	0.0100	22.1	V	0.0376	0.200	2430	-	40.7	96.5
DMMU-7 Rep. 4 DMMU-7 Rep. 5		<0.00496 0.00530	U J	0.00496 0.00465	0.00992 0.00930	0.158 0.165	V	0.000355 0.000354	0.0201 0.0200	0.272 0.259		0.0221 0.0220	0.0402 0.0400	0.0124 0.0120	V	0.000143 0.000142	0.0100 0.0100	0.000281 0.000340	V, J V, J	0.000139 0.000138	0.0100 0.0100	37.9 8.11	V V	0.0377 0.0376	0.201 0.200	1430 2510	-	41.6 40.5	98.6 96.0
DMMU-7 Mean		0.00490				0.152				0.271				0.0143				0.000291				32.3				2404			
% of Reference DMMU-8 Rep. 1		104 <0.00476	U	0.00476	0.00952	42 0.138	V	0.000347	0.0196	153 0.291	-	0.0216	0.0392	89 0.0149	V	0.000139	0.00980	96 0.000353	V, J	0.000135	0.00980	275 51.7	V	0.0736	0.392	6726 1180		41.0	97.1
DMMU-8 Rep. 2		<0.00484	U	0.00484	0.00968	0.151	V	0.000354	0.0200	0.286		0.0220	0.0400	0.0128	V	0.000142	0.0100	0.000380	V, J	0.000138	0.0100	28.7	V	0.0376	0.200	135	-	40.7	96.3
DMMU-8 Rep. 3 DMMU-8 Rep. 4		0.00533 <0.00488	J	0.00480 0.00488	0.00960 0.00976	0.138 0.127	V V	0.000354 0.000354	0.0200 0.0200	0.263 0.225		0.0220 0.0220	0.0400 0.0400	0.0130 0.0108	V 	0.000142 0.000142	0.0100 0.0100	0.000340 0.000380	V, J J	0.000138 0.000138	0.0100 0.0100	29.2 23.7	V V	0.0376 0.0376	0.200 0.200	3060 2150	_	40.3 41.9	95.6 99.2
DMMU-8 Rep. 5		0.00519	J	0.00492	0.00984	0.134	V	0.000354	0.0200	0.254		0.0220	0.0400	0.0112		0.000112	0.0100	0.000500	J	0.000138	0.0100	44.7	V	0.0751	0.400	3250		40.9	96.9
DMMU-8 Mean % of Reference		0.00500 106				0.138 38				0.264 149				0.0125 79				0.000391 129				35.6 304				1955 5470			
REF Rep. 1		<0.00469	U	0.00469	0.00937	0.341	V	0.000354	0.0200	0.181		0.0220	0.0400	0.0155		0.000138	0.00973	0.000340	J	0.000138	0.0100	11.5	V	0.0376	0.200	<10.5	U	10.5	24.8
REF Rep. 2 REF Rep. 3		<0.00469 <0.00476	U U	0.00469 0.00476	0.00937 0.00952	0.385 0.342	V	0.000355 0.000350	0.0201 0.0198	0.197 0.168		0.0221 0.0217	0.0402 0.0395	0.0149 0.0185	-	0.000139 0.000139	0.00980 0.00977	0.000341 0.000237	J J	0.000139 0.000136	0.0100 0.00988	12.5 11.3	V V	0.0377 0.0371	0.201 0.198	47.2 <41.0	J U	41.7 41.0	98.8 97.1
REF Rep. 4		<0.00465	U	0.00465	0.00930	0.387	V	0.00177	0.100	0.176	_	0.0220	0.0400	0.0133	_	0.000142	0.0100	0.000300	J	0.000138	0.0100	11.7	V	0.0376	0.200	<40.3	U	40.3	95.6
REF Rep. 5 REF Mean		<0.00488 0.00473	U	0.00488	0.00976	0.335	V	0.000354	0.0200	0.162 0.177		0.0220	0.0400	0.0175 0.0159	-	0.000139	0.00980	0.000300 0.000304	J	0.000138	0.0100	11.6 11.7	V	0.0376	0.200	<39.7 35.7	U	39.7	94.2
Pre-exposure Rep. 1		<0.00473	U	0.00476	0.00952	0.384	V	0.000355	0.0201	0.177		0.0221	0.0402	0.0158	-	0.000142	0.0100	0.000304	J	0.000139	0.0100	13.1	V	0.0377	0.201	<10.3	U	10.3	24.5
Pre-exposure Rep. 2		<0.00469	U U	0.00469 0.00496	0.00937	0.387 0.359	V	0.000351 0.000354	0.0198	0.202		0.0218	0.0397 0.0400	0.0174 0.0198	-	0.000141	0.00992 0.00980	0.000337 0.000400	J	0.000137 0.000138	0.00992 0.0100	13.2 14.1	V V	0.0373 0.0376	0.198	<10.3	U U	10.3	24.4
Pre-exposure Rep. 3 Pre-exposure Mean		<0.00496 0.00480	U	0.00496	0.00992	0.359	v	0.000354	0.0200	0.224 0.203		0.0220	0.0400	0.0198		0.000139	0.00960	0.000400	J	0.000136	0.0100	13.5	v	0.0376	0.200	<10.5 10.4	U	10.5	24.8
FDA Action Level		1				80				X				X				x				X				х			
Eco. Effects Threshold N. Gulf of Mexico Bkgd		0.3 <0.028				2.2 0.7-3.1				14.2 0.5-1.5				1.0 0.11-0.56				0.3 <0.47				11.6 7.0-30.0				x x			
DRG														2 0.00								30.0							

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

Italicized and bolded values indicate results that are statistically significantly greater than that of the reference tissues and also exceed the ecological effects threshold and (or) the upper boundary of the N. Gulf of Mexico background concentration (see Section 7.5.3 of SERIM for details).

< #.## = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL.

J = The value is between the MDL and the LRL. V = Analyte was detected in both sample and method blank.

Sources: Results from NWDLS and Eurofins-Stafford (TPHs); FDA action levels from FDA (2001, 2011); thresholds and background concentrations from Appendix H of SERIM (EPA and USACE 2008); trivalent and hexavalent chromium use total chromium levels, thresholds, and background concentrations. Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 14Analytical Results for Wet Weight Metals and TPHs in *Alitta virens* Tissues

Analyte:		Ar	ntimony			A	rsenic			В	eryllium			Car	dmium			Chro	omium			Co	opper			L	ead	
		- -				-e				-				-				10				-				5		
	Result	iji ali			Result	all je			Result	jį. Ji			Result	iii aliiii			Result	all Lie			Result	aliţie			Result	ii ali ali		
Sample-Replicate #	mg/kg	<u> </u>	MDL	LRL	mg/kg	ਰ	MDL	LRL	mg/kg	<u> </u>	MDL	LRL	mg/kg	ਰੱ	MDL	LRL	mg/kg	<u> </u>	MDL	LRL	mg/kg	<u> </u>	MDL	LRL	mg/kg	<u>ਰ</u>	MDL	LRL
DMMU-1 Rep. 1 DMMU-1 Rep. 2	<0.00161 <0.00161	U	0.00161 0.00161	0.0200 0.0200	1.26 1.31	-	0.00246 0.00246	0.0100 0.0100	0.00134 0.00152	J	0.000200 0.000200	0.00400 0.00400	0.0443 0.0442	_	0.000632 0.000632	0.0200 0.0200	0.0402 0.0563	J	0.00147 0.00147	0.0600 0.0600	1.22 1.22	V	0.00174 0.00174	0.0200 0.0200	0.0350 0.0390	V	0.00151 0.00151	0.0100 0.0100
DMMU-1 Rep. 3	<0.00160	Ü	0.00160	0.0199	1.43		0.00245	0.00996	0.00141	J	0.000199	0.00398	0.0479		0.000629	0.0199	0.0383	J	0.00146	0.0598	1.19	V	0.00173	0.0199	0.0386	V	0.00150	0.00996
DMMU-1 Rep. 4 DMMU-1 Rep. 5	<0.00161	U	0.00161 0.00162	0.0200 0.0201	1.31 1.25	-	0.00246 0.00247	0.0100 0.0100	0.00156	J	0.000200 0.000201	0.00400	0.0491	-	0.000632	0.0200 0.0201	0.0420 0.0310	J	0.00147 0.00148	0.0600 0.0602	1.47 1.17	V	0.00174 0.00175	0.0200 0.0201	0.0500 0.0326	V	0.00151 0.00152	0.0100 0.0100
DMMU-1 Mean	<0.00162 0.00161	U	0.00162	0.0201	1.25	-	0.00247	0.0100	0.000924 0.00135	J	0.000201	0.00402	0.0452 0.0461		0.000635	0.0201	0.0310	J	0.00148	0.0002	1.17	V	0.00175	0.0201	0.0326		0.00152	0.0100
% of Reference	49				65				127				184				20				46				29			
DMMU-2 Rep. 1	<0.00161 <0.00162	U	0.00161 0.00162	0.0200 0.0201	1.24 1.23	-	0.00246 0.00247	0.0100 0.0100	0.00142 0.00141	J	0.000200 0.000201	0.00400 0.00402	0.0535 0.0482	-	0.000632 0.000635	0.0200 0.0201	0.0243 0.0403	J	0.00147 0.00148	0.0600 0.0602	1.53 1.19	V	0.00174 0.00175	0.0200 0.0201	0.0346 0.0343	V	0.00151 0.00152	0.0100 0.0100
DMMU-2 Rep. 2 DMMU-2 Rep. 3	<0.00162	U	0.00162	0.0201	1.28	_	0.00247	0.00996	0.000141	J	0.000201	0.00398	0.0462		0.000639	0.0201	0.0403	J	0.00146	0.0598	1.19	V	0.00173	0.0201	0.0343	V	0.00152	0.0100
DMMU-2 Rep. 4	<0.00159	U	0.00159	0.0198	1.47	-	0.00243	0.00988	0.00142	J	0.000198	0.00395	0.0548		0.000625	0.0198	0.0443	J	0.00145	0.0593	1.33	V	0.00172	0.0198	0.0370	V	0.00149	0.00988
DMMU-2 Rep. 5	<0.00161	U	0.00161	0.0200	1.36		0.00246	0.0100	0.00114	J	0.000200	0.00400	0.0451		0.000632	0.0200	0.0218	J	0.00147	0.0600	1.21	V	0.00174	0.0200	0.0233	V	0.00151	0.0100
DMMU-2 Mean % of Reference	0.00161 49				1.32 65				0.00127 119				0.0493 197				0.0335 16				1.28 47				0.0325 24			
DMMU-3 Rep. 1	<0.00160	U	0.00160	0.0199	1.39		0.00245	0.00996	0.00108	J	0.000199	0.00398	0.0597	-	0.000629	0.0199	0.0492	J	0.00146	0.0598	1.26	V	0.00173	0.0199	0.0370	V	0.00150	0.00996
DMMU-3 Rep. 2	<0.00160	U 	0.00160	0.0199	1.41		0.00245	0.00996	0.00159	J	0.000199	0.00398	0.0597		0.000629	0.0199	0.0392	J	0.00146	0.0598	1.28	V	0.00173	0.0199	0.0401	٧	0.00150	0.00996
DMMU-3 Rep. 3 DMMU-3 Rep. 4	<0.00161 <0.00160	U	0.00161 0.00160	0.0200 0.0198	1.15 1.25	_	0.00246 0.00244	0.0100	0.00122 0.00125	J .I	0.000200 0.000198	0.00400 0.00397	0.0449 0.0495		0.000632 0.000627	0.0200 0.0198	0.0387 0.0378	J J	0.00147 0.00146	0.0600 0.0595	1.02 1.17	V	0.00174 0.00173	0.0200 0.0198	0.0379 0.0407	V	0.00151 0.00150	0.0100 0.00992
DMMU-3 Rep. 5	<0.00162	U	0.00162	0.0201	1.29		0.00247	0.0100	0.000924	J	0.000190	0.00397	0.0509		0.000635	0.0201	0.0378	<u>.</u> J	0.00148	0.0602	1.21	v	0.00175	0.0201	0.0405	v	0.00152	0.0100
DMMU-3 Mean	0.00161				1.30				0.00121				0.0529				0.0391				1.19				0.0392			
% of Reference DMMU-4 Rep. 1	49 <0.00161	11	0.00161	0.0200	64 1.18		0.00246	0.0100	114 0.00134	1	0.000200	0.00400	212 0.0547		0.000632	0.0200	19 0.0394	,i	0.00147	0.0600	43 1.27	V	0.00174	0.0200	29 0.0386	V	0.00151	0.0100
DMMU-4 Rep. 1	<0.00161	U	0.00161	0.0200	1.10	_	0.00246	0.0100	0.00134	J	0.000200	0.00400	0.0347		0.000632	0.0200	0.0394	J	0.00147	0.0600	1.21	V	0.00174	0.0200	0.0358	V	0.00151	0.0100
DMMU-4 Rep. 3	<0.00161	U	0.00161	0.0200	1.14	-	0.00246	0.0100	0.00144	J	0.000200	0.00400	0.0415		0.000632	0.0200	0.0328	V, J	0.00147	0.0600	1.20	V	0.00174	0.0200	0.0376		0.00151	0.0100
DMMU-4 Rep. 4	<0.00160	U	0.00160	0.0198	1.11		0.00244	0.00992	0.00194	J	0.000198	0.00397	0.0526		0.000627	0.0198	0.0643	V	0.00146	0.0595	1.29	V	0.00173	0.0198	0.0398		0.00150	0.00992
DMMU-4 Rep. 5 DMMU-4 Mean	<0.00161 0.00161	U	0.00161	0.0200	1.05 1.12		0.00246	0.0100	0.00116 0.00142	J	0.000200	0.00400	0.0410 0.0471		0.000632	0.0200	0.0284 0.0403	V, J	0.00147	0.0600	1.30 1.25	V	0.00174	0.0200	0.0442 0.0392		0.00151	0.0100
% of Reference	49				55				133				188				19				46				29			
DMMU-5 Rep. 1	<0.00161	U	0.00161	0.0200	1.18	-	0.00246	0.0100	0.00132	J	0.000200	0.00400	0.0474	-	0.000632	0.0200	0.0621	V	0.00147	0.0600	1.44	V	0.00174	0.0200	0.0387		0.00151	0.0100
DMMU-5 Rep. 2 DMMU-5 Rep. 3	<0.00161 <0.00160	U	0.00161 0.00160	0.0200 0.0199	1.30 1.27	-	0.00246 0.00245	0.0100 0.00996	0.00130 0.00133	J	0.000200 0.000199	0.00400 0.00398	0.0443 0.0500	-	0.000632 0.000629	0.0200 0.0199	0.0296 0.0300	V, J V, J	0.00147 0.00146	0.0600 0.0598	1.28 1.26	V	0.00174 0.00173	0.0200 0.0199	0.0282 0.0327		0.00151 0.00150	0.0100 0.00996
DMMU-5 Rep. 4	<0.00160	U	0.00160	0.0198	1.44	-	0.00244	0.00990	0.00157	J	0.000198	0.00397	0.0360	-	0.000627	0.0198	0.0300	V, J	0.00146	0.0595	1.39	V	0.00173	0.0198	0.0327		0.00150	0.00990
DMMU-5 Rep. 5	<0.00161	U	0.00161	0.0200	1.40	-	0.00246	0.0100	0.00122	J	0.000200	0.00400	0.0469		0.000632	0.0200	0.0298	V, J	0.00147	0.0600	1.30	V	0.00174	0.0200	0.0375		0.00151	0.0100
DMMU-5 Mean % of Reference	0.00161				1.32 65				0.00135 127				0.0470 188				0.0383				1.33				0.0354			
DMMU-6 Rep. 1	<0.00161	U	0.00161	0.0200	1.40	_	0.00246	0.0100	0.00154	J	0.000200	0.00400	0.0484		0.000632	0.0200	0.0369	V, J	0.00147	0.0600	1.36	V	0.00174	0.0200	0.0404		0.00151	0.0100
DMMU-6 Rep. 2	<0.00160	U	0.00160	0.0199	1.32	-	0.00245	0.00996	0.00173	J	0.000199	0.00398	0.0554		0.000629	0.0199	0.0593	V, J	0.00146	0.0598	1.23	V	0.00173	0.0199	0.0480		0.00150	0.00996
DMMU-6 Rep. 3	<0.00160	U	0.00160	0.0198	1.23		0.00244	0.00992	0.00139	J	0.000198	0.00397	0.0542	-	0.000627	0.0198 0.100	0.0338 0.0287	V, J	0.00146	0.0595	1.31 1.16	V	0.00173	0.0198	0.0516		0.00150	0.00992
DMMU-6 Rep. 4 DMMU-6 Rep. 5	<0.00805 <0.00162	U	0.00805 0.00162	0.100 0.0201	1.22 1.23		0.00246 0.00247	0.0100 0.0100	0.00112 0.00135	J	0.000200 0.000201	0.00400 0.00402	0.0517 0.0517	J 	0.00316 0.000635	0.100	0.0287	V, J	0.00735 0.00148	0.300 0.0602	1.16	V	0.00174 0.00175	0.0200 0.0201	0.0416 0.0319	J 	0.00755 0.00152	0.0500 0.0100
DMMU-6 Mean	0.00290				1.28				0.00143				0.0523				0.0382				1.25				0.0427			
% of Reference	88				63				134				209				18	.,			46	.,			31			
DMMU-7 Rep. 1 DMMU-7 Rep. 2	<0.00161 <0.00159	U	0.00161 0.00159	0.0200 0.0198	1.02 1.40	-	0.00246 0.00243	0.0100 0.00988	0.00126 0.00125	J J	0.000200 0.000198	0.00400 0.00395	0.0502 0.0541		0.000632 0.000625	0.0200 0.0198	0.0626 0.0460	V V, J	0.00147 0.00145	0.0600 0.0593	1.05 1.22	V	0.00174 0.00172	0.0200 0.0198	0.0356 0.0448		0.00151 0.00149	0.0100 0.00988
DMMU-7 Rep. 3	<0.00161	Ü	0.00161	0.0200	1.34		0.00246	0.0100	0.00126	J	0.000100	0.00400	0.0487		0.000632	0.0200	0.0271	V, J	0.00147	0.0600	1.23	V	0.00174	0.0200	0.0396		0.00151	0.0100
DMMU-7 Rep. 4	<0.00160	U	0.00160	0.0199	1.21		0.00245	0.00996	0.00163	J	0.000199	0.00398	0.0495		0.000629	0.0199	0.0272	V, J	0.00146	0.0598	1.17	V	0.00173	0.0199	0.0404	-	0.00150	0.00996
DMMU-7 Rep. 5 DMMU-7 Mean	<0.00161 0.00160	U	0.00161	0.0200	1.13 1.22	-	0.00246	0.0100	0.00126 0.00133	J	0.000200	0.00400	0.0511 0.0507		0.000632	0.0200	0.0332 0.0392	V, J	0.00147	0.0600	1.05 1.14	V	0.00174	0.0200	0.0429 0.0407	-	0.00151	0.0100
% of Reference	49				60				125				203				19				42				30			
DMMU-8 Rep. 1	<0.00161	U	0.00161	0.0200	1.17	-	0.00246	0.0100	0.00110	J	0.000200	0.00400	0.0515		0.000632	0.0200	0.0416	V, J	0.00147	0.0600	1.76	V	0.00174	0.0200	0.0502		0.00151	0.0100
DMMU-8 Rep. 2 DMMU-8 Rep. 3	<0.00161	U	0.00161 0.00162	0.0200 0.0201	1.50		0.00246 0.00247	0.0100	0.00166	J	0.000200	0.00400	0.0554		0.000632	0.0200 0.0201	0.0512	V, J	0.00147 0.00148	0.0600	1.48	V	0.00174 0.00175	0.0200 0.0201	0.0520		0.00151 0.00152	0.0100 0.0100
DMMU-8 Rep. 4	0.00187 <0.00161	U	0.00162	0.0201	1.29 1.37		0.00247	0.0100 0.0100	0.00135 0.00174	J	0.000201 0.000200	0.00402 0.00400	0.0584 0.0581		0.000635 0.000632	0.0201	0.0585 0.0412	V, J	0.00148	0.0602 0.0600	1.43 1.82	V	0.00175	0.0201	0.0547 0.0442		0.00152	0.0100
DMMU-8 Rep. 5	<0.00161	U	0.00161	0.0200	<0.00246	U	0.00246	0.0100	0.00106	J	0.000200	0.00400	<0.000632	U	0.000632	0.0200	<0.00147	B, U	0.00147	0.0600	1.26	V	0.00174	0.0200	<0.00151	U	0.00151	0.0100
DMMU-8 Mean	0.00166				1.07				0.00138				0.0448				0.0388				1.55 56				0.0405			
% of Reference REF Rep. 1	50 0.00264	J	0.00161	0.0200	53 2.08	_	0.0123	0.0500	130 0.000680	J	0.000200	0.00400	179 0.0264		0.000632	0.0200	19 0.126	V	0.00147	0.0600	56 1.83	V	0.00174	0.0200	30 0.106	_	0.00151	0.0100
REF Rep. 2	0.00204	J	0.00160	0.0198	1.95	-	0.0123	0.0496	0.000615	J	0.000198	0.00397	0.0250	-	0.000627	0.0198	0.151	V, J	0.00729	0.298	2.73	v	0.00863	0.0992	0.123		0.00150	0.00992
REF Rep. 3	0.00424	J	0.00161	0.0200	2.16		0.0246	0.100	0.000720	J	0.000200	0.00400	0.0272		0.000632	0.0200	0.285	V, J	0.0147	0.600	3.51	V	0.0174	0.200	0.151		0.00151	0.0100
REF Rep. 4 REF Rep. 5	0.00270 0.00372	J	0.00161 0.00280	0.0200 0.0347	1.86 2.10		0.00246 0.00427	0.0100 0.0174	0.000740 0.00257	J	0.000200 0.000347	0.00400 0.00694	0.0217 0.0248	 J	0.000632 0.00110	0.0200 0.0347	0.168 0.308	V	0.00147 0.00255	0.0600 0.104	2.39 3.26	V	0.00174 0.00302	0.0200 0.0347	0.110 0.189	-	0.00151 0.00262	0.0100 0.0174
REF Mean	0.00372	J	0.00200	0.0347	2.10	_	0.00427	0.0174	0.00257	J	0.000347	0.00094	0.0248	J	0.00110	0.0347	0.208	٧	0.00200	0.104	2.74	V	0.00302	0.0347	0.189	-	0.00202	0.0174
Pre-exposure Rep. 1	0.00247	J	0.00162	0.0201	2.13	-	0.0247	0.100	0.000602	J	0.000201	0.00402	0.0247	-	0.000635	0.0201	0.0885	V	0.00148	0.0602	1.90	V	0.00175	0.0201	0.0677	-	0.00152	0.0100
Pre-exposure Rep. 2	0.00272	J	0.00161	0.0200	1.86	-	0.0123	0.0500	0.00176	J	0.000200	0.00400	0.0211		0.000632	0.0200	0.158	V	0.00147	0.0600	1.48	V	0.00174	0.0200	0.0970		0.00151	0.0100
Pre-exposure Rep. 3 Pre-exposure Mean	0.00276 0.00265	J	0.00160	0.0198	2.25	_	0.0122	0.0496	0.00161 0.00132	J	0.000198	0.00397	0.0264 0.0241		0.000627	0.0198	0.139 0.129	V	0.00146	0.0595	1.57 1.65	V	0.00173	0.0198	0.113 0.093		0.00150	0.00992
FDA Action Level	X				76				X				3				12				x				1.5			
Eco. Effects Threshold	х				12.6				х				27.8				10.0				0.4				0.1			
North Gulf of Mexico Bkgd	<0.31				7.4-37.0				<0.09				0.34-1.4				0.89-4.6				2.3-5.3				0.31-1.2			

TABLE 14 (continued)

Analytical Results for Wet Weight Metals and TPHs in Alitta virens Tissues

	Analyte:	Mercury				N	Nickel			Se	lenium				Silver			Т	hallium				Zinc		Total	Petroleum H	drocarbons (ГРНs)
		•				-				-				-				-				<u>.</u>				-		
	Result	ra life			Result	nalifi			Result	nalifi			Result	na li <u>f</u> i			Result	naliţi			Result	ualifi			Result	nalifi		
mple-Replicate # MMU-1 Rep. 1	mg/kg <0.00500		MDL 0.00500	0.0100	mg/kg 0.324	<u> </u>	MDL 0.000354	0.0200	mg/kg 0.136	σ	MDL 0.0220	0.0400	mg/kg 0.0203	σ	MDL 0.000142	0.0100	mg/kg 0.000360	<u> </u>	MDL 0.000138	0.0100	mg/kg 10.6	<u> </u>	MDL 0.0376	0.200	mg/kg 33.5	g	MDL 10.4	LRL 24.7
MMU-1 Rep. 2	<0.00488		.00300	0.00976	0.430	V	0.000354	0.0200	0.158		0.0220	0.0400	0.0203		0.000142	0.0100	0.000300	J	0.000138	0.0100	12.9	V	0.0376	0.200	40.3	J	39.2	92.9
/MU-1 Rep. 3	<0.00469		.00469	0.00937	0.417	V	0.000353	0.0199	0.160		0.0219	0.0398	0.0147		0.000141	0.00996	0.000418	J	0.000137	0.00996	12.0	V	0.0374	0.199	122		10.5	24.8
MMU-1 Rep. 4	<0.00476		0.00476	0.00952	0.385	٧	0.000354	0.0200	0.161		0.0220	0.0400	0.0218		0.000142	0.0100	0.000600	J	0.000138	0.0100	11.7	V	0.0376	0.200	12.9	J	10.4	24.5
MMU-1 Rep. 5 MMU-1 Mean	<0.00496 0.00486	U 0	.00496	0.00992	0.361 0.383	V	0.000355	0.0201	0.162 0.155		0.0221	0.0402	0.0163 0.0184		0.000143	0.0100	0.000341 0.000424	J	0.000139	0.0100	10.1 11.5	V	0.0377	0.201	175 76.7		10.4	24.6
of Reference	100				192				60				104				117				85				3			
MMU-2 Rep. 1	<0.00492		.00492	0.00984	0.379	V	0.000354	0.0200	0.169		0.0220	0.0400	0.0201		0.000142	0.0100	0.000540	J	0.000138	0.0100	12.2	V	0.0376	0.200	863		39.6	93.8
MMU-2 Rep. 2 MMU-2 Rep. 3	<0.00492 <0.00476		1.00492 1.00476	0.00984 0.00952	0.374 0.310	V V	0.000355 0.000353	0.0201 0.0199	0.168 0.167		0.0221 0.0219	0.0402 0.0398	0.0199 0.0155		0.000143 0.000141	0.0100 0.00996	0.000422 0.000538	J	0.000139 0.000137	0.0100 0.00996	12.6 11.2	V	0.0377 0.0374	0.201 0.199	526 504		38.8 38.0	91.9 90.1
MMU-2 Rep. 3 MMU-2 Rep. 4	<0.00478		.00476	0.00952	0.310	V	0.000353	0.0199	0.187		0.0219	0.0395	0.0155		0.000141	0.00988	0.000338	J	0.000137	0.00988	12.5	V	0.0374	0.199	685		38.7	90.
MMU-2 Rep. 5	<0.00469		.00469	0.00937	0.303	٧	0.000354	0.0200	0.174		0.0220	0.0400	0.0153		0.000142	0.0100	0.000420	J	0.000138	0.0100	10.5	V	0.0376	0.200	509		41.4	98.0
MMU-2 Mean	0.00482				0.355				0.173				0.0177				0.000483				11.8				617			
6 of Reference MMU-3 Rep. 1	100 <0.00480	U 0	.00480	0.00960	178 0.356	V	0.000353	0.0199	67 0.183		0.0219	0.0398	100 0.0192		0.000141	0.00996	133 0.000598		0.000137	0.00996	87 12.6	V	0.0374	0.199	24 976		39.3	93.1
MMU-3 Rep. 2	<0.00492		.00492	0.00984	0.391	V	0.000353	0.0199	0.194		0.0219	0.0398	0.0188		0.000141	0.00996	0.000498	J	0.000137	0.00996	13.5	v	0.0374	0.199	748		38.6	91.6
MMU-3 Rep. 3	<0.00500	U 0	.00500	0.0100	0.354	V	0.000354	0.0200	0.151		0.0220	0.0400	0.0162		0.000142	0.0100	0.000460	J	0.000138	0.0100	11.6	V	0.0376	0.200	724		38.1	90.3
MMU-3 Rep. 4	<0.00488		.00488	0.00976	0.387	V	0.000351	0.0198	0.166		0.0218	0.0397	0.0166		0.000141	0.00992	0.000496	J	0.000137	0.00992	11.7	V	0.0373	0.198	726		39.1	92.8
MMU-3 Rep. 5 MMU-3 Mean	<0.00469 0.00486	U 0	.00469	0.00937	0.376 0.373	V	0.000355	0.0201	0.174 0.174		0.0221	0.0402	0.0166 0.0175		0.000143	0.0100	0.000482 0.000507	J	0.000139	0.0100	12.5 12.4	V	0.0377	0.201	1560 947	-	39.2	92.9
6 of Reference	100				187				68				99				140				92				37			
MMU-4 Rep. 1	<0.00469		.00469	0.00937	0.519	V	0.000354	0.0200	0.149		0.0220	0.0400	0.0248		0.000142	0.0100	0.000540	J	0.000138	0.0100	12.9	V	0.0376	0.200	440		40.0	94.7
MMU-4 Rep. 2	<0.00480		0.00480	0.00960	0.402	V	0.000354	0.0200	0.154		0.0220	0.0400	0.0182		0.000142	0.0100	0.000440	J	0.000138	0.0100	11.5	V	0.0376	0.200	563		38.3	90.7
DMMU-4 Rep. 3 DMMU-4 Rep. 4	<0.00476 <0.00488		1.00476 1.00488	0.00952 0.00976	0.326 0.417	V	0.000354 0.000351	0.0200 0.0198	0.133 0.156		0.0220 0.0218	0.0400 0.0397	0.0151 0.0200		0.000142 0.000141	0.0100 0.00992	0.000400 0.000595	.l	0.000138 0.000137	0.0100 0.00992	9.48 11.1	V	0.0376 0.0373	0.200 0.198	939 456		38.6 38.2	91.4 90.6
DMMU-4 Rep. 5	<0.00472		.00472	0.00945	0.257	v	0.000354	0.0200	0.140		0.0220	0.0400	0.0183		0.000141	0.0100	0.000380	J	0.000137	0.0100	8.64	v	0.0376	0.200	645		37.9	89.8
DMMU-4 Mean	0.00477				0.384				0.146				0.0193				0.000471				10.7				609			
6 of Reference	99		00400	0.00007	193	\/	0.000254	0.0000	57		0.0000	0.0400	109		0.000440	0.0400	130		0.000420	0.0400	79	\/	0.0270	0.000	24		40.5	00.0
MMU-5 Rep. 1 MMU-5 Rep. 2	<0.00469 <0.00492		1.00469 1.00492	0.00937 0.00984	0.414 0.331	V	0.000354 0.000354	0.0200 0.0200	0.174 0.172		0.0220 0.0220	0.0400 0.0400	0.0206 0.0167		0.000142 0.000142	0.0100 0.0100	0.000360 0.000320	J J	0.000138 0.000138	0.0100 0.0100	12.0 11.5	V	0.0376 0.0376	0.200 0.200	1180 477		40.5 40.7	96.0 96.5
DMMU-5 Rep. 3	<0.00480		.00480	0.00960	0.336	V	0.000353	0.0199	0.166		0.0219	0.0398	0.0195		0.000141	0.00996	0.000299	J	0.000137	0.00996	11.5	V	0.0374	0.199	578		42.0	99.6
MMU-5 Rep. 4	<0.00500		.00500	0.0100	0.344	V	0.000351	0.0198	0.198		0.0218	0.0397	0.0189		0.000141	0.00992	0.000337	J	0.000137	0.00992	11.9	V	0.0373	0.198	106		38.3	90.7
DMMU-5 Rep. 5 DMMU-5 Mean	<0.00480 0.00484	U 0	.00480	0.00960	0.318	V	0.000354	0.0200	0.184		0.0220	0.0400	0.0200		0.000142	0.0100	0.000360	J	0.000138	0.0100	11.6 11.7	V	0.0376	0.200	474		38.9	92.1
% of Reference	100				0.349 175				0.179 70				0.0191 108				0.000335 92				87				563 22			
DMMU-6 Rep. 1	<0.00480	U 0	.00480	0.00960	0.372	V	0.000354	0.0200	0.177		0.0220	0.0400	0.0260		0.000142	0.0100	0.000620	J	0.000138	0.0100	11.9	V	0.0376	0.200	380		39.4	93.5
DMMU-6 Rep. 2	<0.00469		.00469	0.00937	0.369	V	0.000353	0.0199	0.175		0.0219	0.0398	0.0238		0.000141	0.00996	0.000598	J	0.000137	0.00996	11.8	V	0.0374	0.199	509		37.7	89.4
DMMU-6 Rep. 3 DMMU-6 Rep. 4	<0.00496 <0.00469		1.00496 1.00469	0.00992 0.00937	0.429 0.372	V V	0.000351 0.000354	0.0198 0.0200	0.168 0.116		0.0218 0.110	0.0397 0.200	0.0231 0.0190		0.000141 0.000710	0.00992 0.0500	0.000575 <0.000690	J	0.000137 0.000690	0.00992 0.0500	11.7 10.9	V	0.0373 0.0376	0.198 0.200	361 41.4	-	38.6 39.3	91.4 93.1
DMMU-6 Rep. 5	<0.00489		.00469	0.00937	0.380	V	0.000354	0.0200	0.116		0.0221	0.0402	0.0190		0.000710	0.0300	0.000462	J	0.000139	0.0300	11.2	V	0.0376	0.200	370		39.9	94.5
DMMU-6 Mean	0.00479				0.384				0.159				0.0222				0.000589				11.5				332			
% of Reference	99				193				62				126				162				85				13			
DMMU-7 Rep. 1 DMMU-7 Rep. 2	<0.00476 <0.00472		1.00476 1.00472	0.00952 0.00945	0.328 0.397	V	0.000354 0.000350	0.0200 0.0198	0.131 0.183		0.0220 0.0217	0.0400 0.0395	0.0171 0.0179		0.000142 0.000140	0.0100 0.00988	0.000240 0.000356	J	0.000138 0.000136	0.0100	10.0 13.2	V	0.0376 0.0371	0.200 0.198	431 654		41.2 38.6	97.7 91.6
DMMU-7 Rep. 2 DMMU-7 Rep. 3	<0.00472		1.00472	0.00945	0.397	V	0.000354	0.0198	0.183		0.0217	0.0395	0.0179		0.000140	0.0100	0.000356	J	0.000138	0.00988 0.0100	11.8	V	0.0371	0.198	439		40.1	95.1
DMMU-7 Rep. 4	<0.00496	U 0	.00496	0.00992	0.314	V	0.000353	0.0199	0.149		0.0219	0.0398	0.0182		0.000141	0.00996	0.000339	J	0.000137	0.00996	11.5	V	0.0374	0.199	542		41.1	97.5
DMMU-7 Rep. 5	<0.00496	U 0	.00496	0.00992	0.345	V	0.000354	0.0200	0.147		0.0220	0.0400	0.0212		0.000142	0.0100	0.000300	J	0.000138	0.0100	12.1	V	0.0376	0.200	567		40.1	95.1
DMMU-7 Mean % of Reference	0.00486 100				0.346 174				0.156 61				0.0185 105				0.000311 86				11.7 87				527 21			
DMMU-8 Rep. 1	<0.00488	U 0	.00488	0.00976	0.319	V	0.000354	0.0200	0.158	-	0.0220	0.0400	0.0256	-	0.000142	0.0100	0.000360	J	0.000138	0.0100	11.0	V	0.0376	0.200	410		39.4	93.5
DMMU-8 Rep. 2	<0.00488	U 0	.00488	0.00976	0.353	V	0.000354	0.0200	0.186		0.0220	0.0400	0.0179		0.000142	0.0100	0.000520	J	0.000138	0.0100	12.1	V	0.0376	0.200	493		39.9	94.5
DMMU-8 Rep. 3	<0.00488		.00488	0.00976	0.419	V	0.000355	0.0201	0.176		0.0221	0.0402	0.0257		0.000143	0.0100	0.000663	J	0.000139	0.0100	12.7	V	0.0377	0.201	427		40.9	96.9
DMMU-8 Rep. 4 DMMU-8 Rep. 5	<0.00492 <0.00472		1.00492 1.00472	0.00984 0.00945	0.451 0.337	V	0.000354 0.000354	0.0200 0.0200	0.153 <0.0220	 U	0.0220 0.0220	0.0400 0.0400	0.0205 0.0151		0.000142 0.000142	0.0100 0.0100	0.000460 0.000140	J .l	0.000138 0.000138	0.0100 0.0100	11.3 <0.00751	V B. U	0.0376 0.00751	0.200 0.0400	377 <39.8		41.5 39.8	98.2 94.3
DMMU-8 Mean	0.00486	3 0		0.00340	0.376	v	0.000004	0.0200	0.139		0.0220	0.0400	0.0131		0.000142	0.0100	0.000140	3	0.000100	0.0100	9.4	5, 0	0.00701	0.0400	349		55.0	34.3
% of Reference	100				188				54				119				118				70				14			
REF Rep. 1	<0.00465		0.00465	0.00930	0.159	V	0.000354	0.0200	0.300		0.0220	0.0400	0.0221		0.000138	0.00969	0.000300	J	0.000138	0.0100	8.23		0.0376	0.200	3060		39.0	92.4
REF Rep. 2 REF Rep. 3	<0.00496 <0.00480		1.00496 1.00480	0.00992 0.00960	0.181 0.242	V	0.00176 0.00354	0.0992 0.200	0.232 0.244	 J	0.109 0.220	0.198 0.400	0.0213 0.0238		0.000141 0.000140	0.00996 0.00988	0.000278 0.000440	J J	0.000137 0.000138	0.00992 0.0100	24.7 18.8		0.0373 0.0751	0.198 0.400	2470 3050		40.3 39.1	95.6 92.6
REF Rep. 4	<0.00480		.00480	0.00960	0.172	v	0.000354	0.0200	0.241		0.0220	0.0400	0.0141		0.000138	0.00969	0.000440	Ĵ	0.000138	0.0100	6.83		0.00751	0.0400	1960		40.2	95.2
REF Rep. 5	<0.00500		.00500	0.0100	0.243	V	0.000615	0.0347	0.268		0.0382	0.0694	0.00707	J	0.000386	0.0272	0.000556	J	0.000240	0.0174	8.90		0.0130	0.0694	2290		41.3	97.8
EF Mean	0.00484		00465	0.00000	0.199		0.000255	0.0004	0.257		0.0004	0.0400	0.0177		0.000444	0.00000	0.000363		0.000422	0.0400	13.5		0.0754	0.400	2566		40.5	25.0
re-exposure Rep. 1 re-exposure Rep. 2	<0.00465 <0.00476		1.00465 1.00476	0.00930 0.00952	0.181 0.201	V	0.000355 0.000354	0.0201 0.0200	0.371 0.295		0.0221 0.0220	0.0402 0.0400	0.0235 0.0252		0.000141 0.000140	0.00996 0.00984	0.000301 0.000540	J .l	0.000139 0.000138	0.0100 0.0100	45.5 19.7		0.0754 0.0376	0.402 0.200	449 126		10.5 10.4	25.0 24.7
re-exposure Rep. 2	<0.00478			0.00952	0.184	V	0.000354	0.0200	0.295		0.0220	0.0400	0.0200		0.000140	0.00988	0.000540	J	0.000138	0.00992	16.5		0.0376	0.200	68.2	_	10.4	24.7
re-exposure Mean	0.00474				0.189				0.340				0.0229				0.000466				27.2				214			
DA Action Level	1				70				X				x				x				x				х			
co. Effects Threshold . Gulf of Mexico Bkgd	0.3 0.03-0.04				2.2 0.53-3.5				14.2 0.61-0.99				1.0 <0.15				0.3 <0.31				0.3 14-16				X X			
Can or mexico bkga	0.03-0.04				0.03-0.0				0.01-0.88				~U. IU				١ د.٧٠				14-10							

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

Italicized and boiled values indicate results that are statistically significantly greater than that of the reference tissues and also exceed the ecological effects threshold and (or) the upper boundary of the N. Gulf of Mexico background concentration (see Section 7.5.3 of SERIM for details).

< #.## = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL.

J = The value is between the MDL and the LRL. B = Analyte was found in the associated method blank. V = Analyte was detected in both sample and method blank. Sources: Results from NWDLS and Eurofins-Stafford (TPHs); FDA action levels from FDA (2001, 2011); thresholds and background concentrations from Appendix H of SERIM (EPA and USACE 2008); trivalent and hexavalent chromium use total chromium levels, thresholds, and background concentrations. Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 15Analytical Results for Dry Weight Metals and TPHs in *Mercenaria mercenaria* Tissues

	Analyte:		Anti	imony			Aı	rsenic			Ве	eryllium			Ca	dmium			Chr	romium			C	opper			L	_ead	
			e				-e				er				-e				-e				-e				e		
Sample-Replicate #		Result mg/kg	Qualifi	MDL	LRL	Result mg/kg	Qualifi	MDL	LRL	Result mg/kg	Qualifi	MDL	LRL	Result mg/kg	Qualifi	MDL	LRL	Result mg/kg	Qualifi	MDL	LRL	Result mg/kg	Qualifi	MDL	LRL	Result mg/kg	Qualifi	MDL	LRL
DMMU-1 Rep. 1		0.0174	J	0.0118	0.147	17.6		0.0905	0.368	0.00221	J	0.00147	0.0294	0.224		0.00465	0.147	0.332	V, J	0.0108	0.441	8.43	V	0.0128	0.147	0.561		0.0111	0.0736
DMMU-1 Rep. 2		0.0183	J	0.0116	0.144	18.4		0.0886	0.360	0.00389	J	0.00144	0.0288	0.254		0.00455	0.144	0.494	V	0.0106	0.432	10.5	V	0.0125	0.144	0.548		0.0109	0.0720
DMMU-1 Rep. 3 DMMU-1 Rep. 4		0.0218 <0.0352	U	0.0114 0.0352	0.141 0.438	18.8 21.3		0.0869 0.0538	0.353 0.219	0.00580 0.00700	J	0.00141 0.00438	0.0283 0.0875	0.253 0.278	 J	0.00447 0.0138	0.141 0.438	0.543 0.678	V V, J	0.0104 0.0322	0.424 1.31	9.54 9.92	V	0.0123 0.0381	0.141 0.438	0.663 0.705		0.0107 0.0330	0.0707 0.219
DMMU-1 Rep. 5		0.0179	J	0.0103	0.128	14.0		0.0787	0.320	0.0132	J	0.00128	0.0256	0.212		0.00404	0.128	1.79	V	0.00940	0.384	7.94	V	0.0111	0.128	0.764		0.00966	0.0639
DMMU-1 Mean % of Reference		0.0221 147				18.0 160				0.0064 51				0.244				0.767 259				9.27 83				0.648 181			
DMMU-2 Rep. 1		0.0165	J	0.0116	0.144	16.9		0.0888	0.361	0.00419	J	0.00144	0.0289	0.266		0.00456	0.144	0.604	V	0.0106	0.433	9.86	V	0.0126	0.144	0.708		0.0109	0.0722
DMMU-2 Rep. 2		0.0172	J	0.0115	0.143	18.2		0.0881	0.358	0.00430	J	0.00143	0.0286	0.286		0.00453	0.143	0.905	V	0.0105	0.430	9.46	V	0.0125	0.143	0.752		0.0108	0.0716
DMMU-2 Rep. 3		0.0156	J	0.0110	0.137	16.5		0.0841	0.342	0.00602	J	0.00137	0.0273	0.256		0.00432	0.137	1.42	V	0.0101	0.410	8.23	V	0.0119	0.137	0.670		0.0103	0.0684
DMMU-2 Rep. 4 DMMU-2 Rep. 5		0.0177 0.0172	J	0.0114 0.0111	0.142 0.138	15.5 15.0		0.0871 0.0847	0.354 0.344	0.00396 0.0102	J	0.00142 0.00138	0.0283 0.0275	0.274 0.261		0.00447 0.00435	0.142 0.138	1.40 0.757	V	0.0104 0.0101	0.425 0.413	7.66 7.80	V	0.0123 0.0120	0.142 0.138	0.670 0.842		0.0107 0.0104	0.0708 0.0689
DMMU-2 Mean		0.0168				16.4				0.0057				0.269				1.02				8.60	-			0.728			- 11111
% of Reference		112		0.0100	0.405	146		0.100	0.110	45		0.00405	0.0000	62		0.00500	0.405	343	\ \ \ \ \	0.0101	0.405	77		0.0444	0.405	204		0.0405	0.0000
DMMU-3 Rep. 1 DMMU-3 Rep. 2		0.0206 0.0180	J	0.0133 0.0112	0.165 0.139	14.7 15.3		0.102 0.0856	0.413 0.348	0.00528 0.00348	J	0.00165 0.00139	0.0330 0.0278	0.236 0.224		0.00522 0.00440	0.165 0.139	0.466 0.653	V, J V	0.0121 0.0102	0.495 0.418	7.46 8.14	V	0.0144 0.0121	0.165 0.139	0.757 0.749		0.0125 0.0105	0.0826 0.0696
DMMU-3 Rep. 3		0.0168	J	0.0118	0.146	14.5		0.0900	0.366	0.00351	J	0.00146	0.0293	0.195		0.00462	0.146	0.688	V	0.0108	0.439	7.96	V	0.0127	0.146	0.683		0.0110	0.0731
DMMU-3 Rep. 4		0.0184	J	0.0111	0.137	15.0		0.0845	0.343	0.00426	J	0.00137	0.0275	0.201		0.00434	0.137	0.784	V	0.0101	0.412	7.31	V	0.0120	0.137	0.696		0.0104	0.0687
DMMU-3 Rep. 5 DMMU-3 Mean		0.0158 0.0179	J	0.0110	0.137	15.0 14.9	-	0.0844	0.343	0.00261 0.00383	J	0.00137	0.0274	0.207 0.213		0.00433	0.137	0.579 0.634	V	0.0101	0.411	8.03 7.78	V	0.0119	0.137	0.607 0.698		0.0104	0.0686
% of Reference		119				133				30				49				214				70				195			
DMMU-4 Rep. 1		0.0170	J	0.0108	0.134	15.9		0.0822	0.334	0.00401	J	0.00134	0.0267	0.262		0.00423	0.134	0.337	V, J	0.00983	0.401	7.33	V	0.0116	0.134	0.597		0.0101	0.0669
DMMU-4 Rep. 2 DMMU-4 Rep. 3		0.0150 0.0142	J J	0.0130 0.0112	0.162 0.139	16.9 12.5		0.0994 0.0857	0.404 0.349	0.00178 0.00697	J .l	0.00162 0.00139	0.0323 0.0279	0.229 0.207		0.00511 0.00441	0.162 0.139	0.331 1.11	V, J V	0.0119 0.0102	0.485 0.418	7.95 5.64	V	0.0141 0.0121	0.162 0.139	0.611 0.542		0.0122 0.0105	0.0808 0.0697
DMMU-4 Rep. 4		0.0166	J	0.0112	0.139	15.0		0.0852	0.346	0.00887	J	0.00139	0.0277	0.222		0.00438	0.139	1.29	V	0.0102	0.416	6.54	v	0.0121	0.139	0.734		0.0105	0.0693
DMMU-4 Rep. 5		0.0220	J	0.0125	0.155	16.3		0.0952	0.387	0.00727	J	0.00155	0.0310	0.259		0.00489	0.155	2.76	V	0.0114	0.464	15.1	V	0.0135	0.155	1.08		0.0117	0.0774
DMMU-4 Mean % of Reference		0.0170 113				15.3 136				0.00578 46				0.236				1.17 393				8.51 76				0.713 199			
DMMU-5 Rep. 1		0.0281	J	0.0116	0.145	15.0		0.178	0.723	0.00824	J	0.00145	0.0289	0.207		0.00457	0.145	1.76	V	0.0106	0.434	18.1	V	0.0126	0.145	1.18		0.0109	0.0723
DMMU-5 Rep. 2		0.0200	J	0.0118	0.147	16.9		0.0905	0.368	0.00280	J	0.00147	0.0294	0.233		0.00465	0.147	0.679	V	0.0108	0.442	9.73	V	0.0128	0.147	0.652		0.0111	0.0736
DMMU-5 Rep. 3 DMMU-5 Rep. 4		0.0253 0.0284	J J	0.0112 0.0112	0.139 0.139	13.2 12.9		0.0855 0.0853	0.348 0.347	0.0100 0.0114	J J	0.00139 0.00139	0.0278 0.0278	0.201 0.184		0.00439 0.00438	0.139 0.139	2.50 4.63	V	0.0102 0.0102	0.417 0.416	16.0 17.8	V	0.0121 0.0121	0.139 0.139	1.06 1.15		0.0105 0.0105	0.0695 0.0694
DMMU-5 Rep. 5		0.0327	J	0.0122	0.151	13.9		0.0186	0.0757	0.0115	J	0.00151	0.0303	0.176		0.00478	0.151	3.51	V	0.0111	0.454	24.6	v	0.0132	0.151	1.19		0.0114	0.0757
DMMU-5 Mean		0.0269				14.4				0.0088				0.200				2.62				17.2				1.05			
% of Reference DMMU-6 Rep. 1		179 0.0205		0.0143	0.177	128 18.8		0.109	0.443	70 0.00602		0.00177	0.0354	46 0.290	_	0.00560	0.177	882 1.05	V	0.0130	0.531	155 9.73	V	0.0154	0.177	293 0.732		0.0134	0.0886
DMMU-6 Rep. 2		0.0156	J	0.0143	0.177	12.5		0.0828	0.337	0.0110	J	0.00177	0.0269	0.198		0.00426	0.177	2.57	V	0.00990	0.404	7.06	V	0.0134	0.177	0.607		0.0102	0.0674
DMMU-6 Rep. 3		<0.0577	U	0.0577	0.716	15.0		0.0881	0.358	<0.00716	U	0.00716	0.143	0.218	J	0.0226	0.716	0.922	V, J	0.0527	2.15	7.86	V	0.0623	0.716	0.593		0.0541	0.358
DMMU-6 Rep. 4 DMMU-6 Rep. 5		0.0156 0.0158	J	0.0115 0.0115	0.143 0.143	13.2 13.0		0.0878 0.0877	0.357 0.356	0.00543 0.00841	J	0.00143 0.00143	0.0286 0.0285	0.211 0.215		0.00451 0.00451	0.143 0.143	1.47 1.79	V	0.0105 0.0105	0.428 0.428	6.93 7.30	V	0.0124 0.0124	0.143 0.143	0.637 0.632		0.0108 0.0108	0.0714 0.0713
DMMU-6 Mean		0.0250		0.0113	0.140	14.5	-	0.0077	0.550	0.00760		0.00143	0.0203	0.216	-	0.00431	0.143	1.56	V	0.0103	0.420	7.78	V	0.0124	0.143	0.640		0.0100	0.0713
% of Reference		167				129				60				52				526				70				179			
DMMU-7 Rep. 1 DMMU-7 Rep. 2		0.0159 0.0179	J	0.0117 0.0143	0.146 0.177	13.5 14.7		0.0895 0.109	0.364 0.443	0.00378 0.00337	J	0.00146 0.00177	0.0291 0.0354	0.218 0.228		0.00460 0.00560	0.146 0.177	0.350 0.368	V, J V, J	0.0107 0.0130	0.437 0.532	7.81 9.05	V	0.0127 0.0154	0.146 0.177	0.702 0.878		0.0110 0.0134	0.0728 0.0886
DMMU-7 Rep. 2 DMMU-7 Rep. 3		0.0179	J	0.0145	0.177	16.3		0.0206	0.0839	0.00357	J	0.00177	0.0334	0.229		0.00530	0.177	0.370	V, J	0.0130	0.503	9.32	V	0.0134	0.177	0.712		0.0134	0.0839
DMMU-7 Rep. 4		0.0168	J	0.0130	0.161	15.4		0.0198	0.0807	0.00516	J	0.00161	0.0323	0.209		0.00510	0.161	0.459	V, J	0.0119	0.484	7.91	V	0.0140	0.161	0.712		0.0122	0.0807
DMMU-7 Rep. 5 DMMU-7 Mean	+	0.0134 0.0158	J	0.0123	0.152	15.0 15.0		0.0187	0.0761	0.00640 0.00425	J	0.00152	0.0305	0.223 0.221		0.00481	0.152	0.668	V	0.0112	0.457	8.64 8.55	V	0.0132	0.152	0.763 0.753		0.0115	0.0761
% of Reference		105				133				34				51				149				77				211			
DMMU-8 Rep. 1		0.0181	J	0.0120	0.150	15.5		0.0920	0.374	0.00553	J	0.00150	0.0299	0.185		0.00473	0.150	0.327	V, J	0.0110	0.449	7.82	V	0.0130	0.150	0.744		0.0113	0.0748
DMMU-8 Rep. 2 DMMU-8 Rep. 3		0.0152 0.0158	J J	0.0119 0.0123	0.148 0.153	15.7 14.2		0.0908 0.0943	0.369 0.384	0.00399 0.00291	J	0.00148 0.00153	0.0295 0.0307	0.205 0.214		0.00467 0.00485	0.148 0.153	0.380 0.367	V, J V, J	0.0109 0.0113	0.443 0.460	8.21 7.94	V	0.0128 0.0133	0.148 0.153	0.596 0.624		0.0111 0.0116	0.0738 0.0767
DMMU-8 Rep. 4		0.0162	J	0.0123	0.155	17.2		0.0943	0.0882	0.00291	J	0.00155	0.0357	0.214		0.00465	0.155	0.367	v, J	0.0113	0.529	8.80	V	0.0153	0.155	0.624	 V	0.0118	0.0767
DMMU-8 Rep. 5		0.0212	J	0.0125	0.156	17.6		0.192	0.779	0.00265	J	0.00156	0.0312	0.188		0.00493	0.156	0.343	J	0.0115	0.468	7.21	V	0.0136	0.156	0.612	V	0.0118	0.0779
DMMU-8 Mean % of Reference		0.0173 115				16.0 143				0.00432 34				0.197 46				0.381 129				8.00 72				0.648 181			
REF Rep. 1		<0.0144	U	0.0144	0.179	11.1		0.0220	0.0893	0.0107	J	0.00179	0.0357	0.402		0.00564	0.179	0.371	V, J	0.0131	0.536	12.7	V	0.0155	0.179	0.414	V	0.0135	0.0893
REF Rep. 2		<0.0150	U	0.0150	0.187	11.3		0.0230	0.0933	0.0136	J	0.00187	0.0373	0.473		0.00590	0.187	0.288	V, J	0.0137	0.560	11.6	V	0.0162	0.187	0.361	٧	0.0141	0.0933
REF Rep. 3 REF Rep. 4		<0.0151 <0.0155	U	0.0151 0.0155	0.188 0.192	12.2 10.3		0.0231 0.118	0.0938 0.481	0.0137 0.0142	J	0.00188 0.00192	0.0375 0.0385	0.432 0.435		0.00593 0.00608	0.188 0.192	0.235 0.339	V, J V, J	0.0138 0.0707	0.563 2.89	9.34 10.9	V	0.0163 0.0837	0.188 0.962	0.301 0.346	V	0.0142 0.0145	0.0938 0.0962
REF Rep. 5		<0.0155	U	0.0155	0.192	11.3		0.0231	0.481	0.0142	J	0.00192	0.0365	0.435		0.00593	0.192	0.339	V, J	0.0707	0.563	11.1	V	0.0163	0.962	0.346	V	0.0145	0.0962
REF Mean		0.0150				11.2				0.0126				0.434				0.297				11.1				0.357			
Pre-exposure Rep. 1		<0.0150	U	0.0150	0.186	9.67		0.0229	0.0932	0.0116	J	0.00186	0.0373	0.390		0.00589	0.186	0.394	V, J V	0.0137	0.559	9.57	V V	0.0162	0.186	0.299	V	0.0141	0.0932
Pre-exposure Rep. 2 Pre-exposure Rep. 3		<0.0128 <0.0141	U U	0.0128 0.0141	0.160 0.176	9.77 11.3		0.0196 0.0216	0.0798 0.0878	0.0145 0.0118	J	0.00160 0.00176	0.0319 0.0351	0.345 0.417		0.00504 0.00555	0.160 0.176	0.549 0.282	V V, J	0.0117 0.0129	0.479 0.527	11.3 12.6	V	0.0139 0.0153	0.160 0.176	0.391 0.469	V	0.0120 0.0133	0.0798 0.0878
Pre-exposure Mean		0.0140		2.3111	20	10.2		5.52.10	2.20.0	0.0126		2.30110		0.384		2.30000	2	0.408	., .	2.0.20	2.02,	11.2	·	2.0.00	20	0.386	<u> </u>	2.0.00	2.00.0

TABLE 15 (continued)

Analytical Results for Dry Weight Metals and TPHs in Mercenaria mercenaria Tissues

Analyte		N	Mercury			ŀ	Nickel			Sel	enium			S	ilver			Tł	hallium				Zinc		Total Pe	etroleum H	ydrocarbons	(TPHs)
		ē				ē				ē				ē				ē				ē				ē		
	Result	ualif			Result	nalit			Result	ualif			Result	ualit			Result	ualit			Result	ualit			Result	ualif		
ample-Replicate # MMU-1 Rep. 1	mg/kg <0.0362		MDL 0.0362	0.0724	mg/kg 1.19	<u> </u>	MDL 0.00260	LRL 0.147	mg/kg 2.14	<u> </u>	MDL 0.162	0.294	mg/kg 0.144	<u> </u>	MDL 0.00104	0.0736	mg/kg 0.00368	<u> </u>	MDL 0.00102	0.0736	mg/kg 63.4	<u> </u>	MDL 0.276	1.47	mg/kg 1154	<u> </u>	MDL 282	LRL 667
MMU-1 Rep. 2	0.0302	J	0.0302	0.0724	1.19	V	0.00255	0.147	2.14		0.158	0.288	0.144		0.00104	0.0730	0.00389	J	0.000994	0.0730	61.3	V	0.270	1.44	1482		296	700
MMU-1 Rep. 3	0.0432	J	0.0327	0.0655	1.48	V	0.00250	0.141	2.55		0.155	0.283	0.128		0.00100	0.0707	0.00509	J	0.000975	0.0707	151	V	0.265	1.41	1246		290	688
MMU-1 Rep. 4	0.0375	J	0.0329	0.0657	1.77	V	0.00775	0.438	2.27		0.481	0.875	0.116	J	0.00311	0.219	0.00481	J	0.00302	0.219	81.4	V	0.164	0.875	973		276	655
MMU-1 Rep. 5	0.0453	J	0.0307	0.0614	1.80	V	0.00226	0.128	2.03		0.141	0.256	0.0884		0.000908	0.0639	0.00473	J	0.000882	0.0639	113	V	0.240	1.28	1051		269	637
MMU-1 Mean of Reference	0.0416 94				1.50 45				2.25 137				0.120 81				0.00444 157				94.0 86				1181 352			
MMU-2 Rep. 1	0.0412	J	0.0351	0.0701	1.24	V	0.00255	0.144	2.30		0.159	0.289	0.0963		0.00102	0.0722	0.00491	J	0.000996	0.0722	312	V	0.542	2.89	367	J	289	685
MMU-2 Rep. 2	0.0403	J	0.0359	0.0719	1.51	V	0.00253	0.143	2.34		0.158	0.286	0.0859		0.00102	0.0716	0.00444	J	0.000988	0.0716	319	V	0.538	2.86	3626		296	703
MMU-2 Rep. 3	<0.0318	U	0.0318	0.0636	1.72	V	0.00242	0.137	2.07		0.150	0.273	0.0753		0.000971	0.0684	0.00451	J	0.000943	0.0684	179	V	0.257	1.37	499	J	274	650
MMU-2 Rep. 4	0.0399	J	0.0347	0.0693	1.63	V	0.00251	0.142	2.04		0.156	0.283	0.0651	J	0.00101	0.0708	0.00425	J	0.000977	0.0708	73.7	V	0.266	1.42	2338		292	693
MMU-2 Rep. 5 MMU-2 Mean	0.0336	J	0.0328	0.0656	1.52	V	0.00244	0.138	2.03 2.16		0.151	0.275	0.0574 0.0760	J	0.000978	0.0689	0.00441 0.00450	J	0.000950	0.0689	359 249	V	0.517	2.75	4924 2351		274	650
of Reference	0.0374 84				1.52 46				131				51				159				249				700			
MMU-3 Rep. 1	<0.0384	U	0.0384	0.0768	1.20	V	0.00292	0.165	2.17		0.182	0.330	0.124		0.00117	0.0826	0.00264	J	0.00114	0.0826	171	V	0.310	1.65	7975		333	788
MMU-3 Rep. 2	0.0357	J	0.0329	0.0658	1.37	V	0.00246	0.139	2.30		0.153	0.278	0.0991		0.000988	0.0696	0.00306	J	0.000960	0.0696	68.6	V	0.261	1.39	22378		294	697
MMU-3 Rep. 3	0.0456	J	0.0343	0.0686	1.27	V	0.00259	0.146	2.27		0.161	0.293	0.0768		0.00104	0.0731	0.00249	J	0.00101	0.0731	60.2	V	0.275	1.46	2029		301	714
MMU-3 Rep. 4	0.0345	J	0.0338	0.0676	1.18	V	0.00243	0.137	2.21		0.151	0.275	0.111		0.000975	0.0687	0.00385	J	0.000948	0.0687	126	V	0.258	1.37	1139		281	665
DMMU-3 Rep. 5 DMMU-3 Mean	0.0461 0.0401	J	0.0319	0.0638	1.33 1.27	V	0.00243	0.137	2.31 2.25		0.151	0.274	0.0914		0.000974	0.0686	0.00274 0.00296	J	0.000946	0.0686	114 108	V	0.258	1.37	1295 6963		288	682
% of Reference	91				38				136				67				104				99				2073			
MMU-4 Rep. 1	0.0324	J	0.0313	0.0627	1.68	V	0.00237	0.134	2.07		0.147	0.267	0.122		0.000949	0.0669	0.00374	J	0.000923	0.0669	216	V	0.251	1.34	1073		276	653
MMU-4 Rep. 2	<0.0404	U	0.0404	0.0808	1.67	V	0.00286	0.162	2.08		0.178	0.323	0.0896		0.00115	0.0808	0.00372	J	0.00112	0.0808	157	V	0.303	1.62	1379		320	758
DMMU-4 Rep. 3	0.0451	J	0.0341	0.0683	1.65	V	0.00247	0.139	1.60		0.153	0.279	0.0722		0.000990	0.0697	0.00335	J	0.000962	0.0697	114	V	0.262	1.39	2238		269	637
MMU-4 Rep. 4 MMU-4 Rep. 5	0.0437 <0.0366	IJ	0.0327 0.0366	0.0654 0.0731	2.04 2.40	V	0.00245	0.139 0.155	2.01 2.09		0.152 0.170	0.277 0.310	0.0896 0.115	 V	0.000984	0.0693 0.0774	0.00457 0.00511	J	0.000956	0.0693 0.0774	57.3	V	0.260	1.39 1.55	1604 1589		283 312	669 738
DMMU-4 Rep. 5	0.0396	U	0.0366	0.0731	1.89	V	0.00274	0.155	1.97		0.170	0.310	0.115	V	0.00110	0.0774	0.00511	V, J	0.00107	0.0774	114 132	V	0.291	1.55	1577		312	738
of Reference	90				56				119				66				145				120				469			
MMU-5 Rep. 1	<0.0344	U	0.0344	0.0689	1.45	V	0.00256	0.145	2.08		0.159	0.289	0.125	V	0.00103	0.0723	0.00362	V, J	0.000998	0.0723	475	V	0.543	2.89	2181		295	698
MMU-5 Rep. 2	<0.0362	U	0.0362	0.0724	1.10	V	0.00260	0.147	2.06		0.162	0.294	0.119	V	0.00104	0.0736	0.00309	V, J	0.00102	0.0736	244	V	0.276	1.47	18074		304	719
MMU-5 Rep. 3	<0.0350	U	0.0350	0.0701	1.60	V	0.00246	0.139	1.96		0.153	0.278	0.0961	V V	0.000987	0.0695	0.00375	V, J	0.000960	0.0695	92.7	V	0.261	1.39	15035		278	657
MMU-5 Rep. 4 MMU-5 Rep. 5	<0.0343 <0.0355	U	0.0343 0.0355	0.0685 0.0709	2.43 1.80	V	0.00246 0.00268	0.139 0.151	1.84 1.72		0.153 0.166	0.278 0.303	0.0910 0.0812	V	0.000985 0.00107	0.0694 0.0757	0.00402 0.00348	V, J V, J	0.000957 0.00104	0.0694 0.0757	53.2 55.0	V	0.261 0.0568	1.39 0.303	14966 17955		286 318	676 755
MMU-5 Mean	0.0351		0.0000	0.0700	1.68	•	0.00200	0.101	1.93		0.100	0.000	0.102	•	0.00107	0.0101	0.00359	*,0	0.00101	0.0101	184	<u> </u>	0.0000	0.000	13642		- 0.0	
6 of Reference	79				50				117				69				127				168				4061			
MMU-6 Rep. 1	0.0608	J	0.0415	0.0830	2.24	V	0.00314	0.177	2.41		0.195	0.354	0.122	V	0.00126	0.0886	0.00443	V, J	0.00122	0.0886	156	V	0.333	1.77	18393		366	867
MMU-6 Rep. 2	<0.0323	U	0.0323	0.0647	2.35	V	0.00238	0.135	1.90		0.148	0.269	0.0788	V	0.000956	0.0674	0.00404	V, J	0.000930	0.0674	84.9	V	0.253	1.35	4088		280	662
MMU-6 Rep. 3 MMU-6 Rep. 4	0.0363 0.0407	J J	0.0354 0.0333	0.0707 0.0667	1.90 2.14	V	0.0127 0.00253	0.716 0.143	1.50 2.03		0.788 0.157	1.43 0.286	0.0847 0.0717	V, J V	0.00509 0.00101	0.358 0.0714	<0.00494 0.00386	B, U V, J	0.00494 0.000985	0.358 0.0714	111 140	V	0.269 0.268	1.43 1.43	8417 20863		290 277	688 656
MMU-6 Rep. 5	0.0457	J	0.0339	0.0679	1.98	V	0.00253	0.143	1.96		0.157	0.285	0.0717	V	0.00101	0.0713	0.00385	V, J	0.000984	0.0713	77.2	V	0.268	1.43	21571		292	692
DMMU-6 Mean	0.0432				2.12				1.96				0.087				0.00422	, ,			114				14667			
% of Reference	98				63				119				59				149				104				4366			
DMMU-7 Rep. 1	<0.0359	U	0.0359	0.0719	1.11	V	0.00258	0.146	2.02		0.160	0.291	0.111	V	0.00103	0.0728	0.00262	V, J	0.00100	0.0728	190	V	0.273	1.46	21387		302	715
DMMU-7 Rep. 2 DMMU-7 Rep. 3	<0.0417 <0.0393	U	0.0417 0.0393	0.0834 0.0787	1.23 1.25	V	0.00314 0.00297	0.177 0.168	2.48 2.26		0.195 0.185	0.354 0.336	0.167 0.110	V V	0.00126 0.00119	0.0886 0.0839	0.00213 0.00201	V, J V, J	0.00122 0.00116	0.0886 0.0839	602 185	V \/	0.666 0.315	3.54 1.68	24505 20420		372 342	881 811
лимо-7 кер. з DMMU-7 Rep. 4	<0.0393	U	0.0398	0.0787	1.25	V	0.00297	0.166	2.26		0.165	0.323	0.0995	V	0.00119	0.0807	0.00201	۷, J V, J	0.00116	0.0807	305	V	0.313	1.61	11532		335	795
DMMU-7 Rep. 5	0.0404	J	0.0354	0.0708	1.26	V	0.00270	0.152	1.97		0.168	0.305	0.0914	V	0.00108	0.0761	0.00259	V, J	0.00105	0.0761	61.8	V	0.286	1.52	19160		309	733
DMMU-7 Mean	0.0394				1.22				2.18				0.116				0.00232				269				19401			
% of Reference	89		0.0000	0.0700	37	17	0.00005	0.450	132		0.405	0.000	78	.,	0.00100	0.0740	82	1/ 1	0.00100	0.0710	245	.,	0.500	0.00	5775		242	711
DMMU-8 Rep. 1 DMMU-8 Rep. 2	<0.0363 <0.0357	U U	0.0363 0.0357	0.0726 0.0714	1.05 1.12	V	0.00265 0.00261	0.150 0.148	2.22 2.11		0.165 0.162	0.299 0.295	0.114 0.0945	V V	0.00106 0.00105	0.0748 0.0738	0.00269 0.00281	V, J V, J	0.00103 0.00102	0.0748 0.0738	394 212	V	0.562 0.277	2.99 1.48	9008 1000		313 301	741 713
DMMU-8 Rep. 3	0.0357	J	0.0357	0.0714	1.12	V	0.00261	0.148	2.11		0.162	0.295	0.0945	V	0.00105	0.0738	0.00281	۷, J ۷, J	0.00102	0.0738	212	V	0.277	1.48	23538		310	713
DMMU-8 Rep. 4	<0.0430	Ü	0.0430	0.0861	1.12	V	0.00312	0.176	1.98		0.194	0.353	0.0954		0.00125	0.0882	0.00335	J	0.00122	0.0882	209	v	0.331	1.76	19027		371	878
DMMU-8 Rep. 5	0.0404	J	0.0383	0.0767	1.05	V	0.00276	0.156	1.98		0.171	0.312	0.0870		0.00111	0.0779	0.00390	J	0.00108	0.0779	348	V	0.585	3.12	25391		320	757
DMMU-8 Mean	0.0393				1.08				2.06				0.098				0.00307				277				15593			
6 of Reference REF Rep. 1	89 <0.0419	11	0.0419	0.0027	32	V	0.00246	0.170	125 1.62		0.106	0.357	66 0.130		0.00122	0.0000	108	1	0.00433	0.0903	253	V	U 33E	1 70	4641	U	04	224
EF Rep. 1 EF Rep. 2	<0.0419 <0.0436	U U	0.0419	0.0837 0.0872	3.05 3.58	V	0.00316 0.00330	0.179 0.187	1.62 1.83		0.196 0.205	0.357 0.373	0.139 0.139		0.00123 0.00129	0.0869 0.0911	0.00304 0.00317	J .l	0.00123 0.00129	0.0893 0.0933	103 116	V	0.335 0.351	1.79 1.87	<94 437	J	94 386	221 915
EF Rep. 3	<0.0450	U	0.0452	0.0904	3.25	V	0.00332	0.188	1.59		0.206	0.375	0.175		0.00123	0.0927	0.00225	J	0.00129	0.0938	107	v	0.352	1.88	<390	U	390	925
EF Rep. 4	<0.0447	U	0.0447	0.0895	3.72	V	0.0170	0.962	1.69		0.212	0.385	0.128		0.00137	0.0962	0.00289	J	0.00133	0.0962	113	V	0.361	1.92	<388	U	388	919
EF Rep. 5	<0.0458	U	0.0458	0.0915	3.14	V	0.00332	0.188	1.52		0.206	0.375	0.164		0.00131	0.0920	0.00281	J	0.00129	0.0938	109	V	0.352	1.88	<371	U	371	880
EF Mean	0.0442		0.0412	0.000:	3.35		0.00000	0.100	1.65		0.00=	0.070	0.149		0.00455	0.0000	0.00283		0.00122	0.0000	110	.,	0.050	1.00	336		^=	
re-exposure Rep. 1 re-exposure Rep. 2	<0.0442 <0.0377	U U	0.0442 0.0377	0.0884 0.0754	3.57 3.11	V	0.00330 0.00282	0.186 0.160	1.71 1.62		0.205 0.176	0.373 0.319	0.147 0.140		0.00132 0.00113	0.0929 0.0798	0.00205 0.00271	J J	0.00129 0.00110	0.0932 0.0798	122 106	V	0.350 0.300	1.86 1.60	<95 <83	U U	95 83	227 197
re-exposure Rep. 2 re-exposure Rep. 3	<0.0377	U	0.0377	0.0754	3.11	V	0.00282	0.160	1.62		0.176	0.319	0.140		0.00113	0.0798	0.00271	J	0.00110	0.0798	106	V	0.300	1.76	<83 <92	U	92	218
re-exposure Mean	0.0418				3.28				1.77				0.154				0.00276				117				90			
Idad valuas indicate a mes	•				•								•				_										$\overline{}$	

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

< #.## = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL.

B = Analyte was found in the associated method blank. J = The value is between the MDL and the LRL. V = Analyte was detected in both sample and method blank.

Sources: Results from NWDLS and Eurofins-Stafford (TPHs). Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 16Analytical Results for Dry Weight Metals and TPHs in *Alitta virens* Tissues

Part	Ar	nalyte:		Anti	imony			Ar	senic			Ber	yllium			Cad	dmium			Chro	omium			С	opper			L	ead	
See Mark 1967 1969 1969 1969 1969 1969 1969 1969				-e	· ·			<u>.</u>				<u>-</u>				_				<u>-</u>				<u>.</u>	••			-		
500000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ualifi				ualifi				ualifi				ualifi				ualifi				ualifi				ualifi		
00000000000000000000000000000000000000				<u> </u>				ā				<u> </u>				ā				<u> </u>				<u> </u>				<u> </u>		LRL
Common C				U								J								J				V				V		0.0906
Composition	•			U								J								J				V				V		0.0929
Commonweign	DMMU-1 Rep. 4			U	0.0144		11.7		0.0220		0.0140	J	0.00179	0.0358			0.00565	0.179	0.375	J	0.0131		13.1	V	0.0156		0.447	V		0.0894
See Manual Control 19 1 19 19 19 19 19 19 19 19 19 19 19 1				U	0.0162	0.202			0.0248	0.101		J	0.00202	0.0403			0.00637	0.202		J	0.0148	0.605		V	0.0175	0.202		V	0.0152	0.101
MINASA																														
DAMES STATE				U	0.0153	0.190			0.0234	0.0952		J	0.00190	0.0381			0.00601	0.190		J	0.0140	0.571		V	0.0166	0.190		V	0.0144	0.0952
Commonweight Comm	•			-								J								J				V				V		0.0915
Marcia M	•			•								J								J				V				V		0.0959
Commons Comm	•			-								J J								J .l				V				V		0.0884
Commonweight Comm					0.0100	0.100			0.0220	0.0001			0.00100	0.0012			0.00000	0.100			0.0107	0.000		•	0.0102	0.100		<u> </u>	0.0111	0.0001
March Part	% of Reference						80								244								58							
Miles Mile	•			U								J								J				V				V		0.0894
March Marc	•			-								J I								J I				V				V		0.0862
Common C	•			-								J								J				V				V		0.0923
*** See Methods	•			U								J								J				V				V		0.0914
Debugger Series Control Cont																														
Commonweight Comm				- 11	0.0167	0.207			0.0255	0.104		1	0.00207	0.0414			0.00655	0.207	_	1	0.0152	0.622		V	0.0180	0.207		V	0.0156	0.104
				-								J								J				V				V		0.104
Commonworks				Ü								J								V, J				V						0.0993
District Color C	•			-								J								=				V						0.0974
Second Column C				U	0.0159	0.198			0.0243	0.0989		J	0.00198	0.0395			0.00625	0.198		V, J	0.0145	0.593		V	0.0172	0.198			0.0149	0.0989
DMMAS Right 1																														
Monther Sept. 40,0137 U 20,0137 U				U	0.0143	0.177			0.0218	0.0885		J	0.00177	0.0354			0.00559	0.177		V	0.0130	0.531	12.7	V	0.0154	0.177		-	0.0134	0.0885
DMML Rep. 4 00103 U 0 0708 0 198 0 195 - 0.0196 0 0718 0 0				U	0.0157		12.7					J									0.0143			V	0.0169					0.0974
DMMLS Figs Golds	•			-								J												V						0.0851
Commonweal Com				-								J												V						
DMMLF Rep. 1					0.0144	0.170			0.0221	0.0001			0.00110	0.0000			0.00007	0.170		*,0	0.0102	0.000		•	0.0100	0.110			0.0100	0.0007
DMML FR.P. 2			57				76								220				22				57				31			
DMML-FR.P. 3	•			-								J																		0.0858
DMML Rep. 4 0.0747 U 0.0747 0.028 11.4 - 0.0228 0.0592 0.0104 J 0.00186 0.0371 0.480 J 0.0237 0.480 - 0.00952 0.177 0.0178 0.0582 11.3 V 0.0163 0.186 0.386 J 0.0700 0.480 DMML Rep. 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.00000000	•			-								J												V						
DMML-Figs Fig	•			-								J				 J								V				J		0.0930
No. Flat Properties 107 10 10 10 10 10 10 1	•			U								J												V						0.0937
DMMU-F Rep. 1																														
DMMU-F Rep. 2				- 11	0.0171	0.212			0.0261	0.106			0.00212	0.0424			0.00670	0.212		V	0.0156	0.636		V	0.0195	0.212			0.0160	0.106
DMML/FRp. 4 Col.	•			U				-				J												V						0.106
DMML/FRP, 5 -0.0156 U 0.0156 0.193 1.1 U 0.028 0.0968 0.0122 J 0.00139 0.0387 0.0494 U 0.0161 0.193 0.321 V, J 0.0142 0.580 10.1 V 0.0168 0.193 0.415 U 0.0168 0.0908 U 0.0168	•			Ü								J												V						0.0891
DMMU-7 Mean Color	•			-				-				J												V						0.0963
% of Reference 62 Second				U	0.0156	0.193		-	0.0238	0.0966		J	0.00193	0.0387			0.00611	0.193		V, J	0.0142	0.580		V	0.0168	0.193		-	0.0146	0.0966
DMMU-8 Rep. 1																														
DMMU-8 Rep. 2		-		U	0.0145	0.180		_	0.0221	0.0899		J	0.00180	0.0360			0.00568	0.180		V, J	0.0132	0.539		V	0.0156	0.180		-	0.0136	0.0899
DMMU-8 Rep. 4	DMMU-8 Rep. 2											J												V						0.0816
DMMU-8 Rop. 5 0.0164 U 0.0164 0.203 <0.0250 U 0.0250 0.102 0.0108 J 0.00643 U 0.00643 U 0.00643 U 0.0160 B, U 0.0150 B, U 0.0177 0.203 <0.0154 U 0.0156 9.8 U 0.0129 U 0.0129 U 0.0129 U 0.0129 U 0.0133 U 0.0156 B, U 0.0156 0.0157 D, U 0.0156 0.0372 D, U 0.0126 0.0154 0.0164 0.007 0.0072 0.0073 0.0072 0.0073 0.00148 0.0073 0.0048 0.0049 0.0044 0.0044 0.00438 0.0049 0.0168 0.0044 0.0044 0.0044 0.0044 0.0049 0.0048 0.179 0.00488<												J												-						0.0984
DMMU-8 Mean	•											J I												-						0.0985 0.102
% of Reference 63 64 167 219 23 70 37 REF Rep. 1 0.0183 J 0.0111 0.138 14.3 - 0.0850 0.0340 J 0.0013 0.0111 0.138 14.3 - 0.0850 0.346 0.00470 J 0.0038 0.0277 0.182 - 0.0048 0.179 - 0.0048 0.142 1.08 V 0.0102 0.415 12.7 V 0.0120 0.138 0.732 - 0.0104 0.068 REF Rep. 2 0.0228 J 0.0114 0.142 1.4 0.0872 0.355 0.00440 J 0.0048 0.179 - 0.0048 0.142 1.08 V 0.0121 0.415 0.0120 0.0138 0.732 - 0.0118 0.077 REF Rep. 3 0.0330 J 0.0151 0.188 17.4 - 0.0231 0.0938 0.00694 J 0.00188 0.0375 0.203 - <td></td> <td></td> <td></td> <td>J</td> <td>0.0104</td> <td>0.203</td> <td></td> <td>U</td> <td>0.0200</td> <td>0.102</td> <td></td> <td>J</td> <td>0.00203</td> <td>0.0407</td> <td></td> <td>J</td> <td>0.00043</td> <td>0.203</td> <td></td> <td>ь, о</td> <td>0.0100</td> <td>0.010</td> <td></td> <td>٧</td> <td>0.0177</td> <td>0.203</td> <td></td> <td>J</td> <td>0.0104</td> <td>0.102</td>				J	0.0104	0.203		U	0.0200	0.102		J	0.00203	0.0407		J	0.00043	0.203		ь, о	0.0100	0.010		٧	0.0177	0.203		J	0.0104	0.102
REF Rep. 2 0.0228 J 0.0114 0.142 14.0 - 0.0872 0.355 0.00440 J 0.00142 0.0284 0.179 - 0.00448 0.142 1.08 V, J 0.0521 2.13 19.5 V 0.0617 0.709 0.882 - 0.0107 0.070																														
REF Rep. 3 0.0330 J 0.0125 0.156 16.8 - 0.191 0.778 0.00560 J 0.00156 0.0311 0.212 - 0.00492 0.156 2.22 V, J 0.114 4.67 27.3 V 0.135 1.56 1.18 - 0.0118 0.077 REF Rep. 4 0.0253 J 0.0151 0.188 17.4 - 0.0231 0.0938 0.00694 J 0.00188 0.0375 0.203 - 0.00593 0.188 1.58 V 0.0138 0.563 22.4 V 0.0163 0.188 1.03 - 0.0142 0.0938 0.00694 D 0.0151	•							-				J				-														0.0691
REF Rep. 4 0.0253 J 0.0151 0.188 17.4 - 0.0231 0.0938 0.00694 J 0.00188 0.0375 0.203 - 0.00593 0.188 1.58 V 0.0138 0.563 22.4 V 0.0163 0.188 1.03 - 0.0142 0.0938 0.0948 J 0.0165 0.0248 J 0.0186 0.231 14.0 - 0.0285 0.116 0.0171 J 0.00231 0.0463 0.165 J 0.00731 0.231 2.05 V 0.0170 0.694 21.7 V 0.0201 0.231 1.26 - 0.0175 0.118	•											J												-						0.0709
REF Rep. 5 0.0248 J 0.0186 0.231 14.0 - 0.0285 0.116 0.0171 J 0.00231 0.0463 0.165 J 0.00731 0.231 2.05 V 0.0170 0.694 21.7 V 0.0201 0.231 1.26 - 0.0175 0.111 REF Mean 0.0248	•											J J												-						0.0778
REF Man 0.0248 15.3 0.0077 0.188 1.56 20.7 1.02 Pre-exposure Rep. 1 0.0195 J 0.0127 0.158 16.8 - 0.195 J 0.0127 0.158 16.8 - 0.0195 J 0.0120 0.151 14.1 - 0.0931 0.378 0.0133 J 0.0015 0.0159 - 0.00478 0.151 1.19 V 0.0111 0.454 11.2 V 0.0132 0.151 0.734 - 0.0114 0.075 Pre-exposure Rep. 3 0.0199 J 0.0115 0.143 16.2 - 0.081 0.358 0.0116 J 0.00143 0.0286 0.190 - 0.00453 0.143 1.00 V 0.0105 0.430 11.3 V 0.0125 0.143 0.817 - 0.0108 0.074	•											J				J				=				-						0.116
Pre-exposure Rep. 2 0.0206 J 0.0122 0.151 14.1 - 0.0931 0.378 0.0133 J 0.00151 0.0303 0.159 - 0.00478 0.151 1.19 V 0.0111 0.454 11.2 V 0.0132 0.151 0.734 0.0144 0.075 Pre-exposure Rep. 3 0.0199 J 0.0115 0.143 16.2 0.0881 0.358 0.0116 J 0.00143 0.0286 0.190 0.00453 0.143 1.00 V 0.0105 0.430 11.3 V 0.0125 0.143 0.817 0.0108 0.071																														
Pre-exposure Rep. 3 0.0199 J 0.0115 0.143 16.2 - 0.0881 0.358 0.0116 J 0.00143 0.0286 0.190 - 0.00453 0.143 1.00 V 0.0105 0.430 11.3 V 0.0125 0.143 0.817 - 0.0108 0.071				J								J								•										0.0792
				J								J I																		0.0757 0.0716
FIE-EXDUSUIE WEGII 0.0200 12.5 10.695	Pre-exposure Rep. 3		0.0200	J	0.0110	0.140	15.7	-	0.0001	0.000	0.0099	J	0.00143	0.0200	0.190		0.00400	0.140	0.963	v	0.0100	0.+30	12.5	V	0.0120	0.140	0.695		0.0100	0.07 10

TABLE 16 (continued)

Analytical Results for Dry Weight Metals and TPHs in Alitta virens Tissues

Result mg/kg MMU-1 Rep. 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MDL 0.0453 0.0445 0.0437 0.0426 0.0498 0.0468 0.0448 0.0458 0.0430 0.0431 0.0426 0.0462 0.0470 0.0427 0.0427	LRL 0.0906 0.0891 0.0875 0.0852 0.0996 0.0936 0.0897 0.0917 0.0859 0.0873 0.0861 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	Result mg/kg 2.93 3.93 3.89 3.45 3.62 3.56 237 3.61 3.41 2.98 3.64 2.82 3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V	MDL 0.00321 0.00323 0.00329 0.00317 0.00357 0.00357 0.00324 0.00339 0.00316 0.00305 0.00327 0.00329 0.00327 0.00367 0.00367 0.00361 0.00361 0.00351 0.00345 0.00350	0.181 0.183 0.186 0.179 0.202 0.190 0.183 0.192 0.177 0.186 0.179 0.172 0.185 0.191 0.183	Result mg/kg 1.23 1.44 1.49 1.44 1.63 1.45 75 1.61 1.53 1.61 1.69 1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 1.58 82 1.57 1.51	Onalifier	0.199 0.201 0.204 0.197 0.222 0.209 0.201 0.211 0.195 0.205 0.197 0.190 0.203 0.210 0.201	URL 0.362 0.365 0.372 0.358 0.403 0.381 0.366 0.384 0.354 0.372 0.357 0.345 0.369 0.383 0.366	Result mg/kg 0.183 0.171 0.195 0.164 0.170 127 0.191 0.182 0.149 0.156 0.143 0.164 123 0.172 0.162 0.150 0.160 0.151	Onaliffer	MDL 0.00129 0.00130 0.00132 0.00137 0.00143 0.00135 0.00130 0.00136 0.00127 0.00127 0.00122 0.00131 0.00136 0.00136 0.00130	0.0906 0.0913 0.0929 0.0894 0.101 0.0952 0.0915 0.0959 0.0884 0.0931 0.0862 0.0926 0.0926 0.0936	Result mg/kg 0.00326 0.00365 0.00390 0.00537 0.00343 0.00392 146 0.00514 0.00514 0.00384 0.00518 0.00442 0.00391 0.00450 167 0.00536 0.00431 0.00425 0.00478]]]]]]]]]]]]]]]]]]	0.00125	LRL 0.0906 0.0913 0.0929 0.0894 0.101 0.0952 0.0915 0.0959 0.0884 0.0931	Result mg/kg 96.2 118 112 105 101 106 106 116 115 107 1112 98.0 110 109 113	\	MDL 0.340 0.343 0.349 0.336 0.379 0.357 0.344 0.360 0.332 0.350	1.81 1.83 1.86 1.79 2.02 1.90 1.83 1.92 1.77 1.86	Result mg/kg 305 366 1140 115 1759 737 4 8219 4782 4846 6116 4757 5744 30 8793	Oualifier C	95 356 98 93 105 377 353 365 346 387	225 845 232 219 247 893 835 866 819 916
MMU-1 Rep. 1		0.0453 0.0445 0.0437 0.0426 0.0498 0.0498 0.0448 0.0458 0.0430 0.0431 0.0436 0.0462 0.0470 0.0427 0.0427	0.0906 0.0891 0.0875 0.0852 0.0996 0.0897 0.0917 0.0859 0.0873 0.0861 0.0851 0.0854 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	2.93 3.93 3.89 3.45 3.62 3.56 237 3.61 3.41 2.98 3.64 2.82 3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V V V V V V V V V V V V V V V V V	0.00321 0.00323 0.00329 0.00317 0.00357 0.00357 0.00324 0.00339 0.00313 0.00330 0.00316 0.00305 0.00327 0.00327 0.00324	0.181 0.183 0.186 0.179 0.202 0.190 0.183 0.192 0.177 0.186 0.179 0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	1.23 1.44 1.49 1.44 1.63 1.45 75 1.61 1.53 1.61 1.69 1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 2.158		0.199 0.201 0.204 0.197 0.222 0.209 0.201 0.211 0.195 0.205 0.197 0.190 0.203 0.210 0.201	0.362 0.365 0.372 0.358 0.403 0.381 0.366 0.384 0.354 0.372 0.357 0.345 0.369	0.183 0.171 0.137 0.195 0.164 0.170 127 0.191 0.182 0.149 0.156 0.143 0.164 123 0.172 0.162 0.150 0.160 0.161		0.00129 0.00130 0.00132 0.00127 0.00143 0.00135 0.00130 0.00136 0.00126 0.00132	0.0906 0.0913 0.0929 0.1011 0.0952 0.0915 0.0959 0.0884 0.0931 0.0884 0.0982 0.09923 0.0956	0.00326 0.00365 0.00390 0.00537 0.00343 0.00392 146 0.00514 0.00518 0.00442 0.00391 0.00450 167 0.00536 0.00431]]]]]]]]]]]]]]]]]]]]	0.00125	0.0906 0.0913 0.0929 0.0894 0.101 0.0952 0.0952 0.0955 0.0884 0.0931	96.2 118 112 105 101 106 106 115 107 112 98.0 110 109	8	0.340 0.343 0.349 0.336 0.379 0.357 0.344 0.360 0.332 0.350	1.81 1.83 1.86 1.79 2.02 1.90 1.83 1.92 1.77 1.86	305 366 1140 115 1759 737 4 8219 4782 4846 6116 4757 5744 30	- J	95 356 98 93 105 377 353 365 346 387	225 845 232 219 247 893 835 866 819 916
MMU-1 Rep. 2 MMU-1 Rep. 3 MMU-1 Rep. 3 MMU-1 Rep. 4 MMU-1 Rep. 5 MMU-1 Rep. 5 MMU-1 Rep. 5 MMU-2 Rep. 1 MMU-2 Rep. 1 MMU-2 Rep. 2 MMU-2 Rep. 3 MMU-2 Rep. 5 MMU-2 Rep. 5 MMU-2 Mean O.0448 MMU-2 Rep. 6 MMU-3 Rep. 1 MMU-3 Rep. 1 MMU-3 Rep. 1 MMU-3 Rep. 1 MMU-3 Rep. 2 MMU-3 Rep. 1 MMU-3 Rep. 3 MMU-3 Rep. 3 MMU-3 Rep. 4 COM426 MMU-3 Rep. 5 MMU-3 Rep. 6 MMU-3 Rep. 6 MMU-3 Rep. 7 MMU-3 Rep. 9 MMU-3 Rep. 9 MMU-4 Rep. 9 MMU-4 Rep. 1 MMU-4 Rep. 1 MMU-4 Rep. 1 MMU-4 Rep. 1 MMU-4 Rep. 4 MMU-4 Rep. 4 MMU-4 Rep. 5 MMU-4 Rep. 6 MMU-4 Rep. 1 MMU-5 Rep. 1 MMU-5 Rep. 1 MMU-5 Rep. 1 MMU-5 Rep. 2 MMU-5 Rep. 3 MMU-6 Rep. 1 MMU-5 Rep. 1 MMU-5 Rep. 1 MMU-5 Rep. 2 MMU-5 Rep. 1 MMU-5 Rep. 1 MMU-5 Rep. 1 MMU-5 Rep. 1 MMU-5 Rep. 2 MMU-6 Rep. 1 MMU-6 Rep. 1 MMU-6 Rep. 1 MMU-6 Rep. 2 MMU-6 Rep. 1 MMU-6 Rep. 2 MMU-7 Rep. 1 MMU-6 Rep. 1 MMU-6 Rep. 1 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 1 MMU-7 Rep. 1 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 1 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 2 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 2 MMU-7 Rep. 2 MMU-7 Rep. 3 MMU-7 Rep. 3 MMU-7 Rep. 4 MMU-7 Rep. 5 MMU-7 Rep. 1 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 2 MMU-7 Rep. 3 MMU-7 Rep. 4 MMU-7 Rep. 5 MMU-7 Rep. 5 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 2 MMU-7 Rep. 3 MMU-7 Rep. 4 MMU-7 Rep. 5 MMU-7 Rep. 5 MMU-7 Rep. 6 MMU-7 Rep. 6 MMU-7 Rep. 7 MMU-7 Rep. 9 MMU-8 Rep. 9 MMU-9 Rep. 9 MM		0.0445 0.0437 0.0498 0.0498 0.0448 0.0448 0.0430 0.0436 0.0436 0.0436 0.0426 0.0470 0.0427 0.0427 0.0467 0.0479 0.0467	0.0891 0.0875 0.0852 0.0996 0.0897 0.0917 0.0859 0.0873 0.0861 0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.93 3.89 3.45 3.62 3.56 237 3.61 3.41 2.98 3.64 2.82 3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258	V V V V V V V V V V V V V V V V V V V	0.00323 0.00329 0.00317 0.00357 0.00357 0.00324 0.00339 0.00313 0.00330 0.00316 0.00305 0.00327 0.00327 0.00324	0.183 0.186 0.179 0.202 0.190 0.183 0.192 0.177 0.186 0.172 0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	1.44 1.49 1.44 1.63 1.45 75 1.61 1.69 1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 82 1.54 1.57		0.201 0.204 0.197 0.222 0.209 0.201 0.211 0.195 0.205 0.197 0.190 0.203 0.210 0.201	0.365 0.372 0.358 0.403 0.381 0.366 0.384 0.372 0.357 0.369 0.383	0.171 0.137 0.195 0.164 0.170 127 0.191 0.182 0.149 0.156 0.143 0.164 123 0.172 0.162 0.160 0.150		0.00130 0.00132 0.00127 0.00143 0.00135 0.00130 0.00136 0.00132 0.00132	0.0913 0.0929 0.0894 0.101 0.0952 0.0952 0.0953 0.0884 0.0931	0.00365 0.00390 0.00537 0.00343 0.00392 146 0.00514 0.00518 0.00442 0.00391 0.00450 167 0.00536 0.00431 0.00425]]]]]]]]]]]]]]]]]]]]	0.00126	0.0913 0.0929 0.0894 0.101 0.0952 0.0915 0.0959 0.0884 0.0931	118 112 105 101 106 106 116 115 107 112 98.0 110 109	V V V V V V	0.343 0.349 0.336 0.379 0.357 0.344 0.360 0.332 0.350	1.83 1.86 1.79 2.02 1.90 1.83 1.92 1.77 1.86	366 1140 115 1759 737 4 8219 4782 4846 6116 4757 5744 30	 J 	356 98 93 105 377 353 365 346 387	845 232 219 247 893 835 866 819 916
MMU-1 Rep. 3		0.0437 0.0426 0.0498 0.0468 0.0448 0.0458 0.0430 0.0436 0.0431 0.0426 0.0462 0.0470 0.0427 0.0427 0.0467 0.0479 0.0467	0.0875 0.0852 0.0996 0.0936 0.0897 0.0859 0.0873 0.0861 0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.89 3.45 3.62 3.56 237 3.61 3.41 2.98 3.64 2.82 3.29 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V V V V V V V V V V V V V V V V V	0.00329 0.00317 0.00357 0.00357 0.00324 0.00339 0.00313 0.00330 0.00316 0.00305 0.00327 0.00327 0.00324	0.186 0.179 0.202 0.190 0.183 0.192 0.177 0.186 0.179 0.172 0.185 0.191 0.183	1.49 1.44 1.63 1.45 75 1.61 1.53 1.61 1.69 1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 82 1.55 82 1.54 1.57		0.204 0.197 0.222 0.209 0.201 0.211 0.195 0.205 0.197 0.190 0.203 0.210 0.201	0.372 0.358 0.403 0.381 0.366 0.384 0.354 0.372 0.357 0.369 0.383	0.137 0.195 0.164 0.170 127 0.191 0.182 0.149 0.156 0.143 0.164 123 0.172 0.162 0.150 0.150 0.151		0.00132 0.00127 0.00143 0.00135 0.00130 0.00136 0.00132 0.00132	0.0929 0.0894 0.101 0.0952 0.0915 0.0959 0.0894 0.0894 0.0862 0.0923 0.0923	0.00390 0.00537 0.00343 0.00392 146 0.00514 0.00584 0.00518 0.00442 0.00391 0.00450 167 0.00536 0.00431 0.00425	J J J	0.00128	0.0929 0.0894 0.101 0.0952 0.0952 0.0959 0.0884 0.0894 0.0884	112 105 101 106 106 116 115 107 112 98.0 110 109	V V V V V V	0.349 0.336 0.379 0.357 0.344 0.360 0.332 0.350	1.86 1.79 2.02 1.90 1.83 1.92 1.77 1.86	1140 115 1759 737 4 8219 4782 4846 6116 4757 5744 30		98 93 105 377 353 365 346 387	232 219 247 893 835 866 819 916
MMU-1 Rep. 4 MMU-1 Rep. 5 MMU-1 Mean O.0452 Off Reference 123 MMU-2 Rep. 1 MMU-2 Rep. 2 MMU-2 Rep. 3 MMU-2 Rep. 5 MMU-2 Rep. 5 MMU-2 Rep. 5 MMU-2 Mean Of Reference 122 MMU-2 Mean O.0448 MMU-2 Mean O.0448 Of Reference 122 MMU-3 Rep. 1 MMU-3 Rep. 2 O.0426 MMU-3 Rep. 3 O.0462 MMU-3 Rep. 4 O.0470 MMU-3 Rep. 5 O.0427 MMU-3 Rep. 6 MMU-4 Rep. 1 MMU-4 Rep. 1 MMU-4 Rep. 1 MMU-4 Rep. 1 MMU-4 Rep. 2 O.0486 MMU-4 Rep. 3 MMU-4 Rep. 4 O.0473 MMU-4 Rep. 5 MMU-4 Rep. 5 MMU-4 Rep. 6 MMU-5 Rep. 1 MMU-5 Rep. 1 MMU-6 Rep. 1 MMU-5 Rep. 2 O.0467 MMU-5 Rep. 1 MMU-5 Rep. 1 MMU-6 Rep. 2 MMU-7 Rep. 1 O.0478 MMU-7 Rep. 1 O.0438 MMU-7 Rep. 1 O.0438 MMU-7 Rep. 1 O.0448 MMU-7 Rep. 1 O.0439 MMU-7 Rep. 1 O.0439 MMU-7 Rep. 2 O.0439 MMU-7 Rep. 5 O.0439 MMU-7 Rep. 5 O.0439 MMU-7 Rep. 5 O.0439 MMU-7 Rep. 5 O.0439 MMU-7 Rep. 6 MMU-8 Rep. 2 O.0439 MMU-8 Rep. 3 O.0478	U U U U U U U U U U U U U U U U U U U	0.0426 0.0498 0.0468 0.0448 0.0458 0.0430 0.0436 0.0436 0.0462 0.0470 0.0427 0.0427 0.0462 0.0470 0.0462 0.0470 0.0467	0.0852 0.0996 0.0936 0.0897 0.0917 0.0859 0.0873 0.0861 0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.45 3.62 3.56 237 3.61 3.41 2.98 3.64 2.82 3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V V V V V V V V V V V V V V V V V	0.00317 0.00357 0.00357 0.00324 0.00339 0.00313 0.00330 0.00305 0.00305 0.00327 0.00329 0.00324	0.179 0.202 0.190 0.183 0.192 0.177 0.186 0.179 0.172 0.185 0.191 0.183	1.44 1.63 1.45 75 1.61 1.53 1.61 1.69 1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 82 1.54		0.197 0.222 0.209 0.201 0.211 0.195 0.205 0.197 0.190 0.203 0.210 0.201	0.358 0.403 0.381 0.366 0.384 0.354 0.372 0.357 0.345 0.369 0.383	0.195 0.164 0.170 127 0.191 0.182 0.149 0.156 0.143 0.164 123 0.172 0.162 0.150 0.160 0.151	 	0.00127 0.00143 0.00135 0.00130 0.00136 0.00126 0.00132 0.00127 0.00127 0.00122 0.00131	0.0894 0.101 0.0952 0.0915 0.0959 0.0884 0.0931 0.0894 0.0862 0.0923 0.0956	0.00537 0.00343 0.00392 146 0.00514 0.00518 0.00442 0.00391 0.00450 167 0.00536 0.00431 0.00425]]]]]	0.00123	0.0894 0.101 0.0952 0.0915 0.0959 0.0884 0.0931	105 101 106 106 116 115 107 112 98.0 110 109	V V V V V	0.336 0.379 0.357 0.344 0.360 0.332 0.350	1.79 2.02 1.90 1.83 1.92 1.77 1.86	115 1759 737 4 8219 4782 4846 6116 4757 5744 30	J	93 105 377 353 365 346 387 354 333	219 247 893 835 866 819 916
MMU-1 Mean	U U U U U U U U U U U U U U U U U U U	0.0468 0.0448 0.0448 0.0430 0.0436 0.0436 0.0426 0.0426 0.0470 0.0427 0.0447 0.0479 0.0467	0.0936 0.0897 0.0917 0.0859 0.0873 0.0861 0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.56 237 3.61 3.41 2.98 3.64 2.82 3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V V V V V V V V V V V V V V V V V	0.00337 0.00324 0.00339 0.00313 0.00330 0.00316 0.00305 0.00327 0.00327 0.00324	0.190 0.183 0.192 0.177 0.186 0.179 0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	1.45 75 1.61 1.53 1.61 1.69 1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 1.58 82 1.54 1.57 1.32		0.209 0.201 0.211 0.195 0.205 0.197 0.190 0.203 0.210 0.201	0.381 0.366 0.384 0.354 0.372 0.357 0.345 0.369 0.383	0.170 127 0.191 0.182 0.149 0.156 0.143 0.164 123 0.172 0.162 0.150 0.150 0.151		0.00135 0.00130 0.00136 0.00126 0.00132 0.00127 0.00122 0.00131 0.00136	0.0952 0.0915 0.0959 0.0884 0.0931 0.0894 0.0862 0.0923 0.0956	0.00392 146 0.00514 0.00518 0.00442 0.00391 0.00450 167 0.00536 0.00431 0.00425	J J J	0.00131	0.0952 0.0915 0.0959 0.0884 0.0931 0.0894	106 106 116 115 107 112 98.0 110 109	V V V V V V V V V V V V V V V V V V V	0.357 0.344 0.360 0.332 0.350	1.90 1.83 1.92 1.77 1.86	737 4 8219 4782 4846 6116 4757 5744 30		377 353 365 346 387	893 835 866 819 916
of Reference 123 MMU-2 Rep. 1 <0.0468	U U U U U U U U U U U U U U U U U U U	0.0448 0.0458 0.0430 0.0436 0.0436 0.0431 0.0426 0.0462 0.0470 0.0427 0.0427 0.0447 0.0479 0.0467	0.0897 0.0917 0.0859 0.0873 0.0861 0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	237 3.61 3.41 2.98 3.64 2.82 3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V V V V V V V V V V V V V V V V V	0.00324 0.00339 0.00313 0.00330 0.00316 0.00305 0.00327 0.00339 0.00324 0.00367 0.00361 0.00361	0.183 0.192 0.177 0.186 0.179 0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	75 1.61 1.53 1.61 1.69 1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 1.58 82 1.54 1.57		0.201 0.211 0.195 0.205 0.197 0.190 0.203 0.210 0.201	0.366 0.384 0.354 0.372 0.357 0.345 0.369 0.383	127 0.191 0.182 0.149 0.156 0.143 0.164 123 0.172 0.162 0.150 0.160 0.151		0.00130 0.00136 0.00126 0.00132 0.00127 0.00122 0.00131 0.00136	0.0915 0.0959 0.0884 0.0931 0.0894 0.0862 0.0923 0.0956	146 0.00514 0.00384 0.00518 0.00442 0.00391 0.00450 167 0.00536 0.00431 0.00425]]]]	0.00126	0.0915 0.0959 0.0884 0.0931 0.0894 0.0862	106 116 115 107 112 98.0 110 109	V V V V	0.344 0.360 0.332 0.350	1.83 1.92 1.77 1.86	4 8219 4782 4846 6116 4757 5744 30		353 365 346 387 354 333	835 866 819 916 839 790
MMU-2 Rep. 1 <0.0468	U U U U U U U U U U U U U U U U U U U	0.0448 0.0458 0.0430 0.0436 0.0436 0.0431 0.0426 0.0462 0.0470 0.0427 0.0427 0.0447 0.0479 0.0467	0.0897 0.0917 0.0859 0.0873 0.0861 0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.61 3.41 2.98 3.64 2.82 3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258	V V V V V V V V V V V V V V V V V V V	0.00324 0.00339 0.00313 0.00330 0.00316 0.00305 0.00327 0.00339 0.00324 0.00367 0.00361 0.00361	0.183 0.192 0.177 0.186 0.179 0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	1.61 1.53 1.61 1.69 1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 82 1.54 1.57		0.201 0.211 0.195 0.205 0.197 0.190 0.203 0.210 0.201	0.366 0.384 0.354 0.372 0.357 0.345 0.369 0.383	0.191 0.182 0.149 0.156 0.143 0.164 123 0.172 0.162 0.150 0.160 0.151		0.00130 0.00136 0.00126 0.00132 0.00127 0.00122 0.00131 0.00136	0.0915 0.0959 0.0884 0.0931 0.0894 0.0862 0.0923 0.0956	0.00514 0.00384 0.00518 0.00442 0.00391 0.00450 167 0.00536 0.00431 0.00425]]]]	0.00126	0.0915 0.0959 0.0884 0.0931 0.0894 0.0862	116 115 107 112 98.0 110 109	V V V V	0.344 0.360 0.332 0.350	1.83 1.92 1.77 1.86	8219 4782 4846 6116 4757 5744 30		353 365 346 387 354 333	835 866 819 916 839 790
MMU-2 Rep. 2 MMU-2 Rep. 3 MMU-2 Rep. 4 MMU-2 Rep. 5 MMU-2 Mean O.0448 Of Reference 122 MMU-3 Rep. 1 MMU-3 Rep. 1 MMU-3 Rep. 2 MMU-3 Rep. 3 MMU-3 Rep. 3 MMU-3 Rep. 5 MMU-3 Rep. 5 MMU-3 Rep. 6 MMU-3 Rep. 1 MMU-3 Rep. 1 MMU-3 Rep. 1 MMU-4 Rep. 1 MMU-4 Rep. 1 MMU-4 Rep. 1 MMU-4 Rep. 2 MMU-4 Rep. 2 MMU-4 Rep. 3 MMU-4 Rep. 3 MMU-4 Rep. 5 MMU-4 Rep. 6 MMU-4 Rep. 1 MMU-5 Rep. 1 MMU-5 Rep. 1 MMU-5 Rep. 1 MMU-6 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 3 MMU-7 Rep. 1 MMU-7 Rep. 3 MMU-7 Rep. 1 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 3 MMU-7 Rep. 3 MMU-7 Rep. 4 MMU-7 Rep. 5 MMU-7 Rep. 5 MMU-7 Rep. 1 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 2 MMU-7 Rep. 3 MMU-7 Rep. 3 MMU-7 Rep. 4 MMU-7 Rep. 5 MMU-7 Rep. 5 MMU-7 Rep. 5 MMU-7 Rep. 1 MMU-7 Rep. 5 MMU-7 Rep. 1 MMU-7 Rep. 2 MMU-7 Rep. 2 MMU-7 Rep. 3 MMU-7 Rep. 3 MMU-7 Rep. 4 MMU-7 Rep. 5 MMU-7 Rep. 5 MMU-7 Rep. 6 MMU-7 Rep. 9 MMU-8 Rep. 2 MMU-8 Rep. 2 MMU-8 Rep. 2 MMU-8 Rep. 2 MMU-8 Rep. 3	U U U U U U U U U U U U U U U U U U U	0.0448 0.0458 0.0430 0.0436 0.0436 0.0431 0.0426 0.0462 0.0470 0.0427 0.0427 0.0447 0.0479 0.0467	0.0897 0.0917 0.0859 0.0873 0.0861 0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.41 2.98 3.64 2.82 3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V V V V V V V V V V V V V V V V V	0.00324 0.00339 0.00313 0.00330 0.00316 0.00305 0.00327 0.00339 0.00324 0.00367 0.00361 0.00361	0.183 0.192 0.177 0.186 0.179 0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	1.53 1.61 1.69 1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 1.58 82 1.57 1.32		0.201 0.211 0.195 0.205 0.197 0.190 0.203 0.210 0.201	0.366 0.384 0.354 0.372 0.357 0.345 0.369 0.383	0.182 0.149 0.156 0.143 0.164 123 0.172 0.162 0.150 0.160 0.151		0.00130 0.00136 0.00126 0.00132 0.00127 0.00122 0.00131 0.00136	0.0915 0.0959 0.0884 0.0931 0.0894 0.0862 0.0923 0.0956	0.00384 0.00518 0.00442 0.00391 0.00450 167 0.00536 0.00431 0.00425]]]]	0.00126	0.0915 0.0959 0.0884 0.0931 0.0894 0.0862	115 107 112 98.0 110 109	V V V	0.344 0.360 0.332 0.350	1.83 1.92 1.77 1.86	4782 4846 6116 4757 5744 30		353 365 346 387 354 333	835 866 819 916 839 790
MMU-2 Rep. 4 <0.0430	U U U U U U U U U U U U U U U U U U U	0.0430 0.0436 0.0431 0.0426 0.0462 0.0470 0.0427 0.0489 0.0473 0.0479 0.0467	0.0859 0.0873 0.0861 0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.64 2.82 3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258	V V V	0.00339 0.00313 0.00330 0.00330 0.00316 0.00305 0.00327 0.00339 0.00324 0.00367 0.00361 0.00351	0.177 0.186 0.179 0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	1.69 1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 82 1.54 1.57		0.211 0.195 0.205 0.197 0.190 0.203 0.210 0.201	0.354 0.372 0.357 0.345 0.369 0.383	0.156 0.143 0.164 123 0.172 0.162 0.150 0.160 0.151 0.159	 	0.00126 0.00132 0.00127 0.00122 0.00131 0.00136	0.0884 0.0931 0.0894 0.0862 0.0923 0.0956	0.00442 0.00391 0.00450 167 0.00536 0.00431 0.00425]]]	0.00132	0.0959 0.0884 0.0931 0.0894 0.0862	112 98.0 110 109 113	V V V	0.332 0.350	1.77 1.86	6116 4757 5744 30		346 387 354 333	819 916 839 790
MMU-2 Rep. 5 <0.0436	U U U U U U U U U U U U U U U U U U U	0.0436 0.0431 0.0426 0.0462 0.0470 0.0427 0.0486 0.0489 0.0473 0.0467 0.0467	0.0873 0.0861 0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	2.82 3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V	0.00330 0.00316 0.00305 0.00327 0.00339 0.00324 0.00367 0.00361 0.00351 0.00345	0.186 0.179 0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	1.62 1.61 83 1.65 1.68 1.39 1.60 1.58 82 1.54 1.57		0.205 0.197 0.190 0.203 0.210 0.201	0.372 0.357 0.345 0.369 0.383	0.143 0.164 123 0.172 0.162 0.150 0.160 0.151 0.159		0.00132 0.00127 0.00122 0.00131 0.00136	0.0931 0.0894 0.0862 0.0923 0.0956	0.00391 0.00450 167 0.00536 0.00431 0.00425	J J	0.00128 0 0.00123 0 0.00119 0	0.0931	98.0 110 109 113	V	0.350	1.86	4757 5744 30		387 354 333	916 839 790
MMU-2 Mean 0.0448 of Reference 122 MMU-3 Rep. 1	U U U U U U U U U U U U U U U U U U U	0.0431 0.0426 0.0462 0.0470 0.0427 0.0427 0.0486 0.0489 0.0473 0.0479 0.0467	0.0861 0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.29 219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V	0.00316 0.00305 0.00327 0.00339 0.00324 0.00367 0.00361 0.00351 0.00345	0.179 0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	1.61 83 1.65 1.68 1.39 1.60 1.58 1.58 82 1.54 1.57		0.197 0.190 0.203 0.210 0.201	0.357 0.345 0.369 0.383	0.164 123 0.172 0.162 0.150 0.160 0.151	 	0.00127 0.00122 0.00131 0.00136	0.0894 0.0862 0.0923 0.0956	0.00450 167 0.00536 0.00431 0.00425	J	0.00123 0 0.00119 0	0.0894	110 109 113	V	0.336		5744 30		354 333	839 790
of Reference 122 MMU-3 Rep. 1 <0.0426	U U U U U U U U U U U U U U U U U U U	0.0426 0.0462 0.0470 0.0427 0.0486 0.0489 0.0473 0.0467 0.0467	0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	219 3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V	0.00305 0.00327 0.00339 0.00324 0.00367 0.00361 0.00351 0.00345	0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	83 1.65 1.68 1.39 1.60 1.58 1.58 82 1.54 1.57		0.190 0.203 0.210 0.201	0.345 0.369 0.383	123 0.172 0.162 0.150 0.160 0.151 0.159	 	0.00122 0.00131 0.00136	0.0862 0.0923 0.0956	167 0.00536 0.00431 0.00425	J	0.00119 0	0.0862	109 113	V		1.79	30		333	790
MMU-3 Rep. 1 MMU-3 Rep. 2	U U U U U U U U U U U U U U U U U U U	0.0426 0.0462 0.0470 0.0427 0.0486 0.0489 0.0473 0.0467 0.0467	0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.20 3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V	0.00305 0.00327 0.00339 0.00324 0.00367 0.00361 0.00351 0.00345	0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	1.65 1.68 1.39 1.60 1.58 1.58 82 1.54 1.57		0.190 0.203 0.210 0.201	0.345 0.369 0.383	0.172 0.162 0.150 0.160 0.151 0.159	- - - - - -	0.00122 0.00131 0.00136	0.0862 0.0923 0.0956	0.00536 0.00431 0.00425	J	0.00119 0	0.0862	113	V		1.79			333	790
MMU-3 Rep. 2	U U U U U U U U U U U U U U U U U U U	0.0426 0.0462 0.0470 0.0427 0.0486 0.0489 0.0473 0.0467 0.0467	0.0851 0.0923 0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.38 3.27 3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V	0.00305 0.00327 0.00339 0.00324 0.00367 0.00361 0.00351 0.00345	0.172 0.185 0.191 0.183 0.207 0.204 0.199 0.195	1.68 1.39 1.60 1.58 1.58 82 1.54 1.57 1.32		0.190 0.203 0.210 0.201	0.345 0.369 0.383	0.162 0.150 0.160 0.151 0.159	 	0.00122 0.00131 0.00136	0.0862 0.0923 0.0956	0.00431 0.00425	J	0.00119 0	0.0862							333	790
MMU-3 Rep. 4 <0.0470	U U U U U U U U U U	0.0470 0.0427 0.0428 0.0489 0.0473 0.0479 0.0467	0.0940 0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.73 3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V	0.00339 0.00324 0.00367 0.00361 0.00351 0.00345	0.191 0.183 0.207 0.204 0.199 0.195	1.60 1.58 1.58 82 1.54 1.57 1.32	 	0.210 0.201	0.383	0.160 0.151 0.159	 	0.00136	0.0956		J	0.00127	0.0923		V	0.324	1.72	6448		353	
MMU-3 Rep. 5 <0.0427	U U U U U U U U U U U U U U U U U U U	0.0427 0.0486 0.0489 0.0473 0.0479 0.0467 0.0415 0.0479 0.0410	0.0854 0.0971 0.0979 0.0946 0.0958 0.0934	3.43 3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V	0.00324 0.00367 0.00361 0.00351 0.00345	0.183 0.207 0.204 0.199 0.195	1.58 1.58 82 1.54 1.57 1.32		0.201		0.151 0.159				0.00478				107	V	0.347	1.85	6704			836
MMU-3 Mean 0.0443 6 of Reference 121 MMU-4 Rep. 1	U U U U U U U U U U U U U U U U U U U	0.0486 0.0489 0.0473 0.0479 0.0467 0.0415 0.0479 0.0410	0.0971 0.0979 0.0946 0.0958 0.0934	3.40 226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V	0.00367 0.00361 0.00351 0.00345	0.207 0.204 0.199 0.195	1.58 82 1.54 1.57 1.32	 		0.366	0.159		0.00130	0.0914	0.004			0.0956	112	V	0.359	1.91	6981		376	892
Month Mont	U U U	0.0489 0.0473 0.0479 0.0467 0.0415 0.0479 0.0410	0.0979 0.0946 0.0958 0.0934 0.0830	226 5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V V	0.00361 0.00351 0.00345	0.204 0.199 0.195	82 1.54 1.57 1.32	 	0.228						0.00439 0.00462	J	0.00126 0	0.0914	114 113	V	0.343	1.83	14182 8621		356	845
OMMU-4 Rep. 1	U U U	0.0489 0.0473 0.0479 0.0467 0.0415 0.0479 0.0410	0.0979 0.0946 0.0958 0.0934 0.0830	5.38 4.10 3.23 4.09 2.54 3.87 258 3.66	V V V V	0.00361 0.00351 0.00345	0.204 0.199 0.195	1.54 1.57 1.32		0.228		110				172				112				45			
MMU-4 Rep. 2 <0.0489 MMU-4 Rep. 2 <0.0479 <0.0479 <0.0479 <0.0479 <0.0479 <0.0479 <0.0479 <0.0479 <0.0467 <0.0479 <0.0467 <0.0467 <0.0467 <0.0467 <0.0467 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0415 <0.0	U U U	0.0473 0.0479 0.0467 0.0415 0.0479 0.0410	0.0979 0.0946 0.0958 0.0934 0.0830	4.10 3.23 4.09 2.54 3.87 258 3.66	V V V	0.00351 0.00345	0.204 0.199 0.195	1.32		0.220	0.414	0.257		0.00147	0.104	0.00559	J	0.00143	0.104	134	V	0.389	2.07	4560		415	981
MMU-4 Rep. 4	U U U	0.0479 0.0467 0.0415 0.0479 0.0410	0.0958 0.0934 0.0830	4.09 2.54 3.87 258 3.66	V V V	0.00345	0.195			0.224	0.408	0.186		0.00145	0.102	0.00449	J	0.00141	0.102	117	V	0.383	2.04	5739		390	925
MMU-4 Rep. 5 <0.0467	U	0.0467 0.0415 0.0479 0.0410	0.0934	2.54 3.87 258 3.66	V					0.218	0.397	0.150		0.00141	0.0993	0.00397			0.0993	94.1	V	0.373	1.99	9297		382	905
MMU-4 Mean 0.0479 6 of Reference 131 MMU-5 Rep. 1 <0.0415 MMU-5 Rep. 2 <0.0410 MMU-5 Rep. 3 <0.0410 MMU-5 Rep. 5 <0.0431 MMU-5 Rep. 5 <0.0431 MMU-6 Rep. 1 <0.0412 MMU-6 Rep. 1 <0.0412 MMU-6 Rep. 2 <0.0418 MMU-6 Rep. 3 <0.0418 MMU-6 Rep. 3 <0.0438 MMU-6 Rep. 4 <0.0438 MMU-6 Rep. 5 <0.0448 MMU-6 Rep. 5 <0.0448 MMU-7 Rep. 1 <0.0505 MMU-7 Rep. 1 <0.0505 MMU-7 Rep. 1 <0.0436 MMU-7 Rep. 4 <0.0436 MMU-7 Rep. 4 <0.0436 MMU-7 Rep. 5 <0.0427 MMU-7 Rep. 1 <0.0505 MMU-7 Rep. 3 <0.0427 MMU-7 Rep. 4 <0.0480 MMU-7 Rep. 4 <0.0480 MMU-7 Rep. 5 <0.0479 MMU-7 Rep. 1 <0.0439 MMU-7 Rep. 1 <0.0439 MMU-8 Rep. 1 <0.0439 MMU-8 Rep. 2 <0.0439 MMU-8 Rep. 2 <0.0398 MMU-8 Rep. 3 <0.0478	U U	0.0415 0.0479 0.0410	0.0830	3.87 258 3.66	V	0.00350		1.53		0.214	0.390	0.196		0.00138	0.0974	0.00584			0.0974	109	V V	0.366	1.95	4471		375	888
Sof Reference 131	-	0.0479 0.0410		258 3.66			0.198	1.38		0.217	0.395	0.181 0.194		0.00140	0.0989	0.00376 0.00473	J	0.00136 0	0.0989	85.4 108	V	0.371	1.98	6386 6090		375	889
MMU-5 Rep. 2	-	0.0479 0.0410						76				145				176				107				32			
MMU-5 Rep. 3	-	0.0410	0.0958	2 00	V	0.00313	0.177	1.54		0.195	0.354	0.183		0.00126	0.0885	0.00319	J	0.00122	0.0885	106	V	0.332	1.77	10442		358	850
MMU-5 Rep. 4	U			3.22	V	0.00345	0.195	1.67		0.214	0.389	0.163		0.00138	0.0974	0.00312			0.0974	112	V	0.366	1.95	4631		395	937
MMU-5 Rep. 5 <0.0431	U	(),()4()1	0.0820	2.87	V	0.00301	0.170	1.42		0.187	0.340	0.167		0.00121	0.0851	0.00255			0.0851	98.1	V	0.319	1.70	4940		359	851
MMU-5 Mean 0.0427 0.0427 0.06 feerence 117 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1.1	0.0431	0.0802 0.0862	2.76 2.86	V	0.00282 0.00318	0.159 0.179	1.59 1.66		0.175 0.197	0.318 0.359	0.151 0.179		0.00113 0.00127	0.0795 0.0897	0.00270 0.00323			0.0795 0.0897	95.6 104	V	0.299 0.337	1.59 1.79	848 4270		306 350	726 830
6 of Reference 117 MMU-6 Rep. 1 <0.0412 MMU-6 Rep. 2 <0.0418 MMU-6 Rep. 3 <0.0478 MMU-6 Rep. 4 <0.0435 MMU-6 Rep. 5 <0.0448 MMU-6 Rep. 5 <0.0448 MMU-6 Rep. 1 <0.0505 MMU-7 Rep. 1 <0.0505 MMU-7 Rep. 2 <0.0427 MMU-7 Rep. 3 <0.0436 MMU-7 Rep. 4 <0.0436 MMU-7 Rep. 4 <0.0480 MMU-7 Rep. 5 <0.0479 MMU-7 Rep. 1 127 MMU-7 Rep. 1 0.0465 MMU-7 Rep. 1 <0.0439 MMU-7 Rep. 1 <0.0439 MMU-8 Rep. 1 <0.0439 MMU-8 Rep. 2 <0.0398 MMU-8 Rep. 3 <0.0478	<u> </u>	0.0431	0.0602	3.07	v	0.00318	0.179	1.58		0.187	0.339	0.169		0.00127	0.0697	0.00323	J	0.00124 0	1.0091	103	<u> </u>	0.337	1.79	5026		330	630
MMU-6 Rep. 2				205				81				126				110				102				26			
MMU-6 Rep. 3	U	0.0412	0.0824	3.20	V	0.00304	0.172	1.52		0.189	0.343	0.223		0.00122	0.0858	0.00532	J	0.00118 0	0.0858	102	V	0.322	1.72	3248		337	799
MMU-6 Rep. 4	U	0.0418	0.0836	3.29	V	0.00314	0.178	1.56		0.195	0.355	0.212		0.00126	0.0888	0.00533			.0888	105	V	0.334	1.78	4545		337	798
MMU-6 Rep. 5 <0.0448 MMU-6 Mean 0.0438 Model of Reference 120 MMU-7 Rep. 1 <0.0505 MMU-7 Rep. 2 <0.0427 MMU-7 Rep. 3 <0.0435 MMU-7 Rep. 4 <0.0480 MMU-7 Rep. 5 <0.0479 MMU-7 Mean 0.0465 Model of Reference 127 MMU-8 Rep. 1 <0.0439 MMU-8 Rep. 2 <0.0398 MMU-8 Rep. 3 <0.0478 MMU-8 Rep. 4 <0.0438 MMU-8 Rep. 4 <0.0438 MMU-8 Rep. 3 <0.0478 MMU-8 Rep. 4 <0.0438 MMU-8 Rep. 3 <0.0478 MMU-8 Rep. 4 <0.0438 MMU-8 Rep. 4 <0.0438 MMU-8 Rep. 3 <0.0478 MMU-8 Rep. 4 <0.0438 MMU-8 Rep. 4 <0.043	U	0.0478	0.0955	4.13	V	0.00338	0.191	1.61		0.210	0.382	0.223		0.00136	0.0956	0.00554			0.0956	113	V	0.359	1.91	3471		371	879
MMU-6 Mean 0.0438 0.0438 0.0438 0.0438 0.0438 0.06 Reference 120 0.00505 0.00505 0.00505 0.00427 0.00427 0.00427 0.00435 0.00435 0.00479 0.00480 0.00465 0.00479 0.00465 0.00465 0.00465 0.00465 0.00439 0.00439 0.00439 0.00478 0.0	U	0.0435 0.0448	0.0870 0.0896	3.45 3.55	V	0.00328 0.00332	0.186 0.187	1.07 1.51	J 	1.02 0.206	1.86 0.375	0.177 0.178	J 	0.00659 0.00133	0.464 0.0937	<0.00640 0.00431			0.464	101 105	V	0.348 0.352	1.86 1.87	383 3458	J 	364 373	862 883
6 of Reference 120 MMU-7 Rep. 1 <0.0505 MMU-7 Rep. 2 <0.0427 MMU-7 Rep. 3 <0.0435 MMU-7 Rep. 4 <0.0480 MMU-7 Rep. 5 <0.0479 MMU-7 Mean 0.0465 6 of Reference 127 MMU-8 Rep. 1 <0.0439 MMU-8 Rep. 2 <0.0478		0.0440	0.0000	3.52	•	0.00002	0.107	1.45		0.200	0.070	0.203		0.00100	0.0001	0.00538	•	0.00120	7.0007	105	•	0.002	1.07	3021		0.0	
MMU-7 Rep. 2 <0.0427				235				75				151				200				105				16			
MMU-7 Rep. 3	U	0.0505	0.101	3.48	V	0.00375	0.212	1.39		0.233	0.424	0.182		0.00151	0.106	0.00255			0.106	106	V	0.398	2.12	4571		437	1036
DMMU-7 Rep. 4 <0.0480	U	0.0427	0.0854	3.59	V	0.00316	0.179	1.66		0.196	0.357	0.162		0.00127	0.0893	0.00322			0.0893	120	V	0.335	1.79	5892		348	825
DMMU-7 Rep. 5 <0.0479	U U	0.0435 0.0480	0.0869 0.0959	3.09 3.04	V	0.00315 0.00341	0.178 0.193	1.51 1.45		0.196 0.212	0.356 0.385	0.161 0.176		0.00127 0.00137	0.0891 0.0963	0.00285 0.00328			0.0891 0.0963	105 111	V	0.335 0.362	1.78 1.93	3920 5262		358 399	849 947
MMU-7 Mean 0.0465 6 of Reference 127 MMU-8 Rep. 1 <0.0439 MMU-8 Rep. 2 <0.0398 MMU-8 Rep. 3 <0.0478	U	0.0480	0.0959	3.33	V	0.00341	0.193	1.45		0.212	0.387	0.176		0.00137	0.0963	0.00328			0.0966	117	V	0.363	1.93	5505		389	923
% of Reference 127 DMMU-8 Rep. 1 <0.0439	_		2.2300	3.31	·	2.300.12	2.100	1.49			2.301	0.177				0.00296	-	. ,		112				5030			
OMMU-8 Rep. 2 <0.0398 OMMU-8 Rep. 3 <0.0478				220				77				132				110				111				26			
OMMU-8 Rep. 3 <0.0478	U	0.0439	0.0877	2.87	V	0.00318	0.180	1.42		0.198	0.360	0.230		0.00128	0.0899	0.00324			0.0899	98.6	V	0.338	1.80	3694		355	842
	U	0.0398	0.0796	2.88	V	0.00289	0.163	1.52		0.180	0.327	0.146		0.00116	0.0816	0.00424			0.0816	99.0	V V	0.307	1.63	4008		324	768 050
	U	0.0478 0.0484	0.0957 0.0968	4.11 4.44	V	0.00348 0.00349	0.197 0.197	1.73 1.50		0.217 0.217	0.394 0.394	0.252 0.202		0.00140 0.00140	0.0984 0.0985	0.00650 0.00453			0.0984 0.0985	125 111	V	0.370 0.370	1.97 1.97	4186 3696		401 407	950 963
MMU-8 Rep. 5 <0.0481	U	0.0481	0.0961	3.43	v	0.00349	0.203	<0.224	U	0.224	0.407	0.154	-	0.00144	0.102	0.00433			0.102	<0.0764	B, U	0.0764	0.407	<405	U	405	959
MMU-8 Mean 0.0456				3.55			_	1.28				0.197				0.00399				86.7				3198			
of Reference 124				236				66				147				148				86				17			
EF Rep. 1 <0.0322		0.0322	0.0643	1.10	V	0.00245	0.138	2.08		0.152	0.277	0.153		0.000951	0.0670	0.00207			0.0691	56.9		0.260	1.38	21103		269	637
EF Rep. 2 <0.0354 <0.0374	U	0.00-:	0.0709	1.29 1.89	V	0.0126	0.709 1.56	1.66 1.90		0.780 1.71	1.42 3.11	0.152		0.00101	0.0712 0.0769	0.00199			0.0709 0.0778	177 146		0.266 0.584	1.42 3.11	17643 23828		288	683 723
EF Rep. 4 <0.0374 <0.0450	U	0.0354	0.0747		V	0.0276 0.00332	0.188	1.90 2.26	J 	1.71 0.206	3.11 0.375	0.185 0.132		0.00109 0.00129	0.0769	0.00342 0.00225			0.0778	146 64.1		0.584	3.11 0.375	23828 18318		305 376	723 890
EF Rep. 5 <0.0333	U	0.0374	0.0747	1.67		0.00332	0.231	1.79		0.255	0.463	0.0471	J	0.00123	0.0909	0.00223			0.116	59.3		0.0869	0.463	15267		275	652
EF Mean 0.0367	U		0.0747 0.0900 0.0666	1.61 1.62	V	0.00410		1.94				0.134				0.00269				101				19232			
re-exposure Rep. 1 <0.0367	U U U	0.0374 0.0450	0.0900		•	0.00410		2.93		0.174	0.317	0.185		0.00112	0.0785	0.00238						0.505	3.17	3535		83	197
Pre-exposure Rep. 2 <0.0360	U U U U	0.0374 0.0450 0.0333 0.0367	0.0900 0.0666 0.0734	1.62 1.50 1.43	V	0.00280	0.158												0.0792	359		0.595		OFF		79	187
re-exposure Rep. 3 <0.0346 re-exposure Mean 0.0358	U U U U	0.0374 0.0450 0.0333	0.0900 0.0666	1.62 1.50	V		0.158 0.151 0.143	2.93 2.23 2.56		0.166 0.158	0.303 0.286	0.191 0.145		0.00106 0.00101	0.0745 0.0713	0.00409 0.00401	J	0.00104 0	0.0792 0.0757 0.0716	359 149 119		0.595 0.284 0.269	1.51	955 491		75	178

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

< #.## = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL.

B = Analyte was found in the associated method blank. J = The value is between the MDL and the LRL. V = Analyte was detected in both sample and method blank. Sources: Results from NWDLS and Eurofins-Stafford (TPHs).

Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 17Analytical Results for Wet Weight PAHs in *Mercenaria mercenaria* Tissues

	To	tal	Total																													
	LP	AH I	IPAH	Total			. LPAH				LPAH				LPAH			. ,	HPA	м			НРАН			4.01.0		-IPAH	_		. HPA	н
Ana	yte: PA	HS	PAHs	PAHs		Acenapi	nthene ^{LPAH}			Acenapht	hylene ^{LPAH}			Anthra	icene ^{LPAH}		<u> </u>	senzo(a)an	thracene HPA			Benzo(a)	oyrene ^{HPAH}		Ben	izo(b&k)fii	uoranthene ^l		В	enzo(g,n,ı)	perylene ^{HPA}	
	B	16	14	Decut	D It	iite			D t	lifier			D t	ije.			D If	ijie			D	lifier			Do out	iii lie			December	iii iii		
Sample-Replicate #	Res		Result ug/kg	Result µg/kg	Result µg/kg	Qua	MDL	LRL	Result µg/kg	Qua	MDL	LRL	Result µg/kg	Qua	MDL	LRL	Result µg/kg	Qua	MDL	LRL	Result µg/kg	Qua	MDL	LRL	Result µg/kg	Qua	MDL	LRL	Result µg/kg	Qua	MDL	LRL
DMMU-1 Rep. 1	28		47.6	76.2	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76	<9.52	U	9.52	9.52	<4.76	U	4.76	4.76
DMMU-1 Rep. 2	29		49.9	79.8	<4.99	U	4.99	4.99	<4.99	U	4.99	4.99	<4.99	U	4.99	4.99	<4.99	U	4.99	4.99	<4.99	U	4.99	4.99	<9.98	U	9.98	9.98	<4.99	U	4.99	4.99
DMMU-1 Rep. 3	28		47.3	75.7	<4.73	U	4.73	4.73	<4.73	U	4.73	4.73	<4.73	U	4.73	4.73	<4.73	U	4.73	4.73	<4.73	U	4.73	4.73	<9.47	U	9.47	9.47	<4.73	U	4.73	4.73
DMMU-1 Rep. 4 DMMU-1 Rep. 5	29 29		49.3 58.4	78.9 87.5	<4.93 <4.86	U U	4.93 4.86	4.93 4.86	<4.93 <4.86	U U	4.93 4.86	4.93 4.86	<4.93 <4.86	U	4.93 4.86	4.93 4.86	<4.93 <9.73	U	4.93 9.73	4.93 9.73	<4.93 <4.86	U U	4.93 4.86	4.93 4.86	<9.86 <9.73	U	9.86 9.73	9.86 9.73	<4.93 <4.86	U U	4.93 4.86	4.93 4.86
DMMU-1 Mean	29		50.5	79.6	4.85	U	4.00	4.00	4.85	- 0	4.00	4.00	4.85	U	4.00	4.00	5.83	<u> </u>	9.13	9.73	4.85	0	4.00	4.00	9.71	- 0	9.13	9.13	4.85	<u> </u>	4.00	4.00
Adjusted Concentration					4.85				4.85				4.85				9.91				10.2				22.3				14.1			
% of Reference	20	06	215	212	207				207				207				248				207				207				207			
DMMU-3 Rep. 1	12		24.8	37.2	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<4.96	U	4.96	4.96	<2.48	U	2.48	2.48
DMMU-3 Rep. 2	11		23.8	35.7	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U U	2.38	2.38	<4.76	U	4.76	4.76	<2.38	U U	2.38	2.38
DMMU-3 Rep. 3 DMMU-3 Rep. 4	12 14		24.4 24.5	36.6 39.2	<2.44 <2.45	U U	2.44 2.45	2.44 2.45	<2.44 <2.45	U U	2.44 2.45	2.44 2.45	<2.44 <2.45	U	2.44 2.45	2.44 2.45	<2.44 <2.45	U	2.44 2.45	2.44 2.45	<2.44 <2.45	U	2.44 2.45	2.44 2.45	<4.88 <4.90	U	4.88 4.90	4.88 4.90	<2.44 <2.45	U	2.44 2.45	2.44 2.45
DMMU-3 Rep. 5	14		23.3	37.3	<2.33	U	2.33	2.33	<2.33	U	2.33	2.33	<2.33	U	2.33	2.33	<2.33	U	2.33	2.33	<2.33	U	2.33	2.33	<4.66	U	4.66	4.66	<2.33	U	2.33	2.33
DMMU-3 Mean	13		24.2	37.2	2.42				2.42				2.42				2.42				2.42				4.83				2.42			
Adjusted Concentration					2.42				2.42				2.42				4.11				5.07				11.1				7.01			
% of Reference	9:		103	99	103				103				103				103				103			4.0.	103		0	0.55	103		16:	10:
DMMU-4 Rep. 1 DMMU-4 Rep. 2	29 29		49.4 48.5	79.0 77.6	<4.94 <4.85	U	4.94 4.85	4.94 4.85	<4.94 <4.85	U	4.94 4.85	4.94 4.85	<4.94 <4.85	U	4.94 4.85	4.94 4.85	<4.94	U	4.94 4.85	4.94 4.85	<4.94	U	4.94 4.85	4.94 4.85	<9.88 <9.71	U	9.88 9.71	9.88 9.71	<4.94 <4.85	U	4.94 4.85	4.94 4.85
DMMU-4 Rep. 2 DMMU-4 Rep. 3	29		59.5	89.3	<4.96	U	4.05	4.05	<4.96	U	4.05	4.05	<4.96	U	4.05	4.05	<4.85 <9.92	U	9.92	9.92	<4.85 <4.96	U	4.96	4.96	<9.71	U	9.71	9.71	<4.05 <4.96	U	4.05	4.05
DMMU-4 Rep. 4	27		55.4	83.0	<4.61	Ü	4.61	4.61	<4.61	Ü	4.61	4.61	<4.61	Ü	4.61	4.61	<9.23	Ü	9.23	9.23	<4.61	Ü	4.61	4.61	<9.23	Ü	9.23	9.23	<4.61	Ü	4.61	4.61
DMMU-4 Rep. 5	29	.8	59.6	89.5	<4.97	U	4.97	4.97	<4.97	U	4.97	4.97	<4.97	U	4.97	4.97	<9.94	U	9.94	9.94	<4.97	U	4.97	4.97	<9.94	U	9.94	9.94	<4.97	U	4.97	4.97
DMMU-4 Mean	29	1.2	54.5	83.7	4.87				4.87				4.87				7.78				4.87				9.74				4.87			
Adjusted Concentration	0.0	7	000	000	4.87				4.87				4.87				13.2				10.2				22.4				14.1			
% of Reference DMMU-5 Rep. 1	14		232	223 39.4	207 <2.46	U	2.46	2.46	207 <2.46	U	2.46	2.46	207 <2.46	U	2.46	2.46	331 <2.46	U	2.46	2.46	207 <2.46	U	2.46	2.46	207 <4.92	U	4.92	4.92	207 <2.46	U	2.46	2.46
DMMU-5 Rep. 1 DMMU-5 Rep. 2	14		24.4	39.4	<2.44	U	2.40	2.40	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<4.88	U	4.88	4.88	<2.44	U	2.44	2.44
DMMU-5 Rep. 3	14		24.1	38.6	<2.41	Ü	2.41	2.41	<2.41	Ü	2.41	2.41	<2.41	Ü	2.41	2.41	<2.41	U	2.41	2.41	<2.41	Ü	2.41	2.41	<4.83	Ü	4.83	4.83	<2.41	U	2.41	2.41
DMMU-5 Rep. 4	14	.4	24.0	38.4	<2.40	U	2.40	2.40	<2.40	U	2.40	2.40	<2.40	U	2.40	2.40	<2.40	U	2.40	2.40	<2.40	U	2.40	2.40	<4.81	U	4.81	4.81	<2.40	U	2.40	2.40
DMMU-5 Rep. 5	14		24.8	39.7	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<4.95	U	4.95	4.95	<2.48	U	2.48	2.48
DMMU-5 Mean	14	.6	24.4	39.0	2.44 2.44				2.44				2.44				2.44				2.44				4.88				2.44			
Adjusted Concentration % of Reference	10	14	104	104	104				2.44 104				2.44 104				4.14 104				5.12 104				11.2 104				7.07 104			
DMMU-7 Rep. 1	27		59.9	87.7	8.28		4.87	4.87	<4.87	U	4.87	4.87	<4.87	U	4.87	4.87	<9.75	U	9.75	9.75	<4.87	U	4.87	4.87	<9.75	U	9.75	9.75	<4.87	U	4.87	4.87
DMMU-7 Rep. 2	28	3.9	68.4	97.3	9.10		4.95	4.95	<4.95	U	4.95	4.95	<4.95	U	4.95	4.95	<9.90	U	9.90	9.90	<4.95	U	4.95	4.95	<9.90	U	9.90	9.90	<4.95	U	4.95	4.95
DMMU-7 Rep. 3	29	1.5	63.1	92.6	<4.92	U	4.92	4.92	<4.92	U	4.92	4.92	<4.92	U	4.92	4.92	<9.84	U	9.84	9.84	<4.92	U	4.92	4.92	<9.84	U	9.84	9.84	<4.92	U	4.92	4.92
DMMU-7 Rep. 4	74		124	199	<12.4	U	12.4	12.4	<12.4	U	12.4	12.4	<12.4	U	12.4	12.4	<12.4	U	12.4	12.4	<12.4	U	12.4	12.4	<24.9	U	24.9	24.9	<12.4	U	12.4	12.4
DMMU-7 Rep. 5 DMMU-7 Mean	28 37		59.3 75.0	87.5 113	<4.70 7.88	U	4.70	4.70	<4.70 6.37	U	4.70	4.70	<4.70 6.37	U	4.70	4.70	<9.40 10.3	U	9.40	9.40	<4.70 6.37	U	4.70	4.70	<9.40 12.8	U	9.40	9.40	<4.70 6.37	U	4.70	4.70
Adjusted Concentration	31	.0	75.0	113	7.88				6.37				6.37				17.4				13.4				29.3				18.5			
% of Reference	26	38	319	300	335				271				271				437				271				272				271			
DMMU-8 Rep. 1	14	.8	24.6	39.4	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<4.92	U	4.92	4.92	<2.46	U	2.46	2.46
DMMU-8 Rep. 2	14		23.8	38.1	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<4.75	U	4.75	4.75	<2.38	U	2.38	2.38
DMMU-8 Rep. 3	17		24.8	42.6	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	5.36		2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<4.96	U	4.96	4.96	<2.48	U	2.48	2.48
DMMU-8 Rep. 4 DMMU-8 Rep. 5	14 13		24.5 22.5	39.2 36.0	<2.45 <2.25	U U	2.45 2.25	2.45 2.25	<2.45 <2.25	U U	2.45 2.25	2.45 2.25	<2.45 <2.25	U	2.45 2.25	2.45 2.25	<2.45 <2.25	U	2.45 2.25	2.45 2.25	<2.45 <2.25	U U	2.45 2.25	2.45 2.25	<4.90 <4.50	U	4.90 4.50	4.90 4.50	<2.45 <2.25	U U	2.45 2.25	2.45 2.25
DMMU-8 Mean	15		24.0	39.1	2.40	U	۷.۷	۷.۷	2.40	<u> </u>	۷.۷	2.20	2.98	U	۵.۷	۷.۷	2.40	<u> </u>	۷.۷	۷.۷۵	2.40	<u> </u>	د.دن	۷.۷	4.81	<u> </u>	7.00	7.00	2.40	J	د.دن	2.23
Adjusted Concentration					2.40				2.40				2.98				4.09				5.05				11.1				6.97			
% of Reference	10		102	104	102				102				127				102				102				102				102			
REF Rep. 1	13		23.1	37.0	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<4.63	U	4.63	4.63	<2.31	U	2.31	2.31
REF Rep. 2	13		23.0	36.8	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30	<4.60	U	4.60	4.60	<2.30	U	2.30	2.30
REF Rep. 3 REF Rep. 4	14 14		23.7 23.9	37.9 38.2	<2.37 <2.39	U U	2.37 2.39	2.37 2.39	<2.37 <2.39	U U	2.37 2.39	2.37 2.39	<2.37 <2.39	U	2.37 2.39	2.37 2.39	<2.37 <2.39	U U	2.37 2.39	2.37 2.39	<2.37 <2.39	U U	2.37 2.39	2.37 2.39	<4.73 <4.77	U U	4.73 4.77	4.73 4.77	<2.37 <2.39	U U	2.37 2.39	2.37 2.39
REF Rep. 5	14		23.8	38.1	<2.38	U	2.39	2.39	<2.38	U	2.39	2.39	<2.38	U	2.39	2.39	<2.39	U	2.38	2.39	<2.38	U	2.38	2.38	<4.77	U	4.77	4.77	<2.38	U	2.39	2.39
REF Mean	14		23.5	37.6	2.35	_			2.35				2.35				2.35				2.35				4.70				2.35			
Adjusted Concentration					2.35				2.35				2.35				4.00				4.94				10.8				6.82			
Pre-exposure Rep. 1	14		24.3	38.9	<2.43	U	2.43	2.43	<2.43	U	2.43	2.43	<2.43	U	2.43	2.43	<2.43	U	2.43	2.43	<2.43	U	2.43	2.43	<4.85	U	4.85	4.85	<2.43	U	2.43	2.43
Pre-exposure Rep. 2	14		29.9	44.8	<2.49	U	2.49	2.49	<2.49	U	2.49	2.49	<2.49	U	2.49	2.49	<4.98	U	4.98	4.98	<2.49	U	2.49	2.49	<4.98	U	4.98	4.98	<2.49	U	2.49	2.49
Pre-exposure Rep. 3 Pre-exposure Mean	13		27.7	41.6 41.8	<2.31 2.41	U	2.31	2.31	<2.31 2.41	U	2.31	2.31	<2.31 2.41	U	2.31	2.31	<4.61 4.01	U	4.61	4.61	<2.31 2.41	U	2.31	2.31	<4.61 4.81	U	4.61	4.61	<2.31 2.41	U	2.31	2.31
Steady State Factor	14 x		27.3 X	41.8 X	1.0				1.0				1.0				1.7				2.41				2.3				2.41			
Eco. Effects Threshold			×	40000.0	7.3				x				x				x x				X X				2.3 X				2.9 X			
North Gulf of Mexico Bkgd			64.00	178	<20				<20				<20				<20				<20				11.0				<20			
					•																											

TABLE 17 (continued)

Analytical Results for Wet Weight PAHs in Mercenaria mercenaria Tissues

		a .	НРАН				H	IPAH			. НРАН				LPAH				ıs HF	РАН			. LPAH			-	LPAH				НРАН	
Analyte:		Chrys	ene ^{HPAH}		Dit	benzo(a,h)	anthracene ^H			Fluoran	theneHPAH			Fluore	ene ^{LPAH}		In	deno(1,2,3	-cd)pyrene ^{HF}			Naphtha	alene ^{LPAH}			Phenan	threneLPAH			Pyren	ne ^{HPAH}	
	Result	alifie.			Result	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii			Result	iii iii			Result	III.			Result	iiii			Result	iji			Result	lifie			Result	ii ji		
Sample-Replicate #	μg/kg	Qns	MDL	LRL	μg/kg	Que	MDL	LRL	μg/kg	ong	MDL	LRL	μg/kg	ons	MDL	LRL	μg/kg	ong	MDL	LRL	μg/kg	Øns	MDL	LRL	μg/kg	Öns	MDL	LRL	μg/kg	Öng	MDL	LRL
DMMU-1 Rep. 1	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76	<4.76	U	4.76	4.76
DMMU-1 Rep. 2 DMMU-1 Rep. 3	<4.99 <4.73	U U	4.99 4.73	4.99 4.73	<4.99 <4.73	U	4.99 4.73	4.99 4.73	<4.99 <4.73	U U	4.99 4.73	4.99 4.73	<4.99 <4.73	U	4.99 4.73	4.99 4.73	<4.99 <4.73	U U	4.99 4.73	4.99 4.73	<4.99 <4.73	U	4.99 4.73	4.99 4.73	<4.99 <4.73	U	4.99 4.73	4.99 4.73	<4.99 <4.73	U U	4.99 4.73	4.99 4.73
DMMU-1 Rep. 4	<4.93	U	4.93	4.93	<4.93	U	4.93	4.93	<4.93	U	4.93	4.93	<4.93	U	4.93	4.93	<4.93	U	4.93	4.93	<4.93	U	4.93	4.93	<4.93	U	4.93	4.93	<4.93	U	4.93	4.93
DMMU-1 Rep. 5	<9.73	U	9.73	9.73	<4.86	U	4.86	4.86	<4.86	U	4.86	4.86	<4.86	U	4.86	4.86	<4.86	U	4.86	4.86	<4.86	U	4.86	4.86	<4.86	U	4.86	4.86	<4.86	U	4.86	4.86
DMMU-1 Mean	5.83				4.85				4.85				4.85				4.85				4.85				4.85				4.85			
Adjusted Concentration % of Reference	8.16 248				9.71 207				5.34 207				4.85 207				14.6 207				4.85 207				4.85 207				5.34 207			
DMMU-3 Rep. 1	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	4.43		2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48	<2.48	U	2.48	2.48
DMMU-3 Rep. 2	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	5.23		2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38
DMMU-3 Rep. 3	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	5.77		2.44	2.44	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44
DMMU-3 Rep. 4 DMMU-3 Rep. 5	<2.45 <2.33	U U	2.45 2.33	2.45 2.33	<2.45 <2.33	U	2.45 2.33	2.45 2.33	<2.45 <2.33	U	2.45 2.33	2.45 2.33	<2.45 <2.33	U	2.45 2.33	2.45 2.33	<2.45 <2.33	U U	2.45 2.33	2.45 2.33	<2.45 <2.33	U	2.45 2.33	2.45 2.33	<2.45 <2.33	U	2.45 2.33	2.45 2.33	<2.45 <2.33	U U	2.45 2.33	2.45 2.33
DMMU-3 Nean	2.42				2.42				2.42				4.04				2.42				2.42	3			2.42			2.50	2.42			50
Adjusted Concentration	3.38				4.83				2.66				4.04				7.25				2.42				2.42				2.66			
% of Reference	103	11	4.04	4.04	103		4.04	4.04	103		4.04	4.04	172		4.04	4.04	103		4.04	4.04	103		4.04	4.04	103	- 11	4.04	4.04	103		4.04	404
DMMU-4 Rep. 1 DMMU-4 Rep. 2	<4.94 <4.85	U	4.94 4.85	4.94 4.85	<4.94 <4.85	U	4.94 4.85	4.94 4.85	<4.94 <4.85	U	4.94 4.85	4.94 4.85	<4.94 <4.85	U	4.94 4.85	4.94 4.85	<4.94 <4.85	U U	4.94 4.85	4.94 4.85	<4.94 <4.85	U	4.94 4.85	4.94 4.85	<4.94 <4.85	U	4.94 4.85	4.94 4.85	<4.94 <4.85	U U	4.94 4.85	4.94 4.85
DMMU-4 Rep. 3	<9.92	Ü	9.92	9.92	<4.96	Ü	4.96	4.96	<4.96	Ü	4.96	4.96	<4.96	Ü	4.96	4.96	<4.96	Ü	4.96	4.96	<4.96	Ü	4.96	4.96	<4.96	Ü	4.96	4.96	<4.96	Ü	4.96	4.96
DMMU-4 Rep. 4	<9.23	U	9.23	9.23	<4.61	U	4.61	4.61	<4.61	U	4.61	4.61	<4.61	U	4.61	4.61	<4.61	U	4.61	4.61	<4.61	U	4.61	4.61	<4.61	U	4.61	4.61	<4.61	U	4.61	4.61
DMMU-4 Rep. 5	<9.94	U	9.94	9.94	<4.97	U	4.97	4.97	<4.97	U	4.97	4.97	<4.97	U	4.97	4.97	<4.97	U	4.97	4.97	<4.97	U	4.97	4.97	<4.97	U	4.97	4.97	<4.97	U	4.97	4.97
DMMU-4 Mean Adjusted Concentration	7.78 10.9				4.87 9.73				4.87 5.35				4.87 4.87				4.87 14.6				4.87 4.87				4.87 4.87				4.87 5.35			
% of Reference	331				207				207				207				207				207				207				207			
DMMU-5 Rep. 1	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46
DMMU-5 Rep. 2	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<2.44	U U	2.44	2.44	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44
DMMU-5 Rep. 3 DMMU-5 Rep. 4	<2.41 <2.40	U U	2.41 2.40	2.41 2.40	<2.41 <2.40	U	2.41 2.40	2.41 2.40	<2.41 <2.40	U	2.41 2.40	2.41 2.40	<2.41 <2.40	U	2.41 2.40	2.41 2.40	<2.41 <2.40	U	2.41 2.40	2.41 2.40	<2.41 <2.40	U	2.41 2.40	2.41 2.40	<2.41 <2.40	U	2.41 2.40	2.41 2.40	<2.41 <2.40	U U	2.41 2.40	2.41 2.40
DMMU-5 Rep. 5	<2.48	Ü	2.48	2.48	<2.48	Ü	2.48	2.48	<2.48	Ü	2.48	2.48	<2.48	Ü	2.48	2.48	<2.48	Ü	2.48	2.48	<2.48	U	2.48	2.48	<2.48	Ü	2.48	2.48	<2.48	Ü	2.48	2.48
DMMU-05 Mean	2.44				2.44				2.44				2.44				2.44				2.44				2.44				2.44			
Adjusted Concentration % of Reference	3.41 104				4.88 104				2.68 104				2.44 104				7.31 104				2.44 104				2.44 104				2.68 104			
DMMU-7 Rep. 1	<9.75	U	9.75	9.75	<4.87	U	4.87	4.87	11.2		4.87	4.87	<4.87	U	4.87	4.87	<4.87	U	4.87	4.87	<4.87	U	4.87	4.87	9.75		4.87	4.87	5.59		4.87	4.87
DMMU-7 Rep. 2	<9.90	Ü	9.90	9.90	<4.95	Ü	4.95	4.95	18.9		4.95	4.95	<4.95	Ü	4.95	4.95	<4.95	Ü	4.95	4.95	<4.95	U	4.95	4.95	8.31		4.95	4.95	9.55		4.95	4.95
DMMU-7 Rep. 3	<9.84	U	9.84	9.84	<4.92	U	4.92	4.92	8.97		4.92	4.92	<4.92	U	4.92	4.92	<4.92	U	4.92	4.92	<4.92	U	4.92	4.92	<4.92	U	4.92	4.92	<4.92	U	4.92	4.92
DMMU-7 Rep. 4 DMMU-7 Rep. 5	<12.4 <9.40	U U	12.4 9.40	12.4 9.40	<12.4 <4.70	U	12.4 4.70	12.4 4.70	<12.4 7.56	U	12.4 4.70	12.4 4.70	<12.4 <4.70	U	12.4 4.70	12.4 4.70	<12.4 <4.70	U U	12.4 4.70	12.4 4.70	<12.4 <4.70	U U	12.4 4.70	12.4 4.70	<12.4 <4.70	U	12.4 4.70	12.4 4.70	<12.4 <4.70	U U	12.4 4.70	12.4 4.70
DMMU-7 Rep. 5	10.3	U	9.40	9.40	6.37	U	4.70	4.70	11.8		4.70	4.70	6.37	- 0	4.70	4.70	6.37	U	4.70	4.70	6.37	U	4.70	4.70	8.02	- 0	4.70	4.70	7.43		4.70	4.70
Adjusted Concentration	14.4				12.7				13.0				6.37				19.1				6.37				8.02				8.18			
% of Reference	437				271				502				271				271				271				341				316			
DMMU-8 Rep. 1	<2.46	U U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U	2.46	2.46	<2.46	U U	2.46	2.46
DMMU-8 Rep. 2 DMMU-8 Rep. 3	<2.38 <2.48	U	2.38 2.48	2.38 2.48	<2.38 <2.48	U	2.38 2.48	2.38 2.48	<2.38 <2.48	U	2.38 2.48	2.38 2.48	<2.38 <2.48	U U	2.38 2.48	2.38 2.48	<2.38 <2.48	U	2.38 2.48	2.38 2.48	<2.38 <2.48	U	2.38 2.48	2.38 2.48	<2.38 <2.48	U	2.38 2.48	2.38 2.48	<2.38 <2.48	U	2.38 2.48	2.38 2.48
DMMU-8 Rep. 4	<2.45	U	2.45	2.45	<2.45	U	2.45	2.45	<2.45	U	2.45	2.45	<2.45	Ü	2.45	2.45	<2.45	Ü	2.45	2.45	<2.45	U	2.45	2.45	<2.45	Ü	2.45	2.45	<2.45	U	2.45	2.45
DMMU-8 Rep. 5	<2.25	U	2.25	2.25	<2.25	U	2.25	2.25	<2.25	U	2.25	2.25	<2.25	U	2.25	2.25	<2.25	U	2.25	2.25	<2.25	U	2.25	2.25	<2.25	U	2.25	2.25	<2.25	U	2.25	2.25
DMMU-8 Mean Adjusted Concentration	2.40 3.37				2.40 4.81				2.40 2.64				2.40 2.40				2.40 7.21				2.40 2.40				2.40 2.40				2.40 2.64			
% of Reference	102				102				102				102				102				102				102				102			
REF Rep. 1	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31
REF Rep. 2	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30	<2.30	U	2.30	2.30
REF Rep. 3 REF Rep. 4	<2.37 <2.39	U U	2.37 2.39	2.37 2.39	<2.37 <2.39	U U	2.37 2.39	2.37 2.39	<2.37 <2.39	U U	2.37 2.39	2.37 2.39	<2.37 <2.39	U	2.37 2.39	2.37 2.39	<2.37 <2.39	U	2.37 2.39	2.37 2.39	<2.37 <2.39	U U	2.37 2.39	2.37 2.39	<2.37 <2.39	U	2.37 2.39	2.37 2.39	<2.37 <2.39	U U	2.37 2.39	2.37 2.39
REF Rep. 5	<2.38	U	2.38	2.38	<2.38	U	2.38	2.39	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.39	2.38	<2.38	U	2.38	2.38
REF Mean	2.35				2.35				2.35				2.35				2.35				2.35				2.35				2.35			
Adjusted Concentration	3.29		0.40	0.40	4.70		0.40	0.40	2.59		0.40	0.40	2.35		0.40	0.40	7.05		0.40	0.40	2.35		0.40	0.40	2.35		0.40	0.40	2.59		0.40	0.40
Pre-exposure Rep. 1 Pre-exposure Rep. 2	<2.43 <4.98	U U	2.43 4.98	2.43 4.98	<2.43 <2.49	U U	2.43 2.49	2.43 2.49	<2.43 <2.49	U U	2.43 2.49	2.43 2.49	<2.43 <2.49	U	2.43 2.49	2.43 2.49	<2.43 <2.49	U U	2.43 2.49	2.43 2.49	<2.43 <2.49	U U	2.43 2.49	2.43 2.49	<2.43 <2.49	U	2.43 2.49	2.43 2.49	<2.43 <2.49	U C+, U	2.43 2.49	2.43 2.49
Pre-exposure Rep. 3	<4.61	U	4.61	4.61	<2.49	U	2.49	2.49	<2.49	U	2.49	2.49	<2.49	U	2.49	2.49	<2.49	U	2.49	2.49	<2.49	U	2.49	2.49	<2.49	U	2.49	2.49	<2.49	C+, U	2.49	2.49
Pre-exposure Mean	4.01				2.41				2.41				2.41				2.41				2.41				2.41				2.41			
Steady State Factor	1.4				2.0				1.1				1.0				3.0				1.0				1.0				1.1			
Eco. Effects Threshold North Gulf of Mexico Bkgd	X 10.0				x 14.0				8.8 <20				x <20				x <20				x <20				x <20				x <20			
MOTAL GUIL OF MEXICO BRYO	10.0				1+.0				~20				~20				~20				~20				~20				~20			

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

Italicized and bolded values indicate results that are statistically significantly greater than that of the reference tissues and also exceed the ecological effects threshold and (or) the upper boundary of the N. Gulf of Mexico background concentration (see Section 7.5.3 of SERIM for details).

< #.## = The analyte was not detected (ND) at or above the MDL. The value indicates the MDL (U-qualified). Non-detect (ND) results use the MDL for calculating average concentrations and total PAHs.</p>

C+ = The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report.

LPAH = Low molecular weight PAH as defined in the Regional Implementation Agreement by USEPA/USACE (2003).

HPAH = High molecular weight PAH as defined in the *Regional Implementation Agreement* by USEPA/USACE (2003).

Sources: Results from NWDLS; Results from NWDLS; 1 Steady State Factors and Levels/Limits from Appendix H of SERIM (EPA/USACE 2008).

Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 18Analytical Results for Wet Weight PAHs in *Alitta virens* Tissues

		Total	Total																													
Δηα		PAH PAHs	HPAH PAHs	Total PAHs		Acenan	hthene ^{LPAH}			∆ cenanhi	thylene ^{LPAH}			Δnthra	icene ^{LPAH}		В	Senzo(a)ar	nthracene ^{HP.}	AH		Benzo(a))pyrene ^{HPAH}		Rei	nzo(h&k)fl	uoranthene	НРАН	F	Renzo(a h i	perylene ^{HP}	АН
Alle	ilyte	Ano	17410	TAIIO		h h	manene			Aceriapin	uryierie				icerie		_	<u>_</u>	itiiiaceiie			<u>.</u>	рутене		Dei	<u></u>	dorantilene		_	<u></u>	peryiene	
	R	Result	Result	Result	Result	aliti			Result	aliti			Result	aliti			Result	aliti			Result	alitic			Result	alitic			Result	aliti		
Sample-Replicate #	ŀ	ıg/kg	μg/kg	μg/kg	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL
DMMU-1 Rep. 1		72.6	121	194	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1	<24.2	U	24.2	24.2	<12.1	U	12.1	12.1
DMMU-1 Rep. 2 DMMU-1 Rep. 3		26.8 28.2	53.6 56.4	80.3 84.6	<4.46 <4.70	U U	4.46 4.70	4.46 4.70	<4.46 <4.70	U U	4.46 4.70	4.46 4.70	<4.46 <4.70	U	4.46 4.70	4.46 4.70	<8.93 <9.40	U	8.93 9.40	8.93 9.40	<4.46 <4.70	U	4.46 4.70	4.46 4.70	<8.93 <9.40	U II	8.93 9.40	8.93 9.40	<4.46 <4.70	U U	4.46 4.70	4.46 4.70
DMMU-1 Rep. 4		27.2	54.5	81.7	<4.54	U	4.54	4.54	<4.54	Ü	4.54	4.54	<4.54	U	4.54	4.54	<9.07	U	9.07	9.07	<4.54	U	4.54	4.54	<9.07	U	9.07	9.07	<4.54	U	4.54	4.54
DMMU-1 Rep. 5		28.9	57.7	86.6	<4.81	U	4.81	4.81	<4.81	U	4.81	4.81	<4.81	U	4.81	4.81	<9.62	U	9.62	9.62	<4.81	U	4.81	4.81	<9.62	U	9.62	9.62	<4.81	U	4.81	4.81
DMMU-1 Mean		36.7	68.6	105	6.12				6.12				6.12				9.82				6.12				12.2				6.12			
Adjusted Concentration					6.12				6.12				6.12				16.7				12.9				28.2				17.8			
% of Reference DMMU-3 Rep. 1		257 18.0	249	252	257	- 11	2.24	2.21	257	U	2.21	2.24	257		2.24	0.04	229		0.01	2.24	257		2.21	2.24	257	U	4.63	4.62	257	- 11	2.24	2.31
DMMU-3 Rep. 2		23.3	24.4 24.5	42.4 47.8	<2.31 <2.31	U	2.31 2.31	2.31 2.31	<2.31 <2.31	U	2.31 2.31	2.31 2.31	<2.31 <2.31	U	2.31 2.31	2.31 2.31	<2.31 <2.31	U	2.31 2.31	2.31 2.31	<2.31 <2.31	U	2.31 2.31	2.31 2.31	<4.63 <4.62	U	4.63	4.63 4.62	<2.31 <2.31	U	2.31 2.31	2.31
DMMU-3 Rep. 3		17.1	24.7	41.8	<2.34	Ü	2.34	2.34	<2.34	Ü	2.34	2.34	<2.34	Ü	2.34	2.34	<2.34	Ü	2.34	2.34	<2.34	Ü	2.34	2.34	<4.68	Ü	4.68	4.68	<2.34	Ü	2.34	2.34
DMMU-3 Rep. 4		18.2	24.4	42.6	<2.37	U	2.37	2.37	<2.37	U	2.37	2.37	<2.37	U	2.37	2.37	<2.37	U	2.37	2.37	<2.37	U	2.37	2.37	<4.74	U	4.74	4.74	<2.37	U	2.37	2.37
DMMU-3 Rep. 5		29.1	23.2	52.3	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	<4.64	U	4.64	4.64	<2.32	U	2.32	2.32
DMMU-3 Mean		21.1	24.2	45.4	2.33				2.33				2.33				2.33				2.33				4.66				2.33			
Adjusted Concentration		140	00	100	2.33 98				2.33 98				2.33 98				3.96				4.89				10.7 98				6.76 98			
% of Reference DMMU-4 Rep. 1		148 14.5	88 24.2	108 38.7	98 <2.42	U	2.42	2.42	98 <2.42	U	2.42	2.42	98 <2.42	U	2.42	2.42	54 <2.42	11	2.42	2.42	98 <2.42	U	2.42	2.42	98 <4.84	11	4.84	4.84	98 <2.42	U	2.42	2.42
DMMU-4 Rep. 1		14.5	24.2	39.5	<2.42	U	2.42	2.42	<2.42	U	2.42	2.42	<2.42	U	2.42	2.42	<2.42	U	2.42	2.42	<2.42	U	2.42	2.42	<4.93	IJ	4.04	4.93	<2.42	U	2.42	2.42
DMMU-4 Rep. 3		13.7	22.9	36.6	<2.29	Ü	2.29	2.29	<2.29	Ü	2.29	2.29	<2.29	Ū	2.29	2.29	<2.29	Ü	2.29	2.29	<2.29	Ü	2.29	2.29	<4.57	Ü	4.57	4.57	<2.29	Ü	2.29	2.29
DMMU-4 Rep. 4		13.4	22.4	35.8	<2.24	U	2.24	2.24	<2.24	U	2.24	2.24	<2.24	U	2.24	2.24	<2.24	U	2.24	2.24	<2.24	U	2.24	2.24	<4.48	U	4.48	4.48	<2.24	U	2.24	2.24
DMMU-4 Rep. 5		13.3	22.2	35.5	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<4.43	U	4.43	4.43	<2.22	U	2.22	2.22
DMMU-4 Mean		13.9	23.3	37.2	2.33				2.33				2.33				2.33				2.33				4.65				2.33			
Adjusted Concentration		97	84	00	2.33 98				2.33 98				2.33 98				3.96 54				4.89 98				10.7 98				6.75 98			
% of Reference DMMU-5 Rep. 1		13.3	22.2	89 35.5	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22		2.22	2.22	<2.22	U	2.22	2.22	98 <4.44	- 11	4.44	4.44	<2.22	U	2.22	2.22
DMMU-5 Rep. 2		13.7	22.8	36.5	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<4.56	U	4.56	4.56	<2.28	U	2.28	2.28
DMMU-5 Rep. 3		14.3	23.9	38.2	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<4.77	U	4.77	4.77	<2.39	U	2.39	2.39
DMMU-5 Rep. 4		14.3	23.9	38.2	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<4.78	U	4.78	4.78	<2.39	U	2.39	2.39
DMMU-5 Rep. 5		14.1	24.5	38.6	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	3.39		2.35	2.35	<4.69	U	4.69	4.69	<2.35	U	2.35	2.35
DMMU-5 Mean		13.9	23.5	37.4	2.33				2.33				2.33				2.33				2.53				4.65				2.33			
Adjusted Concentration		97	0.5	89	2.33 98				2.33 98				2.33 98				3.95 54				5.32 107				10.7 98				6.75 98			
% of Reference DMMU-7 Rep. 1		19.8	85 35.5	55.2	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	3.08		2.28	2.28	<2.28		2.28	2.28	<2.28	U	2.28	2.28	98 <4.55	U	4.55	4.55	<2.28	U	2.28	2.28
DMMU-7 Rep. 2		30.6	56.9	87.4	<2.47	U	2.47	2.47	<2.47	Ü	2.47	2.47	5.57		2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<4.93	U	4.93	4.93	<2.47	Ü	2.47	2.47
DMMU-7 Rep. 3		22.1	41.9	64.1	<2.50	U	2.50	2.50	<2.50	U	2.5	2.50	3.21		2.50	2.50	<2.50	U	2.50	2.50	<2.50	U	2.50	2.50	<5.00	U	5.00	5.00	<2.50	U	2.50	2.50
DMMU-7 Rep. 4		18.4	37.8	56.1	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	2.61		2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<4.71	U	4.71	4.71	<2.35	U	2.35	2.35
DMMU-7 Rep. 5		18.7	32.9	51.7	<2.43	U	2.43	2.43	<2.43	U	2.43	2.43	2.61		2.43	2.43	<2.43	U	2.43	2.43	<2.43	U	2.43	2.43	<4.86	U	4.86	4.86	<2.43	U	2.43	2.43
DMMU-7 Mean		21.9	41.0	62.9	2.41				2.41				3.42				2.41				2.41				4.81				2.41			
Adjusted Concentration % of Reference		153	149	150	2.41 101				2.41 101				3.42 144				4.09 56				5.05 101				11.1 101				6.98 101			
DMMU-8 Rep. 1		14.0	23.4	37.4	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	IJ	2.34	2.34	<2.34	U	2.34	2.34	<4.68	U	4.68	4.68	<2.34	U	2.34	2.34
DMMU-8 Rep. 2		14.3	23.8	38.1	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<4.76	U	4.76	4.76	<2.38	U	2.38	2.38
DMMU-8 Rep. 3		13.4	22.3	35.7	<2.23	Ü	2.23	2.23	<2.23	U	2.23	2.23	<2.23	Ü	2.23	2.23	<2.23	Ü	2.23	2.23	<2.23	Ü	2.23	2.23	<4.46	U	4.46	4.46	<2.23	U	2.23	2.23
DMMU-8 Rep. 4		13.7	22.9	36.7	<2.29	U	2.29	2.29	<2.29	U	2.29	2.29	<2.29	U	2.29	2.29	<2.29	U	2.29	2.29	<2.29	U	2.29	2.29	<4.59	U	4.59	4.59	<2.29	U	2.29	2.29
DMMU-8 Rep. 5		13.9	23.2	37.1	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	<4.64	U	4.64	4.64	<2.32	U	2.32	2.32
DMMU-8 Mean		13.9	23.1	37.0	2.31				2.31 2.31				2.31				2.31 3.93				2.31 4.86				4.63 10.6				2.31			
Adjusted Concentration % of Reference		97	84	88	2.31 97				97				2.31 97				3.93 54				4.86 97				97				6.70 97			
REF Rep. 1		14.1	28.2	42.3	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<4.70	U	4.70	4.70	<2.35	U	2.35	2.35	<4.70	U	4.70	4.70	<2.35	U	2.35	2.35
REF Rep. 2		14.3	28.5	42.8	<2.38	Ü	2.38	2.38	<2.38	Ü	2.38	2.38	<2.38	Ü	2.38	2.38	<4.75	Ü	4.75	4.75	<2.38	Ü	2.38	2.38	<4.75	Ü	4.75	4.75	<2.38	Ü	2.38	2.38
REF Rep. 3		14.8	29.6	44.5	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<4.94	U	4.94	4.94	<2.47	U	2.47	2.47	<4.94	U	4.94	4.94	<2.47	U	2.47	2.47
REF Rep. 4		14.0	28.0	41.9	<2.33	U	2.33	2.33	<2.33	U	2.33	2.33	<2.33	U	2.33	2.33	<4.66	U	4.66	4.66	<2.33	U	2.33	2.33	<4.66	U	4.66	4.66	<2.33	U	2.33	2.33
REF Rep. 5		14.2	23.6	37.8	<2.36	U	2.36	2.36	<2.36	U	2.36	2.36	<2.36	U	2.36	2.36	<2.36	U	2.36	2.36	<2.36	U	2.36	2.36	<4.73	U	4.73	4.73	<2.36	U	2.36	2.36
REF Mean		14.3	27.6	41.9	2.38 2.38				2.38 2.38				2.38 2.38				4.28 7.28				2.38 4.99				4.76 10.9				2.38 6.90			
Adjusted Concentration Pre-exposure Rep. 1		28.1	48.7	76.8	2.38 <2.44	U	2.44	2.44	2.38 <2.44	U	2.44	2.44	2.38 <2.44	U	2.44	2.44	7.28 <4.87	U	4.87	4.87	4.99 <4.87	U	4.87	4.87	10.9 <9.75	U	9.75	9.75	6.90 <4.87	U	4.87	4.87
Pre-exposure Rep. 1		28.7	49.8	78.5	<2.44	U	2.44	2.44	<2.44	U	2.44	2.44	<2.49	U	2.44	2.44	<4.98	U	4.07	4.07	<4.98	U	4.98	4.07	<9.75	U	9.75	9.75	<4.98	U	4.98	4.98
Pre-exposure Rep. 3		19.4	48.3	67.7	<2.41	Ü	2.41	2.41	<2.41	Ü	2.41	2.41	<2.41	Ü	2.41	2.41	<4.83	Ü	4.83	4.83	<4.83	Ü	4.83	4.83	<9.65	Ü	9.65	9.65	<4.83	Ü	4.83	4.83
Pre-exposure Mean		25.4	48.9	74.3	2.45				2.45				2.45				4.89				4.89				9.79				4.89			
Steady State Factor		х	х	х	1.0				1.0				1.0				1.7				2.1				2.3				2.9			
Eco. Effects Threshold		x	X	40000.0	1.2				X				x				х				x				x				x			
North Gulf of Mexico Bkgd		60.00	64.00	178	<20				<20				<20				<20				<20				27.0 (16.0)				<20			

TABLE 18 (continued)

Analytical Results for Wet Weight PAHs in Alitta virens Tissues

		a .	НРАН					НРАН			. НРАН				ene ^{LPAH}				ь н	PAH			. LPAH				. LPAH			_	ne ^{HPAH}	
Analyte:		Chrys	ene ^{HPAH}		Dit	oenzo(a,n)	anthracene			Fluoran	theneHPAH			Fluor	ene		Inc	ieno(1,2,3	-cd)pyrene ^H			Naphtha	lene			Phenan	threneLPAH			Pyre	ne	
	Result	ualific			Result	ualific			Result	ualific			Result	nalific			Result	nalific			Result	ualific			Result	ualific			Result	ualific		
ample-Replicate #	μg/kg	ā	MDL	LRL	μg/kg	ā	MDL	LRL	μg/kg	ā	MDL	LRL	μg/kg	<u> ā</u>	MDL	LRL	μg/kg	<u> ā</u>	MDL	LRL	μg/kg	ā	MDL	LRL	μg/kg	<u> ā</u>	MDL	LRL	μg/kg	ā	MDL	LRI
MMU-1 Rep. 1	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1	<12.1	U	12.1	12.1
MMU-1 Rep. 2	<8.93	U	8.93	8.93	<4.46	U	4.46	4.46	<4.46	U	4.46	4.46	<4.46	U	4.46	4.46	<4.46	U	4.46	4.46	<4.46	U	4.46	4.46	<4.46	U	4.46	4.46	<4.46	U	4.46	4.46
MMU-1 Rep. 3	<9.40	U	9.40	9.40	<4.70	U	4.70	4.70	<4.70	U	4.70	4.70	<4.70	U	4.70	4.70	<4.70	U	4.70	4.70	<4.70	U	4.70	4.70	<4.70	U	4.70	4.70	<4.70	U	4.70	4.70
MMU-1 Rep. 4	<9.07	U	9.07	9.07	<4.54	U	4.54	4.54	<4.54	U	4.54	4.54	<4.54	U	4.54	4.54	<4.54	U	4.54	4.54	<4.54	U	4.54	4.54	<4.54	U	4.54	4.54	<4.54	U	4.54	4.54
MMU-1 Rep. 5	<9.62	U	9.62	9.62	<4.81	U	4.81	4.81	<4.81	U	4.81	4.81	<4.81	U	4.81	4.81	<4.81	U	4.81	4.81	<4.81	U	4.81	4.81	<4.81	U	4.81	4.81	<4.81	U	4.81	4.8
/IMU-1 Mean	9.82				6.12				6.12				6.12				6.12				6.12				6.12				6.12			
ljusted Concentration	13.8				12.2				6.73				6.12				18.4				6.12				6.12				6.73			
of Reference	229			0.04	257		0.04	0.04	257		0.04	0.04	257		0.04	0.04	257		0.01	0.04	257		0.04	0.04	257		0.04	0.04	257		0.04	
/IMU-3 Rep. 1	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	2.76		2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	6.00		2.31	2.31	3.57		2.31	2.3
IMU-3 Rep. 2	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	5.84		2.31	2.31	<2.31	U	2.31	2.31	<2.31	U	2.31	2.31	8.24		2.31	2.31	3.70		2.31	2.3
IMU-3 Rep. 3	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	5.41		2.34	2.34	3.59		2.34	2.
IMU-3 Rep. 4	<2.37	U	2.37	2.37	<2.37	U	2.37	2.37	<2.37	U	2.37	2.37	3.05		2.37	2.37	<2.37	U	2.37	2.37	<2.37	U	2.37	2.37	5.65	-	2.37	2.37	3.05		2.37	2.3
MU-3 Rep. 5	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	8.16		2.32	2.32	<2.32	U	2.32	2.32	<2.32	U	2.32	2.32	11.7		2.32	2.32	<2.32	U	2.32	2.3
IMU-3 Mean	2.33				2.33				2.33				4.43				2.33				2.33				7.40				3.25			
justed Concentration	3.26				4.66				2.56				4.43				6.99				2.33				7.40				3.57			
of Reference	54				98				98				186				98				98				311				137			
IMU-4 Rep. 1	<2.42	U	2.42	2.42	<2.42	U	2.42	2.42	<2.42	U	2.42	2.42	<2.42	U	2.42	2.42	<2.42	U	2.42	2.42	<2.42	U	2.42	2.42	<2.42	U	2.42	2.42	<2.42	U	2.42	2.
IMU-4 Rep. 2	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.4
IMU-4 Rep. 3	<2.29	U	2.29	2.29	<2.29	U	2.29	2.29	<2.29	U	2.29	2.29	<2.29	U	2.29	2.29	<2.29	U	2.29	2.29	<2.29	U	2.29	2.29	<2.29	U	2.29	2.29	<2.29	U	2.29	2.
MU-4 Rep. 4	<2.24	U	2.24	2.24	<2.24	U	2.24	2.24	<2.24	U	2.24	2.24	<2.24	U	2.24	2.24	<2.24	U	2.24	2.24	<2.24	U	2.24	2.24	<2.24	U	2.24	2.24	<2.24	U	2.24	2.
MU-4 Rep. 5	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.
MU-4 Mean	2.33				2.33				2.33				2.33				2.33				2.33				2.33				2.33			
usted Concentration	3.26				4.66				2.56				2.33				6.98				2.33				2.33				2.56			
f Reference	54				98				98				98				98				98				98				98			
MU-5 Rep. 1	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2.22	<2.22	U	2.22	2
MU-5 Rep. 2	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2
MU-5 Rep. 3	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.
MU-5 Rep. 4	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.39	<2.39	U	2.39	2.
IMU-5 Rep. 5	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.
MMU-05 Mean	2.33				2.33				2.33				2.33				2.33				2.33				2.33				2.33			
usted Concentration	3.26				4.65				2.56				2.33				6.98				2.33				2.33				2.56			
of Reference	54				98				98				98				98				98				98				98			
MU-7 Rep. 1	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	8.25		2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	<2.28	U	2.28	2.28	7.56		2.28	2.28	8.98	-	2.28	2
MU-7 Rep. 2	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	17.1		2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	15.1		2.47	2.47	20.0		2.47	2
MU-7 Rep. 3	<2.50	U	2.50	2.50	<2.50	U	2.50	2.50	9.44		2.50	2.50	<2.50	U	2.50	2.50	<2.50	U	2.50	2.50	<2.50	U	2.50	2.50	8.90		2.50	2.50	12.5		2.50	2
MU-7 Rep. 4	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	7.97		2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	6.35		2.35	2.35	11.0		2.35	2
MU-7 Rep. 5	<2.43	U	2.43	2.43	<2.43	U	2.43	2.43	6.01		2.43	2.43	<2.43	U	2.43	2.43	<2.43	U	2.43	2.43	<2.43	U	2.43	2.43	6.38		2.43	2.43	7.49		2.43	2
MU-7 Mean	2.41				2.41				9.75				2.41				2.41				2.41				8.86				12.0			
justed Concentration	3.37				4.81				10.7				2.41				7.22				2.41				8.86				13.2			
f Reference	56				101				410				101				101				101				372				504			
MU-8 Rep. 1	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.34	<2.34	U	2.34	2.
MU-8 Rep. 2	<2.38	Ü	2.38	2.38	<2.38	Ü	2.38	2.38	<2.38	Ü	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	U	2.38	2.38	<2.38	Ü	2.38	2.38	<2.38	Ü	2.38	2
MU-8 Rep. 3	<2.23	Ü	2.23	2.23	<2.23	Ü	2.23	2.23	<2.23	Ü	2.23	2.23	<2.23	U	2.23	2.23	<2.23	U	2.23	2.23	<2.23	U	2.23	2.23	<2.23	Ü	2.23	2.23	<2.23	Ü	2.23	2
MU-8 Rep. 4	<2.29	Ü	2.29	2.29	<2.29	Ü	2.29	2.29	<2.29	Ü	2.29	2.29	<2.29	Ü	2.29	2.29	<2.29	Ü	2.29	2.29	<2.29	Ü	2.29	2.29	<2.29	Ü	2.29	2.29	<2.29	Ü	2.29	2
MU-8 Rep. 5	<2.32	Ü	2.32	2.32	<2.32	Ü	2.32	2.32	<2.32	Ü	2.32	2.32	<2.32	Ü	2.32	2.32	<2.32	Ü	2.32	2.32	<2.32	Ü	2.32	2.32	<2.32	Ü	2.32	2.32	<2.32	Ü	2.32	2
MU-8 Mean	2.31				2.31	_			2.31				2.31	_			2.31	-			2.31				2.31	_			2.31	-		一
usted Concentration	3.24				4.62				2.54				2.31				6.94				2.31				2.31				2.54			
f Reference	54				97				97				97				97				97				97				97			
Rep. 1	<4.70	U	4.70	4.70	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	U	2.35	2.35	<2.35	C+, U	2.35	2
- ' -	<4.75	Į į	4.75	4.75	<2.38	11	2.33	2.38	<2.38	Į į	2.38	2.38	<2.38	[]	2.38	2.38	<2.38	11	2.33	2.38	<2.38	U	2.33	2.38	<2.33	11	2.38	2.38	<2.33	C+ 11	2.38	2
Rep. 2 Rep. 3	<4.75	U	4.75	4.73	<2.47	U	2.47	2.36	<2.47	U	2.36	2.47	<2.47	U	2.47	2.36	<2.47	U	2.47	2.47	<2.47	U	2.47	2.36	<2.47	U	2.47	2.47	<2.47	C+, U	2.36	
Rep. 4	<4.66	U	4.66	4.66	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.47	2.47	<2.47	U	2.33	2.47	<2.47	U	2.33	2.47	<2.47	U	2.47	2.47	<2.47	C+, U	2.47	
Rep. 4 Rep. 5	< 2.36	U	2.36	2.36	<2.33	U	2.33	2.33	<2.33 <2.36	U	2.33	2.33	<2.33	U	2.33	2.33	<2.33 <2.36	U	2.33	2.33	<2.33	U	2.33	2.33	<2.33	U	2.33	2.33	<2.33 <2.36	U+, U	2.33	
Kep. 5 Mean		U	2.30	2.30		U	2.30	2.30		U	2.30	2.30		U	2.30	2.30		U	∠.30	2.30	1	U	2.30	2.30		U	2.30	2.30		U	2.30	
	4.28				2.38				2.38				2.38				2.38				2.38				2.38				2.38			
sted Concentration	5.99		,		4.76				2.62		,		2.38		• • • •		7.13				2.38		0.4.		2.38				2.62			
exposure Rep. 1	<4.87	U	4.87	4.87	<4.87	U	4.87	4.87	<4.87	U	4.87	4.87	<2.44	U	2.44	2.44	<4.87	U	4.87	4.87	15.9		2.44	2.44	<2.44	U	2.44	2.44	<4.87	U	4.87	
exposure Rep. 2	<4.98	U	4.98	4.98	<4.98	U	4.98	4.98	<4.98	U	4.98	4.98	<2.49	U	2.49	2.49	<4.98	U	4.98	4.98	16.2		2.49	2.49	<2.49	U	2.49	2.49	<4.98	U	4.98	
exposure Rep. 3	<4.83	U	4.83	4.83	<4.83	U	4.83	4.83	<4.83	U	4.83	4.83	<2.41	U	2.41	2.41	<4.83	U	4.83	4.83	7.33		2.41	2.41	<2.41	U	2.41	2.41	<4.83	U	4.83	
exposure Mean	4.89				4.89				4.89				2.45				4.89				13.1				2.45				4.89			
dy State Factor	1.4				2.0				1.1				1.0				3.0				1.0				1.0				1.1			
Effects Threshold	x				x				12.8				х				х				x				х				х			
n Gulf of Mexico Bkgd	10.0				14.0				<20				<20				<20				<20				14-17				<20			

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

<### and U-qualified indicates the analyte was not detected (ND) at or above the MDL. The value indicates the MDL, Non-detect (ND) results use the MDL for calculating average concentrations and total PAHs.</p>
C+ = The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report.

LPAH = Low molecular weight PAH as defined in the Regional Implementation Agreement by USEPA/USACE (2003).

HPAH = High molecular weight PAH as defined in the Regional Implementation Agreement by USEPA/USACE (2003).

Sources: Results from Results from NWDLS; 1 Steady State Factors and Levels/Limits from Appendix H of SERIM (EPA/USACE 2008).

Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 19Analytical Results for Dry Weight PAHs in *Mercenaria mercenaria* Tissues

		Total -PAH	Total HPAH	Total																												
4		PAHs	PAHs	PAHs	,	Acenaph	hthene ^{LPAH}	l	A	cenaphtl	nylene ^{LPAH}			Anthra	cene ^{LPAH}		Ben	zo(a)an	thracene ^{HI}	PAH	В	enzo(a)p	yrene ^{HPAH}	1	Benz	o(b&k)flı	uoranthen	e ^{HPAH}	Ber	zo(g,h,i))perylene ^H	PAH
						-				e				-e				-e				-				-				er		
	R	Result	Result	Result	Result	É			Result	É			Result	ij			Result	É			Result	É			Result	É			Result	É		
Sample-Replicate #		ıg/kg	μg/kg	μg/kg	μg/kg	ã	MDL	LRL	μg/kg	ä	MDL	LRL	μg/kg	ñø	MDL	LRL	μg/kg	ä	MDL	LRL	μg/kg	å	MDL	LRL	μg/kg	ä	MDL	LRL	μg/kg	ñø	MDL	LRL
DMMU-1 Rep. 1		210	350	560	<35.0	U	35.0	35.0	<35.0	U	35.0	35.0	<35.0	U	35.0	35.0	<35.0	U	35.0	35.0	<35.0	U	35.0	35.0	<70.1	U	70.1	70.1	<35.0	U	35.0	35.0
DMMU-1 Rep. 2		215	359	575	<35.9	U	35.9	35.9	<35.9	U	35.9	35.9	<35.9	U	35.9	35.9	<35.9	U	35.9	35.9	<35.9	U	35.9	35.9	<71.9	U	71.9	71.9	<35.9	U	35.9	35.9
DMMU-1 Rep. 3	:	200	333	533	<33.3	U	33.3	33.3	<33.3	U	33.3	33.3	<33.3	U	33.3	33.3	<33.3	U	33.3	33.3	<33.3	U	33.3	33.3	<66.7	U	66.7	66.7	<33.3	U	33.3	33.3
DMMU-1 Rep. 4		199	332	531	<33.2	U	33.2	33.2	<33.2	U	33.2	33.2	<33.2	U	33.2	33.2	<33.2	U	33.2	33.2	<33.2	U	33.2	33.2	<66.5	U	66.5	66.5	<33.2	U	33.2	33.2
DMMU-1 Rep. 5		187	373	560	<31.1	U	31.1	31.1	<31.1	U	31.1	31.1	<31.1	U	31.1	31.1	<62.2	U	62.2	62.2	<31.1	U	31.1	31.1	<62.2	U	62.2	62.2	<31.1	U	31.1	31.1
DMMU-1 Mean		202	350	552	33.7				33.7				33.7				39.9				33.7				67.5				33.7			
% of Reference		153	159	157	153				153				153				182				153				154				153			
DMMU-3 Rep. 1		103	205	308	<20.5	U	20.5	20.5	<20.5	U	20.5	20.5	<20.5	U	20.5	20.5	<20.5	U	20.5	20.5	<20.5	U	20.5	20.5	<41.0	U	41.0	41.0	<20.5	U	20.5	20.5
DMMU-3 Rep. 2		83.5	167	251	<16.7	U	16.7	16.7	<16.7	U	16.7	16.7	<16.7	U	16.7	16.7	<16.7	U	16.7	16.7	<16.7	U	16.7	16.7	<33.4	U	33.4	33.4	<16.7	U	16.7	16.7
DMMU-3 Rep. 3		88.5	177	266	<17.7	U	17.7	17.7	<17.7	U	17.7	17.7	<17.7	U	17.7	17.7	<17.7	U	17.7	17.7	<17.7	U	17.7	17.7	<35.4	U	35.4	35.4	<17.7	U	17.7	17.7
DMMU-3 Rep. 4		102	170	272	<17.0	U	17.0	17.0	<17.0	U	17.0	17.0	<17.0	U	17.0	17.0	<17.0	U	17.0	17.0	<17.0	U	17.0	17.0	<33.9	U	33.9	33.9	<17.0	U	17.0	17.0
DMMU-3 Rep. 5		96	160	256	<16.0	U	16.0	16.0	<16.0	U	16.0	16.0	<16.0	U	16.0	16.0	<16.0	U	16.0	16.0	<16.0	U	16.0	16.0	<32.0	U	32.0	32.0	<16.0	U	16.0	16.0
DMMU-3 Mean		95	176	270	17.6				17.6				17.6				17.6				17.6				35.1				17.6			
% of Reference		72	80	77	80				80				80				80				80				80				80			للتبك
DMMU-4 Rep. 1		198	330	528	<33.0	U	33.0	33.0	<33.0	U	33.0	33.0	<33.0	U	33.0	33.0	<33.0	U	33.0	33.0	<33.0	U	33.0	33.0	<66.1	U	66.1	66.1	<33.0	U	33.0	33.0
DMMU-4 Rep. 2		235	392	627	<39.2	U	39.2	39.2	<39.2	U	39.2	39.2	<39.2	U	39.2	39.2	<39.2	U	39.2	39.2	<39.2	U	39.2	39.2	<78.5	U	78.5	78.5	<39.2	U	39.2	39.2
DMMU-4 Rep. 3		208	416	625	<34.7	U	34.7	34.7	<34.7	U	34.7	34.7	<34.7	U	34.7	34.7	<69.4	U	69.4	69.4	<34.7	U	34.7	34.7	<69.4	U	69.4	69.4	<34.7	U	34.7	34.7
DMMU-4 Rep. 4		191	383	575	<31.9	U	31.9	31.9	<31.9	U	31.9	31.9	<31.9	U	31.9	31.9	<63.9	U	63.9	63.9	<31.9	U	31.9	31.9	<63.9	U	63.9	63.9	<31.9	U	31.9	31.9
DMMU-4 Rep. 5		231	462	693	<38.5	U	38.5	38.5	<38.5	U	38.5	38.5	<38.5	U	38.5	38.5	<76.9	U	76.9	76.9	<38.5	U	38.5	38.5	<76.9	U	76.9	76.9	<38.5	U	38.5	38.5
DMMU-4 Mean		213	397	609	35.5				35.5				35.5				56.5				35.5				71.0				35.5			
% of Reference		161	181	173	161		47.0	47.0	161		47.0	47.0	161		47.0	47.0	257		47.0	47.0	161		47.0	47.0	162		05.0	05.0	161		47.0	47.0
DMMU-5 Rep. 1		107	178	285	<17.8	U	17.8	17.8	<17.8	U	17.8	17.8	<17.8	U	17.8	17.8	<17.8	U	17.8	17.8	<17.8	U	17.8	17.8	<35.6	U	35.6	35.6	<17.8	U	17.8	17.8
DMMU-5 Rep. 2		109	181	290	<18.1	-	18.1	18.1	<18.1	-	18.1	18.1	<18.1	-	18.1	18.1	<18.1	U	18.1	18.1	<18.1	-	18.1	18.1	<36.2	U	36.2	36.2	<18.1	-	18.1	18.1
DMMU-5 Rep. 3 DMMU-5 Rep. 4		101	169	270	<16.9	U	16.9	16.9	<16.9	U	16.9	16.9	<16.9	U	16.9	16.9	<16.9	U	16.9	16.9	<16.9	U	16.9	16.9	<33.8	U	33.8	33.8	<16.9	U	16.9	16.9
· ·		99.6 112	166 187	266 299	<16.6 <18.7	U	16.6 18.7	16.6 18.7	<16.6 <18.7	U	16.6 18.7	16.6 18.7	<16.6 <18.7	U	16.6 18.7	16.6 18.7	<16.6 <18.7	U	16.6 18.7	16.6 18.7	<16.6 <18.7	U	16.6 18.7	16.6 18.7	<33.2 <37.5	U	33.2 37.5	33.2 37.5	<16.6 <18.7	U	16.6 18.7	16.6 18.7
DMMU-5 Rep. 5 DMMU-5 Mean		106	176	282	17.6	<u> </u>	10.7	10.7	17.6	U	10.7	10.7	17.6	U	10.7	10.7	17.6	U	10.7	10.7	17.6	U	10.7	10.7	35.3	<u> </u>	37.5	37.5	17.6	U	10.7	10.7
% of Reference		80	80	80	80				80				80				80				80				80				80			
DMMU-7 Rep. 1		203	356	559	60.5		35.6	35.6	<35.6	U	35.6	35.6	<35.6	U	35.6	35.6	<71.2	U	71.2	71.2	<35.6	U	35.6	35.6	<71.2		71.2	71.2	<35.6	U	35.6	35.6
DMMU-7 Rep. 2		259	444	703	81.6		44.4	44.4	<44.4	U	44.4	44.4	<44.4	U	44.4	44.4	<88.8	U	88.8	88.8	<44.4	U	44.4	44.4	<88.8	U	88.8	88.8	<44.4	U	44.4	44.4
DMMU-7 Rep. 2		248	454	703	<41.3	U	41.3	41.3	<41.3	U	41.3	41.3	<41.3	U	41.3	41.3	<82.6	U	82.6	82.6	<41.3	U	41.3	41.3	<82.6	U	82.6	82.6	<41.3	U	41.3	41.3
DMMU-7 Rep. 4		599	998	1597	<99.8	U	99.8	99.8	<99.8	U	99.8	99.8	<99.8	U	99.8	99.8	<99.8	IJ	99.8	99.8	<99.8	U	99.8	99.8	<200	U	200	200	<99.8	U	99.8	99.8
DMMU-7 Rep. 5		215	394	609	<35.8	U	35.8	35.8	<35.8	U	35.8	35.8	<35.8	U	35.8	35.8	<71.6	IJ	71.6	71.6	<35.8	U	35.8	35.8	<71.6	U	71.6	71.6	<35.8	U	35.8	35.8
DMMU-7 Mean		305	529	834	63.8		00.0		51.4			00.0	51.4		00.0	00.0	82.8				51.4		00.0	00.0	102.8		70	7	51.4			
% of Reference		231	241	237	291				234				234				377				234				234				234			
DMMU-8 Rep. 1		113	188	301	<18.8	U	18.8	18.8	<18.8	U	18.8	18.8	<18.8	U	18.8	18.8	<18.8	U	18.8	18.8	<18.8	U	18.8	18.8	<37.5	U	37.5	37.5	<18.8	U	18.8	18.8
DMMU-8 Rep. 2		105	175	280	<17.5	Ü	17.5	17.5	<17.5	U	17.5	17.5	<17.5	Ü	17.5	17.5	<17.5	U	17.5	17.5	<17.5	U	17.5	17.5	<35.1	U	35.1	35.1	<17.5	U	17.5	17.5
DMMU-8 Rep. 3		136	190	326	<19.0	Ü	19.0	19.0	<19.0	U	19.0	19.0	41.1		19.0	19.0	<19.0	Ū	19.0	19.0	<19.0	U	19.0	19.0	<38.0	Ü	38.0	38.0	<19.0	Ü	19.0	19.0
DMMU-8 Rep. 4		130	216	346	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<43.2	U	43.2	43.2	<21.6	U	21.6	21.6
DMMU-8 Rep. 5		105	175	280	<17.5	Ū	17.5	17.5	<17.5	U	17.5	17.5	<17.5	U	17.5	17.5	<17.5	U	17.5	17.5	<17.5	U	17.5	17.5	<35.0	U	35.0	35.0	<17.5	U	17.5	17.5
DMMU-8 Mean		118	189	307	18.9				18.9				23.3				18.9				18.9				37.8				18.9			
% of Reference		89	86	87	86				86				106				86				86				86				86			
REF Rep. 1		124	207	331	<20.7	U	20.7	20.7	<20.7	U	20.7	20.7	<20.7	U	20.7	20.7	<20.7	U	20.7	20.7	<20.7	U	20.7	20.7	<41.3	U	41.3	41.3	<20.7	U	20.7	20.7
REF Rep. 2		128	214	342	<21.4	U	21.4	21.4	<21.4	U	21.4	21.4	<21.4	U	21.4	21.4	<21.4	U	21.4	21.4	<21.4	U	21.4	21.4	<42.7	U	42.7	42.7	<21.4	U	21.4	21.4
REF Rep. 3		135	225	360	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<44.9	U	44.9	44.9	<22.5	U	22.5	22.5
REF Rep. 4		137	229	367	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<45.9	U	45.9	45.9	<22.9	U	22.9	22.9
REF Rep. 5		134	223	357	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<44.6	U	44.6	44.6	<22.3	U	22.3	22.3
REF Mean		132	220	351	22.0				22.0				22.0				22.0				22.0				43.9				22.0			
Pre-exposure Rep. 1		135	225	360	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<45.1	U	45.1	45.1	<22.5	U	22.5	22.5
Pre-exposure Rep. 2		120	240	360	<20.0	U	20.0	20.0	<20.0	U	20.0	20.0	<20.0	U	20.0	20.0	<40.0	U	40.0	40.0	<20.0	U	20.0	20.0	<40.0	U	40.0	40.0	<20.0	U	20.0	20.0
Pre-exposure Rep. 3		122	243	365	<20.3	U	20.3	20.3	<20.3	U	20.3	20.3	<20.3	U	20.3	20.3	<40.5	U	40.5	40.5	<20.3	U	20.3	20.3	<40.5	U	40.5	40.5	<20.3	U	20.3	20.3
Pre-exposure Mean		126	236	362	20.9				20.9				20.9				34.3				20.9				41.9				20.9			

TABLE 19 (continued)

Analytical Results for Dry Weight PAHs in Mercenaria mercenaria Tissues

DMMU-3 Rep. 1 <20 DMMU-3 Rep. 2 <16 DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17 % of Reference 80 DMMU-4 Rep. 1 <33	sult //kg 15.0 15.9 13.3 13.2 12.2 19.9 82 10.5 16.7 17.0 16.0 17.6 18.0 18	Chryser John Market Ma	MDL 35.0 35.9 33.3 33.2 62.2 20.5 16.7 17.7 17.0 16.0	20.5 16.7 17.0 16.0	Result pg/kg <35.0 <35.9 <33.3 <33.2 <31.1 33.7 153 <20.5 <16.7 <17.7 <17.0 <16.0	Ognatifier	MDL 35.0 35.9 33.3 33.2 31.1 20.5 16.7 17.7 17.0	#PAH 35.0 35.9 33.3 33.2 31.1 20.5 16.7 17.7	Result µg/kg <35.0 <35.9 <33.3 <33.2 <31.1 33.7 153 <20.5 <16.7	O O O O	MDL 35.0 35.9 33.3 33.2 31.1	LRL 35.0 35.9 33.3 33.2 31.1	Result µg/kg <35.0 <35.9 <33.3 <33.2 <31.1 33.7 153	Property of the state of the st	MDL 35.0 35.9 33.3 33.2 31.1	35.0 35.9 33.3 33.2 31.1	Result µg/kg <35.0 <35.9 <33.3 <33.2	no(1,2,3-	MDL 35.0 35.9 33.3	LRL 35.0 35.9 33.3	Result µg/kg <35.0 <35.9 <33.3	Naphtha Organities U U U U	MDL 35.0 35.9 33.3 33.2	LRL 35.0 35.9 33.3 33.2	Result µg/kg <35.0 <35.9 <33.3 <33.2 <31.1	Phenanth Onalities U U U U	MDL 35.0 35.9 33.3 33.2 31.1	LRL 35.0 35.9 33.3 33.2 31.1	Result µg/kg <35.0 <35.9 <33.3 <33.2 <31.1	Pyren Onalitie U	MDL 35.0 35.9 33.3 33.2 31.1	35.0 35.9 33.3 33.2 31.1
Res Sample-Replicate # µg// DMMU-1 Rep. 1 <35 DMMU-1 Rep. 2 <35 DMMU-1 Rep. 3 <33 DMMU-1 Rep. 4 <33 DMMU-1 Rep. 5 <62 DMMU-1 Mean 39, % of Reference 18 DMMU-3 Rep. 1 <20 DMMU-3 Rep. 2 <16 DMMU-3 Rep. 2 <16 DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Rep. 5 <16 DMMU-3 Rep. 6 <17 DMMU-3 Rep. 7 <18 DMMU-3 Rep. 8 <18 DMMU-3 Rep. 9 <18 DMMU-3 Rep. 1 <18 DMMU-3 Rep. 1 <18 DMMU-3 Rep. 1 <18 DMMU-3 Rep. 5 <18 DMMU-3 Rep. 5 <18 DMMU-3 Rep. 1 <18 DMMU-3 Rep. 1 <18 DMMU-3 Rep. 1 <18 DMMU-3 Rep. 5 <18 DMMU-3 Rep. 1 <18 DMMU-4 Rep. 1 <18 DMMU-4 Rep. 1	sult //kg 15.0 15.9 13.3 13.2 12.2 19.9 82 10.5 16.7 17.0 16.0 17.6 18.0 18	C C C C Qualifier	MDL 35.0 35.9 33.3 33.2 62.2 20.5 16.7 17.7 17.0	35.0 35.9 33.3 33.2 62.2 20.5 16.7 17.7 17.0	Result pg/kg <35.0 <35.9 <33.3 <33.2 <31.1 33.7 153 <20.5 <16.7 <17.7 <17.0 <16.0		MDL 35.0 35.9 33.3 33.2 31.1	LRL 35.0 35.9 33.3 33.2 31.1	Result µg/kg <35.0 <35.9 <33.3 <33.2 <31.1 33.7 153 <20.5 <16.7		MDL 35.0 35.9 33.3 33.2 31.1	35.0 35.9 33.3 33.2 31.1	μg/kg <35.0 <35.9 <33.3 <33.2 <31.1 33.7 153	C C C C Qualifier	MDL 35.0 35.9 33.3 33.2	35.0 35.9 33.3 33.2	Result µg/kg <35.0 <35.9 <33.3 <33.2	C C C Qualifier	MDL 35.0 35.9 33.3	LRL 35.0 35.9 33.3	Result µg/kg <35.0 <35.9 <33.3	C C C Qualifier	MDL 35.0 35.9 33.3	35.0 35.9 33.3 33.2	Result µg/kg <35.0 <35.9 <33.3 <33.2	C C C C Qualifier	MDL 35.0 35.9 33.3 33.2	35.0 35.9 33.3 33.2	μg/kg <35.0 <35.9 <33.3 <33.2 <31.1	C C C Qualifier	MDL 35.0 35.9 33.3 33.2	35.0 35.9 33.3 33.2
Sample-Replicate # µg/l DMMU-1 Rep. 1 <35 DMMU-1 Rep. 2 <35 DMMU-1 Rep. 3 <33 DMMU-1 Rep. 4 <33 DMMU-1 Rep. 5 <62 DMMU-1 Mean 39. % of Reference 18 DMMU-3 Rep. 1 <20 DMMU-3 Rep. 2 <16 DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17. % of Reference 80 DMMU-4 Rep. 1 <33	15.0 15.0 15.9 13.3 13.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15	CCCC CCCC CCCC Qualifie	35.0 35.9 33.3 33.2 62.2 20.5 16.7 17.7	35.0 35.9 33.3 33.2 62.2 20.5 16.7 17.7 17.0	µg/kg <35.0 <35.9 <33.3 <33.2 <31.1 33.7 153 <20.5 <16.7 <17.7 <17.0 <16.0	U U U U	35.0 35.9 33.3 33.2 31.1 20.5 16.7 17.7	35.0 35.9 33.3 33.2 31.1 20.5 16.7	wg/kg	U U U U	35.0 35.9 33.3 33.2 31.1	35.0 35.9 33.3 33.2 31.1	μg/kg <35.0 <35.9 <33.3 <33.2 <31.1 33.7 153		35.0 35.9 33.3 33.2	35.0 35.9 33.3 33.2	μg/kg <35.0 <35.9 <33.3 <33.2	U	35.0 35.9 33.3	35.0 35.9 33.3	μg/kg <35.0 <35.9 <33.3	U U	35.0 35.9 33.3	35.0 35.9 33.3 33.2	μg/kg <35.0 <35.9 <33.3 <33.2	U	35.0 35.9 33.3 33.2	35.0 35.9 33.3 33.2	μg/kg <35.0 <35.9 <33.3 <33.2 <31.1	U U U	35.0 35.9 33.3 33.2	35.0 35.9 33.3 33.2
Sample-Replicate # µg/l DMMU-1 Rep. 1 <35 DMMU-1 Rep. 2 <35 DMMU-1 Rep. 3 <33 DMMU-1 Rep. 4 <33 DMMU-1 Rep. 5 <62 DMMU-1 Mean 39. % of Reference 18 DMMU-3 Rep. 1 <20 DMMU-3 Rep. 2 <16 DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17. % of Reference 80 DMMU-4 Rep. 1 <33	15.0 15.0 15.9 13.3 13.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15	U U U U U U U U U U U U U U U U U U U	35.0 35.9 33.3 33.2 62.2 20.5 16.7 17.7	35.0 35.9 33.3 33.2 62.2 20.5 16.7 17.7 17.0	µg/kg <35.0 <35.9 <33.3 <33.2 <31.1 33.7 153 <20.5 <16.7 <17.7 <17.0 <16.0	U U U U	35.0 35.9 33.3 33.2 31.1 20.5 16.7 17.7	35.0 35.9 33.3 33.2 31.1 20.5 16.7	wg/kg	U U U U	35.0 35.9 33.3 33.2 31.1	35.0 35.9 33.3 33.2 31.1	μg/kg <35.0 <35.9 <33.3 <33.2 <31.1 33.7 153	0 U U U U	35.0 35.9 33.3 33.2	35.0 35.9 33.3 33.2	μg/kg <35.0 <35.9 <33.3 <33.2	U	35.0 35.9 33.3	35.0 35.9 33.3	μg/kg <35.0 <35.9 <33.3	U U	35.0 35.9 33.3	35.0 35.9 33.3 33.2	μg/kg <35.0 <35.9 <33.3 <33.2	U	35.0 35.9 33.3 33.2	35.0 35.9 33.3 33.2	μg/kg <35.0 <35.9 <33.3 <33.2 <31.1	U U U	35.0 35.9 33.3 33.2	35.0 35.9 33.3 33.2
DMMU-1 Rep. 2 <35 DMMU-1 Rep. 3 <33 DMMU-1 Rep. 4 <33 DMMU-1 Rep. 5 <62 DMMU-1 Mean 39. % of Reference 18 DMMU-3 Rep. 1 <20 DMMU-3 Rep. 2 <16 DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17 % of Reference 80 DMMU-4 Rep. 1 <33	35.9 33.3 33.2 32.2 39.9 82 20.5 6.7 7.7 7.0 6.0 7.6 330 33.0	U U U U U U U U U U U U U U U U U U U	35.9 33.3 33.2 62.2 20.5 16.7 17.7 17.0	35.9 33.3 33.2 62.2 20.5 16.7 17.7 17.0	<35.9 <33.3 <33.2 <31.1 33.7 153 <20.5 <16.7 <17.7 <17.0 <16.0	U U U U U	35.9 33.3 33.2 31.1 20.5 16.7 17.7	35.9 33.3 33.2 31.1 20.5 16.7	<35.9 <33.3 <33.2 <31.1 33.7 153 <20.5 <16.7	U U U U	35.9 33.3 33.2 31.1	35.9 33.3 33.2 31.1	<35.9 <33.3 <33.2 <31.1 33.7 153	U U U U	35.9 33.3 33.2	35.9 33.3 33.2	<35.9 <33.3 <33.2	U	35.9 33.3	35.9 33.3	<35.9 <33.3	U U	35.9 33.3	35.9 33.3 33.2	<35.9 <33.3 <33.2	U	35.9 33.3 33.2	35.9 33.3 33.2	<35.9 <33.3 <33.2 <31.1	U U U	35.9 33.3 33.2	35.9 33.3 33.2
DMMU-1 Rep. 3	33.3 33.2 32.2 29.9 882 20.5 6.7 7.7 7.0 6.0 7.6 30	U U U U U U U U U U U U U U U U U U U	33.3 33.2 62.2 20.5 16.7 17.7 17.0	33.3 33.2 62.2 20.5 16.7 17.7 17.0	<33.3 <33.2 <31.1 33.7 153 <20.5 <16.7 <17.7 <17.0 <16.0	U U U U U	33.3 33.2 31.1 20.5 16.7 17.7	33.3 33.2 31.1 20.5 16.7	<33.3 <33.2 <31.1 33.7 153 <20.5 <16.7	U U U	33.3 33.2 31.1 20.5	33.3 33.2 31.1	<33.3 <33.2 <31.1 33.7 153	U U U	33.3 33.2	33.3 33.2	<33.3 <33.2	Ü	33.3	33.3	<33.3	U	33.3	33.3 33.2	<33.3 <33.2	U	33.3 33.2	33.3 33.2	<33.3 <33.2 <31.1	U	33.3 33.2	33.3 33.2
DMMU-1 Rep. 4	33.2 32.2 39.9 882 20.5 6.7 7.7 7.0 6.0 7.6 30 33.0	U U U U U U U	33.2 62.2 20.5 16.7 17.7 17.0	33.2 62.2 20.5 16.7 17.7 17.0	<33.2 <31.1 33.7 153 <20.5 <16.7 <17.7 <17.0 <16.0	U U U U U U U	33.2 31.1 20.5 16.7 17.7	33.2 31.1 20.5 16.7	<33.2 <31.1 33.7 153 <20.5 <16.7	U	33.2 31.1 20.5	33.2 31.1	<33.2 <31.1 33.7 153	U U U	33.2	33.2	<33.2	-				-		33.2	<33.2	U	33.2	33.2	<33.2 <31.1	U	33.2	33.2
DMMU-1 Rep. 5 <62 DMMU-1 Mean 39 % of Reference 18 DMMU-3 Rep. 1 <20 DMMU-3 Rep. 2 <16 DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17 % of Reference 80 DMMU-4 Rep. 1 <33	9.9 9.9 82 20.5 66.7 7.7 7.0 66.0 7.6 830 83.0	U U U U U U U U U U U U U U U U U U U	20.5 16.7 17.7 17.0	20.5 16.7 17.7 17.0	<31.1 33.7 153 <20.5 <16.7 <17.7 <17.0 <16.0	U U U U	20.5 16.7 17.7	20.5 16.7	<31.1 33.7 153 <20.5 <16.7	U	31.1	31.1	<31.1 33.7 153	U				11			-22 C	11	33.2						<31.1			
DMMU-1 Mean 39 % of Reference 18 DMMU-3 Rep. 1 <20 DMMU-3 Rep. 2 <16 DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17 % of Reference 80 DMMU-4 Rep. 1 <33	9.9 82 20.5 6.7 7.7 7.0 6.0 7.6 80	U U U U U	20.5 16.7 17.7 17.0	20.5 16.7 17.7 17.0	33.7 153 <20.5 <16.7 <17.7 <17.0 <16.0	U U U	20.5 16.7 17.7	20.5 16.7	33.7 153 <20.5 <16.7	U	20.5		33.7 153	U	31.1	31.1		U	33.2	33.2	<33.2	U		04.4	<31.1	U	31.1	31.1		U	31.1	31.1
% of Reference 18 DMMU-3 Rep. 1 <20 DMMU-3 Rep. 2 <16 DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17 % of Reference 80 DMMU-4 Rep. 1 <33	82 20.5 6.7 7.7 17.0 6.0 7.6 80	U U U U	16.7 17.7 17.0	16.7 17.7 17.0	153 <20.5 <16.7 <17.7 <17.0 <16.0	U U U	16.7 17.7	16.7	153 <20.5 <16.7			20.5	153				<31.1	U	31.1	31.1	<31.1	U	31.1	31.1	701.1		$\overline{}$		00 -			
DMMU-3 Rep. 1 <20 DMMU-3 Rep. 2 <16 DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17 % of Reference 80 DMMU-4 Rep. 1 <33	20.5 6.7 7.7 7.0 6.0 7.6 83.0	U U U U	16.7 17.7 17.0	16.7 17.7 17.0	<20.5 <16.7 <17.7 <17.0 <16.0	U U U	16.7 17.7	16.7	<20.5 <16.7			20.5					33.7				33.7				33.7				33.7			
DMMU-3 Rep. 2 <16 DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17 % of Reference 80 DMMU-4 Rep. 1 <33	6.7 7.7 7.0 6.0 7.6 80	U U U U	16.7 17.7 17.0	16.7 17.7 17.0	<16.7 <17.7 <17.0 <16.0	U U U	16.7 17.7	16.7	<16.7			20.5	26.6				153				153				153				153			
DMMU-3 Rep. 3 <17 DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17. % of Reference 80 DMMU-4 Rep. 1 <33	7.7 7.0 6.0 7.6 80	U U U	17.7 17.0	17.7 17.0	<17.7 <17.0 <16.0	U	17.7			U			36.6		20.5	20.5	<20.5	U	20.5	20.5	<20.5	U	20.5	20.5	<20.5	U	20.5	20.5	<20.5	U	20.5	20.5
DMMU-3 Rep. 4 <17 DMMU-3 Rep. 5 <16 DMMU-3 Mean 17 % of Reference 80 DMMU-4 Rep. 1 <33	7.0 6.0 7.6 80	U U	17.0	17.0	<17.0 <16.0	U		17.7		-	16.7	16.7	36.7		16.7	16.7	<16.7	U	16.7	16.7	<16.7	U	16.7	16.7	<16.7	U	16.7	16.7	<16.7	U	16.7	16.7
DMMU-3 Rep. 5 <16 DMMU-3 Mean 17 % of Reference 80 DMMU-4 Rep. 1 <33	7.6 80 33.0	U			<16.0	-	17.0		<17.7	U	17.7	17.7	41.9		17.7	17.7	<17.7	U	17.7	17.7	<17.7	U	17.7	17.7	<17.7	U	17.7	17.7	<17.7	U	17.7	17.7
DMMU-3 Mean 17. % of Reference 80 DMMU-4 Rep. 1 <33	7.6 30 33.0	U	16.0	16.0		U		17.0	<17.0	U	17.0	17.0	<17.0	U	17.0	17.0	<17.0	U	17.0	17.0	<17.0	U	17.0	17.0	<17.0	U	17.0	17.0	<17.0	U	17.0	17.0
% of Reference 80 DMMU-4 Rep. 1 <33	30.0	U			47.		16.0	16.0	<16.0	U	16.0	16.0	<16.0	U	16.0	16.0	<16.0	U	16.0	16.0	<16.0	U	16.0	16.0	<16.0	U	16.0	16.0	<16.0	U	16.0	16.0
DMMU-4 Rep. 1 <33	33.0	U			17.6				17.6				29.6				17.6				17.6				17.6				17.6			
- I		U			80				80				135				80				80				80				80			
	39.2	Ū	33.0	33.0	<33.0	U	33.0	33.0	<33.0	U	33.0	33.0	<33.0	U	33.0	33.0	<33.0	U	33.0	33.0	<33.0	U	33.0	33.0	<33.0	U	33.0	33.0	<33.0	U	33.0	33.0
DMMU-4 Rep. 2 <39		U	39.2	39.2	<39.2	U	39.2	39.2	<39.2	U	39.2	39.2	<39.2	U	39.2	39.2	<39.2	U	39.2	39.2	<39.2	U	39.2	39.2	<39.2	U	39.2	39.2	<39.2	U	39.2	39.2
DMMU-4 Rep. 3 <69		U	69.4	69.4	<34.7	U	34.7	34.7	<34.7	U	34.7	34.7	<34.7	U	34.7	34.7	<34.7	U	34.7	34.7	<34.7	U	34.7	34.7	<34.7	U	34.7	34.7	<34.7	U	34.7	34.7
DMMU-4 Rep. 4 <63		U	63.9	63.9	<31.9	U	31.9	31.9	<31.9	U	31.9	31.9	<31.9	U	31.9	31.9	<31.9	U	31.9	31.9	<31.9	U	31.9	31.9	<31.9	U	31.9	31.9	<31.9	U	31.9	31.9
DMMU-4 Rep. 5 <76		U	76.9	76.9	<38.5	U	38.5	38.5	<38.5	U	38.5	38.5	<38.5	U	38.5	38.5	<38.5	U	38.5	38.5	<38.5	U	38.5	38.5	<38.5	U	38.5	38.5	<38.5	U	38.5	38.5
DMMU-04 Mean 56.					35.5				35.5				35.5				35.5				35.5				35.5				35.5			
% of Reference 25					161				161				161				161				161				161				161			
DMMU-5 Rep. 1 <17		U	17.8	17.8	<17.8	U	17.8	17.8	<17.8	U	17.8	17.8	<17.8	U	17.8	17.8	<17.8	U	17.8	17.8	<17.8	U	17.8	17.8	<17.8	U	17.8	17.8	<17.8	U	17.8	17.8
DMMU-5 Rep. 2 <18		U	18.1	18.1	<18.1	U	18.1	18.1	<18.1	U	18.1	18.1	<18.1	U	18.1	18.1	<18.1	U	18.1	18.1	<18.1	U	18.1	18.1	<18.1	U	18.1	18.1	<18.1	U	18.1	18.1
DMMU-5 Rep. 3 <16		U	16.9	16.9	<16.9	U	16.9	16.9	<16.9	U	16.9	16.9	<16.9	U	16.9	16.9	<16.9	U	16.9	16.9	<16.9	U	16.9	16.9	<16.9	U	16.9	16.9	<16.9	U	16.9	16.9
DMMU-5 Rep. 4 <16		U	16.6	16.6	<16.6	U	16.6	16.6	<16.6	U	16.6	16.6	<16.6	U	16.6	16.6	<16.6	U	16.6	16.6	<16.6	U	16.6	16.6	<16.6	U	16.6	16.6	<16.6	U	16.6	16.6
DMMU-5 Rep. 5 <18		U	18.7	18.7	<18.7	U	18.7	18.7	<18.7	U	18.7	18.7	<18.7	U	18.7	18.7	<18.7	U	18.7	18.7	<18.7	U	18.7	18.7	<18.7	U	18.7	18.7	<18.7	U	18.7	18.7
DMMU-5 Mean 17.					17.6				17.6				17.6				17.6				17.6				17.6				17.6			
% of Reference 80			74.0	74.0	80		25.0	25.0	80		25.0	25.0	80		25.0	25.0	80	- 11	25.0	25.0	80		25.0	25.0	80		25.0	25.0	80		25.0	25.0
DMMU-7 Rep. 1 <71		U	71.2	71.2	<35.6	U	35.6	35.6	81.7		35.6	35.6	<35.6	U	35.6	35.6	<35.6	U	35.6	35.6	<35.6	U	35.6	35.6	71.2		35.6	35.6	40.8		35.6	35.6
DMMU-7 Rep. 2 <88		U	88.8	88.8	<44.4	U U	44.4	44.4	170		44.4	44.4	<44.4	U	44.4	44.4	<44.4	U	44.4	44.4	<44.4	U	44.4	44.4	74.5		44.4	44.4	85.7	 U	44.4	44.4
DMMU-7 Rep. 3 <82		U	82.6	82.6	<41.3	U	41.3	41.3	75.3	 U	41.3	41.3	<41.3	U	41.3	41.3	<41.3	-	41.3	41.3	<41.3	-	41.3	41.3	<41.3	U	41.3	41.3	<41.3	U	41.3	41.3
DMMU-7 Rep. 4 <99 DMMU-7 Rep. 5 <71		U	99.8 71.6	99.8 71.6	<99.8 <35.8	U	99.8 35.8	99.8 35.8	<99.8 57.6		99.8 35.8	99.8 35.8	<99.8 <35.8	U	99.8 35.8	99.8 35.8	<99.8 <35.8	U	99.8 35.8	99.8 35.8	<99.8 <35.8	U U	99.8 35.8	99.8 35.8	<99.8 <35.8	U	99.8 35.8	99.8 35.8	<99.8 <35.8	U	99.8 35.8	99.8 35.8
DMMU-7 Rep. 5 <71 DMMU-7 Mean 82.		0	71.0	71.0	51.4	- 0	33.6	33.6	96.9		33.6	33.6	51.4	- 0	33.6	33.6	51.4	- 0	33.6	33.6	51.4	- 0	33.6	33.6	64.5		33.6	33.6	60.7		33.6	33.6
% of Reference 37					234				441				234				234				234				294				276			
DMMU-8 Rep. 1 <18		11	18.8	18.8	<18.8	U	18.8	18.8	<18.8	U	18.8	18.8	<18.8	- 11	18.8	18.8	<18.8	U	18.8	18.8	<18.8	U	18.8	18.8	<18.8		18.8	18.8	<18.8	U	18.8	18.8
DMMU-8 Rep. 2 <17		U U	17.5	17.5	<17.5	U	17.5	17.5	<17.5	U	17.5	17.5	<17.5	IJ	17.5	17.5	<17.5	U	17.5	17.5	<17.5	ii	17.5	17.5	<17.5	11	17.5	17.5	<17.5	U	17.5	17.5
DMMU-8 Rep. 3 <19		U	19.0	17.5	<17.5	U	17.5	17.5	<17.5	U	19.0	17.5	<17.5	U	19.0	17.5	<17.5	U	19.0	17.5	<17.5	U	17.5	17.5	<17.5	l I	19.0	19.0	<17.5	U	19.0	17.5
DMMU-8 Rep. 4 <21		U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6
DMMU-8 Rep. 5 <17		U	17.5	17.5	<17.5	U	17.5	17.5	<17.5	U	17.5	17.5	<17.5	U	17.5	17.5	<17.5	IJ	17.5	17.5	<17.5	U	17.5	17.5	<17.5	U	17.5	17.5	<17.5	U	17.5	17.5
DMMU-8 Mean 18.			17.5	17.5	18.9		17.0	17.0	18.9		17.0	17.0	18.9		17.0	17.0	18.9	<u> </u>	17.0	17.5	18.9		17.5	17.5	18.9		17.5	17.5	18.9		17.5	17.5
% of Reference					86				86				86				86				86				86				86			
REF Rep. 1 <20		U	20.7	20.7	<20.7	U	20.7	20.7	<20.7	U	20.7	20.7	<20.7	U	20.7	20.7	<20.7	U	20.7	20.7	<20.7	U	20.7	20.7	<20.7	U	20.7	20.7	<20.7	U	20.7	20.7
REF Rep. 2		U	21.4	21.4	<21.4	U	21.4	21.4	<21.4	U	21.4	21.4	<21.4	U	21.4	21.4	<21.4	U	21.4	21.4	<21.4	U	21.4	21.4	<21.4	U	21.4	21.4	<21.4	U	21.4	21.4
REF Rep. 3		U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	Ü	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5
REF Rep. 4 <22		U	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9
· · · · · · · · · · · · · · · · · · ·	22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3
REF Mean 22				0	22.0		0	0	22.0				22.0				22.0			0	22.0				22.0				22.0			
	22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5	<22.5	U	22.5	22.5
Pre-exposure Rep. 2 <40		U	40.0	40.0	<20.0	U	20.0	20.0	<20.0	Ü	20.0	20.0	<20.0	Ü	20.0	20.0	<20.0	U	20.0	20.0	<20.0	U	20.0	20.0	<20.0	U	20.0	20.0	<20.0	C+, U	20.0	20.0
Pre-exposure Rep. 3		U	40.5	40.5	<20.3	U	20.3	20.3	<20.3	U	20.3	20.3	<20.3	U	20.3	20.3	<20.3	U	20.3	20.3	<20.3	U	20.3	20.3	<20.3	U	20.3	20.3	<20.3	C+, U	20.3	20.3
Pre-exposure Mean 34.		-			20.9	-			20.9				20.9			_3.0	20.9				20.9				20.9				20.9	- , •		

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

HPAH = High molecular weight PAH as defined in the *Regional Implementation Agreement* by USEPA/USACE (2003).

Sources: Results from NWDLS.

<### = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL. Non-detect (ND) results use the MDL for calculating average concentrations and total PAHs. (J-qualified results use the value reported by the laboratory for calculating average concentrations and total PAHs.)</p>
C+ = The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report.

LPAH = Low molecular weight PAH as defined in the *Regional Implementation Agreement* by USEPA/USACE (2003).

TABLE 20Analytical Results for Dry Weight PAHs in *Alitta virens* Tissues

		Total LPAH	Total	Total																												
	Analyte:	PAHS	HPAH PAHs	Total PAHs		Acenap	hthene ^{LPAH}		Δ	cenapht	thylene ^{LPAH}	1		Anthra	cene ^{LPAH}		Ber	ızo(a)an	thracene ^{HI}	PAH		Benzo(a)p	oyrene ^{HPAH}	н	Benz	o(b&k)flı	uoranthen	e ^{HPAH}	Ber	zo(g,h,i))perylene ^{HI}	PAH
						<u> </u>				<u>.</u>	_			_				<u> </u>				F				<u> </u>				<u></u>		
		Result	Result	Result	Result	ij			Result	alifie			Result	alifie			Result	alifie			Result	JE JE			Result	ijį			Result	alifie		
Sample-Replicate #		μg/kg	μg/kg	μg/kg	μg/kg	ã	MDL	LRL	μg/kg	õ	MDL	LRL	μg/kg	õ	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ã	MDL	LRL	μg/kg	ő	MDL	LRL	μg/kg	õ	MDL	LRL
DMMU-1 Rep. 1		654	1091	1745	<109	U	109	109	<109	U	109	109	<109	U	109	109	<109	U	109	109	<109	U	109	109	<219	U	219	219	<109	U	109	109
DMMU-1 Rep. 2		245	489	734	<40.8	U	40.8	40.8	<40.8	U	40.8	40.8	<40.8	U	40.8	40.8	<81.5	U	81.5	81.5	<40.8	U	40.8	40.8	<81.5	U	81.5	81.5	<40.8	U	40.8	40.8
DMMU-1 Rep. 3		263	526	789	<43.8	U	43.8	43.8	<43.8	U	43.8	43.8	<43.8	U	43.8	43.8	<87.7	U	87.7	87.7	<43.8	U	43.8	43.8	<87.7	U	87.7	87.7	<43.8	U	43.8	43.8
DMMU-1 Rep. 4		244	487	731	<40.6	U	40.6	40.6	<40.6	U	40.6	40.6	<40.6	U	40.6	40.6	<81.1	U	81.1	81.1	<40.6	U	40.6	40.6	<81.1	U	81.1	81.1	<40.6	U	40.6	40.6
DMMU-1 Rep. 5		290	580	869	<48.3	U	48.3	48.3	<48.3	U	48.3	48.3	<48.3	U	48.3	48.3	<96.6	U	96.6	96.6	<48.3	U	48.3	48.3	<96.6	U	96.6	96.6	<48.3	U	48.3	48.3
DMMU-1 Mean		339	635	974	56.5 314				56.5				56.5 314				91.2				56.5				113				56.5			
% of Reference DMMU-3 Rep. 1		314 137	302 219	306 356	<20.8	U	20.8	20.8	314 <20.8	- 11	20.8	20.8	<20.8	U	20.8	20.8	277 <20.8	U	20.8	20.8	314 <20.8		20.8	20.8	314 <41.5	U	41.5	41.5	314 <20.8	U	20.8	20.8
DMMU-3 Rep. 2		151	219	363	<20.0	U	20.0	20.0	<20.0	U	20.0	20.0	<20.0	U	20.0	20.0	<20.0	U	20.0	20.0	<20.0	U	20.0	20.0	<40.0	U	40.0	40.0	<20.0	U	20.0	20.0
DMMU-3 Rep. 3		158	228	386	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<43.2	U	43.2	43.2	<21.6	U	21.6	21.6
DMMU-3 Rep. 4		146	235	381	<22.9	U	22.9	22.9	<22.9	Ü	22.9	22.9	<22.9	Ü	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<45.7	Ü	45.7	45.7	<22.9	Ü	22.9	22.9
DMMU-3 Rep. 5		190	211	401	<21.1	U	21.1	21.1	<21.1	U	21.1	21.1	<21.1	U	21.1	21.1	<21.1	U	21.1	21.1	<21.1	U	21.1	21.1	<42.2	U	42.2	42.2	<21.1	U	21.1	21.1
DMMU-3 Mean		157	221	378	21.3				21.3				21.3				21.3				21.3				42.5				21.3			
% of Reference		145	105	119	118				118				118				65				118				118				118			
DMMU-4 Rep. 1		151	251	402	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<50.2	U	50.2	50.2	<25.1	U	25.1	25.1
DMMU-4 Rep. 2		151	251	402	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<50.3	U	50.3	50.3	<25.1	U	25.1	25.1
DMMU-4 Rep. 3		136	227	363	<22.7	U	22.7	22.7	<22.7	U	22.7	22.7	<22.7	U	22.7	22.7	<22.7	U	22.7	22.7	<22.7	U	22.7	22.7	<45.4	U	45.4	45.4	<22.7	U	22.7	22.7
DMMU-4 Rep. 4		132	220	352	<22.0	U	22.0	22.0	<22.0	U	22.0	22.0	<22.0	U	22.0	22.0	<22.0	U	22.0	22.0	<22.0	U	22.0	22.0	<44.0	U	44.0	44.0	<22.0	U	22.0	22.0
DMMU-4 Rep. 5		131	219	350	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<43.8	U	43.8	43.8	<21.9	U	21.9	21.9
DMMU-4 Mean		140	234	374	23.4				23.4				23.4				23.4				23.4				46.7				23.4			
% of Reference		130	111	118	130				130				130				71				130				130				130			
DMMU-5 Rep. 1		118	197	315	<19.7	U	19.7	19.7	<19.7	U	19.7	19.7	<19.7	U	19.7	19.7	<19.7	U	19.7	19.7	<19.7	U	19.7	19.7	<39.3	U	39.3	39.3	<19.7	U	19.7	19.7
DMMU-5 Rep. 2		133	222	355	<22.2	U	22.2	22.2	<22.2	U	22.2	22.2	<22.2	U	22.2	22.2	<22.2	U	22.2	22.2	<22.2	U	22.2	22.2	<44.4	U	44.4	44.4	<22.2	U	22.2	22.2
DMMU-5 Rep. 3		122	204	326 307	<20.4 <19.2	U	20.4	20.4	<20.4	U	20.4 19.2	20.4	<20.4	U	20.4 19.2	20.4	<20.4	U	20.4	20.4	<20.4 <19.2	U	20.4	20.4	<40.7	U	40.7	40.7	<20.4	U	20.4 19.2	20.4
DMMU-5 Rep. 4 DMMU-5 Rep. 5		115 126	192 220	346	<21.0	U	19.2 21.0	19.2 21.0	<19.2 <21.0	U	21.0	19.2 21.0	<19.2 <21.0	U	21.0	19.2 21.0	<19.2 <21.0	U	19.2 21.0	19.2 21.0	30.4		19.2 21.0	19.2 21.0	<38.3 <42.1	U	38.3 42.1	38.3 42.1	<19.2 <21.0	U	21.0	19.2 21.0
DMMU-5 Nep. 5		123	207	330	20.5		21.0	21.0	20.5		21.0	21.0	20.5		21.0	21.0	20.5	<u> </u>	21.0	21.0	22.4		21.0	21.0	41.0		72.1	74.1	20.5		21.0	21.0
% of Reference		114	99	104	114				114				114				62				124				114				114			
DMMU-7 Rep. 1		209	352	561	<24.1	U	24.1	24.1	<24.1	U	24.1	24.1	32.7		24.1	24.1	<24.1	U	24.1	24.1	<24.1	U	24.1	24.1	<48.3	U	48.3	48.3	<24.1	U	24.1	24.1
DMMU-7 Rep. 2		277	491	768	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	50.3		22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<44.6	U	44.6	44.6	<22.3	U	22.3	22.3
DMMU-7 Rep. 3		197	351	548	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	28.6		22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<44.6	U	44.6	44.6	<22.3	U	22.3	22.3
DMMU-7 Rep. 4		178	344	522	<22.8	U	22.8	22.8	<22.8	U	22.8	22.8	25.3		22.8	22.8	<22.8	U	22.8	22.8	<22.8	U	22.8	22.8	<45.5	U	45.5	45.5	<22.8	U	22.8	22.8
DMMU-7 Rep. 5		181	295	476	<23.5	U	23.5	23.5	<23.5	U	23.5	23.5	25.2		23.5	23.5	<23.5	U	23.5	23.5	<23.5	U	23.5	23.5	<47.0	U	47.0	47.0	<23.5	U	23.5	23.5
DMMU-7 Mean		208	367	575	23.0				23.0				32.4				23.0				23.0				46.0				23.0			
% of Reference		193	175	181	128				128				180				70				128				128				128			
DMMU-8 Rep. 1		126	210	336	<21.0	U	21.0	21.0	<21.0	U	21.0	21.0	<21.0	U	21.0	21.0	<21.0	U	21.0	21.0	<21.0	U	21.0	21.0	<42.1	U	42.1	42.1	<21.0	U	21.0	21.0
DMMU-8 Rep. 2		116	194	311	<19.4	U	19.4	19.4	<19.4	U	19.4	19.4	<19.4	U	19.4	19.4	<19.4	U	19.4	19.4	<19.4	U	19.4	19.4	<38.9	U	38.9	38.9	<19.4	U	19.4	19.4
DMMU-8 Rep. 3		131	218	349	<21.8	U	21.8	21.8	<21.8	U	21.8	21.8	<21.8	U	21.8	21.8	<21.8	U	21.8	21.8	<21.8	U	21.8	21.8	<43.7	U	43.7	43.7	<21.8	U	21.8	21.8
DMMU-8 Rep. 4		136	226	362	<22.6	U	22.6	22.6	<22.6	U	22.6	22.6	<22.6	U	22.6	22.6	<22.6	U	22.6	22.6	<22.6	U	22.6	22.6	<45.2	U	45.2	45.2	<22.6	U	22.6	22.6
DMMU-8 Rep. 5		142	236	378	<23.6	U	23.6	23.6	<23.6	U	23.6	23.6	<23.6	U	23.6	23.6	<23.6	U	23.6	23.6	<23.6	U	23.6	23.6	<47.2	U	47.2	47.2	<23.6	U	23.6	23.6
DMMU-8 Mean		130	217	347	21.7				21.7				21.7				21.7				21.7				43.4				21.7			
% of Reference REF Rep. 1		120 97	103	109	120 <16.2	U	16.2	16.0	120 <16.2	U	16.2	16.0	120	11	16.0	16.0	66 <32.5	U	20.5	22.5	120	11	16.0	16.0	120	U	32.5	20 5	120	- 11	16.0	16.2
REF Rep. 1		97 102	195 204	292 306	<16.2 <17.0	U	16.2 17.0	16.2 17.0	<16.2 <17.0	U	16.2 17.0	16.2 17.0	<16.2 <17.0	U	16.2 17.0	16.2 17.0	<32.5 <34.0	U	32.5 34.0	32.5 34.0	<16.2 <17.0	U	16.2 17.0	16.2 17.0	<32.5 <34.0	U	32.5 34.0	32.5 34.0	<16.2 <17.0	U	16.2 17.0	16.2 17.0
REF Rep. 3		115	204	346	<17.0	U	17.0	17.0	<17.0	U	17.0	19.2	<17.0	U	17.0	19.2	<34.0 <38.5	U	38.5	38.5	<17.0	U	17.0	19.2	<38.5	U	38.5	38.5	<17.0	U	17.0	17.0
REF Rep. 4		131	263	394	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<43.7	U	43.7	43.7	<21.9	U	21.9	21.9	<43.7	U	43.7	43.7	<21.9	U	21.9	21.9
REF Rep. 5		94	157	251	<15.7	U	15.7	15.7	<15.7	U	15.7	15.7	<15.7	U	15.7	15.7	<15.7	U	15.7	15.7	<15.7	U	15.7	15.7	<31.5	U	31.5	31.5	<15.7	U	15.7	15.7
REF Mean		108	210	318	18.0				18.0			. 3	18.0				32.9				18.0				36.0		20	27.0	18.0			. 5
Pre-exposure Rep. 1		222	384	606	<19.2	U	19.2	19.2	<19.2	U	19.2	19.2	<19.2	U	19.2	19.2	<38.4	U	38.4	38.4	<38.4	U	38.4	38.4	<76.9	U	76.9	76.9	<38.4	U	38.4	38.4
Pre-exposure Rep. 2		216	377	593	<18.8	U	18.8	18.8	<18.8	U	18.8	18.8	<18.8	U	18.8	18.8	<37.7	U	37.7	37.7	<37.7	U	37.7	37.7	<75.4	U	75.4	75.4	<37.7	U	37.7	37.7
Pre-exposure Rep. 3		140	348	488	<17.4	U	17.4	17.4	<17.4	U	17.4	17.4	<17.4	U	17.4	17.4	<34.8	U	34.8	34.8	<34.8	U	34.8	34.8	<69.7	U	69.7	69.7	<34.8	U	34.8	34.8
Pre-exposure Mean		193	370	562	18.5				18.5				18.5				37.0				37.0				74.0				37.0			

TABLE 20 (continued)

Analytical Results for Dry Weight PAHs in Alitta virens Tissues

				НРАН					НРАН			. НРАН				LPAH					НРАН			. I DAH								НРАН	
	Analyte:		Chryse	ene''' ^''		Dibei	nzo(a,h)	anthracen	e'" ^"		Fluoran	thene ^{HPAH}			Fluore	ene ^{LPAH}		Inde	no(1,2,3-	-cd)pyrene	9''' 0''		Naphtha	lene" "			Phenant	hrene			Pyre	ene ^{HPAH}	
		Result	alifie			Result	alifie			Result	alifie			Result	alifier			Result	alifier			Result	alifie			Result	alifier			Result	alifier		
Sample-Replicate #		μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	ð	MDL	LRL
DMMU-1 Rep. 1		<109	U	109	109	<109	U	109	109	<109	U	109	109	<109	U	109	109	<109	U	109	109	<109	U	109	109	<109	U	109	109	<109	U	109	109
DMMU-1 Rep. 2		<81.5	U	81.5	81.5	<40.8	U	40.8	40.8	<40.8	U	40.8	40.8	<40.8	U	40.8	40.8	<40.8	U	40.8	40.8	<40.8	U	40.8	40.8	<40.8	U	40.8	40.8	<40.8	U	40.8	40.8
DMMU-1 Rep. 3		<87.7	U	87.7	87.7	<43.8	U	43.8	43.8	<43.8	U	43.8	43.8	<43.8	U	43.8	43.8	<43.8	U	43.8	43.8	<43.8	U	43.8	43.8	<43.8	U	43.8	43.8	<43.8	U	43.8	43.8
DMMU-1 Rep. 4		<81.1 <96.6	U	81.1	81.1	<40.6	U	40.6	40.6	<40.6	U U	40.6	40.6	<40.6	U	40.6 48.3	40.6 48.3	<40.6	U	40.6	40.6 48.3	<40.6 <48.3	U	40.6 48.3	40.6	<40.6 <48.3	U	40.6	40.6	<40.6	U	40.6	40.6
DMMU-1 Rep. 5 DMMU-1 Mean		91.2	U	96.6	96.6	<48.3 56.5	U	48.3	48.3	<48.3 56.5	U	48.3	48.3	<48.3 56.5	U	48.3	48.3	<48.3 56.5	U	48.3	48.3	56.5	U	48.3	48.3	56.5	U	48.3	48.3	<48.3 56.5		48.3	48.3
% of Reference		277				314				314				314				314				314				314				314			
DMMU-3 Rep. 1		<20.8	U	20.8	20.8	<20.8	U	20.8	20.8	<20.8	U	20.8	20.8	24.7		20.8	20.8	<20.8	U	20.8	20.8	<20.8	U	20.8	20.8	53.8		20.8	20.8	32.1		20.8	20.8
DMMU-3 Rep. 2		<20.0	U	20.0	20.0	<20.0	U	20.0	20.0	<20.0	Ü	20.0	20.0	50.5		20.0	20.0	<20.0	U	20.0	20.0	<20.0	Ü	20.0	20.0	71.3		20.0	20.0	32.0		20.0	20.0
DMMU-3 Rep. 3		<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	Ü	21.6	21.6	<21.6	U	21.6	21.6	<21.6	U	21.6	21.6	<21.6	Ü	21.6	21.6	50.0		21.6	21.6	33.2		21.6	21.6
DMMU-3 Rep. 4		<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	29.4		22.9	22.9	<22.9	U	22.9	22.9	<22.9	U	22.9	22.9	54.4		22.9	22.9	29.4		22.9	22.9
DMMU-3 Rep. 5		<21.1	U	21.1	21.1	<21.1	U	21.1	21.1	<21.1	U	21.1	21.1	74.3		21.1	21.1	<21.1	U	21.1	21.1	<21.1	U	21.1	21.1	106		21.1	21.1	<21.1	U	21.1	21.1
DMMU-3 Mean		21.3				21.3				21.3				40.1				21.3				21.3				67.1				29.6			
% of Reference		65				118				118				223				118				118				373				164			
DMMU-4 Rep. 1		<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1
DMMU-4 Rep. 2		<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1	<25.1	U	25.1	25.1
DMMU-4 Rep. 3		<22.7	U	22.7	22.7	<22.7	U	22.7	22.7	<22.7	U	22.7	22.7	<22.7	U	22.7	22.7	<22.7	U	22.7	22.7	<22.7	U	22.7	22.7	<22.7	U	22.7	22.7	<22.7	U	22.7	22.7
DMMU-4 Rep. 4		<22.0	U	22.0	22.0	<22.0	U	22.0	22.0	<22.0	U	22.0	22.0	<22.0	U	22.0	22.0	<22.0	U	22.0	22.0	<22.0	U	22.0	22.0	<22.0	U	22.0	22.0	<22.0	U	22.0	22.0
DMMU-4 Rep. 5		<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9
DMMU-4 Mean		23.4				23.4				23.4				23.4				23.4				23.4				23.4				23.4			
% of Reference		71				130				130				130				130				130				130				130			
DMMU-5 Rep. 1		<19.7	U	19.7	19.7	<19.7	U	19.7	19.7	<19.7	U	19.7	19.7	<19.7	U	19.7	19.7	<19.7	U	19.7	19.7	<19.7	U	19.7	19.7	<19.7	U	19.7	19.7	<19.7	U	19.7	19.7
DMMU-5 Rep. 2		<22.2	U	22.2	22.2	<22.2	U	22.2	22.2	<22.2	U	22.2	22.2	<22.2	U	22.2	22.2	<22.2	U	22.2	22.2	<22.2	U	22.2	22.2	<22.2	U	22.2	22.2	<22.2	U	22.2	22.2
DMMU-5 Rep. 3		<20.4	U	20.4	20.4	<20.4	U	20.4	20.4	<20.4	U U	20.4	20.4	<20.4	U	20.4	20.4	<20.4	U	20.4	20.4	<20.4	U	20.4	20.4	<20.4	U	20.4	20.4	<20.4	U	20.4	20.4
DMMU-5 Rep. 4 DMMU-5 Rep. 5		<19.2 <21.0	U	19.2 21.0	19.2 21.0	<19.2 <21.0	U	19.2 21.0	19.2 21.0	<19.2 <21.0	U	19.2 21.0	19.2 21.0	<19.2 <21.0	U	19.2 21.0	19.2 21.0	<19.2 <21.0	U	19.2 21.0	19.2 21.0	<19.2 <21.0	U	19.2 21.0	19.2 21.0	<19.2 <21.0	U	19.2 21.0	19.2 21.0	<19.2 <21.0	U	19.2 21.0	19.2 21.0
DMMU-5 Nean		20.5		21.0	21.0	20.5		21.0	21.0	20.5		21.0	21.0	20.5		21.0	21.0	20.5		21.0	21.0	20.5		21.0	21.0	20.5		21.0	21.0	20.5		21.0	21.0
% of Reference		62				114				114				114				114				114				114				114			
DMMU-7 Rep. 1		<24.1	U	24.1	24.1	<24.1	U	24.1	24.1	87.5		24.1	24.1	<24.1	U	24.1	24.1	<24.1	U	24.1	24.1	<24.1	U	24.1	24.1	80.2		24.1	24.1	95.2		24.1	24.1
DMMU-7 Rep. 2		<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	155		22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	Ü	22.3	22.3	137		22.3	22.3	180		22.3	22.3
DMMU-7 Rep. 3		<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	84.1		22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	<22.3	U	22.3	22.3	79.3		22.3	22.3	111		22.3	22.3
DMMU-7 Rep. 4		<22.8	U	22.8	22.8	<22.8	U	22.8	22.8	77.1		22.8	22.8	<22.8	U	22.8	22.8	<22.8	U	22.8	22.8	<22.8	U	22.8	22.8	61.4		22.8	22.8	107		22.8	22.8
DMMU-7 Rep. 5		<23.5	U	23.5	23.5	<23.5	U	23.5	23.5	58.1		23.5	23.5	<23.5	U	23.5	23.5	<23.5	U	23.5	23.5	<23.5	U	23.5	23.5	61.6		23.5	23.5	72.4		23.5	23.5
DMMU-7 Mean		23.0				23.0				92.4				23.0				23.0				23.0				83.9				113			
% of Reference		70				128				513				128				128				128				466				628			
DMMU-8 Rep. 1		<21.0	U	21.0	21.0	<21.0	U	21.0	21.0	<21.0	U	21.0	21.0	<21.0	U	21.0	21.0	<21.0	U	21.0	21.0	<21.0	U	21.0	21.0	<21.0	U	21.0	21.0	<21.0	U	21.0	21.0
DMMU-8 Rep. 2		<19.4	U	19.4	19.4	<19.4	U	19.4	19.4	<19.4	U	19.4	19.4	<19.4	U	19.4	19.4	<19.4	U	19.4	19.4	<19.4	U	19.4	19.4	<19.4	U	19.4	19.4	<19.4	U	19.4	19.4
DMMU-8 Rep. 3		<21.8	U	21.8	21.8	<21.8	U	21.8	21.8	<21.8	U	21.8	21.8	<21.8	U	21.8	21.8	<21.8	U	21.8	21.8	<21.8	U	21.8	21.8	<21.8	U	21.8	21.8	<21.8	U	21.8	21.8
DMMU-8 Rep. 4		<22.6	U	22.6	22.6	<22.6	U	22.6	22.6	<22.6	U	22.6	22.6	<22.6	U	22.6	22.6	<22.6	U	22.6	22.6	<22.6	U	22.6	22.6	<22.6	U	22.6	22.6	<22.6	U	22.6	22.6
DMMU-8 Rep. 5		<23.6	U	23.6	23.6	<23.6	U	23.6	23.6	<23.6	U	23.6	23.6	<23.6	U	23.6	23.6	<23.6	U	23.6	23.6	<23.6	U	23.6	23.6	<23.6	U	23.6	23.6	<23.6	U	23.6	23.6
DMMU-8 Mean		21.7				21.7				21.7				21.7				21.7				21.7				21.7				21.7			
% of Reference		66		20.5	20.5	120		10.0	10.0	120		10.0	10.0	120	- 11	16.0	10.0	120	- 11	10.0	10.0	120		16.0	10.0	120	- 11	10.0	16.0	120	C: !!	10.0	40.0
REF Rep. 1 REF Rep. 2		<32.5 <34.0	U	32.5 34.0	32.5 34.0	<16.2	U	16.2 17.0	16.2 17.0	<16.2 <17.0	U	16.2 17.0	16.2 17.0	<16.2 <17.0	U	16.2 17.0	16.2 17.0	<16.2 <17.0	U	16.2 17.0	16.2	<16.2	U U	16.2 17.0	16.2 17.0	<16.2 <17.0	U	16.2 17.0	16.2 17.0	<16.2	C+, U	16.2 17.0	16.2 17.0
REF Rep. 2 REF Rep. 3		<34.0 <38.5	11	38.5	34.0	<17.0 <19.2	U	17.0		<17.0	U		19.2	<17.0	U	17.0	17.0	<17.0	U	17.0	17.0 19.2	<17.0 <19.2	U	17.0	19.2	<17.0	U	17.0	17.0	<17.0 <19.2	C+, U C+, U	17.0	17.0
REF Rep. 4		<30.5 <43.7	U	43.7	43.7	<21.9	U	21.9	19.2 21.9	<21.9	U	19.2 21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	U	21.9	21.9	<21.9	C+, U	21.9	21.9
REF Rep. 5		<15.7	U	45.7 15.7	45.7 15.7	<15.7	U	15.7	15.7	<15.7	U	15.7	15.7	<15.7	U	15.7	15.7	<15.7	U	15.7	15.7	<15.7	U	15.7	15.7	<15.7	U	15.7	15.7	<15.7	U+, U	15.7	15.7
REF Mean		32.9		10.7	10.1	18.0	J	10.7	13.7	18.0	<u> </u>	10.1	10.1	18.0	<u> </u>	10.7	10.7	18.0	J	10.7	13.7	18		10.7	10.1	18.0	J	10.7	10.1	18.0		13.7	15.7
Pre-exposure Rep. 1		<38.4	U	38.4	38.4	<38.4	U	38.4	38.4	<38.4	U	38.4	38.4	<19.2	U	19.2	19.2	<38.4	U	38.4	38.4	126		19.2	19.2	<19.2	U	19.2	19.2	<38.4	U	38.4	38.4
Pre-exposure Rep. 2		<37.7	U	37.7	37.7	<37.7	U	37.7	37.7	<37.7	U	37.7	37.7	<18.8	U	18.8	18.8	<37.7	U	37.7	37.7	122		18.8	18.8	<18.8	U	18.8	18.8	<37.7	U	37.7	37.7
Pre-exposure Rep. 3		<34.8	U	34.8	34.8	<34.8	U	34.8	34.8	<34.8	U	34.8	34.8	<17.4	U	17.4	17.4	<34.8	U	34.8	34.8	52.9		17.4	17.4	<17.4	U	17.4	17.4	<34.8	U	34.8	34.8
. 10 exposure itep. 0		37.0		07.0	UT.U	37.0		J7.0	UT.U	37.0		U-7.U	O T.U	18.5		11.7		37.0		57.0	O T.O	100.3			17.7	18.5		17.7		37.0	$\overset{\circ}{-}$	<u> </u>	37.0

Sources: Results from NWDLS.

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the ME < #.## = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL. Non-detect (ND) results use the MDL for calculating average concentrations and total PAHs. (J-qualified results use the value reported by the laboratory for calculating average concentrations and total PAHs.) C+ = The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report.

LPAH = Low molecular weight PAH as defined in the Regional Implementation Agreement by USEPA/USACE (2003).

HPAH = High molecular weight PAH as defined in the Regional Implementation Agreement by USEPA/USACE (2003).

TABLE 21Analytical Results for Wet Weight Organotins in *Mercenaria mercenaria* and *Alitta virens* Tissues

Analyte:		<i>lercenaria n</i> Monobu		ria		Alitta vire Monobuty		
Sample-Replicate #	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
DMMU-1 Rep. 1	<0.536	U H*- H3	0.536	3.00	<1.05	U H*- H3	1.05	5.88
DMMU-1 Rep. 2	<0.531	U H*- H3	0.531	2.97	<0.536	U H F2 F1 *-H3	0.536	3.00
DMMU-1 Rep. 3	<0.536	U H*- H3	0.536	3.00	<1.05	U H*- H3	1.05	5.88
DMMU-1 Rep. 4	<0.531	U H*- H3	0.531	2.97	<1.03	U H*- H3	1.03	5.77
DMMU-1 Rep. 5	<0.536	U H*- H3	0.536	3.00	<1.05	U H*- H3	1.05	5.88
DMMU-1 Mean	0.534				0.943			
% of Reference	84				177			
REF Rep. 1	<1.05	U H H3	1.05	5.88	<0.531	U H H3	0.531	2.97
REF Rep. 2	<0.531	U H H3 F1	0.531	2.97	<0.531	U H H3	0.531	2.97
REF Rep. 3	<0.536	U H H3	0.536	3.00	<0.531	U H*- H3	0.531	2.97
REF Rep. 4	<0.536	U H H3	0.536	3.00	<0.536	U H*- H3	0.536	3.00
REF Rep. 5	<0.536	U H H3	0.536	3.00	<0.531	U H*- H3	0.531	2.97
REF Mean	0.638				0.532			
Pre-exposure Rep. 1	<1.07	U H H3	1.07	6.00	<1.12	U H*- H3	1.12	6.25
Pre-exposure Rep. 2	<1.12	U H H3	1.12	6.25	<1.07	U H*- H3	1.07	6.00
Pre-exposure Rep. 3	<1.09	U H H3	1.09	6.12	<1.12	U H*- H3	1.12	6.25
Pre-exposure Mean	1.09				1.10			
Eco. Effects Threshold ¹	х				Х			
North Gulf of Mexico Bkgd ¹	х				Х			

< #.## = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL. Non-detect (ND) results use the MDL for calculating total organotins. (J-qualified results use the value reported by the laboratory for calculating total organotins.)

Sources: Results from Eurofins-Stafford

F1 = MS and/or MSD recovery exceeds control limits. F2 = MS/MSD RPD exceeds control limits. H = Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements. H3 = Sample was received and analyzed past holding time. This does not meet regulatory requirements.*- LCS and/or LCSD is outside acceptance limits, low biased.

TABLE 22Analytical Results for Dry Weight Organotins in *Mercenaria mercenaria* and *Alitta virens* Tissues

Analyte:		ce <i>naria m</i> e Monobuty		a		<i>Alitta viren</i> s Monobutylti		
	Result	Qualifier	MDI		Result	Qualifier	MDI	
Sample-Replicate #	μg/kg		MDL	LRL	μg/kg		MDL	LRL
DMMU-1 Rep. 1	<3.94 <3.82	U H *- H3 U H *- H3	3.94 3.82	22.1 21.4	<9.55 <4.87	U H *- H3 U,H,F2, F1, *- H3	9.55 4.87	53.5 27.3
DMMU-1 Rep. 2 DMMU-1 Rep. 3	<3.62 <3.77	U H *- H3	3.77	21. 4 21.1	<9.81	U H *- H3	4.67 9.81	55.0
DMMU-1 Rep. 3	<3.77 <3.59	U H *- H3	3.77 3.59	20.1	<9.81 <9.20	U H *- H3	9.01	55.0 51.5
DMMU-1 Rep. 4	<3.59 <3.44	U H *- H3	3.44	20. i 19.2	<9.20 <10.6	U H *- H3	9.20	51.5 59.1
DMMU-1 Kep. 5	3.71	U H - H3	3.44	19.2	8.80	U n - ns	10.0	J9. I
	-							
% of Reference	63				218			
REF Rep. 1	<9.38	U H H3	9.38	52.5	<3.66	U H H3	3.66	20.5
REF Rep. 2	<4.92	U H H3 F1	4.92	27.5	<3.79	U H H3	3.79	21.2
REF Rep. 3	<5.10	U H H3	5.10	28.6	<4.15	U H*- H3	4.15	23.2
REF Rep. 4	<5.15	U H H3	5.15	28.8	<5.01	U H*- H3	5.01	28.0
REF Rep. 5	<5.01	U H H3	5.01	28.0	<3.54	U H*- H3	3.54	19.8
REF Mean	5.91				4.03			
Pre-exposure Rep. 1	<9.91	U H H3	9.91	55.6	<8.82	U H*- H3	8.82	49.2
Pre-exposure Rep. 2	<9.03	U H H3	9.03	50.4	<8.11	U H*- H3	8.11	45.5
Pre-exposure Rep. 3	<9.56	U H H3	9.56	53.7	<8.06	U H*- H3	8.06	45.0
Pre-exposure Mean	9.50				8.33			

< #.## = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL.

Source: Results from Eurofins-Stafford

F1 = MS and/or MSD recovery exceeds control limits. F2 = MS/MSD RPD exceeds control limits. H = Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements. H3 = Sample was received and analyzed past holding time. This does not meet regulatory requirements.*- LCS and/or LCSD is outside acceptance limits, low biased.

TABLE 23Analytical Results for Wet Weight SVOCs in *Mercenaria mercenaria* Tissues

Analyte:	Bis(2	-ethylh	exyl) phtl	nalate	D	i-n-Buty	/I phthala	te	2	,4-dichl	oropheno	ol	2,6-diı	nitrotol	luene (2,6	DNT)		Diethyl	phthalate)	Hexad	hloroc	yclopenta	diene
	Result	Qualifier			Result	Qualifier			Result	alifier	·		Result	Qualifier		·	Result	Qualifier			Result	Qualifier		
Sample-Replicate #	μg/kg	đ	MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	<u> </u>	MDL	LRL	μg/kg	<u> </u>	MDL	LRL	μg/kg	đ	MDL	LRL
DMMU-1 Rep. 1					<4.76	U	4.76	4.76																
DMMU-1 Rep. 2 DMMU-1 Rep. 3					<4.99	U U	4.99 4.73	4.99																
DMMU-1 Rep. 3					<4.73 <4.93	U	4.73	4.73 4.93																
DMMU-1 Rep. 5					<4.86	Ü	4.86	4.86																
DMMU-1 Mean					4.85		4.00	7.00																
Adjusted Concentration % of Reference					4.85 87																			
DMMU-2 Rep. 1					<2.39	U	2.39	2.39																
DMMU-2 Rep. 2					12.9		2.46	2.46																
DMMU-2 Rep. 3					14.9		2.49	2.49																
DMMU-2 Rep. 4					12.4		2.48	2.48																
DMMU-2 Rep. 5					9.82		2.49	2.49																
DMMU-2 Mean Adjusted Concentration					10.5 10.5																			
% of Reference DMMU-3 Rep. 1	8.11	V	2.48	2.48	188 8.24	V	2.48	2.48	<4.96	U	4.96	4.96	<2.48	U	2.48	2.48								
DMMU-3 Rep. 1	12.2	V	2.48	2.48	6.91	V	2.48	2.48	<4.96	U	4.96	4.96	<2.48	U	2.48	2.48								
DMMU-3 Rep. 3	7.62	v	2.44	2.44	6.75	v	2.44	2.44	<4.88	Ü	4.88	4.88	<2.44	Ü	2.44	2.44								
DMMU-3 Rep. 4	7.88	v	2.45	2.45	6.78	v	2.45	2.45	<4.90	Ü	4.90	4.90	<2.45	Ü	2.45	2.45								
DMMU-3 Rep. 5	9.19	V	2.33	2.33	4.84	v	2.33	2.33	<4.66	Ü	4.66	4.66	<2.33	Ü	2.33	2.33								
DMMU-3 Mean	9.00				6.70				4.83				2.42											
Adjusted Concentration	25.2				6.70				4.83				2.42											ľ
% of Reference	117				120				103				103											
DMMU-4 Rep. 1					<4.94	U	4.94	4.94																
DMMU-4 Rep. 2					<4.85	U	4.85	4.85																
DMMU-4 Rep. 3					<4.96	U	4.96	4.96																
DMMU-4 Rep. 4					<4.61	U	4.61	4.61																
DMMU-4 Rep. 5					<4.97	U	4.97	4.97																
DMMU-4 Mean Adjusted Concentration					4.87 4.87																			
% of Reference					87																			
DMMU-5 Rep. 1					8.12	V	2.46	2.46									6.11	V	2.46	2.46	<2.46	U	2.46	2.46
DMMU-5 Rep. 2					4.83	v	2.44	2.44									5.06	v	2.44	2.44	<2.44	Ü	2.44	2.44
DMMU-5 Rep. 3					4.42	v	2.41	2.41									3.01	v	2.41	2.41	<2.41	Ü	2.41	2.41
DMMU-5 Rep. 4					4.92	V	2.40	2.40									4.57	V	2.40	2.40	14.2		2.40	2.40
DMMU-5 Rep. 5					4.90	V	2.48	2.48									6.43	V	2.48	2.48	<2.48	U	2.48	2.48
DMMU-5 Mean					5.44												5.04				4.80			
Adjusted Concentration					5.44												5.04				4.80			
% of Reference					98												144				204			
DMMU-6 Rep. 1					2.48		2.46	2.46																
DMMU-6 Rep. 2					14.0		2.43	2.43																
DMMU-6 Rep. 3					11.9		2.40	2.40																
DMMU-6 Rep. 4					5.07 9.86		2.46	2.46 2.44																
DMMU-6 Rep. 5 DMMU-6 Mean					8.66	-	2.44	2.44																
Adjusted Concentration					8.66																			
% of Reference					156	- 11	4 07	4 07																
DMMU-7 Rep. 1 DMMU-7 Rep. 2					<4.87 <4.95	U	4.87 4.95	4.87 4.95																
DMMU-7 Rep. 2 DMMU-7 Rep. 3					<4.93	U	4.93	4.93																
DMMU-7 Rep. 3					<12.4	U	12.4	12.4																
DMMU-7 Rep. 5					<4.70	Ü	4.70	4.70																
DMMU-7 Mean					6.37			•																
Adjusted Concentration					6.37																			
% of Reference					114																			

TABLE 23 (continued)

Analytical Results for Wet Weight SVOCs in Mercenaria mercenaria Tissues

Analyte:	Bis(2	-ethylhe	exyl) phth	alate	Di	-n-Buty	/l phthalat	te	2,	4-dichl	oropheno	ol	2,6-di	nitroto	luene (2,6	DNT)		Diethyl	phthalate)	Hexac	hloroc	yclopenta	adiene
Sample-Replicate #	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	ualifier	MDL	LRL	Result µg/kg	ualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
DMMU-8 Rep. 1	μg/kg <2.46	B. U	2.46	2.46	6.96	<u>U</u> ∨	2.46	2.46	μg/kg	G	WIDL	LNL	μg/kg	<u> </u>	WIDL	LIVE	μg/kg	<u> </u>	MIDL	LKL	μg/kg	<u> </u>	MDL	LILL
DMMU-8 Rep. 2	<2.38	B, U	2.38	2.38	5.29	V	2.38	2.38																
DMMU-8 Rep. 3	<2.48	B, U	2.48	2.48	4.41	V	2.48	2.48																
DMMU-8 Rep. 4	<2.45	B, U	2.45	2.45	10.5	V	2.45	2.45																
DMMU-8 Rep. 5	<2.25	B, U	2.25	2.25	4.19	v	2.25	2.25																
DMMU-8 Mean	2.40	В, О	2.20	2.20	6.27		2.20	2.20																
Adjusted Concentration	6.73				6.27																			
% of Reference	31				113																			, and a
REF Rep. 1	6.14	V	2.31	2.31	6.50	V	2.31	2.31	<4.63	U	4.63	4.63	<2.31	U	2.31	2.31	5.32	V	2.31	2.31	<2.31	U	2.31	2.31
REF Rep. 2	7.84	V	2.30	2.30	6.47	V	2.30	2.30	<4.60	Ü	4.60	4.60	<2.30	Ü	2.30	2.30	5.04	V	2.30	2.30	<2.30	Ü	2.30	2.30
REF Rep. 3	5.97	V	2.37	2.37	4.62	V	2.37	2.37	<4.73	U	4.73	4.73	<2.37	U	2.37	2.37	<2.37	B, U	2.37	2.37	<2.37	U	2.37	2.37
REF Rep. 4	8.47	V	2.39	2.39	5.23	V	2.39	2.39	<4.77	U	4.77	4.77	<2.39	U	2.39	2.39	<2.39	B, U	2.39	2.39	<2.39	U	2.39	2.39
REF Rep. 5	10.0	V	2.38	2.38	5.01	V	2.38	2.38	<4.75	U	4.75	4.75	<2.38	U	2.38	2.38	<2.38	B, U	2.38	2.38	<2.38	U	2.38	2.38
REF Mean	7.68				5.57				4.70				2.35				3.50	·			2.35			
Adjusted Concentration	21.5				5.57				4.70				2.35				3.50				2.35			
Pre-exposure Rep. 1	7.15	V	2.43	2.43	4.79	V	2.43	2.43	<4.85	U	4.85	4.85	<2.43	U	2.43	2.43	<2.43	B, U	2.43	2.43	<2.43	U	2.43	2.43
Pre-exposure Rep. 2	12.0	V	2.49	2.49	4.66	V	2.49	2.49	<4.98	U	4.98	4.98	<2.49	U	2.49	2.49	<2.49	B, U	2.49	2.49	<2.49	U	2.49	2.49
Pre-exposure Rep. 3	7.45	V	2.31	2.31	3.82	V	2.31	2.31	<4.61	U	4.61	4.61	<2.31	U	2.31	2.31	<2.31	B, U	2.31	2.31	<2.31	U	2.31	2.31
Pre-exposure Mean	8.87				4.42				4.81				2.41				2.41				2.41			
Steady State Factor	2.8				1.0				1.0	,			1.0				1.0				1.0			
Eco. Effects Threshold	847.0				х				х				х				х				х			
North Gulf of Mexico Bkgd	х				х				Х				Х				Х				х			

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

< #.## = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL. U-qualified results use the MDL for calculating average concentrations (J-qualified results use the value reported by the laboratory for calculating average concentrations).

B-qualified indicates the analyte was found in the method blank. V-qualified indicates the analyte was detected in both the sample and the method blank.

Gray shaded areas indicate no data or analysis required.

Sources: Results from NWDLS; 1 Steady State Factors and Levels/Limits from Appendix H of SERIM (EPA/USACE 2008).

Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 24Analytical Results for Wet Weight SVOCs in *Alitta virens* Tissues

Analyte:	Bis(2	2-ethylh	exyl) phtl	halate	D	i-n-Buty	yl phthala	ite	2	,4-dichl	oropheno	ol	2,6-di	nitrotol	uene (2,6	DNT)		Diethyl	phthalat	е	Hexad	chloroc	yclopenta	adiene
	Result	Qualifier			Result	Qualifier			Result	Qualifier			Result	Qualifier			Result	Jalifier			Result	Qualifier		
Sample-Replicate #	μg/kg	<u> </u>	MDL	LRL	μg/kg		MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	ð	MDL	LRL	μg/kg	<u> </u>	MDL	LRL
DMMU-1 Rep. 1					<12.1	U	12.1	12.1																
DMMU-1 Rep. 2 DMMU-1 Rep. 3					<4.46	U U	4.46	4.46																
DMMU-1 Rep. 3 DMMU-1 Rep. 4					<4.70 <4.54	U	4.70 4.54	4.70 4.54																
DMMU-1 Rep. 5					<4.81	Ü	4.81	4.81																
DMMU-1 Mean					6.12	- 0	4.01	4.01																
Adjusted Concentration % of Reference					6.12																			
DMMU-2 Rep. 1					8.50		2.32	2.32																
DMMU-2 Rep. 2					10.5		2.37	2.37																
DMMU-2 Rep. 3					9.52		2.34	2.34																
DMMU-2 Rep. 4					13.5		2.37	2.37																
DMMU-2 Rep. 5					10.9		2.28	2.28																
DMMU-2 Mean					10.6																			
Adjusted Concentration					10.6																			
% of Reference	40.0		0.04	0.04	228	.,	0.04	0.04	.4.00		1.00	4.00	.0.04		0.04	0.04								
DMMU-3 Rep. 1	13.8	V	2.31	2.31	3.91	V	2.31	2.31	<4.63	U	4.63	4.63	<2.31	U	2.31	2.31								
DMMU-3 Rep. 2	13.4	V V	2.31	2.31	5.14	V V	2.31	2.31	<4.62	U	4.62	4.62	<2.31	U U	2.31	2.31								
DMMU-3 Rep. 3	9.61 8.88	V	2.34	2.34	3.70	V	2.34	2.34	<4.68 <4.74	U	4.68	4.68	<2.34		2.34 2.37	2.34								
DMMU-3 Rep. 4 DMMU-3 Rep. 5	11.5	V	2.37 2.32	2.37 2.32	3.39 9.31	V	2.37 2.32	2.37 2.32	<4.74	U	4.74 4.64	4.74 4.64	<2.37 <2.32	U	2.37	2.37 2.32								
DMMU-3 Negr. 3	11.4	v	2.02	2.02	5.09		2.02	2.02	4.66		7.07	7.07	2.33		2.52	2.02								
Adjusted Concentration	32.0				5.09				4.66				2.33											
% of Reference	137				110				98				98											
DMMU-4 Rep. 1	107				7.36	V	2.42	2.42																
DMMU-4 Rep. 2					7.30	V	2.47	2.47																
DMMU-4 Rep. 3					7.28	V	2.29	2.29																
DMMU-4 Rep. 4					7.49	V	2.24	2.24																
DMMU-4 Rep. 5					6.72	V	2.22	2.22																
DMMU-4 Mean					7.23																			
Adjusted Concentration					7.23																			
% of Reference					156																			
DMMU-5 Rep. 1					<2.22	B, U	2.22	2.22									5.18	V	2.22	2.22	<2.22	U	2.22	2.22
DMMU-5 Rep. 2					11.8	V	2.28	2.28									5.92	V	2.28	2.28	<2.28	U	2.28	2.28
DMMU-5 Rep. 3					<2.39	B, U	2.39	2.39									6.55	V	2.39	2.39	<2.39	U	2.39	2.39
DMMU-5 Rep. 4					<2.39	B, U	2.39	2.39									5.58	V	2.39	2.39	<2.39	U	2.39	2.39
DMMU-5 Rep. 5 DMMU-05 Mean					<2.35 4.23	B, U	2.35	2.35									6.62 5.97	V	2.35	2.35	<2.35 2.33	U	2.35	2.35
Adjusted Concentration % of Reference					4.23 4.23 91												5.97 5.97 136				2.33 2.33 98			
DMMU-6 Rep. 1					10.9		2.39	2.39									100				55			
DMMU-6 Rep. 2					4.93		2.31	2.31																
DMMU-6 Rep. 3					2.28		2.24	2.24																
DMMU-6 Rep. 4					2.95		2.36	2.36																
DMMU-6 Rep. 5					<2.28	U	2.28	2.28																
DMMU-6 Mean					4.67																			
Adjusted Concentration % of Reference					4.67 101																			
DMMU-7 Rep. 1					7.94	V	2.28	2.28																
DMMU-7 Rep. 2					7.41	V	2.47	2.47																
DMMU-7 Rep. 3					7.88	V	2.50	2.50																
DMMU-7 Rep. 4					5.83	V	2.35	2.35																
DMMU-7 Rep. 5					5.83	V	2.43	2.43																
DMMU-7 Mean					6.98																			
Adjusted Concentration					6.98																			
% of Reference					151																			

TABLE 24 (continued)

Analytical Results for Wet Weight SVOCs in Alitta virens Tissues

Analyte:	Bis(2	-ethylhe	xyl) phth	alate	Di	-n-But	yl phthala	te	2,	4-dichl	oropheno	ol	2,6-di	nitrotol	uene (2,6	DNT)		Diethyl	phthalat	е	Hexad	hloroc	yclopent	adiene
Sample-Replicate #	Result	ualifier	MDL	LRL	Result	ualifier	MDL	LRL	Result	ualifier	MDL	LRL	Result	ualifier	MDL	LRL	Result	ualifier	MDL	LRL	Result	ualifier	MDL	LRL
DMMU-8 Rep. 1	μ g/kg 14.6	<u>U</u>	2.34	2.34	μg/kg 4.24	<u> </u>	2.34	2.34	μg/kg	<u> </u>	WIDL	LKL	μg/kg	g	MIDL	LKL	μg/kg	<u> </u>	MIDL	LKL	μg/kg	<u> </u>	MIDE	LKL
DMMU-8 Rep. 2	21.4	V	2.34	2.34	7.40	٧	2.34	2.34																
DMMU-8 Rep. 2	12.9	V	2.36	2.30	6.15	V V	2.30	2.30																
DMMU-8 Rep. 4	14.1	٧	2.23	2.23	5.97	٧	2.23	2.23																
DMMU-8 Rep. 5	17.6	V	2.29	2.29	6.97	V V	2.29	2.29																
DMMU-8 Mean	16.1	v	2.32	2.32	6.15	v	2.32	2.32																
Adjusted Concentration	45.1				6.15																			
% of Reference	194				133																			
REF Rep. 1	3.69	\/	2.35	2.35	5.56	1/	2.35	2.35	<4.70	U	4.70	4.70	<2.35	U	2.35	2.35	3.97	1/	2.35	2.35	<2.35		2.35	2.35
REF Rep. 2	5.39	٧	2.38	2.38	3.25	٧	2.38	2.38	<4.75		4.75	4.75	<2.38	Ü	2.38	2.38	4.82	V	2.38	2.38	<2.38	Ü	2.38	2.38
REF Rep. 3	22.2	٧	2.36	2.47	4.41	٧	2.30	2.47	<4.75		4.75	4.73	<2.47	U	2.47	2.47	3.18	٧	2.47	2.47	<2.47	11	2.47	2.47
REF Rep. 4	7.96	٧	2.33	2.33	5.34	٧	2.33	2.33	<4.66		4.66	4.66	<2.33	Ü	2.33	2.33	5.20	V	2.33	2.33	<2.33	Ü	2.33	2.33
REF Rep. 5	<2.36	B. U	2.36	2.36	4.60	٧	2.36	2.36	<4.73		4.73	4.73	<2.36		2.36	2.36	4.76	V	2.36	2.36	<2.36		2.36	2.36
REF Mean	8.32	ь, о	2.30	2.30	4.63	v	2.30	2.30	4.76		4.73	4.73	2.38		2.30	2.30	4.76		2.30	2.30	2.38	- 0	2.30	2.30
Adjusted Concentration	23.3				4.63				4.76				2.38				4.39				2.38			
Pre-exposure Rep. 1	<4.87	B. U	4.87	4.87	21.6	V	2.44	2.44	<4.87	Ш	4.87	4.87	<2.44	U	2.44	2.44	3.34	V	2.44	2.44	<4.87	Ш	4.87	4.87
Pre-exposure Rep. 2	<4.98	B. U	4.98	4.98	13.6	V	2.49	2.49	<4.98	ii	4.98	4.98	<2.49	ii	2.49	2.49	2.52	v	2.49	2.49	<4.98	ij	4.98	4.98
Pre-exposure Rep. 2	45.6	٥, ٥	4.83	4.83	3.46	٧	2.41	2.41	<4.83	11	4.83	4.83	<2.41	11	2.41	2.41	3.57	٧	2.41	2.41	<4.83	11	4.83	4.83
Pre-exposure Mean	18.5		7.00	7.03	12.9		4.+1	4.+1	4.89		7.00	7.03	2.45		4.41	4.41	3.14		4.41	4.41	4.89		7.03	7.00
Steady State Factor	2.8				1.0				1.0				1.0				1.0				1.0			
Eco. Effects Threshold	2.0 X				1.0 X				1.0 Y				v				1.0 X				1.0 Y			
North Gulf of Mexico Bkgd	· ·				×				Ŷ				l û				l [^]				l .			
North Gun of Mexico Bryu									^												۸ .			

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

< #.## = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL. U-qualified results use the MDL for calculating average concentrations (J-qualified results use the value reported by the laboratory for calculating average concentrations).</p>

B-qualified indicates the analyte was found in the method blank. V-qualified indicates the analyte was detected in both the sample and the method blank.

Gray shaded areas indicate no data or analysis required.

Sources: Results from NWDLS; 1 Steady State Factors and Levels/Limits from Appendix H of SERIM (EPA/USACE 2008).

Compiled by: ANAMAR Environmental Consulting, Inc.

TABLE 25Analytical Results for Dry Weight SVOCs in *Mercenaria mercenaria* Tissues

Analyte:	Bis(2	2-ethylhe	exyl) phth	alate	Di	i-n-Buty	l phthala	te	2	,4-dichl	lorophen	ol	2,6-di	nitrotol	luene (2,6	DNT)		Diethyl	phthalate)	Hexad	hloroc	yclopenta	diene
	Result	Qualifier			Result	Qualifier			Result	Qualifier			Result	Qualifier			Result	Qualifier			Result	Qualifier		
Sample-Replicate #	μg/kg	ā	MDL	LRL	μg/kg		MDL	LRL	μg/kg	ā	MDL	LRL	μg/kg	ā	MDL	LRL	μg/kg	ā	MDL	LRL	μg/kg	ā	MDL	LRL
DMMU-1 Rep. 1					<35.0	U	35.0	35.0																
DMMU-1 Rep. 2 DMMU-1 Rep. 3					<35.9 <33.3	U U	35.9 33.3	35.9																
DMMU-1 Rep. 3 DMMU-1 Rep. 4					<33.3	U	33.3	33.3 33.2																
DMMU-1 Rep. 4 DMMU-1 Rep. 5					<33.2	U	33.2 31.1	33.2 31.1																
DMMU-1 Mean					33.7		31.1	31.1																
% of Reference					76																			
DMMU-2 Rep. 1					<17.2	U	17.2	17.2																
DMMU-2 Rep. 2					93.0		17.7	17.7																
DMMU-2 Rep. 3					102		17.0	17.0																
DMMU-2 Rep. 4					87.8		17.5	17.5																
DMMU-2 Rep. 5					67.6		17.1	17.1																
DMMU-2 Mean					73.5																			
% of Reference					165																			
DMMU-3 Rep. 1	67.0	V	20.5	20.5	68.0	V	20.5	20.5	<41.0	U	41.0	41.0	<20.5	U	20.5	20.5								
DMMU-3 Rep. 2	85.3	V	16.7	16.7	48.4	V	16.7	16.7	<33.4	U	33.4	33.4	<16.7	U	16.7	16.7								
DMMU-3 Rep. 3	55.3	V	17.7	17.7	48.9	V	17.7	17.7	<35.4	U	35.4	35.4	<17.7	U	17.7	17.7								
DMMU-3 Rep. 4	54.6	V	17.0	17.0	46.9	V	17.0	17.0	<33.9	U	33.9	33.9	<17.0	U	17.0	17.0								
DMMU-3 Rep. 5	63.0	V	16.0	16.0	33.2	V	16.0	16.0	<32.0	U	32.0	32.0	<16.0	U	16.0	16.0								
DMMU-3 Mean	65.0				49.1				35.1				17.6											
% of Reference	90				110				80				80											
DMMU-4 Rep. 1					<33.0	U	33.0	33.0																
DMMU-4 Rep. 2					<39.2	U	39.2	39.2																
DMMU-4 Rep. 3					<34.7 <31.9	U U	34.7 31.9	34.7 31.9																
DMMU-4 Rep. 4 DMMU-4 Rep. 5						U		38.5																
DMMU-4 Mean					<38.5 35.5	U	38.5	30.3																
% of Reference					80																			
DMMU-5 Rep. 1					58.7	V	17.8	17.8									44.2	V	17.8	17.8	<17.8	U	17.8	17.8
DMMU-5 Rep. 2					35.9	v	18.1	18.1									37.5	v	18.1	18.1	<18.1	Ü	18.1	18.1
DMMU-5 Rep. 3					31.0	v	16.9	16.9									21.1	v	16.9	16.9	<16.9	Ü	16.9	16.9
DMMU-5 Rep. 4					34.0	v	16.6	16.6									31.6	v	16.6	16.6	97.8		16.6	16.6
DMMU-5 Rep. 5					37.1	V	18.7	18.7									48.6	V	18.7	18.7	<18.7	U	18.7	18.7
DMMU-05 Mean					39.3												36.6				33.9			
% of Reference					88												113				154			
DMMU-6 Rep. 1					22.1		22.0	22.0																
DMMU-6 Rep. 2					94.1		16.4	16.4																
DMMU-6 Rep. 3					85.7		17.3	17.3																
DMMU-6 Rep. 4					36.3		17.6	17.6																
DMMU-6 Rep. 5					70.3		17.4	17.4																
DMMU-6 Mean					61.7																			
% of Reference					139																			
DMMU-7 Rep. 1					<35.6	U	35.6	35.6																
DMMU-7 Rep. 2					<44.4	U	44.4	44.4																
DMMU-7 Rep. 3					<41.3	U	41.3	41.3																
DMMU-7 Rep. 4					<99.8	U	99.8	99.8																
DMMU-7 Rep. 5					<35.8	U	35.8	35.8																
DMMU-7 Mean					51.4																			
% of Reference					115																			

TABLE 25 (continued)

Analytical Results for Dry Weight SVOCs in Mercenaria mercenaria Tissues

Analyte:	Bis(2	-ethylhe	xyl) phth	alate	Di	i-n-Buty	/l phthala	te	2	4-dichl	oropheno	ol	2,6-di	nitrotol	uene (2,6	DNT)		Diethyl	phthalate)	Hexad	hloroc	yclopenta	diene
Sample-Replicate#	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
DMMU-8 Rep. 1	<18.8	B, U	18.8	18.8	53.1	٧	18.8	18.8	10 0				100				10 0				100			
DMMU-8 Rep. 2	<17.5	B, U	17.5	17.5	39.1	V	17.5	17.5																
DMMU-8 Rep. 3	<19.0	B, U	19.0	19.0	33.8	V	19.0	19.0																
DMMU-8 Rep. 4	<21.6	B, U	21.6	21.6	92.8	V	21.6	21.6																
DMMU-8 Rep. 5	<17.5	B, U	17.5	17.5	32.7	V	17.5	17.5																
DMMU-8 Mean	18.9				50.3																			
% of Reference	26				113																			
HI-REF Rep. 1	54.8	V	20.7	20.7	58.1	V	20.7	20.7	<41.3	U	41.3	41.3	<20.7	U	20.7	20.7	47.5	V	20.7	20.7	<20.7	U	20.7	20.7
HI-REF Rep. 2	72.9	V	21.4	21.4	60.2	V	21.4	21.4	<42.7	U	42.7	42.7	<21.4	U	21.4	21.4	46.9	V	21.4	21.4	<21.4	U	21.4	21.4
HI-REF Rep. 3	56.7	V	22.5	22.5	43.8	V	22.5	22.5	<44.9	U	44.9	44.9	<22.5	U	22.5	22.5	<22.5	B, U	22.5	22.5	<22.5	U	22.5	22.5
HI-REF Rep. 4	81.5	V	22.9	22.9	50.3	V	22.9	22.9	<45.9	U	45.9	45.9	<22.9	U	22.9	22.9	<22.9	B, U	22.9	22.9	<22.9	U	22.9	22.9
HI-REF Rep. 5	94.1	V	22.3	22.3	47.0	V	22.3	22.3	<44.6	U	44.6	44.6	<22.3	U	22.3	22.3	<22.3	B, U	22.3	22.3	<22.3	U	22.3	22.3
HI-REF Mean	72.0				51.9				43.9				22.0				32.4				22.0			
Pre-exposure Rep. 1	66.4	V	22.5	22.5	44.5	V	22.5	22.5	<45.1	U	45.1	45.1	<22.5	U	22.5	22.5	<22.5	B, U	22.5	22.5	<22.5	U	22.5	22.5
Pre-exposure Rep. 2	96.6	V	20.0	20.0	37.5	V	20.0	20.0	<40.0	U	40.0	40.0	<20.0	U	20.0	20.0	<20.0	B, U	20.0	20.0	<20.0	U	20.0	20.0
Pre-exposure Rep. 3	65.4	V	20.3	20.3	33.5	V	20.3	20.3	<40.5	U	40.5	40.5	<20.3	U	20.3	20.3	<20.3	B, U	20.3	20.3	<20.3	U	20.3	20.3
Pre-exposure Mean	76.1				38.5				41.9				20.9				20.9				20.9			

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

B-qualified indicates the analyte was found in the method blank. V-qualified indicates the analyte was detected in both the sample and the method blank

Gray shaded areas indicate no data or analysis required.

Sources: Results from NWDLS

< #.## = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL. U-qualified results use the MDL for calculating average concentrations (J-qualified results use the value reported by the laboratory for calculating average concentrations).

TABLE 26Analytical Results for Dry Weight SVOCs in *Alitta virens* Tissues

Analyte:	Bis	(2-ethylh	exyl) phth	alate	D	i-n-Buty	l phthala	te	2	,4-dichl	oropheno	ol	2,6-di	nitrotol	uene (2,6	DNT)		Diethyl	phthalate		Hexac	hlorocy	clopenta	diene
	Result	Qualifier			Result	Qualifier			Result	Qualifier			Result	Qualifier			Result	Qualifier			Result	Qualifier		
Sample-Replicate #	μg/kg	<u> </u>	MDL	LRL	μg/kg		MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	đ	MDL	LRL	μg/kg	<u> </u>	MDL	LRL	μg/kg	<u> </u>	MDL	LRL
DMMU-1 Rep. 1					<109	U	109	109																
DMMU-1 Rep. 2					<40.8	U	40.8	40.8																
DMMU-1 Rep. 3 DMMU-1 Rep. 4					<43.8	U	43.8	43.8																
					<40.6 <48.3	U	40.6 48.3	40.6 48.3																
DMMU-1 Rep. 5 DMMU-1 Mean					56.5	U	40.3	40.3																
% of Reference					160																			
DMMU-2 Rep. 1					80.8		22.1	22.1																
DMMU-2 Rep. 2					95.3		21.6	21.6																
DMMU-2 Rep. 3					91.7		22.5	22.5																
DMMU-2 Rep. 4					121		21.2	21.2																
DMMU-2 Rep. 5					101		21.2	21.2																
DMMU-2 Mean					98.0																			
% of Reference					277																			
DMMU-3 Rep. 1	124	V	20.8	20.8	35.1	V	20.8	20.8	<41.5	U	41.5	41.5	<20.8	U	20.8	20.8								
DMMU-3 Rep. 2	116	V	20.0	20.0	44.4	V	20.0	20.0	<40.0	U	40.0	40.0	<20.0	U	20.0	20.0								
DMMU-3 Rep. 3	88.7	V	21.6	21.6	34.2	V	21.6	21.6	<43.2	U	43.2	43.2	<21.6	U	21.6	21.6								
DMMU-3 Rep. 4	85.6	V	22.9	22.9	32.7	V	22.9	22.9	<45.7	U	45.7	45.7	<22.9	U	22.9	22.9								
DMMU-3 Rep. 5	105	V	21.1	21.1	84.8	V	21.1	21.1	<42.2	U	42.2	42.2	<21.1	U	21.1	21.1								
DMMU-3 Mean	104				46.2				42.5				21.3											
% of Reference	159				131		05.4	05.4	118				118											
DMMU-4 Rep. 1					76.2 74.4	V	25.1 25.1	25.1 25.1																
DMMU-4 Rep. 2 DMMU-4 Rep. 3						V	25.1	25.1																
DMMU-4 Rep. 3 DMMU-4 Rep. 4					72.3 73.6	V	22.7	22.7																
DMMU-4 Rep. 4 DMMU-4 Rep. 5					66.5	V	21.9	21.9																
DMMU-4 Negr. 3					72.6	v	21.9	21.5																
% of Reference					205																			
DMMU-5 Rep. 1					<19.7	B, U	19.7	19.7									45.9	V	19.7	19.7	<19.7	U	19.7	19.7
DMMU-5 Rep. 2					115	V	22.2	22.2									57.7	v	22.2	22.2	<22.2	Ü	22.2	22.2
DMMU-5 Rep. 3					<20.4	B, U	20.4	20.4									55.9	V	20.4	20.4	<20.4	Ū	20.4	20.4
DMMU-5 Rep. 4					<19.2	B, U	19.2	19.2									44.7	v	19.2	19.2	<19.2	Ü	19.2	19.2
DMMU-5 Rep. 5					<21.0	B, U	21.0	21.0									59.4	V	21.0	21.0	<21.0	U	21.0	21.0
DMMU-05 Mean					39.1												52.7				20.5			
% of Reference					111												158				114			
DMMU-6 Rep. 1					93.6		20.5	20.5																
DMMU-6 Rep. 2					44.0		20.6	20.6																
DMMU-6 Rep. 3					22.0		21.6	21.6																
DMMU-6 Rep. 4					27.3		21.9	21.9																
DMMU-6 Rep. 5					<21.3	U	21.3	21.3																
DMMU-6 Mean					41.6																			
% of Reference					118		04.4	24.4																
DMMU-7 Rep. 1					84.2	V	24.1	24.1																
DMMU-7 Rep. 2 DMMU-7 Rep. 3					66.9	V	22.3	22.3																
					70.2 56.4	V	22.3 22.8	22.3 22.8																
DMMU-7 Rep. 4 DMMU-7 Rep. 5					56.4 56.3	V	22.8	22.8																
DMMU-7 Rep. 5					66.8	V	23.5	23.5																
% of Reference					189																			
70 OI Kelelelice					109																			

TABLE 26 (continued)

Analytical Results for Dry Weight SVOCs in Alitta virens Tissues

Analyte:	Bis(2	-ethylhe	exyl) phth	alate	Di	i-n-Buty	l phthalat	e	2,	4-dichl	oropheno	ol	2,6-di	nitrotol	uene (2,6	DNT)		Diethyl	phthalate)	Hexac	hlorocy	clopenta	diene
Sample-Replicate #	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL	Result µg/kg	Qualifier	MDL	LRL
DMMU-8 Rep. 1	131	V	21.0	21.0	38.1	V	21.0	21.0																
DMMU-8 Rep. 2	175	V	19.4	19.4	60.4	V	19.4	19.4																
DMMU-8 Rep. 3	127	V	21.8	21.8	60.3	V	21.8	21.8																
DMMU-8 Rep. 4	139	V	22.6	22.6	58.8	V	22.6	22.6																
DMMU-8 Rep. 5	179	V	23.6	23.6	70.9	V	23.6	23.6																
DMMU-8 Mean	150				57.7																			
% of Reference	229				163																			
REF Rep. 1	25.5	V	16.2	16.2	38.4	V	16.2	16.2	<32.5	U	32.5	32.5	<16.2	U	16.2	16.2	27.5	V	16.2	16.2	<16.2	U	16.2	16.2
REF Rep. 2	38.5	V	17.0	17.0	23.2	V	17.0	17.0	<34.0	U	34.0	34.0	<17.0	U	17.0	17.0	34.4	V	17.0	17.0	<17.0	U	17.0	17.0
REF Rep. 3	173	V	19.2	19.2	34.3	V	19.2	19.2	<38.5	U	38.5	38.5	<19.2	U	19.2	19.2	24.8	V	19.2	19.2	<19.2	U	19.2	19.2
REF Rep. 4	74.7	V	21.9	21.9	50.1	V	21.9	21.9	<43.7	U	43.7	43.7	<21.9	U	21.9	21.9	48.8	V	21.9	21.9	<21.9	U	21.9	21.9
REF Rep. 5	<15.7	B, U	15.7	15.7	30.7	V	15.7	15.7	<31.5	U	31.5	31.5	<15.7	U	15.7	15.7	31.7	V	15.7	15.7	<15.7	U	15.7	15.7
REF Mean	65.5				35.3				36.0				18.0				33.4				18.0			
Pre-exposure Rep. 1	<38.4	B, U	38.4	38.4	170	V	19.2	19.2	<38.4	Ú	38.4	38.4	<19.2	U	19.2	19.2	26.4	V	19.2	19.2	<38.4	U	38.4	38.4
Pre-exposure Rep. 2	<37.7	B, U	37.7	37.7	103	V	18.8	18.8	<37.7	U	37.7	37.7	<18.8	U	18.8	18.8	19.1	V	18.8	18.8	<37.7	U	37.7	37.7
Pre-exposure Rep. 3	329	V	34.8	34.8	24.9	V	17.4	17.4	<34.8	U	34.8	34.8	<17.4	U	17.4	17.4	25.8	V	17.4	17.4	<34.8	U	34.8	34.8
Pre-exposure Mean	135	,	, and the second		99.3	,			37.0	,			18.5			, and the second	23.8	,	, and the second	, and the second	37.0			

Bolded values indicate a mean concentration of project tissue that is statistically significantly greater than that of the reference tissue and includes at least one replicate result greater than the MDL.

<### = The analyte was not detected (ND) at or above the MDL (U-qualified). The value indicates the MDL. U-qualified results use the MDL for calculating average concentrations (J-qualified results use the value reported by the laboratory for calculating average concentrations).</p>

B-qualified indicates the analyte was found in the method blank. V-qualified indicates the analyte was detected in both the sample and the method blank.

Gray shaded areas indicate no data or analysis required.

Sources: Results from NWDLS

Compiled by: ANAMAR Environmental Consulting, Inc.

APPENDIX A SAMPLING AND ANALYSIS PLAN (PCCA APRIL 2021)

SECTION 103 SAMPLING AND ANALYSIS PLAN: SAMPLING, CHEMICAL ANALYSIS, AND BIOASSESSMENT OFFSHORE DISPOSAL of DREDGE MATERIAL

Harbor Island New Dock and Facilities Project Port Aransas, Texas

Submitted to:

U.S. Army Corps of Engineers
Galveston District
2000 Fort Point Road Galveston, TX 77550

U.S. Environmental Protection Agency
Region 6
1445 Ross Ave.
Dallas, TX 75202-2733

Submitted by:

Port of Corpus Christi Authority 222 Power Street Corpus Christi, TX 78403

Project Management Title and Approval Sheet

Applicant: Port of Corpus Christi Authority of N	lueces County
Point of Contact: Sarah L. Garza	
Title: Director of Environmental Planning and Com	pliance
Signature: WASWAS	Date: 8/4/2021
Regulatory Agency: U.S. Environmental Protec	tion Agency, Region 6
Point of Contact: Charles W. Maguire,	
Title: Director, Water Quality Division	
Signature:	Date:
Regulatory Agency: U.S. Army Corps of Engine Galveston District	ers (USACE), Southwestern
Point of Contact: Joseph A. McMahan	
Title: Chief, Regulatory Division	
Signature:	Date:
Contractor 1:	
Signature:	Date:

TABLE OF CONTENTS

1	Proj	ect Overview	5
	1.1	Introduction	
	1.2	Objectives	
1.3 1.4	Project Authority & New Work Requirements		
	Tier I Evaluation – Potential Sources of Contamination		
		1.4.1 Corpus Christi Ship Channel Improvement Project 2018	
		1.4.1.1 Sediment Grain Size	
		1.4.1.2 Sediment Chemistry	
		1.4.1.3 Elutriate and Site Water Chemistry	
		1.4.1.4 Elutriate Bioassay	9
		1.4.1.5 Whole Sediment Toxicity Bioassay	10
		1.4.1.6 Whole Sediment Bioaccumulation Bioassays	10
		1.4.2 Permitted Facilities and Chemical Releases	11
		1.4.3 Harbor Island Background Information	11
		1.4.4 Harbor Island Pre-Dredge Characterization Sampling	
2	Sco	pe of Work	
_	2.1	General	
	2.2	Project Area	
	2.3	Sample Location & Type	
		1 Harbor Island New Dock and Facilities Dredge Footprint	
		2 Corpus Christi ODMDS	
		3 Reference Area Samples	
	2.4 2.5	General Instructions for Sample Collection	
	2.6	Specific Instructions for Water Sampling	
	2.7	Sample Shipment	
	2.8	Schedule for Work Performed	
_	2.9	Deliverables	
3	Proi	ect Design	23
	3.1	Design Assumptions	
	3.2	Sample Sites	
	3.3	Sample Volumes and Containers	
	3.4	Chain of Custody	28
4	Ana	lytical and Reporting Requirements	29
	4.1	Chemical Analyses	
	4.2	Laboratory Quality Control for Chemical Analysis	
	4.3	Water Column Bioassay, Solid Phase Bioassay/Bioaccumulation	
		4.3.1 Suspended Particulate Phase (Elutriate) Toxicity Analysis	
		4.3.2 Solid Phase (Sediment) Bioassay	
		4.3.3 Bioaccumulation	41
		4.3.4 Data Analysis	
	4.4	Data Submittal	44
5	Refe	erences	45

Appendices

Appendix A – Project Figures
Appendix B – Chronology of Atofina and Exxon Tank Farm Site Cleanup Activities

Appendix C – Field Datasheet Forms

Appendix D – Bathymetry Survey Data

Appendix E – CQAR Form

LIST OF TABLES

Table 1.	Estimated Schedule for Tasks	21
Table 2.	Sample Locations and Compositing Scheme	24
Table 3.	Summary of Chemical, Biological, and Physical Analyses to Be	
	Performed on Project Sediments and Water	26
Table 4.	Estimated Sample Volume Needed by Analytical Group	27
Table 5.	Target Detection Levels a (TDLs) for Analysis by Sample Type	

1 PROJECT OVERVIEW

1.1 Introduction

The Port of Corpus Christi Authority (PCCA) submitted an application to the U.S. Army Corps of Engineers (USACE), Galveston District under Section 404 of the Clean Water Act (CWA) and Section 10 of the Rivers and Harbors Act (Section 404/10) to construct a new terminal and facilities to load crude oil into marine vessels. This proposal includes dredging a berth at the proposed Harbor Island Terminal that is capable of supporting two very large crude carrier (VLCC) size vessels.

The Harbor Island New Dock and Facilities Project is located at the confluence of the Aransas Pass, Gulf Intracoastal Waterway (GIWW) by-pass channel (Lydia Ann Channel), and the Corpus Christi Ship Channel (CCSC) on the northern side of State Highway 361, between channel stations 40+00 and 70+00, on Harbor Island in Port Aransas, Nueces County, Texas. Waterborne access to the proposed terminals is imperative to fulfill the Project's purpose and need for the transport of crude oil via a terminal facility capable of accommodating up to two (2) VLCC deep-draft waterborne vessels.

The proposed dredge area is approximately 64.80 acres. The area within the proposed dredge footprint would be dredged to -54 ft. mean lower low water (MLLW), plus 4 ft. of advanced maintenance and a 2 ft. overdredge for a total Project depth of -60 ft. MLLW. Basin corners and edges would exhibit a 3 to 1 slope. As a result of the Project, approximately 6.5 million cubic yards (MCY) of material would be hydraulically and/or mechanical dredged. Refer to Figure 2 in Appendix A for a depiction of the proposed dredge footprint.

The purpose of this proposed sampling is to determine if the new work material sediments proposed to be dredged are acceptable for disposal in the Corpus Christi Offshore Dredge Material Disposal Site (ODMDS). This Sampling and Analysis Plan (SAP) was developed in compliance with the regulations outlined below.

1.2 Objectives

The USACE, Galveston District and Environmental Protection Agency Region 6 (EPA) must evaluate any proposed discharge of dredged material into ocean waters resulting from dredging of federally authorized navigational channels and nearby vicinities to determine the potential environmental impact of such activities. This evaluation is performed in accordance with the Ocean Dumping Regulations at 40 CFR 220-228 and with the O&M Dredging Regulations at 33 CFR 335-338.

The EPA and the USACE jointly developed national guidance to define technical procedures for testing dredged material for ocean disposal. The current national guidance manual, *Evaluation of Dredged Material Proposed for Ocean Disposal - Testing Manual*, hereinafter referred to as the "Green Book", was issued in February 1991 (EPA/USACE, 1991). A Regional Implementation Agreement (RIA) designed to specify sampling, testing, and reporting procedures for dredged material proposed for ocean disposal in the

Gulf of Mexico off the Texas coast was jointly developed by EPA and USACE and finalized in 1992. A revision of the RIA was completed in July 2003.

According to the RIA, biological and chemical data greater than 5 years old may not be adequate to conduct ocean dumping evaluations. The Harbor Island New Dock and Facilities Project, located adjacent to the CCSC and approximately 2.9 miles inshore of the CCSC Jetties, is the focus of this SAP.

The results of the analyses and the other applicable subparts and sections of 40 CFR 227 Subparts B, C, D, E, G, and 228.4(e), will be analyzed by the USACE with concurrence from EPA to determine if the dredged material to be removed from the Harbor Island Terminal Berth is suitable for ocean disposal.

1.3 Project Authority & New Work Requirements

The Corpus Christi ODMDS was approved in 1989. The Site Management and Monitoring Plan includes two areas, one for maintenance material and the other for new work material. The material for this project would fall under the new work category.

On September 15, 2015, USEPA modified 40 CRF Part 228 to allow other entities besides the USACE to seek permit approval by USEPA to dispose of dredged material into ocean waters pursuant to the Marine Protection Research and Sanctuaries Act (Ocean Dumping Regulations). It is under this regulation that the PCCA is requesting the new work material dredged from the Harbor Island New Dock and Facilities dredge footprint be approved for disposal at the Corpus Christi New Work ODMDS. New work dredging requirements are detailed below.

Additionally, in 2020, USEPA Region 6 proposed to expand the New Work ODMDS to accommodate the placement of additional volumes of construction dredged material. The Expanded New Work ODMDS's geometric footprint is proposed to be enlarged within the limits of a recently completed USEPA Region 6 ecological surveyed area (Figure 1).

Figure 1. Corpus Christi ODMDS Ecological Survey Area

The proposed dredge area is approximately 64.80 acres. The area within the proposed dredge footprint would be dredged to -54 ft. MLLW, plus 4 ft. of advanced maintenance and a 2 ft. over dredge for a total Project depth of -60 ft. MLLW. Basin corners and edges would exhibit a 3 to 1 slope. As a result of the Project, approximately 6.5 MCY of material would be hydraulically and/or mechanical dredged. As further discussed in Section 1.4 – Tier I Evaluation, surficial soils within the proposed dredge footprint were previously managed under the Texas Railroad Commission (TXRRC). As such, the top 10 ft. of soils within current land areas of the proposed dredge footprint are to be relocated onsite and will not be part of the material being dredged for placement within the Corpus Christi New Work ODMDS. Therefore, this SAP does not include the collection or analysis of the top 10 ft. of material within current land portions of the proposed dredge footprint.

The method for dredging the material from the Harbor Island Terminal will be determined based on historically utilized procedures as well as an analysis of current procedures,

and will take into consideration dredging volumes, cost, and any dredging restrictions provided by EPA Region 6 upon concurrence.

1.4 Tier I Evaluation – Potential Sources of Contamination

Provided in the following sections is information related to previous material analysis at and adjacent to the proposed dredge footprint as well as background information on Harbor Island. This information is included within this SAP as a Tier I evaluation for the proposed Project.

1.4.1 Corpus Christi Ship Channel Improvement Project 2018

Sediment testing in close proximity to Harbor Island was performed in 2017 in the Corpus Christi Entrance Channel (360factors 2017). Six samples (CCNEW-04 A, B, and C and CCNEW-05 A, B, and C) were collected and composited into two sediment samples, CCNEW-04 and CCNEW-05, for analysis. Figure 2 below shows the location of the samples collected in the Corpus Christi Entrance Channel in comparison to the Harbor Island Loading Dock.

Figure 2. Corpus Christi Ship Channel Improvement Project Adjacent to Harbor Island New Dock and Facilities Project

Samples CCNEW-04 and CCNEW-05 were tested for physical, chemical, and toxicological parameters. A summary of the testing results is provided in the following sections.

1.4.1.1 Sediment Grain Size

Sample CCNEW-04 was described as silty sand, with mostly fine-grained sand, some fine clays, little gravel, and gray in color. This sample had 0.1% gravel, 70% sand, and 29.9% fines. Sample CCNEW-05 was described as silty sand, with mostly fine-grained sand, some fine clays, little gravel, and gray in color. This sample had 0.3% gravel, 70.9% sand, and 28.8% fines.

1.4.1.2 Sediment Chemistry

Sample CCNEW-04 had detected concentrations above the target detection limit (TDL) for multiple metals including arsenic, total chromium, copper, lead, nickel, and zinc. However, none of the detected concentrations of metals exceeded their corresponding screening criteria. Sample CCNEW-05 had detected concentrations above the TDL for multiple metals including, total chromium, copper, lead, nickel, and zinc. However, none of the detected concentrations of metals exceeded their corresponding screening criteria.

In both CCNEW-04 and CCNEW-05, the NOAA ERL marine sediment screening criteria was exceeded for dieldrin. However, these samples were flagged with a "U" qualifier which indicates that the analyte was included in the analysis, but not detected. As such, the result of the estimated concentration was set to the lab reporting limit, which was above the NOAA ERL for dieldrin. There were no other analytes detected above the TDL in any of the sediment samples for bulk chemistry.

1.4.1.3 Elutriate and Site Water Chemistry

The elutriate for sample CCNEW-04 had detected concentrations above the TDL for arsenic, mercury, and selenium. However, none of the detected concentrations exceeded the corresponding screening criteria, where available. The elutriate for sample CCNEW-05 had detected concentrations above the TDL for mercury and selenium. However, none of the detected concentrations exceeded the corresponding screening criteria, where available.

In both CCNEW-04 and CCNEW-05, the TCEQ TSWQS acute and WPA WQC CMC marine water screening criteria was exceeded for silver and toxaphene in both elutriate and site water samples. However, these samples were flagged with a "U" qualifier which indicates that the analyte was included in the analysis, but not detected. As such, the result of the estimated concentration was set to the lab reporting limit, which was above the TCEQ TSWQS acute and WPA WQC CMC marine water screening criteria for silver and toxaphene.

1.4.1.4 Elutriate Bioassay

Elutriate bioassays were conducted for 96-hours (or 48-hours for the early mysid age class test) using the 100% elutriate, in addition to 50% and 10% dilutions of the 100% elutriate. All concentrations, including the control and reference waters, were replicated five times. The standard test organisms *Americamysis* (*Mysidopsis*) bahia and *Menidia*

beryllina were used in survival tests in basic accordance with dredged material evaluation guidance.

In all cases, survival was above 90% in CCNEW-04 and CCNEW-05 site waters and 90% or greater in the undiluted elutriates. Since survival was not reduced by at least 10% relative to the site water (or dilution water), no statistical testing was required. Neither the *A. bahia* or the *M. beryllina* elutriate bioassays indicated any acute toxicity for CCNEW-04 and CCNEW-05 during any of the three bioassay methods used to assess sediment elutriates.

1.4.1.5 Whole Sediment Toxicity Bioassay

In accordance with the RIA, benthic tests were performed using *Americamysis* (*Mysidopsis*) bahia and *Leptocheirus plumulosus*, satisfying the requirement that the tests be performed using different species covering the three feeding strategies.

During the *L. plumulosus* 10-day sediment toxicity test, survival was low (40%) in the CCNew-05 (unfed) sediment compared to survival (95%) in the CCNew-05 (fed) treatment. This observation along with generally low sediment contaminant concentrations, suggests that poor nutritional quality of the CCNew-05 sediment, as indicated by low TOC, and subsequent starvation as the likely cause of the higher mortality observed in the CCNew-05 sediment. Based on the confounding effect of low sediment nutritional quality in CCNew-05, the results from the CCNew-05 (fed) study were utilized for open water placement evaluation. A much smaller effect on survival was observed in the CCNew-04 (unfed) treatment compared to the CCNEW-04 (fed) treatment, therefore the CCNew-04 (unfed) treatment was utilized for open water placement evaluation.

Survival of *L. plumulosus* in test sediments was compared to the 96% survival observed in the reference sediment exposure. Survival did not exceed the 20% difference from reference criteria for estuarine/marine amphipods, therefore additional statistical analyses were not required.

During the *A. bahia* 10-day sediment toxicity test, survival was 99% in the CCNEW-04 (unfed) sediment and 98% in the CCNEW-05 (unfed) sediment. Reference sediment survival was 99%. Survival did not exceed the 10% difference from reference criteria for *A. bahia* therefore additional statistical analyses were not required.

In summary, the results of the whole sediment toxicity test bioassays conducted for CCNEW-04 and CCNEW-05 indicated no acute toxicity and the sediments met the limiting permissible concentration (LPC) for open water dredged sediment placement.

1.4.1.6 Whole Sediment Bioaccumulation Bioassays

The bioaccumulation potentials of contaminants were evaluated through a 28-day whole sediment exposure test using *M. nasuta* and *N. virens*. Sample tissue concentrations in both organisms were compared to FDA action limits for these analytes. No sample exceeded FDA action limits for either organism. Concentrations of antimony and copper

in *M. nasuta* tissues exposed to CCNEW-04 and CCNEW-05 sediment exceeded Western Gulf of Mexico maximum background concentrations. Concentrations of antimony, zinc, and total PAHs in *N. virens* tissues exposed to CCNEW-04 and CCNEW-05 sediment exceeded Western Gulf of Mexico maximum background concentrations. However, the only statistically significant exceedance was for antimony in *N. virens* exposed to CCNEW-04 sediment. With antimony's low propensity to bioaccumulate and the low concentrations found in the project sediments, it was determined that no potential for significant undesirable effects due to bioaccumulation of antimony was expected.

In summary, the results of the whole sediment bioaccumulation bioassay testing and lines-of-evidence analysis indicate no significant contaminant bioaccumulation associated with CCNEW-04 and CCNEW-05 sediments. The CCNEW-04 and CCNEW-05 sediments met the LPC for open water dredged sediment placement.

1.4.2 Permitted Facilities and Chemical Releases

A review of the Port Aransas area from the U.S. Coast Guard National Response Center found 147 reported spills from 2015 through February 2020. These spills were primarily oils and fuels. In addition, a review of the permitted facilities at the EPA EnviroMapper website found numerous permit violations. The specific contaminants were not provided in most cases, while several violations were reported as bacterial releases.

1.4.3 Harbor Island Background Information

The property on Harbor Island that is now owned by the PCCA was for many decades (since the 1920s's) owned by private interest and was used as a crude oil receiving, shipping, and storage facility.

The PCCA purchased 15.126 acres of land from Fin-Tex Pipe Line Co. (Atofina) in January 31, 1996. This property included a number of oil storage tanks and one ship dock fronting on the CCSC that had existed since the 1930's. As a condition of the sale to the PCCA, Atofina agreed to remove the oil storage tanks and associated underground pipelines and remediate the site to TXRRC standards for industrial facilities. The oil storage tanks and associated underground pipelines were removed and cleanup action occurred. On June 4, 2003, the TXRRC issued a letter of concurrence for Atofina's Remediation Completion Report. A deed recordation of the property's past land use was filed with the County and on August 23, 2003, a "No Further Action" letter was submitted to Atofina by the TXRRC. A chronology listing the site cleanup activities at the former Atofina tank farm is provided in Appendix B.

The PCCA acquired ownership of 214.168 acres of land from Koch Pipeline Company, L.P. (Koch) on August 20,1996. Koch acquired this property from Exxon a couple of years earlier but never operated the terminal. This property included a number of oil storage tanks and two small ship docks fronting on the CCSC that had existed and been operated by Exxon since the 1930's. Exxon remediated contaminated soils on the property to TXRRC standards for industrial facilities from 1996 to 1999. On November 9, 1999, the TXRRC issued to Exxon a "No Further Action" letter for the site excluding the tank bottom

areas. In 2003, the PCCA removed the oil storage tanks from the site. In 2004 to late 2005, the Port of Corpus Christi Authority contracted with several companies to remove the aboveground and buried pipelines that were associated with the tank farm.

In the purchase agreement with Koch Pipeline, the PCCA did not have an agreement for cleanup of the contamination on the property. In 2003, staff negotiated a Site Remediation Agreement with ExxonMobil to remediate the pre-existing contamination immediately adjacent to or beneath the tanks and piping. On November 11, 2004 and on August 23. 2005, the PCCA provided a first and second report documenting the locations of the preexisting contamination identified at the site. In July 2005, ExxonMobil contracted CRA to conduct remediation activities at the site. All of the remediation work was not completed as the landfarming permit with the RRC didn't allow for the full project. In January 2007, CRA was contracted again by ExxonMobil to assess the remaining locations of preexisting contamination. The PCCA contracted an inspector to be onsite during the activities and split samples. On August 24, 2007, the PCCA had not yet heard from ExxonMobil regarding the results of the sampling and the design of the next phase of remediation so a letter summarizing the results and expectations for remediation was submitted to ExxonMobil. In December 2007, ExxonMobil submitted an additional Soil Delineation Report to TXRRC that summarized the sampling results at the site to date and proposed next steps.

In March 2008, the PCCA teleconferenced with ExxonMobil to discuss and agree upon remediation of the remaining areas of contamination at the site. ExxonMobil indicated at that time that the work probably wouldn't begin until late spring 2009 because they didn't think they could get the right equipment for the job before then.

In March 2009, ExxonMobil contracted CRA to conduct the remediation of the remaining areas of contamination at the site. At the same time, PCCA and ExxonMobil also entered into an agreement in which CRA would also conduct remediation of the areas that PCCA would be responsible for at the site, those areas that weren't immediately adjacent to tanks or pipes. In September 2009, ExxonMobil notified PCCA that they had completed remediation of all the areas on the site except for the areas in which the contamination extended under the Texas Treasure Parking lot and further advised that they would not be completing remediation of these areas until the Texas Treasure area was fully abandoned/demolished.

In October 2009, PCCA contracted GAINCO to conduct remediation of the areas at the site that PCCA had responsibility for and the areas extending under the Texas Treasure Parking Lot that ExxonMobil did not address. In December 2009, the project was shut down due to heavy rains and flooding at the site for most of the month. In April 2010, GAINCO was contracted to delineate the remaining areas and in May 2010, GAINCO remobilized to the site to continue remediation activities at the site. The remediation activities conducted by GAINCO were completed in August 2010 and a report of PCCA activities was provided to the TXRRC in February 2011.

ExxonMobil was directed by TXRRC to install groundwater monitoring wells and did so in 2011. Two quarterly sampling events were completed in 2011. In November 2012, ExxonMobil provided to TXRRC a complete report of the soil remediation and groundwater monitoring activities completed at the site by both PCCA and ExxonMobil. A deed recordation recommendation was included in the recommendations of future actions and subsequently approved by the TXRRC. A deed recordation of the property's past land use was filed with the County and included six areas that exceeded the identified clean up levels that could not be cleaned up due to obstructions. On January 5, 2015, a "No Further Action" letter was submitted to ExxonMobil by the TXRRC.

PCCA recently completed demolition work that removed the obstructions to the deed recorded hot spots. The remaining six hot spots were sampled in 2019 to determine current levels and extent of contamination. In November 2020, the areas exceeding the commercial/industrial were over excavated and the material was hauled to an approved landfill. PCCA is currently in the process of updating the deed record to remove the six identified hot spots and prohibit the use of groundwater in the upper groundwater bearing unit for potable water and/or irrigation purposes across the site. Additionally, PCCA has developed a Groundwater Management Plan for management of groundwater and storm water during construction activities.

A chronology listing the site cleanup activities at the former Atofina and Exxon tank farm are included as Appendix B. As surficial soils within land portions of the proposed dredge footprint were previously managed under the TXRRC and deed recorded, the top 10 ft. of soils within land areas are to be relocated onsite and will not be part of the material being dredged for placement within the Corpus Christi New Work ODMDS. Therefore, this SAP does not include the collection or analysis of the top 10 ft. of material within current land portions of the proposed dredge footprint.

1.4.4 Harbor Island Pre-Dredge Characterization Sampling

In 2019, PCCA collected pre-dredge characterization sampling. However, the bioassay sampling analysis was not completed at the time. Therefore, understanding that the protocol requires concurrent analyses for Tier II analysis, PCCA is proposing to repeat the prior sampling in order to also complete the chemical analysis concurrent with the elutriate sampling. The prior results of the chemistry analysis will be used for reference purposes only.

2 SCOPE OF WORK

2.1 General

Sediment, water, and elutriate samples, plus one duplicate of each will be collected from dredging units located within the proposed dredge footprint of the Harbor Island New Dock and Facilities Project as outlined in this SAP, and all collected sample material will be delivered to the analytical laboratories. The laboratories will be accredited through the National Environmental Laboratory Accreditation Program (NELAP) for the analytes/analyte groups and matrices to be analyzed. All samples will be collected within a schedule suitable to meet analytical hold-time requirements. The evaluation of samples will include chemical and physical analysis of sediment, water and standard elutriate samples. Procedures for sample collection, required volume, handling, preservation and storage, and shipment to the laboratory are outlined in the proceeding sections.

2.2 Project Area

Samples will be collected from the proposed Harbor Island New Dock and Facilities dredge footprint from the dredging units in and around the proposed berth. Sample collections will be made at the Harbor Island New Dock and Facilities dredge footprint as shown in Appendix A, Figure 3, and at the Corpus Christi ODMDS (as recently expanded by EPA) and the Reference Area (Figure 4).

2.3 Sample Location & Type

Samples for chemical and physical analysis will be collected from the Harbor Island New Dock and Facilities dredge footprint, Corpus Christi ODMDS and Reference Area. The proposed sampling locations will be determined in coordination with the EPA as close to the dredging event as possible while allowing time to collect and analyze samples, compile necessary reports, and allow for agency review and approval. Table 2 describes the anticipated samples that will be required for collection. Any deviations from the sampling locations identified in Table 2 shall be approved by EPA and USACE prior to collecting samples. The location and number of samples are described in the following sections.

2.3.1 Harbor Island New Dock and Facilities Dredge Footprint

Sediment, water, and elutriate samples, plus one duplicate of each are proposed to be collected within the Harbor Island New Dock and Facilities dredge footprint. Samples within the Harbor Island New Dock and Facilities dredge footprint will be collected from both terrestrial and submerged marine environments.

The proposed sampling plan is a stratified grid pattern sample plan intended to adequately collect samples across the entire dredge footprint. The samples will be spilt up into five sample areas each consisting of two to four sample locations in order to adequately cover the area to be dredged and to allow easy transition into sampling for offshore disposal in the future, if required. Each sample area represents a different landuse or signature on the aerial. Each sample area is designated by a number and each

sample location is designated by a letter (Appendix A). PCCA proposes to collect samples from sixteen sampling locations within the dredge footprint. Eight of the sampling locations will be positioned within the water and representative of the material to be excavated and/or dredged to -54' MLLW, plus a 4-foot advanced maintenance, and 2-foot allowable over-dredge for a total depth of -60 ft MLLW. The remaining 8 sampling locations will be representative of the dredge footprint currently onshore of Harbor Island. The top 10 feet of each sample will be discarded from the land locations and the remaining core sample retrieved will be split into two samples. The discarded sample represents sediment that will remain on site. A total of 24 samples will be collected throughout the dredge footprint.

The five sample areas have been further divided into eight (8) DMMUs. Each DMMU covers a specific area and depth and dredge material volume within the overall dredge footprint. Each land based DMMU will be characterized by two to three subsamples. Each water based DMMU will be characterized by four subsamples. A total of eight (8) composite samples will be prepared from the subsamples collected

- DMMU 1 is comprised of subsample locations 1A 1C: Characterizes the surficial terrestrial sediment.
- DMMU 2 is comprised of subsample locations 1A 1C: Characterizes the subsurface terrestrial sediment.
- DMMU 3 is comprised of subsample locations 2A 2B: Characterizes the surficial terrestrial sediment.
- DMMU 4 is comprised of subsample locations 2A 2B: Characterizes the subsurface terrestrial sediment.
- DMMU 5 is comprised of subsample locations 3A 3C: Characterizes the surficial terrestrial sediment.
- DMMU 6 is comprised of subsample locations 3A 3C: Characterizes the subsurface terrestrial sediment.
- DMMU 7 is comprised of subsample locations 4A 4D: Characterizes the shallow marine sediment from existing depths to -60 ft. MLLW.
- DMMU 8 is comprised of subsample location 5A 5D: Characterizes marine sediment from existing depths to -60 ft. MLLW.

2.3.2 Corpus Christi ODMDS

Surface sediment grab samples will be taken at three Corpus Christi ODMDS substations. The sediment samples collected will be utilized for chemical analysis.

- One (1) composite sediment sample collected from three (3) Corpus Christi New Work ODMDS substations for chemical and physical analysis.
- One (1) water sample

2.3.3 Reference Area Samples

Surface sediment grab samples will be taken at three Reference Area substations within the Reference Area. Sediment samples collected at the Reference area will be utilized for chemical, physical, and biological analysis.

- One (1) composite sediment sample collected from three (3) Reference Area substations for chemical analysis.
- One (1) composite sediment sample collected from three (3) Reference Area substations for physical and biological analysis.

2.4 General Instructions for Sample Collection

Sufficient sediment and water for all physical, chemical, and biological tests will be collected as specified in Tables 2 through 4 of this SAP. All sediment and water sample collection, handling, preservation, storage, and tracking will be conducted in accordance with this SAP and the protocols outlined in Chapter 8 of the Green Book. All samples must be collected within a 3- or 4-day window to meet analytical hold-time requirements. Specific instructions on sediment and water collection are provided Section 2.5 - Specific Instructions for Sediment Sampling and Section 2.6 - Specific Instructions for Water Sampling.

- (1) **Station Positioning**. Latitude and longitude coordinates of the sample locations, ODMDS disposal areas, and Reference Area sampling substations are provided in Table 2 and represent proposed dredge material as anticipated in the permit application. The location of each sampling location and sampling substation will be determined and recorded in the field using a global positioning system (GPS) with +/- 10-meter accuracy. Land surface is estimated to be +10 feet MLLW. Water depth will be measured by fathometer or sounding chain and adjusted for tidal elevation using real-time updated water levels from the National Oceanic and Atmospheric Administration (NOAA) or, as a backup, the predicted tides for this project, which is at Port Aransas, Tide Station # 8775237. Alternatively, water surface elevation may be determined using a survey-grade GPS.
- (2) Conventional Water Quality. Parameters within 1 meter of the surface at each water quality collection station will be measured and recorded, including water temperature, salinity, turbidity, dissolved oxygen and pH. Water depth at each substation will be noted and general site observations (air temperature, wind speed, sea-state, etc.) will also be recorded.
- (3) Sample Preservation and Storage. A suitable method for preservation and shipment of sediment and water samples will be used, as indicated in Table 4 of this Scope of Work. Sample material will be placed in appropriately sized glass and/or plastic containers for sediment and water samples and labeled accordingly. Samples will be iced immediately after collection and be stored at 0°C to 6°C, never frozen, within 24 hours after collection. Samples should be protected from light during storage and transportation.
- (4) Chain-of-Custody Form. A dated and signed chain-of-custody document will be furnished to record all collected samples. The chain of custody will clearly note the sample name, date and time of collection, container type, any special handling (i.e., filtering or acidification), type of analyses required by the NELAP laboratory, date relinquished, and signature of sample collection and shipping manager. Any

corrections made on the form will legibly preserve the error (i.e., no scratch-outs), and the initials of the responsible team member will be written adjacent to the correction. Additional guidance on appropriate chain-of-custody protocols can be found in reference guidance documents (EPA, 1986; EPA/USACE, 1995; EPA/USACE, 1998; Plumb, 1981).

(5) **Field Sampling Data Sheets.** Dated field sampling data sheets will be filled out and completed for each Sample ID. Data sheets will be specific to either sediment or water collection and consistent with EPA Region 6 approved forms completed for USACE Galveston District channel dredging work. In addition to these two data sheets, a Core Log and Daily Quality Control Report will be completed. Data forms are shown in Appendix C.

2.5 Specific Instructions for Sediment Sampling

Samples for chemical and physical analyses will be collected at 16 sampling locations, 8 on land and 8 in the water within the Harbor Island New Dock and Facilities dredge footprint. Composite sediment samples for toxicological analysis will also be collected. The terrestrial composite sampling has been designed such that three terrestrial locations will be split vertically into a "surficial" and "subsurface" horizon to be analyzed as separate DMMUs. Each land-based/terrestrial DMMU (DMMU 1-6) will be characterized by 2 to 3 subsamples. The land surface of terrestrial locations is estimated to be +10 ft. MLLW. As the top 10 ft. of soils within terrestrial locations of proposed dredge footprint are to be relocated onsite, the top 10 ft. of terrestrial material will be discarded from samples. As such, the surficial DMMUs (DMMU 1, 3, and 5) will characterize sediment from 0 ft. MLLW to a depth of approximately -30 ft. MLLW. The subsurface DMMUs (DMMU 2, 4, and 6) will characterize sediment from -30 ft. MLLW to -60 ft. MLLW, the proposed depth of dredge. Below are details related to each terrestrial DMMU.

- DMMU 1 is comprised of subsample locations 1A 1C: Characterizes the surficial terrestrial sediment (0 ft. MLLW to -30 ft. MLLW).
- DMMU 2 is comprised of subsample locations 1A 1C: Characterizes the subsurface terrestrial sediment (-30 ft. MLLW to -60 ft. MLLW).
- DMMU 3 is comprised of subsample locations 2A 2B: Characterizes the surficial terrestrial sediment (0 ft. MLLW to -30 ft. MLLW).
- DMMU 4 is comprised of subsample locations 2A 2B: Characterizes the subsurface terrestrial sediment (-30 ft. MLLW to -60 ft. MLLW).
- DMMU 5 is comprised of subsample locations 3A 3C: Characterizes the surficial terrestrial sediment (0 ft. MLLW to -30 ft. MLLW).
- DMMU 6 is comprised of subsample locations 3A 3C: Characterizes the subsurface terrestrial sediment (-30 ft. MLLW to -60 ft. MLLW).

The marine sampling has been designed based on recent bathymetry data (Appendix E) such that shallow marine areas and deeper marine areas are analyzed as separate DMMUs. Both water-based/marine DMMUs (DMMU 7 and 8) will be characterized by six subsamples. At both DMMU 7 and 8, sediment will be collected from the existing depth to -60 ft. MLLW, the proposed depth of dredge.

- DMMU 7 is comprised of subsample locations 4A 4D: Characterizes the shallow marine sediment from existing depths to -60 ft. MLLW.
- DMMU 8 is comprised of subsample location 5A 5D: Characterizes marine sediment from existing depths to -60 ft. MLLW.

Sediment samples at the Harbor Island New Dock and Facilities dredge footprint will be collected using a Geoprobe or similar manufacturer drilling rig. Before and after each use, all parts will be thoroughly cleaned by flushing with ambient water to remove all remnant sample material, washing with Liquinox, rinsing with isopropyl alcohol, and then rinsing with deionized water. Cores will be collected in approximately 10-foot sections depending on sediment characteristics. During sampling, a clean new liner is used for each core section. The probe rods and sample tubes will be cleaned using clean water and phosphate-free soap; cycle the brush inside the probe rod or sample tube to remove contaminants. Rinse with clean water and allow to air-dry.

The drilling rig will be truck or buggy mounted. For terrestrial samples, the rig will be driven to the sample location. For samples over the water, the truck will be mounted on a barge or sampling vessel with a moonpool. The sampling vessel will be positioned so the moonpool is over the sample location and then will be anchored in place using spuds.

During coring, a decontaminated core catcher will be placed over the threaded end of the cutting shoe. In consolidated soils, a core catcher may not be required and may not be used. The core liner will be fitted to the cutting shoe and the entire assembly will be inserted into the sampling tube, the cutting shoe threaded to the sampling tube, and the entire assembly will be threaded and securely tightened to the drive head.

To collect the core material, the sampler will be positioned directly under the hammer with the cutting shoe centered between the toes of the probe foot. The sampler will be advanced into the sediment using pressure and percussion until the drive head reaches the sediment surface. The core assembly will then be recovered, and the core liner extracted from the sample tube. The physical characteristics of the recovered sample will be visually logged, and the sample material will be set aside to be homogenized with the other sections of the core from the same sample. The process will be repeated until reaching target penetration depth or refusal, whichever is encountered first. If one core does not produce enough sample material for analysis, additional cores will be collected near the target coordinates until the required volume is collected.

At each location, collected sediment samples will be placed directly into appropriately labeled 5-gallon buckets. Multiple samples may be required to fill each bucket. Buckets will be filled completely to avoid head space, lids tightly secured, and containers placed into an ice chest. These samples will later be thoroughly homogenized by the laboratory. Refer to Table 4 for sediment sample quantities to be collected. Additional samples collected representing each DMMU subsample, samples collected from the three ODMDS area substations, and samples collected from the Reference Area substations for chemical analysis will be composited. Equal portions of sediment from each

subsample or substation location will be placed into appropriately labeled pre-cleaned glass or Teflon-lined containers. The lids will be tightly secured, and the containers placed into an ice chest with sufficient cushioning material to prevent breakage during shipment. Sample material will be thoroughly composited at the analytical laboratory prior to analysis.

The collection of sediment samples will be completed using a surface grab sampler to collect the approximate top 2 ft. of sediment. Surface grab samples will be collected with a stainless-steel grab sampler capable of penetrating the sediment surface to a depth of about 1ft. and appropriately weighted to counteract currents during descent. Prior to collection at each station, the grab sampler will be flushed with ambient water to remove all remnant sample material, washed with Liquinox, rinsed with isopropyl alcohol, and then rinsed with deionized water to avoid cross-contamination among sample sites. Other sampling equipment (including stainless steel bowls, bins, and spoons) will also be thoroughly flushed with ambient water and rinsed with deionized water prior to sample collection at each station to avoid cross-contamination among sites. Samples collected from the DMMU subsample locations and the three ODMDS area substations for chemical analysis will be composited. Equal portions of sediment from each substation will be placed into appropriately labeled pre-cleaned glass or Teflon-lined containers. The lids will be tightly secured, and the containers placed into an ice chest with sufficient cushioning material to prevent breakage during shipment. Sample material will be thoroughly composited at the analytical laboratory prior to analysis.

All sample, subsample, and substation locations are detailed in Table 2 and Table 3.

2.6 Specific Instructions for Water Sampling

Water samples will be collected at the locations specified in Table 2. Water samples will be collected with a suitable non-contaminating water sampling device. Food-grade hoses will be used. Special care will be taken to avoid the introduction of contaminants from the sampling device and the containers. Water samples will be collected at a depth approximately one-half to two-thirds of the overall depth from the water surface to the sediment bottom but must be at least 1 meter above the sediment surface. These water-collection depths will provide sufficient clearance from fluid mud layers that may be present. Prior to sample collection, an initial volume of water equaling at least 10 times the hose volume will be pumped through the sampling device and discarded. The water sample will then be collected into suitable pre-cleaned and preserved sample containers as appropriate for analytical testing.

Instructions for collection of water samples is provided in Tables 2 through 4 and includes sample volume, container type, handling, storage, and labeling for each station.

Harbor Island New Dock and Facilities Dredge Footprint –The sample will be
placed into appropriately labeled pre-cleaned containers, filling the containers
completely to avoid head space. The lids will then be tightly secured, and the
containers will be stored at 4°C throughout the remaining sampling period and
shipping. Exact sampling position will be recorded for each sample collection.

- Corpus Christi ODMDS –The sample will be placed into appropriately labeled precleaned containers, filling the containers completely to avoid head space. The lids will then be tightly secured, and the containers will be stored at 4°C throughout the remaining sampling period and shipping. Exact sampling position will be recorded for each sample collection.
- Reference Area –The sample will be placed into appropriately labeled pre-cleaned containers, filling the containers completely to avoid head space. The lids will then be tightly secured, and the containers will be stored at 4°C throughout the remaining sampling period and shipping. Exact sampling position will be recorded for each sample collection.

2.7 Sample Shipment

All sample material will be delivered directly to the analytical laboratories. Shipping containers and packaging will protect the sample containers from breakage and holding sample temperatures between 2°C and 6°C. Samples will be shipped within 1 day of completion of all sampling activities.

Alternatively, shipments may be made using a refrigerator truck capable of maintaining temperatures between 2°C and 6°C, but all holding times must be met irrespective of shipping methods. The completed chain of custody form must be included with sample delivery regardless of the selected shipment alternative.

2.8 Schedule for Work Performed

The work described in this SAP will be completed according to the schedule presented in Table 1. Since the timing of the commencement of field sampling is not known at this time, the schedule is presented in number of days after field work is completed. It is anticipated that the sampling will be performed in mid to late 2021.

Table 1. Estimated Schedule for Tasks

Responsibility	Activity	Calendar Days After the Completion of Field Sampling
Contractor	Commencement of Field Sampling	To Be Determined
Contractor	Completion of Field Sampling	To Be Determined
Contractor	SPP Bioassays Begin	5
Contractor	SPP Bioassays Completed	7
Contractor	SP Bioassays Begin	19
Contractor	SP Bioassays Completed	21
Contractor	Bioaccumulation Begin	31
Contractor	Bioaccumulation Completed	34
Contractor	Chemical Bulk Analyses Completed	42
Contractor	Chemical Tissue Analyses Completed	118
Contractor	Submit Draft Report to PCCA	135
PCCA	Receive PCCA Comments on Draft Report	145
Contractor/PCCA	Submit Draft Report to USACE	155
USACE	USACE Review and Concurrence Request to EPA	185
EPA	EPA Comments Received by	215
Contractor/PCCA	Address EPA comments by	245
EPA	Final Report Approved by EPA	275

2.9 Deliverables

An evaluation report will be provided which will describe the testing specified herein and include data, interpretation, and conclusions. The field portion will describe sampling methods and materials, exact sample locations (latitude and longitude) and water depth at each sub-station, surface water quality parameters at each substation (pH, temperature, and salinity), daily observations, and any deviations from the SAP. After client review, any recommended changes will be incorporated, and a finalized plan will be provided to the client. A contamination report will be prepared and submitted from data collected in accordance with this SAP. Deliverables will include both a hard copy and electronic copy of the report, associated figures and tables, chemical and physical analysis, laboratory electronic data deliverables (EDD's) in Microsoft Excel format. Additionally, sampling data will be collected as described below:

"Geospatial data of all sample locations will be provided in one or more of the following formats/files: ESRI ArcGIS shapefile (*.shp, *.shx, and *.dbf), ArcGIS geodatabase file (*.mdb, *.gdb), comma separated values file (*.csv). Raw data, copies of physical field books, and digital data collector files will be included in addition to any processed data along with corresponding metadata for each. A minimum of latitude and longitude will be provided in State Plan Zone 5 Zone 5426 FIPS 4205 TX-South projection. If a different projection is used, information regarding the Horizontal Projection and/or Coordinate system details will be provided, along with Vertical Datum information.

All layers and database files that are created and deemed the deliverable, also known as the finished product, at the end of the initial data collection process and post analysis from said field data collections, will, at a minimum, fulfill the requirements of the default

metadata standards set forth in ArcMap or ArcMap Pro (title, summary, description, tags, citation, date field data was collected)."

3 PROJECT DESIGN

3.1 Design Assumptions

The field contractor will collect sediment and water samples from the Harbor Island Dock and Facility dredge footprint, CC ODMDS, and Reference Area as outlined in this SOW/SAP and ensure delivery of all collected samples to the analytical provider, as appropriate, within the specified holding times. Procedures for sample collection, required volume, handling, preservation and storage, and shipment are outlined in Section 3.

Close coordination by the field contractors, subconsultant, and testing laboratory with PCCA and USACE personnel is an essential component of this SOW/SAP.

If, at the time of sampling and analyzing, conditions require major deviation from the approach outlined in this SOW/SAP, the Contractor will discuss the deviation with the PCCA, who will then coordinate directly with USACE and USEPA.

Should there be a lack of material present at a sampling location, the field contractor, PCCA, the USACE Technical POC, and USEPA will jointly decide how to shift the sample locations. All details of the steps taken to arrive at a decision as to when/how to shift a sampling point will be noted in the field logs and documented in the final report.

3.2 Sample Sites

Table 2 shows the sample type and location for each sample to be collected. The locations are also depicted within the figures provided in Appendix A.

The Reference Area and ODMDS placement area samples will each consist of composites of three subsamples of equal volume collected at the locations described in the following table. Actual positions of each sample will be recorded and reported on the field data sheets. Figure 3 in Appendix A shows the location of the project samples, with their coordinates provided in Table 2. Reference and Placement Area samples are shown in Appendix A, Figure 4.

 Table 2.
 Sample Locations and Compositing Scheme

	Harbor Island New Dock and Facilities Dredge Footprint						
	Location		Soil/ Sediment	Soil/ Sediment Sample Matrix			
Area	ID	Location Coordinates	Interval	Soil/ Sediment	Water	Elutriate	Notes
	1A	27.847502, - 97.070783	0' to -30' MLLW	X		Site Water to	Site Water to be
DMMU 1	1B	27.84651, -97.071294	0' to -30' MLLW	X		Х	collected at location
	1C	27.845929, - 97.069999	0' to -30' MLLW	Х			4A
	1A	27.847502, - 97.070783	-30' to -60' MLLW	х		х	Sie Water to be
DMMU 2	1B	27.84651, -97.071294	-30' to -60' MLLW	X			collected at location 4A
	1C	27.845929, - 97.069999	-30' to -60' MLLW	X			
DMMILO	2A	27.846365, - 97.068123	0' to -30' MLLW	X			Site Water to be
DMMU 3	2B	27.845583, - 97.067716	0' to -30' MLLW	Х		X	collected at location 4A
DMMU 4	2A	27.846365, - 97.068123	-30' to -60' MLLW	X		.,	Site Water to be
DIVINIO 4	2B	27.845583, - 97.067716	-30' to -60' MLLW	Х		X	collected at location 4A
	3A	27.84649, -97.065651	0' to -30' MLLW	X			
DMMU 5	3B	27.846002, - 97.063431	0' to -30' MLLW	X			Site Water to be collected at location
	3C	27.845618, - 97.065255	0' to -30' MLLW	X			4B
	3A	27.84649, -97.065651	-30' to -60' MLLW	X			6" 14" ()
DMMU 6	3B	27.846002, - 97.063431	-30' to -60' MLLW	X		x	Site Water to be collected at location 4B
	3C	27.845618, -	-30' to -60' MLLW	X			4D

		97.065255					
DMMU 7	4A	27.844886, - 97.068894	Existing to -60' MLLW	X	х		
	4B	27.844707, - 97.065794	Existing to -60' MLLW	X	Х	X	Site Water to be collected at location
	4C	27.84459, -97.063949	Existing to -60' MLLW	X			4B
	4D	27.844419, - 97.067497	Existing to -60' MLLW	X			
	5A	27.843348, - 97.068079	Existing to -60' MLLW	X			
DMMU 8	5B	27.843758, - 97.066214	Existing to -60' MLLW	X	Х	X	Site Water to be collected at location
DIVIIVIO 6	5C	27.844124, - 97.064389	Existing to -60' MLLW	X		^	5B
	5D	27.844903, - 97.062166	Existing to -60' MLLW	х			
		C	orpus Christi New Work				
Area	Location	Location Coordinates Soil/ Sediment		Sample Matrix		Notes	
71100	I IN				VAI-4		
	ID		Interval	Soil/ Sediment	Water	Elutriate	
	ODMDS A	27.790753°, - 96.999478°	N/A	Soil/ Sediment		Elutriate	Site Water to be Collected at ODMDS
ODMDS				Soil/ Sediment	X	Elutriate	Site Water to be
ODMDS	ODMDS A	96.999478° 27.788836°, -	N/A			Elutriate	Site Water to be Collected at ODMDS
ODMDS	ODMDS A	96.999478° 27.788836°, - 96.997122° 27.788157°, -	N/A N/A			Elutriate	Site Water to be Collected at ODMDS
ODMDS	ODMDS A ODMDS B ODMDS C	96.999478° 27.788836°, - 96.997122° 27.788157°, -	N/A N/A N/A Reference Area		X	Elutriate	Site Water to be Collected at ODMDS
ODMDS Area	ODMDS A	96.999478° 27.788836°, - 96.997122° 27.788157°, -	N/A N/A N/A	X	X	Elutriate	Site Water to be Collected at ODMDS
	ODMDS A ODMDS B ODMDS C Location ID REF A	96.999478° 27.788836°, - 96.997122° 27.788157°, - 97.00032°	N/A N/A N/A Reference Area Soil/ Sediment	X Sample Soil/ Sediment	X Matrix Water		Site Water to be Collected at ODMDS B
	ODMDS A ODMDS B ODMDS C Location ID	96.999478° 27.788836°, - 96.997122° 27.788157°, - 97.00032° Location Coordinates	N/A N/A N/A Reference Area Soil/ Sediment Interval	X	X		Site Water to be Collected at ODMDS B

Table 3. Summary of Chemical, Biological, and Physical Analyses to Be Performed on Project Sediments and Water

С	hemical and Physical A	nalysis			
Metals, OC Pesticides, Aroclors, Semivolatiles, Cyanide, Ammonia, TOC, TPH, Organotins, %					
Solids*, Grain Size*, pH					
SEDIMENT	WATER	ELUTRIATE**			
DMMU 1					
1A (0'to-30') Composite	— NA	DMMU 1 Elutriate			
1B (0'to-30') Composite		Divilvio i Liutilate			
1C (0'to-30') Composite					
DMMU 2					
1A (30'to-60') Composite	NA	DMMU 2 Elutriate			
1B (30'to-60') Composite		Divilvio 2 Liutilato			
1C (30'to-60') Composite					
DMMU 3					
2A (0'to-30') Composite	NA	DMMU 3 Elutriate			
2B (0'to-30') Composite					
DMMU 4					
2A (30'to-60') Composite	NA	DMMU 4 Elutriate			
2B (30'to-60') Composite					
DMMU 5					
3A (0'to-30') Composite	NA	DMMU 5 Elutriate			
3B (0'to-30') Composite	NA .	DIVINO 5 Elutrate			
3C (0'to-30') Composite					
DMMU 6					
3A (30'to-60') Composite	NA	DMM I C Flutricts			
3B (30'to-60') Composite	MA NA	DMMU 6 Elutriate			
3C (30'to-60') Composite					
DMMU 7					
4A (existing to -60') Composite	4A SW				
4B (existing to -60') Composite	4B SW	DMMU 7 Elutriate			
4C (existing to -60') Composite	NA				
4D (existing to -60') Composite	NA				
DMMU 8					
5A (existing to -60') Composite	NA				
5B (existing to -60') Composite	NA	DMMU 8 Elutriate			
5C (existing to -60') Composite	5C SW				
5D (existing to -60') Composite	NA				
ODMDS Composite	ODMDS B SW	NA			
REF Composite	NA	NA			

Toxicology					
SPP BIOASSAY	SP BIOASSAY	BIOACCUMULATION***			
Zooplankton Americamysis	Filter Feeder	Filter Feeder Macoma nasuta, &			
bahia (<24 hrs.), Crustacean	Americamysis bahia, &	Deposit-Feeder / Burrower Alitta			
Americamysis bahia, Fish	Deposit-Feeder /	virens (formerly Neanthes virens)			
Menidia beryllina or Cyprinodon	Burrower Leptocheirus				
variegatus	plumulosus or Ampelisca				
	abdita				
DMMU 1 Elutriate	DMMU 1 Composite	DMMU 1 Composite			
DMMU 2 Elutriate	DMMU 2 Composite	DMMU 2 Composite			
DMMU 3 Elutriate	DMMU 3 Composite	DMMU 3 Composite			
DMMU 4 Elutriate	DMMU 4 Composite	DMMU 4 Composite			
DMMU 5 Elutriate	DMMU 5 Composite	DMMU 5 Composite			
DMMU 6 Elutriate	DMMU 6 Composite	DMMU 6 Composite			
DMMU 7 Elutriate	DMMU 7 Composite	DMMU 7 Composite			
DMMU 8 Elutriate	DMMU 8 Composite	DMMU 8 Composite			
NA	HI-20-REF Composite	HI-20-REF Composite			

^{* %} Solids and grain size will be determined for sediment samples only.

3.3 Sample Volumes and Containers

In order to complete all required analytical testing, approximately 30 gallons of sediment and 10 gallons of site water will be collected per sample location. Sediment and site water to be tested for physical and chemical constituents will be placed in Teflon-lined buckets. Sediment and site water to be tested for toxicological analyses will be placed in foodgrade plastic buckets. Table 4 shows the approximate volumes required for each type of testing.

Table 4. Estimated Sample Volume Needed by Analytical Group

Analytical Group	Sediment per Sample	Site Water per Sample (gallons)
Metals	4 oz.	2
Organics	32 oz.	2
TOC	4 oz.	NA
Elutriate Prep	2 gal	3-5
Physical Analysis	½ - 1 gal	NA
Toxicology	20-25 gal	3
	30-35 gal	10-12
Total Volume per Sample	(includes volume for archive	(includes volume for archive and
	and reanalysis, if required)	reanalysis, if required)

^{**} Elutriate prepared from a composite of substations will use site water as described in Table 2.

^{***} Tissue will be analyzed for the presence of contaminants of concern (COCs) detected in project sediments and approved by USACE and EPA prior to completing analysis.

All sediment and site water for the preparation of elutriates will be maintained at a temperature of 4°C during storage and sample transit to the laboratories. In addition, pre-cleaned and pre-preserved sample containers for background site water analysis will be provided by the laboratory as required by the testing protocols and specific EPA methodology. Tissue analysis will require approximately 70 g of material to complete all potential analyses, including quality control.

Sample labels will include at a minimum the sample ID, sample date and time, sample collector, matrix, preservative, if appropriate, and the project ID. Sample IDs will be linked to a project specific chain-of-custody form, which will include additional information for the laboratory to perform analytical testing in accordance with the requirements in this document.

3.4 Chain of Custody

Appropriate chain-of-custody protocols will be followed. Guidance can be found in EPA (1986), EPA/USACE (1995), EPA/USACE (1998), and Plumb (1981).

4 ANALYTICAL AND REPORTING REQUIREMENTS

4.1 Chemical Analyses

The analyses of samples will be as specified in Table 5. These samples include bulk sediment, water, elutriates and grain size. All analyses will be performed by a laboratory accredited by an accrediting authority recognized by the NELAP for the analytes/analyte groups and matrices to be analyzed. All analyses will be performed within the holding period described in the referenced guidance documents. Parameters to be analyzed are listed in Table 5, along with required detection limits. Sediment sample data will be reported as dry weight.

Table 5. Target Detection Levels ^a (TDLs) for Analysis by Sample Type

Chemical	Sediment	Tissue	Water/Elutriate
Metals ^d	mg/kg	mg/kg	μg/l
Antimony	2.5	0.1	3 (0.02) ^C
Arsenic	0.3b	0.1	1 (0.005) ^C
Beryllium	1 ^b	0.1	0.2
Cadmium	0.1	0.1	1 (0.01) ^C
Chromium (total)	1 ^b	0.05b	1
Chromium (3+)	1	50	1
Copper	1 ^b	0.1	1 (0.1) ^C
Lead	0.3b	0.1	1 (0.02) ^C
Mercury	0.2	0.01	0.2 (0.0002) ^C
Nickel	0.5 ^b	0.1	1 (0.1) ^C
Selenium	0.5 ^b	0.2	2
Silver	0.2	0.1	1 (0.1) ^C
Thallium	0.2	0.1	1 (0.02) ^C
Zinc	2 ^b	0.1 ^b	1 (0.5) ^C
Conventional/Ancillary Parameters	mg/kg	mg/kg	mg/ĺ
Ammonia	0.1	-	0.03
Cyanides	2	1	0.1d
Total Organic Carbon	0.1%	-	0.1%
Total Petroleum Hydrocarbons	5	50	0.1
Grain Size	1%	-	-
% Solids	0.1%	-	-
LPAH Compounds	μg/kg	μg/kg	μg/l
Naphthalene	20	20	0.8b
Acenaphthylene	20	20	1.0 ^b
Acenaphthene	20	20	0.75 ^b
Fluorene	20	20	0.6 ^b
Phenanthrene	20	20	0.5 ^b
Anthracene	20	20	0.6 ^b
HPAH Compounds	μg/kg	μg/kg	μg/l

Chemical	Sediment	Tissue	Water/Elutriate
Fluoranthene	20	20	0.9b
Pyrene	20	20	1.5 ^b
Benzo(a)anthracene	20	20	0.4b
Chrysene	20	20	0.3b
Benzo(b&k)fluoranthene	20	20	0.6b
Benzo(a)pyrene	20	20	0.3b
Indeno[1,2,3-c,d]pyrene	20	20	1.2 ^b
Dibenzo[a,h]anthracene	20	20	1.3b
Benzo[g,h,i]perylene	20	20	1.2 ^b
Organonitrogen Compounds	μg/kg	μg/kg	μg/l
Benzidine	5	5	1
3,3-Dichlorobenzidine	300b	-	3b
2,4-Dinitrotoluene	200b	-	2b
2,6-Dinitrotoluene	200b	-	2 ^b
1,2-Diphenylhydrazine	10	100	1
Nitrobenzene	160 ^b	-	0.9b
N-Nitrosodimethyl amine	-	-	3.1 ^b
N-Nitrosodi-n-propylamine	150 ^b	-	0.9b
N-Nitrosodiphenylamine	20	20	2.1 ^b
Phthalate Esters	μg/kg	μg/kg	μg/l
Dimethyl Phthalate	50	20	1 ^b
Diethyl Phthalate	50	20	1 ^b
Di-n-butyl Phthalate	50	20	1 ^b
Butyl Benzyl Phthalate	50	20	4b
Bis[2-ethylhexyl] Phthalate	50	20	2 ^b
Di-n-octyl Phthalate	50	20	3b
Phenols/Substituted Phenols	μg/kg	μg/kg	μg/l
Phenol	100	20	10
2,4-Dimethylphenol	20	20	10
Pentachlorophenol 2,4,6-Trichlorophenol	100	100	50
4-Chloro-3-methylphenol	140 ^b	-	0.9b
	140 ^b		0.7 ^b
2-Nitrophenol	200b	-	2 ^b
4-Nitrophenol	500b	-	5b
2,4-Dinitrophenol	500b	-	5b
2-Chlorophenol	110 ^b	-	0.9b
2,4-Dichlorophenol	120 ^b	-	0.8b
4,6-Dinitro-o-cresol	600	20	10
Polychlorinated Biphenyls Total PCB	μg/kg 1	μ g/kg 2	μ g/l 0.01
Pesticides	μg/kg	μg/kg	μg/I

Chemical	Sediment	Tissue	Water/Elutriate
Aldrin	3b	6b	0.03 ^b
Chlordane and Derivatives	3b	6b	0.03 ^b
Dieldrin	5b	10	0.02
4,4'-DDD	5b	10	0.1
4,4'-DDE	5b	10	0.1
4,4'-DDT	5b	10	0.1
Endosulfan and Derivatives	5b	10	0.1
Endrin and Derivatives	5b	10	0.1
Heptachlor and Derivatives	3b	6b	0.1
Alpha-BHC	3b	6b	0.03
Beta-BHC	3b	6b	0.03
Delta-BHC	3b	6b	0.03
Gamma-BHC (Lindane)	3b	6b	0.1
Toxaphene	50	50	0.5
Chlorinated Hydrocarbons	μg/kg	μg/kg	μg/l
1,3-Dichlorobenzene	20	20	0.9b
1,4-Dichlorobenzene	20	20	1b
1,2-Dichlorobenzene	20	20	0.8b
1,2,4-Trichlorobenzene	10	20	0.9b
Hexachlorobenzene	10	20	0.4 ^b
2-Chloronapthalene	160 ^b	-	0.8b
Hexachlorocyclopentadiene	300p	-	3.0b
Hexachloroethane	100	40	0.9b
Hexachlorobutadiene	20	40	0.9b
Halogenated Ethers	μg/kg	μg/kg	μg/l
Bis(2-chloroethyl) ether	130 ^b	-	0.9b
4-chlorophenyl phenyl ether	170 ^b	-	0.6 ^b
4-Bromophenyl phenyl ether	160 ^b	-	0.4 ^b
Bis(2-chloroisopropyl) ether	140 ^b	-	0.7 ^b
Bis(2-hloroethoxy) methane	130 ^b	-	1 ^b
Miscellaneous	μg/kg	μg/kg	μg/l
Isophorone	10	100	1
Organotins	0.01	0.01	0.01

^aThe primary source of these TDLs was U.S. EPA/USACE (1995), *QA/QC Guidance for Sampling and Analysis of Sediments, Water and Tissues for Dredged Material Evaluations*.

^b These values are based on recommendations from the EPA Region 6 Laboratory in Houston; these values were based on data or other technical basis.

^C The values in parentheses are based on EPA "clean techniques", (EPA 1600 series methods) which are applicable in instances where other TDLs are inadequate to assess EPA water quality criteria.

^d Will be expressed as dissolved values in water samples, except for mercury and selenium, which will be reported as Total Recoverable Concentrations.

4.2 Laboratory Quality Control for Chemical Analysis

The Laboratory Quality Control program must include, but not be limited to:

- a) <u>Accreditation</u> The laboratory will have current accreditation status, consistent with standards adopted by the National Environmental Laboratory Accreditation Conference (NELAC).
- b) <u>Method Blanks</u> Will be performed at a frequency of one per batch of samples, per matrix type, per sample extraction or preparation method.
- c) <u>Laboratory Control Samples</u> Will be analyzed at a minimum of 1 per batch of 20 or fewer samples per matrix type, per sample extraction or preparation method, except for analytes for which spiking solutions are not available.
- d) Matrix Spikes Will be performed at a frequency of 1 in 20 samples per matrix type, per sample extraction or preparation method, except for analytes for which spiking solutions are not available. The spike concentration will be no greater than 25% to 50% of the maximum concentration along the linear segment of the instrument calibration curve for any analyte.
- e) <u>Matrix Spike Duplicates</u> Will be analyzed at a minimum of 1 in 20 samples per matrix type, per sample extraction or preparation method.
- f) <u>Surrogates</u> Surrogate compounds must be added to all samples, standards, and blanks for all organic chromatography methods except when the matrix precludes its use or when a surrogate is not available.
- g) <u>Calibration</u> Calibration of instrumentation and performance of periodic instrument checks according to manufacturer and EPA recommendations and appropriate SOPs.
- h) <u>Studies</u> Participation in performance evaluation and method studies available from EPA, American Society for Testing and Materials (ASTM), or other agency. Performance evaluation under such a program will be conducted at least on a semiannual basis.
- i) Reagent Evaluation Each new shipment or lot of solvent, reagent, or adsorbent will be evaluated for purity in accordance with appropriate SOPs.
- j) <u>Analytical Standards</u> Standards will be prepared and verified in accordance with appropriate SOPs.
- Quality Control Review Calculation of quality control (QC) limits and preparation of control charts will be performed in accordance with appropriate SOPs.

- Outlier Data Out-of-control events or outlier data will be noted, and corrective action will be taken in accordance with appropriate SOPs.
- m) <u>Detection and Reporting Limit</u> Method detection limit (MDL) and/or laboratory reporting limit (LRL) check standards will be analyzed one per bath as required to meet project TDLs.
- n) <u>Documentation</u> Documentation of all QC activities performed specifically in conjunction with this project will be furnished along with sample results. Copies of all raw data, lab notes, chromatograms, standard curves, etc. will be furnished upon request. EPA approved QCAR forms will be completed by the laboratory and supplied with other QC documentation. The CQAR form that will be used for this project is shown in Appendix E.

Chemical analysis of water and elutriate samples will be performed according to analytical methods in *Guidelines Establishing Test Procedures for the Analysis of Pollutants under the Clean Water Act; Final Rule and Technical Amendments* in the October 8, 1991, *Federal Register* (56 FR 50758) (EPA, 1991) or later versions (http://www.ecfr.gov/cgi-bin/textidx?SID=bcb9f65726c8a9b5201aeb5084ca253f&node=se40.23.136_13&rgn=div8).

Sediment samples will be analyzed using SW0846 methods (EPA, 1986) or later versions. Table 5 lists the chemicals and their TDLs to be analyzed for in sediment, tissue, and water/elutriate samples. The following samples will undergo chemical analysis:

- Sediment samples from (8 total) DMMUs, composited from DMMU 1 substations (3 total), DMMU 2 substations (3 total), DMMU 3 substations (2 total), DMMU 4 substations (2 total), DMMU 5 substations (3 total), DMMU 6 substations (3 total), DMMU 7 substations (4 total) and DMMU 8 substations (4 total);
- Sediment samples from (1 total) ODMDS, composited from ODMDS substations (3 total);
- Sediment samples from the Reference Area (1 total), composited from reference substations (3 total):

Analyses will be conducted to concentrations less than or equal to the TDLs in Table 5. The laboratory's LRL should be lower than the TDL. LRLs will not be lower than the low calibration or LRL check standard for the appropriate method.

If MDLs for certain COCs are reported by the lab, the lab must verify them by including one MDL check sample in project sample batches for every 20 project samples (USACE, 2001). The lab will not report COCs detected at levels between the LRL and the MDL unless the MDL has been verified.

For elutriate samples, the lab will follow the protocol in Section 9.1 of the RIA for sample preparation. These samples are prepared using ambient water and sediment from each station. After the settling period,

- To analyze organic compounds, particulate matter will be removed from elutriate by high-speed centrifugation rather than by filtration, and the samples will undergo solvent extraction.
- To analyze metals, elutriate will be filtered, or centrifuged and filtered, through a 0.45-µm filter prior to analysis.

Elutriate sample results will be compared to Texas Surface Water Quality Standards (WQS) and Federal Water Quality Criteria (WQC). Samples to be analyzed for metals will be filtered through a clean 0.45-µm filter prior to sample analysis, except for mercury and selenium. Metals analyses will be reported as dissolved fraction, except mercury and selenium which will be reported as total.

Percent solids and grain size analysis will be conducted on each sediment sample using ASTM method D422. Sieve analysis will utilize U.S. standard sieve numbers 4, 10, 20, 40, 50, 70, 100, 140, and 200; results will be reported as percent finer by weight. Sediment samples will be reported as dry weight.

Tissue concentrations will be reported as dry weight and wet weight.

Detailed procedures for performing these tests can be found in EPA/USACE (1991) and EPA/USACE (2003) and are described below.

- Perform suspended particulate phase (SPP) bioassays on appropriately sensitive marine water-column organisms exposed to dilution water (artificial or natural seawater), control water, and dredged material dilution series (8 composite samples) from the Harbor Island New Dock and Facilities Project. Determine the existence of any significant difference in biological effects (survival) between dilution water and 100% dredged material treatment. If statistical significance exists, determine the LC₅₀ and run appropriate models.
- Perform 10-day solid phase bioassays on appropriately sensitive benthic marine organisms exposed to the reference area, negative control (native organisms' sediment or similar clean control matrix), and proposed dredging site (8 composite samples) sediment samples from the Harbor Island New Dock and Facilities Project. Determine the existence of any significant difference between survival in test sediments and reference sediment.
- Perform one series of 28-day bioaccumulation tests with appropriate sensitive benthic marine organisms exposed to the reference area and proposed dredging site (8 composite samples) sediment samples from the Harbor Island New Dock and Facilities Project. Determine the existence of any significant difference between concentrations of chemicals of concern in tissues exposed to test sediments and 1) FDA Action Levels (where they exist) and 2) sediments from the reference areas. Chemical analyses of archive tissues samples will also be performed to determine background levels of COCs. Control site tissue will not be subjected to chemical analysis.

4.3 Water Column Bioassay, Solid Phase Bioassay/Bioaccumulation4.3.1 Suspended Particulate Phase (Elutriate) Toxicity Analysis

Bioassay analysis of the SPP (elutriate) from each channel station noted above will be conducted. Procedures for performing these tests can be found in *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (EPA, 2002), Appendix E of the *Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. –Testing Manual* (EPA/USACE, 1998), and the RIA. The recommended species are shown below. Changes from these species or those recommended in the RIA must receive written approval from USACE and EPA Region 6 prior to testing.

- Zooplankton Americamysis bahia, ≤1 day old.
- Crustacean -Americamysis bahia, 1-5 days old.
- Fish Menidia beryllina, 9-14 days old.

If target species necessary to complete analysis are not available, PCCA will coordinate with both USACE and EPA to determine an adequate substitute.

Sample Preparation:

- Mix one volume of sediment with 4 volumes of site water at room temperature, mix vigorously for 30 minutes, settle for 1 hr. and then siphon. The elutriate which is siphoned is the SPP to be tested.
- Initiate test within 24 hours after preparation of the SPP sample.
- Test elutriate for ammonia. If un-ionized ammonia is >0.40 mg/l, total ammonia is >30 mg/l, or any toxicity in the test is believed to be due to ammonia, a toxicity identification evaluation may be conducted to confirm that ammonia caused the observed toxicity.
- If the elutriate smells like hydrogen sulfide, it will be aerated until the odor is not detected.
- The laboratory will use either natural sea water or a commercially available artificial seawater such as Crystal Sea Marine Mix, Instant Ocean, Hawaiian Marine Mix, or equivalent. Mixing and aging of saltwater will occur in large, high-density polyethylene (HDPE) tanks held at appropriate test temperature.

Test Conditions:

- 96-hr exposure for crustaceans and fish; 48-hr exposure for zooplankton. Clean glass or new disposable food-grade, polypropylene test chambers.
- · Five replications of 10 organisms each;

- Americamysis bahia, 0.5 or 1-L beakers containing 375 or 750 mL test media, respectively
- Menidia beryllina, 1-L beakers containing 750 mL test media
- Temperature: 20°C ± 2 °C.
- Salinity: 30% ± 2%.
- Dissolved oxygen ≥40% saturation.
- Three dilutions (10, 50 and 100%) of SPP and a control treatment of 100% dilution water will be tested.
- Dilution water will be synthetic sea water.
- Survival counts will be recorded daily along with temperature, pH, salinity and dissolved oxygen. Ammonia will be measured at test initiation and termination.
- Feeding (Artemia):
 - o Americamysis bahia will be fed twice daily to minimize aggressive interactions.
 - o *Menidia beryllina* will be fed at 48-hr.
- Reference toxicant tests will be performed in accordance with Section 9.3.1 of the RIA (Appendix G.2.10.5.2 of the Inland Testing Manual (ITM)).

Acceptability Criteria:

- 90% control survival for fish and crustaceans.
- 70% control survival for zooplankton.

QA/QC:

 Reference toxicant bioassays on all animals. 96-hour tests unless there is a historical basis for a different time period.

Data Presentation:

- Name of Species.
- Number of replicates and number of animals per replicate.
- Survival from each replicate.
- Daily water quality data.
- Additional information as appropriate.

Data Analysis:

Reject test and repeat bioassay when:

Mortality is > 10% in the control treatment or in the dilution water treatment for a
particular test species (30% mortality/abnormality for zooplankton). Test repeated
with dilution water will use artificial sea/salt mixture prepared in strict accordance
with the manufacturer's instructions; adjusted to the salinity of the project area; and
allowed to age (with aeration) to ensure all salts are in solution and pH has
stabilized.

SPP is not toxic and the limiting permissible concentration (LPC) for water column toxicity is met when:

- Survival in all of the SPP treatments is greater than or equal to survival in the dilution water treatment.
- Survival in all of the SPP treatments is less than survival in the dilution water treatment, but the difference is ≤10%.
- Survival in the 100% SPP treatment is less than survival in the dilution water treatment, and the difference is >10% but statistical analysis show the 100% SPP treatment is not significantly different from the dilution water test.

Statistical procedures, recommended in the RIA, Section 9.3.3, for analyzing test data are described in detail in Section 13 of the Green Book and Appendix D of the ITM.

SPP is toxic and LPC for water column toxicity are not met when:

- Survival in the 100% SPP treatment is less than survival in the dilution water treatment, the difference is >10%, and statistical analysis shows that the 100% SPP treatment is significantly different from the dilution water test. When the 100% SPP treatment is toxic and LPC for water column toxicity is not met based on statistical analyses, the potential for water column toxicity will be modeled.
- STFATE will be used to model the dilution of dredged material effluent after discharge from a hopper dredge. Key parameters derived from the model for evaluating water-column toxicity are: 1) maximum concentration of dredged material in the water column outside the boundary of the disposal site during the 4-hour initial mixing period, and 2) maximum concentration in the water column in the marine environment after the 4-hour mixing period. The modeled concentrations of the dredged material are compared with the application factor of 0.01 of the 48- or 96-hour LC₅₀, to determine compliance.

The following points will be considered when making modeled concentrations comparisons with the 0.01 application factor:

- LC₅₀ is the concentration of the SPP lethal to 50% of the organisms.
- If greater than 50% mortality occurs in at least one of the serial dilutions of the SPP treatments, it may be possible to calculate an LC50 value.
- If less than 50% mortality occurs in all of the SPP treatments, it is not possible to calculate an LC₅₀. In such cases, the LC₅₀ is assumed to be >100%.

- If conditions are highly toxic, such that the 10% SPP treatment has greater than 50% mortality, further dilution must be made (new treatments of less than 10% dredged material elutriate) to attain a survival of greater than 50% and determine the LC₅₀ by interpolation.
- If both modeled concentrations are less than the 0.01 of the LC₅₀, there is no indication of water column toxicity attributable to the dredged material and the LPC for water column toxicity has been met.
- If either of the modeled concentrations exceeds 0.01 of the LC₅₀, the discharge does not meet the LPC for water column toxicity and disposal of the dredged material is not supported.
- If an LC₅₀ is determined, the LPC is calculated by multiplying the LC₅₀ by an application factor (AF). If scientifically justified, a chemical-specific AF may be applied (40 CFR 227.27(a)(3); otherwise, a default AF of 0.01 will be applied (40 CFR 227.27(1)(2)).

Statistical calculations performed for any required SPP test are as follows:

Cochran's test will determine the homogeneity of variances. If variances are homogeneous, or can be made homogeneous by data transformation, the Student's t-test will be performed utilizing 2 (n-1) degrees of freedom to determine if the differences in survival were significant. If variances are heterogeneous, a t-test will be used with only (n-1) degrees of freedom to determine the tabulated t-value. If necessary, a 96-hour LC50 would be calculated and a comparison made between the expected dilution from initial mixing and the LPC. Expected dilution calculations will be site-specific and based on available data from USACE, EPA, or other credible sources.

4.3.2 Solid Phase (Sediment) Bioassay

Sediment toxicity bioassays will be conducted on the composite sediment samples from each channel station, the reference area composite, and a true control.

Species:

 Amphipod – Leptocheirus plumulosus: mature species 3-5 mm in length, mixed sexes or Ampelisca abdita 3-5 mm in length (See Appendix E of the ITM for age, sex and species detail).

Toxicity testing will follow procedures described in section 11.2.1.1 of the Green Book and as specified in *Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Marine Invertebrates* (EPA, 1994) or *Standard Guide for Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods* (ASTM, 1994) or its most recent edition. Deviations must be approved by the USACE as coordinated with EPA Region 6 before they are implemented.

 Crustacean -Americamysis bahia: age 1-5 days old; 24-hour range in age (see Appendix E of the ITM for age, sex and species detail). Toxicity testing will follow procedures described in Section 11.2.1.1 of the Green Book and as specified in Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Marine Invertebrates (EPA, 1994).

If EPA method must be modified for the mysid test, deviations must be approved by USACE as coordinated with EPA Region 6 before they are implemented.

Sample Preparation:

- Measure ammonia in sediment pore water. If the ammonia concentration is >0.4 mg/l un-ionized ammonia or >30 mg/l total ammonia, the test sediment will be flushed with overlying water at up to 6 volume replacements per 24 hours, as described in Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Marine Invertebrates (EPA, 1994). Flushing will stop as soon as pore water ammonia levels are reduced to acceptable concentrations.
- Samples are stored at 4°C ± 2°C. Test chambers will be loaded with sieved sediment the day prior to the beginning of the test, or several days prior if ammonia is to be purged. Preparation will follow Section 11.2.1.1 of the Green Book.
- Sediment settled for at least 24 hours before test initiation.
- If test sediment has a hydrogen sulfide odor, the test chamber will be gently aerated until there is about 4 mg/l oxygen at the sediment-water interface.

Test Conditions:

- · Test with at least 2 cm of sediment.
- 10-day exposure
- · Feeding:
 - o Leptocheirus plumulosus/Ampelisca abdita: no feeding
 - o Americamysis bahia: daily feeding, Artemia
- Clean glass or new disposable food-grade, polypropylene test chambers.
- Five replicates of 20 amphipods in 1-liter test chambers, five replicates of 20 crustaceans in 1-liter test chambers.
- Temperature: 20°C ± 2°C for L. plumulosus, 20°C ± 2°C A. bahia
- Salinity:
 - Leptocheirus plumulosus/Ampelisca abdita: 20% ± 2%.
 - o Americamysis bahia: 30% ± 2%.
- Dissolved Oxygen: Maintained at ≥ 40% saturation.

- · Synthetic or natural sea water will be used.
- Measure temperature, dissolved oxygen, salinity, ammonia, and pH daily.
- The test chambers will be observed daily for the presence of dead animals and the
 data will be recorded. Note that since molts of organisms cannot be distinguished
 from dead carcasses in some cases, the observations made during the test may
 not correlate with final survival numbers. Unusual behavior such as emergence of
 infauna, formation of tubes or burrows, algal or bacterial growth, etc., will be noted.

Acceptability Criteria:

No more than 10% mysid or 20% amphipod true control mortality.

QA/QC:

 Reference toxicant bioassays on all animals. Twenty-four hour tests unless there is a historical basis for a different time period. Ammonia (as ammonium chloride) in water-only reference toxicant tests will be used for the amphipod mysid bioassays.

Data Presentation:

- · Name of species.
- Number of replicates and number of animals per replicate.
- Survival.
- Daily water quality data.
- Other information, as pertinent.

Data Analysis:

No indication of adverse effects due to the dredged material and the LPC for the solid phase is met:

- Survival in dredge sediments is ≥ survival in the reference sediment.
- Survival in dredge sediments is less than survival in the reference sediments but the difference is ≤10% (20% for amphipods).
- Survival in dredge sediments is less than survival in the reference sediments and the difference is > 10% (20% for amphipods) but the difference in survival between the two is not statistically significant. Statistical procedures recommended for analyzing test data are described in detail in Section 13 of the Green Book and Appendix D of the ITM.

LPC for sediment is not met and disposal of the dredged material is not supported:

 Survival in dredge sediments is less than survival in the reference sediments and the difference is > 10% (20% for amphipods) and the difference in survival between the two is statistically significant.

Statistical comparisons of mean survival will be made for each organism and for the total number of organisms if mean survival for any test is less than that at the reference station. If the variances are homogeneous or can be made homogeneous by transformation, an Analysis of Variance (ANOVA) will be conducted to determine if the differences between the test and reference sample survivals are statistically significant. If variances are heterogeneous and cannot be made homogeneous by transformation, the Kruskal-Wallace test, a non-parametric rank-sum test, will be done. If the ANOVA indicates a statistically significant difference in survival between dredge and reference sediments, the Dunnett's Procedure will be applied to determine which test had a mean that was statistically different from the reference station.

4.3.3 Bioaccumulation

Bioaccumulation tests will be conducted as specified in Section 12.0 of the Green Book. Procedures for performing these tests can be found in *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (EPA,1991) and Appendix E of the *Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual* (EPA/USACE, 1998). Bioaccumulation will be measured on sediments from each DMMU, the reference station, and the true control. Sediment for the true control will be uncontaminated sediment obtained from the location where test organisms were collected or clean beach sand.

Species:

Polychaete – *Neanthes virens* (formerly *Nereis virens*) Mollusk – *Macoma nasuta*

Sample Preparation:

- Chemical analysis will be done on tissues of a random sample of each test species prior to exposure to test sediments.
- Measure ammonia in sediment pore water. If the ammonia concentration is > 60 mg/l total ammonia, the test sediment will be flushed with overlying water at up to 6 volume replacements per 24 hours as described in *Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Marine Invertebrates* (EPA, 1994). Flushing will stop as soon as pore water ammonia levels are reduced to acceptable concentrations. Note that flushing is not required when the test is conducted under flow-through conditions.
- Samples stored at 4°C ± 2°C before testing. Test chambers will be loaded with sieved sediment the day prior to the beginning of the test. Preparation will follow Section 11.2.1.1 of the Green Book.
- Sediment settled for at least 24 hours before test initiation.
- If test sediment has a hydrogen sulfide odor, the test chamber will be gently aerated until there is about 4 mg/l oxygen at the sediment-water interface.

Test Conditions:

- · Test with 4 cm of sediment.
- · 28-day exposure, without feeding.
- Clean glass test chambers.
- Five replicates of polychaetes (or mollusks) in 5-gallon aquaria. Organism mass will be sufficient for analytical requirements; ≥20 grams.

Temperature:

- Nereis virens: 10°C 20°C; optimal 20°C ± 2°C. adult weighing 3-15 grams (Appendix E, ITM)
- Macoma nasuta: 15°C ± 2°C; 2 4 years old; 28-45 mm shell length (Appendix E, ITM)
- Salinity: 30% ± 2%.
- Dissolved Oxygen: Maintained at ≥ 40% saturation.
- Synthetic or natural sea water will be used. Water renewals will be provided every 48 hours for the duration of the test.
- · Measure temperature, dissolved oxygen, salinity, and pH daily.
- Dead animals will be removed and unusual behavior such as emergence of infauna, formation of tubes or burrows, etc., by test organisms will be noted.
- · 24-hour animal gut purge at end of test

Data Presentation:

- Name of species.
- Number of replicates and number of animals per replicate.
- Survival.
- Daily water quality data.
- · Chemical concentrations in tissue
- Other information, as pertinent.

4.3.4 Data Analysis

The bioaccumulation potential of the material proposed to be dredged will be evaluated according to Section 6.3 of the Green Book. Statistical procedures described in Section 13 of the Green Book will be used to compare tissue concentrations between animals exposed to dredge sediments and those exposed to reference sediments. A statistically greater tissue residue in organisms exposed to dredge sediment than in organisms exposed to the reference area sediments does not necessarily indicate an environmental or human health problem.

Concentrations of COCs detected in tissues of benthic organisms exposed to the dredge sediments will be compared initially against applicable FDA Action Levels when such

levels have been set. These levels are based on human health and economic considerations and do not include the potential for impact on the ecosystem. FDA Action Levels are presented in table format in Appendix D of EPA's sediment quality survey, The Incidence and Severity of Sediment Contamination in Surface Waters of the U.S., Volume I: National Sediment Quality Survey (EPA, 1997b), and subsequent updates or can be obtained on-line from the FDA website.

If the concentrations of one or more COCs in tissues exposed to dredge sediments exceed the FDA Action Levels, then the dredged material does not meet the LPC for the solid phase and disposal of the dredged material without appropriate management is not supported.

If the tissue concentrations of all detected COCs are not greater than FDA levels **or** there are no FDA levels for the COCs, then the concentrations of COCs in tissues exposed to dredge sediments will be compared to the contaminant concentrations in the tissues exposed to the reference sediment.

If the contaminant concentrations in tissues exposed to dredge sediments do not statistically exceed the contaminant concentrations in tissues exposed to the reference sediment, the bioaccumulation LPC for the solid phase is met. No adverse effects are likely if the concentration in the dredged-material-exposed tissue is less than the reference-material-exposed tissue.

A statistically greater tissue residue in organisms exposed to dredge sediments than in organisms exposed to the reference sediment does not necessarily indicate increased environmental hazard or human health risk. Conversely, the lack of statistically greater tissue residues in dredge sediments compared to reference sediment would be strong evidence that the sediment from the dredging site would not result in increased environmental hazard or human health risk for the pollutants tested. Therefore, the following factors will be assessed to evaluate LPC compliance when the contaminant concentration in tissues exposed to the dredge sediments statistically exceeds the contaminant concentrations in tissues exposed to the reference sediment. The factors and their order of evaluation are as follows:

- 1. Statistical significance of the results from tests on dredge sediment from when compared to reference sediment results.
- Magnitude by which bioaccumulation in organisms exposed to dredge sediments exceeds bioaccumulation in organisms exposed to the reference sediment.
- Number of contaminants for which bioaccumulation in organisms exposed to dredge sediments is statistically greater than bioaccumulation in organisms exposed to the reference sediment.
- 4. Number of species in which bioaccumulation in organisms exposed to dredge sediments is statistically greater than bioaccumulation in organisms exposed to the reference sediment.

- 5. Toxicological importance of the contaminants whose bioaccumulation in organisms exposed to dredge sediments statistically exceeds that from the reference sediment.
- Phylogenetic diversity of the species in which bioaccumulation in organisms exposed to dredge sediments statistically exceeds bioaccumulation in organisms exposed to the reference sediment.
- 7. Propensity for the contaminants with statistically significant bioaccumulation to biomagnify within aquatic food webs.
- 8. Magnitude of toxicity and number and phylogenetic diversity of species exhibiting greater mortality in dredge sediments than in the reference sediment.

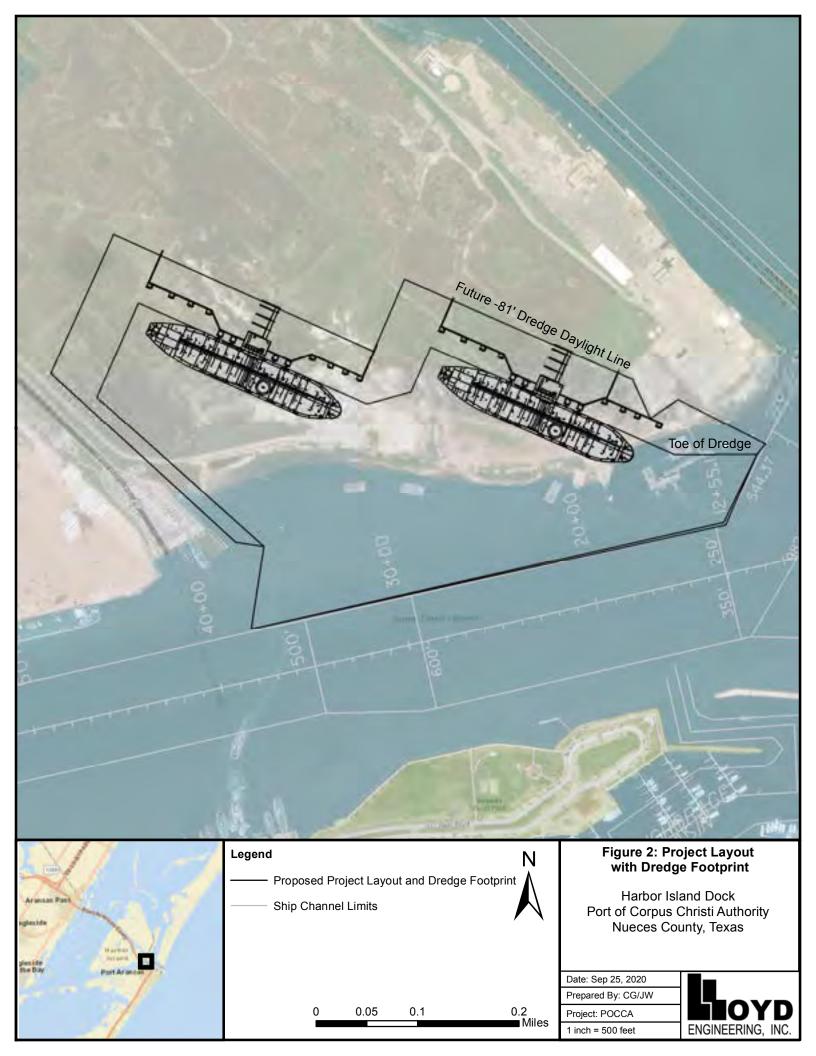
If a compliance decision cannot be reached based on the evaluation sequence described above, USACE and EPA, with assistance from the contractor, will make recommendations on additional research that would be sufficient to document COC concentration in similar organisms collected from the Corpus Christi and Port Aransas vicinity for comparison to results ascertained in bioaccumulation tests conducted in association with this SAP. If a compliance decision still can't be reached, a sampling plan will be developed and agreed upon by both EPA and USACE to evaluate Factor 9.

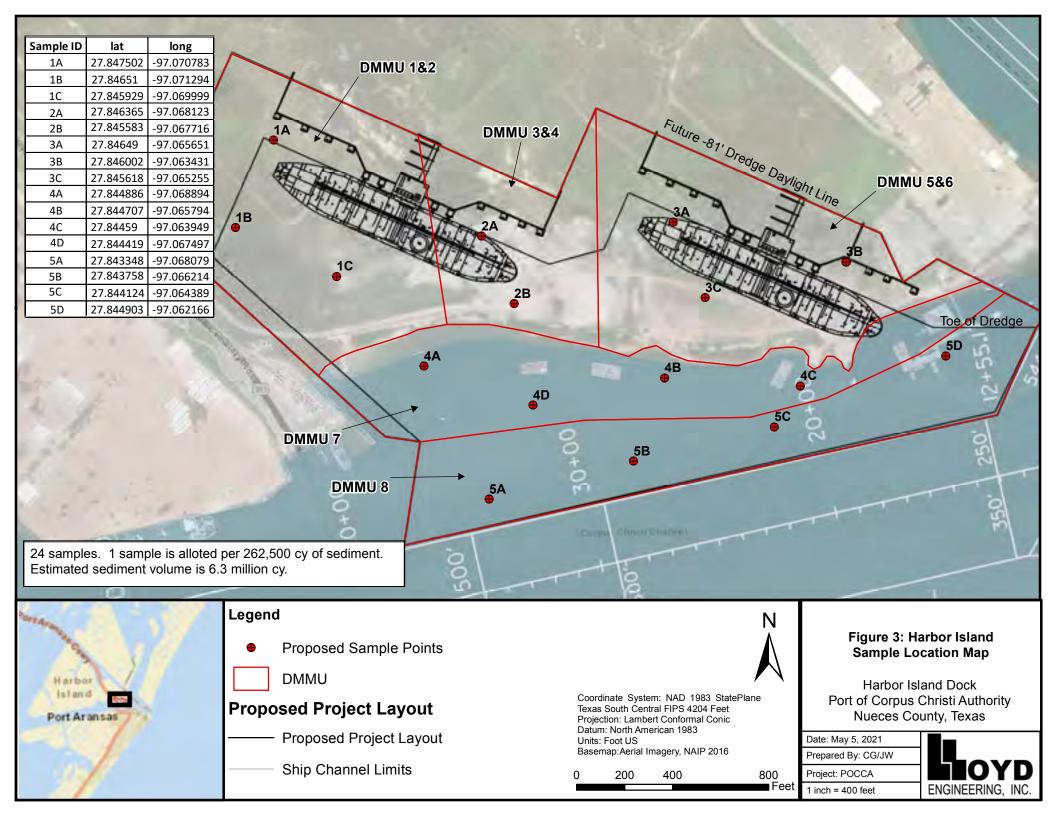
9. Magnitude by which contaminants whose bioaccumulation in organisms exposed to sediment from the dredging site exceeds that of organisms exposed to the reference sediment also exceed the concentrations found in comparable species living in the vicinity of the proposed disposal site.

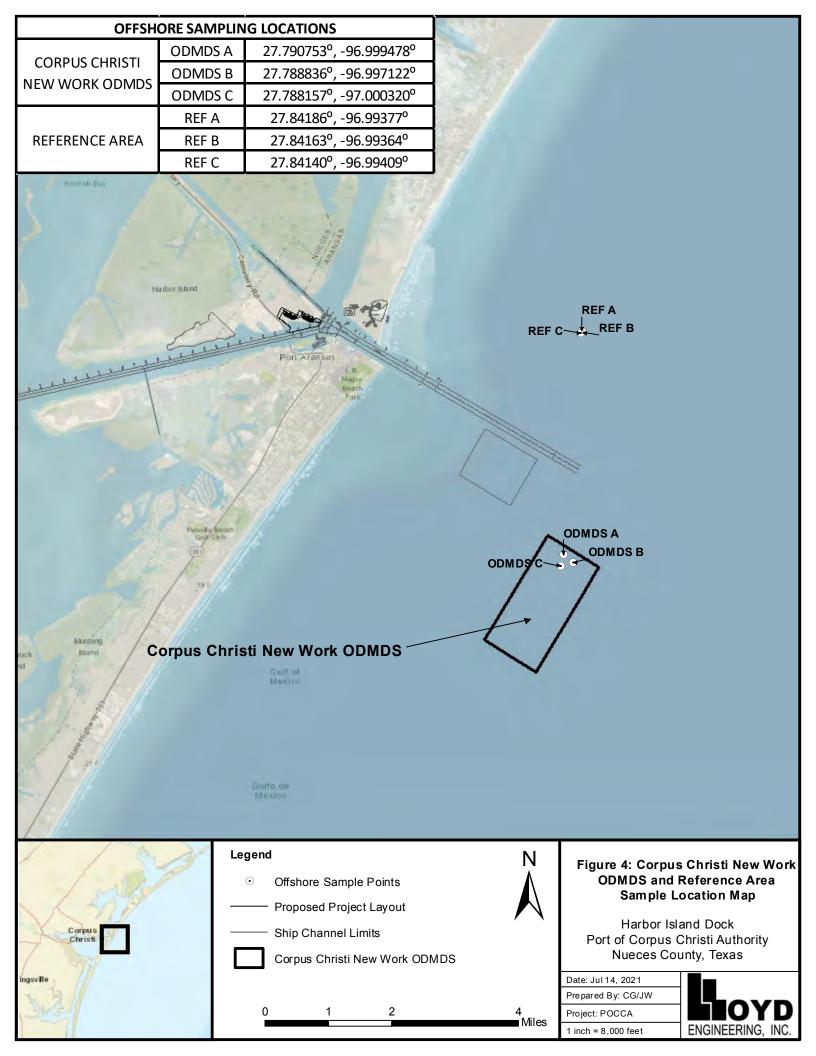
4.4 Data Submittal

A sediment evaluation report suitable for review by USACE and EPA will be prepared. The report will describe the testing specified herein and will include data, interpretation, and conclusions.

A CD-ROM will be provided and contain MS Word and/or Excel files used to compose the report, along with a PDF formatted version of the final report. Also, PDF files of all laboratory reports for chemical and physical analyses/characterization will be provided as well as Laboratory Electronic Data Deliverables (EDDs) in Excel format only.


5 REFERENCES


- ANAMAR. 2015. Final Report Sampling, Chemical Analysis, and Bioassessment Corpus Christi Ship Channel Port Aransas, Texas
- Plumb, R.H., Jr. 1981. Procedure for Handling and Chemical Analysis of Sediment and Water Samples. EPA/CE-81-1. Prepared by State University College at Buffalo, Great Lakes Laboratory, Buffalo, N.Y. U.S. Environmental Protection Agency and U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.
- U.S. EPA. 1986. *Test Methods for Evaluating solid Waste (SW846): Physical/chemical Methods.* U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.
- U.S. EPA and USACE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual (Green Book). EPA-503/8-91/001. U.S. Environmental Protection Agency and U.S. Army Corps of Engineers, Washington, D.C.
- U.S. EPA and USACE. 1995. *QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations Chemical Evaluations*. EPA 823-B-95-001. U.S. Environmental Protection Agency and U.S. Army Corps of Engineers, Washington, D.C.
- U.S. EPA and USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. Testing Manual (ITM). EPA-823-B-98-004. U.S. Environmental Protection Agency and U.S. Army Corps of Engineers, Washington, D.C.
- U.S. EPA and USACE. 2003. Regional Implementation Agreement for Testing and Reporting Requirements for Ocean Disposal of Dredged Material off the Louisiana and Texas Coasts Under Section 103 of The Marine Protection, Research and Sanctuaries Act. U.S. Environmental Protection Agency, Region 6 and U.S. Army Corps of Engineers, Galveston and New Orleans Districts.


SAMPLING AND ANALYSIS PLAN HARBOR ISLAND NEW DOCK AND FACILITIES PROJECT SECTION 103

Appendix A – Project Figures

Completion Date	Description of Activities Conducted
01/1995	On behalf of PCCA for purchase of the property, IFC Kaiser conducted a
	Phase I site investigation including the installation of soil borings. The
	activities are summarized in the <i>Phase I Investigation</i> report and appendices.
09/07/1995	On behalf of PCCA, IFC Kaiser Engineers conducted a Phase II
	Investigation involving groundwater assessment and soil delineation
	activities. The activity was summarized in the report titled <i>Phase II</i>
	Investigation Final Report. < Report Missing>
1/31/1996	PCCA purchase the Former Fina Tank Farm property from Atofina.
11/1999	On behalf of Atofina, RMT collected soil samples and groundwater samples
	at the site. The activity was summarized in the report titled <i>Phase III</i>
	Investigation and Risk-Based Evaluation.
10/2000	On behalf of Atofina, RMT submitted to RRC, Application for Land
	Farming for remediation of impacted soils at the Former Fina Tank Farm
	site.
09/2001	On behalf of Atofina, RMT submitted to RRC the Additional Soils and
	Groundwater Investigation, Groundwater Risk-Based Assessment and
	Remediation Workplan proposing excavation of soils exceeding 5% TPH
	and treating via landfarming on site and in-situ tilling of areas between 1%
	and 5% TPH.
11/2001	On behalf of Atofina, RMT submitted an Addendum to Remediation
	Workplan proposing vacuum removal of PSH and continued groundwater
4.4 (0.10.0.4	sampling. < Report Missing>
11/8/2001	On behalf of Atofina, RMT submitted a letter addressing RRC comments
0/14/2002	regarding the Harbor Island Work Plan.
8/14/2002	PCCA contracted Envirotest to conduct a asbestos survey of the remaining
	structures on Harbor Island. Asbestos was found in several of the structures.
11/2002	The activities are summarized in the <i>Limited Asbestos Sampling</i> report.
11/2002	On behalf of Atofina, RMT remediated impacted soils at the site in
	accordance with RRC approval of 5% TPH cleanup level. The activities are
3/18/2003	summarized in the Remediation Completion Report.
3/18/2003	PCCA contracted Envirotest to conduct additional asbestos sampling in the sheetrock in the office buildings at the Former Atofina Tank Farm to narrow
	down asbestos content. The activities are summarized in the <i>Limited</i>
	Asbestos Sampling report.
08/2003	On behalf of Atofina and PCCA jointly, RMT conducted additional
06/2003	confirmation sampling in areas exceeding 1%. Some areas were identified
	as still exceeding 1%. RMT conducted additional in-situ treatment of those
	areas exceeding 1%. RWT conducted additional in-situ treatment of those areas exceeding 1%.
08/29/2003	RRC submitted to Atofina a No-Further Action Letter for the site. PCCA
00,27,2003	deed recorded the remaining contaminated soils at the site.
9/8/2003	PCCA contracted ERM to conduct a survey of the septic tanks remaining on
	site at Harbor Island. The results are summarized in the <i>Harbor Island Tank</i>
	Assessment: Septic report.
11/19/2003	PCCA contracted Bexar Environmental to remove asbestos from remaining
	structures on Harbor Island. The activities are summarized in the <i>Asbestos</i>

Completion Date	Description of Activities Conducted
	Air Monitoring Report and the Asbestos Abatement Closeout.
12/22/2003	On behalf of PCCA, Rosengarten, Smith and Associates conducted confirmation sampling in tank farm area and previously remediated areas exceeding 1% TPH. The activities were summarized in a report titled <i>Soil Sampling Report for Former Fina Tank Farm</i> .
03/2004	On behalf of Atofina, RMT conducted a geo-statistical analysis of the analytical data for the site relative to the areas exceeding 1%. Statistically, all areas of the site are shown to be below 1% TPH. The summary of statistical activities is provided in the <i>Geo-Statistical Analysis of Analytical Data</i> .

Completion Date	Description of Activities Conducted
04/15/1994	On behalf of Exxon Pipeline, KEI conducted an initial soil investigation.
	Exxon Pipeline had begun decommissioning the facility. Soil samples were
	collected on a 100' grid and submitted for analyses based on visual
	observations. The activity was summarized in the report titled <i>EPC Harbor</i>
	Island Station Environmental Investigation.
06/08/1994	On behalf of Exxon Pipeline, KEI prepared and submitted a remedial work
	plan for RRC approval.
07/15/1994	RRC approved the work plan with modifications.
10/19/1994	RRC issued a No Further Action Letter to Exxon Pipeline for soil
	assessment activities related to 1.1.2-trichloroethane (TCE) release.
08/16/1995	On behalf of Exxon Pipeline, KEI conducted soil remediation activities.
00/10/1//5	Areas exceeding 10% Total Petroleum Hydrocarbons (TPH) were excavated
	and treated onsite. Areas between 5% and 10% TPH were remediated in
	place. The activity was summarized in the report titled <i>Soil Remediation</i>
	Report.
4/9/1996	PCCA purchases the Former Exxon Tank Farm property from Koch
4/ 2/ 1 2 2 0	Pipeline.
07/29/1996	
07/29/1990	On behalf of PCCA for purchase of the property, Flour Daniels conducted
	verification sampling on areas exceeding 2% TPH to determine the
	effectiveness of the remediation activities and to establish an environmental
	baseline. The activity was summarized in the report titled <i>Verification</i>
01/07/1000	Sampling Report.
01/26/1998	On behalf of Exxon Pipeline, KEI conducted additional remediation
	activities in the area identified as Area 10. The activity was summarized in
0.5/2.2/4.0.00	the report titled <i>Area 10 Remediation</i> .
06/22/1998	On behalf of PCCA, APT conducted soil sampling to verify the remediation
	efforts and remediation to 1% TPH cleanup level. The activity was
	summarized in the report titled <i>Confirmation Sampling Investigation</i> .
07/07/1999	On behalf of Exxon Pipeline, KEI conducted verification soil borings and
	then summarized site activities in a <i>Closure Report</i> and submitted it to the
	RRC.
07/17/1999	On behalf of Exxon Pipeline, KEI conducted additional remediation in those
	areas exceeding 2% TPH. The activity was summarized in the report titled
	Additional Areas Remediation.
11/9/1999	RRC issued a No Further Action Letter for soil assessment and product
	recovery activities that had occurred at the site but indicated an exclusion
	for the tank bottom areas that could not be assessed during the site activities.
3/12/2002	PCCA contracted J&J Insulation and Southern Ecology Management to
	remove asbestos from Former Exxon Buildings 3815, 4269, 4270, 4286,
	4289, and 4290. The activities are summarized in the Asbestos Abatement
	Report.
8/14/2002	PCCA contracted Envirotest to conduct a asbestos survey of the remaining
J. 1 ., 	structures on Harbor Island. Asbestos was found in several of the structures.
	The activities are summarized in the <i>Limited Asbestos Sampling</i> report.
9/27/2002	PCCA contracted Southern Ecology Management to conduct a survey of the
714114UUL	The CA contracted Southern Ecology Management to conduct a survey of the

Completion Date	Description of Activities Conducted
	Former Exxon Tank Farm site to determine PCB content of remaining
	transformers. Transformers with PCB's were drained, removed and
	properly disposed of. The activities are summarized in the <i>Transformer</i>
	Abatement Report.
05/08/2003	PCCA contracted American Demolition to demolish the crude oil tanks.
09/05/2003	PCCA and ExxonMobil Pipeline Company entered into a Site Remediation
	Agreement which designated responsibilities for cleanup and a cleanup level
	of 1% TPH for the site.
9/8/2003	PCCA contracted ERM to conduct a survey of the septic tanks remaining on
	site at Harbor Island. The results are summarized in the <i>Harbor Island Tank</i>
	Assessment: Septic report.
11/19/2003	PCCA contracted Bexar Environmental to remove asbestos from remaining
	structures on Harbor Island. The activities are summarized in the <i>Asbestos</i>
	Air Monitoring Report and the Asbestos Abatement Closeout.
12/22/2003	On behalf of PCCA, Rosengarten, Smith and Associates conducted
	confirmation sampling in tank farm areas and previously remediated areas
	exceeding 1% TPH. The activities were summarized in a report titled <i>Soil</i>
00/00/00/0	Sampling Report for Former Exxon Tank Farm.
02/29/2004	Pipeline Equities entered into a Surplus Sale Agreement with PCCA for
	removal of the piping at the site. PCCA contracted Ms. Rhoni Lahn to be
	onsite and oversee the removal activities. During this time PCCA identified
	areas of pre-existing contamination in accordance with the Site Remediation
	Agreement. Pipeline Equities did not complete the work and PCCA put out
3/2004	a contract to complete the removal activities. PCCA entered into a lease option agreement with Zachary for part of the
3/2004	Harbor Island site. Entrix was contracted by Zachary to conduct a wetland
	determination. The results of the activities are summarized in Wetland
	Assessment and Delineation PCCA-Zachary Property.
7/29/2004	Zachary contracted with ENSR to conduct an environmental investigation of
772372001	the Harbor Island property to determine the extent of soil contamination
	within the proposed project area. Soil borings and monitor wells were
	installed. Soil and groundwater data summary tables were provided.
11/11/2004	International Divers was contracted by PCCA to remove the remaining pipe
	from the site and septic tanks and associated structures. PCCA again
	contracted Ms. Rhoni Lahn to be onsite and oversee the removal activities.
	Areas of pre-existing contamination were also identified in accordance with
	the Site Remediation Agreement. The areas of pre-existing contamination
	were summarized in a final report to Exxon titled <i>Hydrocarbon</i>
	Contamination Report for Former Exxon Tank Farm.
03/04/2005	On behalf of ExxonMobil, CRA submitted a Soil Remediation Workplan for
	approval to the RRC.
03/08/2005	RRC submits letter to ExxonMobil in response to Soil Remediation
	Workplan requesting additional information.
03/17/2005	On behalf of ExxonMobil, CRA submitted a response to RRC letter dated
	03/08/2005 concerning the Soil Remediation Workplan requesting

Completion Date	Description of Activities Conducted
	additional information.
03/22/2005	PCCA submitted a correction to the Hydrocarbon Contamination Report for Former Exxon Tank Farm that inaccurately stated that the pipe removal activities were completed.
07/05/2005	On behalf of ExxonMobil, CRA began investigation and remediation of the areas of pre-existing contamination identified during the tank demolition and pipeline removal activities. Areas were excavated based on visual observations and landfarmed onsite. Confirmation sampling was conducted to verify remediation to 1% TPH. The areas not remediated were sampled to identify if the remaining areas exceeded 1% TPH.
08/23/2005	CRA was contracted by PCCA to complete pipe removal activities and trench the site to identify and remove pipe in unmapped locations. PCCA again contracted Ms. Rhoni Lahn to be onsite and oversee the removal activities. Areas of pre-existing contamination were also identified in accordance with the Site Remediation Agreement. The areas of pre-existing contamination were summarized in a final report to Exxon titled <i>Second Hydrocarbon Contamination Report for Former Exxon Tank Farm</i> .
01/10/2007	CRA was contracted by ExxonMobil to conduct sampling of the pre- existing contamination locations identified in the <i>Second Hydrocarbon</i> <i>Contamination Report for Former Exxon Tank Farm</i> . Sampling consisted of an excavation at the center point and radial trenching in four directions to determine the visual extent of the contamination. Soil samples were submitted for confirmation. PCCA contracted Ms. Rhoni Lahn to represent PCCA during the activities and collect duplicate samples.
08/24/2007	PCCA summarized the results of the duplicate sampling and compared them to the results from the samples collected by CRA. Additionally, PCCA pointed out concerns with assessment strategies and assumptions made by CRA and ExxonMobil. The results were summarized in a letter report "Site Assessment Results for PCCA Harbor Island".
12/07/2007	CRA submitted to RRC a summary of the site activities including remediation and sampling activities conducted at the site from 2005 through 2007. The results were summarized in a report titled <i>Additional Soil Delineation Report</i> .
12/20/2007	RRC requested additional historical information on the site from ExxonMobil.
01/11/2008	On behalf of ExxonMobil, CRA submitted additional historical information to RRC regarding cleanup and site investigation activities at the site.
03/04/2008	On behalf of ExxonMobil, CRA submitted response to RRC letter dated 12/21/2007 with Soil Remediation Work Plan included.
04/02/2008	RRC provided comments on review of Soil Remediation Work Plan including requests for confirmation soil samples in native soils below landfarming area, evaluating BTEX in groundwater samples in excavations, further evaluating groundwater by installing groundwater wells, and providing a schedule and time line of proposed field activities.

Completion Date	Description of Activities Conducted
02/23/2009	On behalf of ExxonMobil, CRA started onsite work to prepare the site for
	landfarming activities per the RRC approved work plan. PCCA and
	ExxonMobil entered into an agreement to also have CRA conduct the
	remediation for the areas that PCCA was responsible for at the end of the
	project.
03/10/2009	CRA began excavation and landfarming activities at the site in the areas
	previously identified as contaminated.
09/24/2009	CRA completed soil remediation of the areas that ExxonMobil was
	responsible and PCCA was notified that CRA did not have enough
	personnel to continue work at the site to address PCCA areas of
	responsibility.
9/4/2009	PCCA contracted GAINCO to install delineation soil borings in the area of
	the Former Texas Treasure parking lot fence line to determine the extent of
	soil contamination under the Former Texas Treasure parking lot and in
	Areas 109 and 106. The results were summarized in a report titled
	Geoprobe Delineation Report - Preliminary.
9/30/2009	PCCA contracted GAINCO to install additional delineation soil borings
	across the Former Texas Treasure parking lot.
10/14/2009	PCCA contracted GAINCO to conduct soil remediation of the areas of
	PCCA responsibility, remove debris from the site, and remove remaining
	buried pipelines identified during previous remediation efforts.
12/21/2009	PCCA terminated soil remediation activities and site restoration activities at
	the site due to heavy rains and flooding. Work will commence in spring
	2010 when site has dried up.
04/29/2010	PCCA contracted GAINCO to install additional delineation soil borings in
	the areas in the Former Texas Treasure parking lot.
05/20/2010	PCCA contracted GAINCO to complete remediation of the remaining areas
	at the site.
06/25/2010	GAINCO completed remediation and site restoration activities at the site.
12/13/2010	PCCA contracted GAINCO to collect additional soil samples at the site to
	close data gaps in the remediation activities conducted at the site.
2/16/2011	PCCA submits Environmental Activities Report for Former Exxon Pipeline
	- Harbor Island Station to RRC and ExxonMobil documenting the
	remediation and soil boring activities conducted by PCCA at Harbor Island.
4/27/2011	CRA, on behalf of ExxonMobil, submitted Groundwater Assessment Work
	<i>Plan</i> to the RRC for approval of the locations of the monitor wells at the
	site.
9/19/2011	CRA contracted by ExxonMobil to install groundwater monitoring wells at
	the site and collect groundwater samples.
7/3/2012	CRA, on behalf of ExxonMobil, submitted 2011 Well Installation and
	Quarterly Groundwater Monitoring and Sampling Report to the RRC
	documenting well installation and sampling activities.
11/12/2012	CRA, on behalf of ExxonMobil, submitted to RRC a Remediation Summary
	Report summarizing the results of remediation conducted to date.

Completion Date	Description of Activities Conducted
10/23/2013	CRA, on behalf of ExxonMobil, submitted to RRC a Harbor Island Closure
	Report including recommendations for implementation of a Restrictive
	Covenant.
1/5/2015	No Further Action Letter received by ExxonMobil from the RRC.

Appendix C – Field Datasheet Forms

SEDIMENT SAMPLING FIELD SHEET

PROJECT: PCCA Harbor Island New Dock and Facilities Project Project #: Lloyd Engineering, Inc. Sample ID: 6565 West Loop South, Suite 708 Sampled By: Bellaire, Texas 77401 Sample Date: Phone: 832-426-4656 SAMPLE COLLECTION INFORMATION Start Sampling Time: End Sampling Time: _____ **Collection Method:** Double Van Veen Van Veen Mod. Petersen Large Ponar Petite Ponar Vibracore Box Core Other ______ Sediment Preservation Method (circle one): "Wet" Ice Refrigerated Truck/Trailer Other Sample Containers: Type and Number: Teflon _____ Glass ____ Plastic ____ Ziploc ____ Other _____ **Sediment Description:** Can circle more than one texture, if applicable Silt Fine Sand Medium Sand Coarse Sand Shell Hash Color: Lt. Brown Yellowish Orange Greenish Gray Olive Gray Lt. Gray Dk. Gray Live Organisms? Describe. Υ Ν Notes: Υ Odor Present? Describe. Ν Organic Debris? Describe. Ν Picture of Sample? Υ Volume Collected: # Grabs Collected: Penetration Depth (cm): Desribe any Leakage, Winnowing, or Overfill here: **STATION INFORMATION** V-Datum MLLW MLW NAVD 88 NGVD 29 Other:_____ H-Datum NAD83 NAD27 WGS84 Other:_ Water Surface Elevation (circle method of measurement): RTK Real Time WLR **Tide Tables** Other:____ Water Depth Measurement (circle one): Fathometer Lead Line Water Surface Elevation (tide ht) (ft):_____ Waypoint ID:_____ - Water Depth (ft):___ GPS ID: = Sediment Elevation (ft): Latitude (Northing): ____ Project Depth = _ Longitude (Easting): Wind Speed (knots): 0-5 5-10 10-15 >15 Wind Direction: N NE E SE S SW W NW Sea State: Calm 1-2 ft. 2-3 ft. 3-4 ft. 4-5 ft. >5 ft. Weather: Sunny P. Cloudy Cloudy Rain (drizzle, mod, heavy) Tidal Cycle: Low Mid High Slack Incoming Outgoing Air Temp (°F): __ Additional Observations, Notes: Sheet

Core Log (Sheet 1 of __) PROJECT: PCCA Harbor Island New Dock and Facilities Project

Sample ID:	Sampled By:			
Sampling Date:	Working with a Subcontractor? Athena			
Start Sampling Time:	End Sampling Time:			
Collection Method (Circle one):				
Vibracore Push Core Auger GeoProbe	Total Volume Collected:			
Sediment Container(s):				
Type and Number: Teflon [®] Glass Plastic	Ziploc [®] Other			
Sediment Preservation Method (circle one): "Wet" Ice Refrige				
V-Datum MLLW MLW NAVD 88 NGVD 29 Other:	H-Datum NAD83 NAD27 WGS84 Other:			
Water Surface Elevation (circle method of measurement): RTK	Real Time WLR Tide Tables Other:			
Water Depth Measurement (circle one): Fathometer Lead Line				
Water Surface Elevation (tide ht) (ft):	Waypoint ID:			
- Water Depth (ft):	GPS ID:			
= Top of Core Elevation (ft):	Latitude (Northing):			
- Project Depth (ft):	Longitude (Easting):			
= Target Penetration (ft):				
Tidal Cycle (circle two): Low Mid High [and] Slack Incom	ing Outgoing			
Wind Speed (knots): 0–5 5–10 10–15 >15				
Sea State (circle one): Calm 1–2 ft 2–3 ft 3–4 ft 4–5	ft >5 ft Other			
,	(drizzle, moderate, heavy)			
	(dizzie, moderate, neavy)			
Wind Direction: N NE E SE S SW W NW Notes:				

Core Log (Sheet __ of __)

Project Name: PCCA Harbor Island		Sample ID:		
Date:	Core	Photograph(s) Taken (circle one):	Yes	No
diameter (inches):				

Core	Time	Core	Time		
Core Time Core penetration length: Bottom of core elevation (ft): % Recovery		Core penetration lend	oth:		
		Bottom of core elevat	ion (ft):		
Recovery Length	(ft):% Recovery	Core penetration length: Bottom of core elevation (ft): Recovery Length (ft): % Recovery			
Length (ft)	CORE DESCRIPTION	Length (ft)	CORE DESCRIPTION		
Live Organisms?	? Yes No (Describe)	Live Organisms? You	es No (Describe)		
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No		Oil Present? Ye Odor Present? Yo Organic Debris? Yo	es No		
Notes:		Notes:			

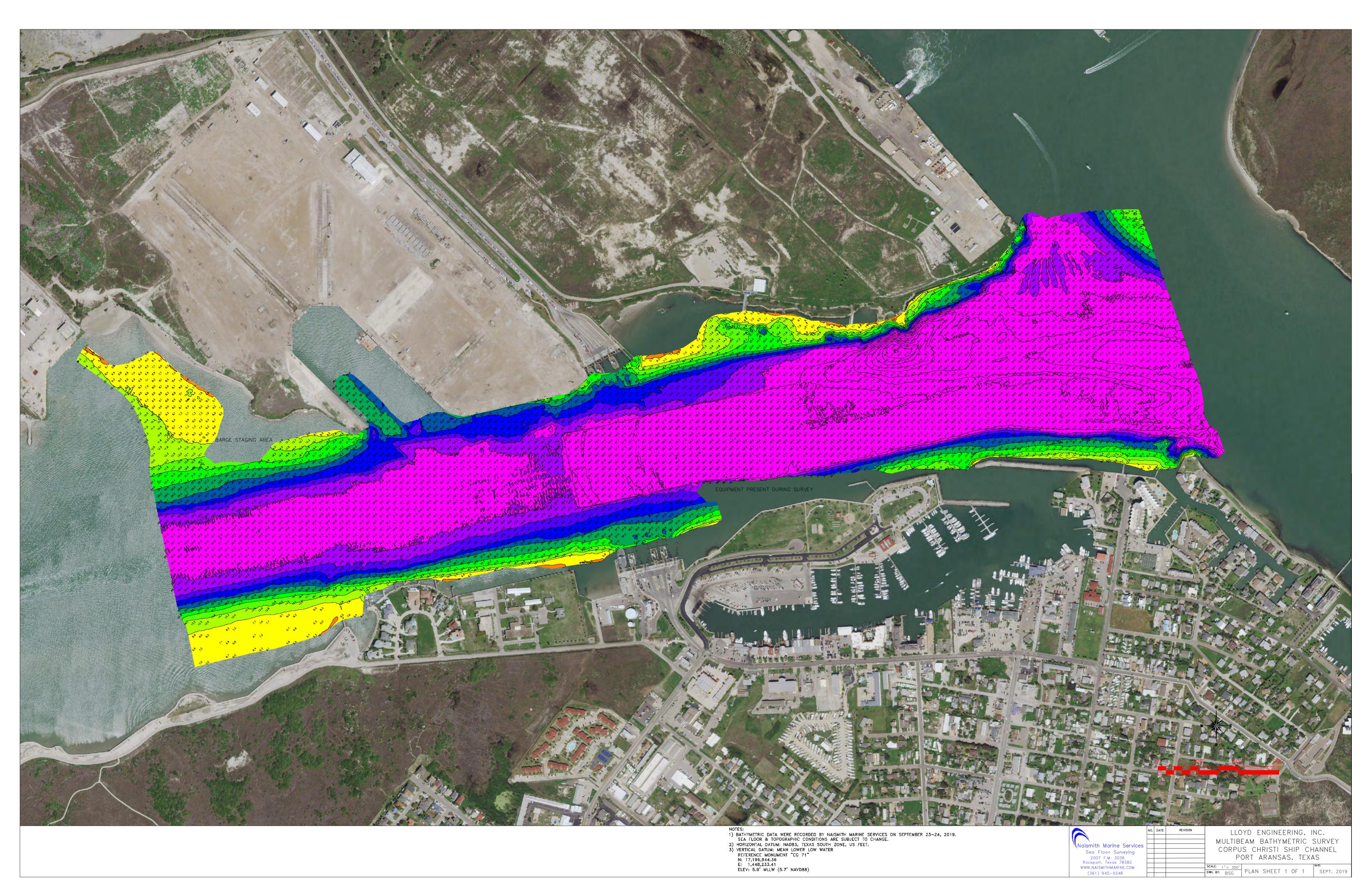
WATER CHEMISTRY FIELD SHEET

PROJECT: PCCA H	larbor Islan	d New [Dock and Fa	acilities		
Project					Project #:	
Lloyd Engineering, Inc.			Station ID:			
6565 West Loop South, Suite 708		(Sampled By:			
Bellaire, Texas 77401 Phone: 832-426-4656		Sample Date:				
SAMPLE COLLECT		MATIO	N			
Start Sampling Tin	ne:			End Sampling Tim	ne:	
Collection Method	:					
Submersible Pump	Direct G	ab \	/an Dorn	Peristaltic Pump	Pneumatic Pur	np Other
Sample Containers	s:					
Type and Number:	Teflon	_ Glas	s PI	lastic Vials _	Other	· · · · · · · · · · · · · · · · · · ·
Sample Descriptio	n:			Notes:		
Suspended Materia	l? Describe.	Υ	N			
Odor? Describe.		Υ	N			
Water Color:						
Volume Collected:						
STATION INFORM	ATION					
Water Depth (ft):				Wind Speed (knot	s): 0-5 5-10	10-15 >15
Tidal Cycle:	Low	Slack		Wind Direction:	N NE E SE	S SW W NW
	Mid	Incomi	ng	Sea State: Calm	1-2 ft. 2-3 ft.	3-4 ft. 4-5 ft. >5 ft.
	High	Outgoi	ng	Weather: Sunny	P. Cloudy Cloud	dy Rain (drizzle, mod, heavy)
Air Temp (°F): :						
In Situ Readings:	Near-Surfac	e	Mid-Depth	Near-Botton	<u>1</u>	Station Coordinates:
Time:					Lon	gitude (Northing):
Depth (ft):						
Temp (°C):					Lati	tude (Easting):
pH (units):						
Salinity (ppt):					Wa	ypoint #:
Cond. (mS/cm) OR (µS/cm):						
DO (mg/L):					Add	It'l Waypoint #:
DO (% sat.):						
Turbidity (NTU):						
General Condition	s, Observat	ions, No	otes:			

Sheet ____ of ____

Daily Quality Control Report

PROJECT: PCCA Harbor Island


This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

Name: Date:	Lloyd Engineering, Inc. 6565 West Loop South, Suite 708 Bellaire, Texas 77401 Phone: 832-426-4656
Date:	Filolie: 632-420-4030
Samples Collected:	
Notes,Comments:	

SECTION 103 SAMPLING AND ANALYSIS PLAN
HARBOR ISLAND NEW DOCK AND FACILITIES PROJECT

Appendix D – Bathymetry Survey Data

Appendix E – CQAR Form

EPA Region 6 Data Review and Validation Requirements Dredged Material Disposal Evaluation

Project:	
Project Initiation Date:	
Project Sampling Dates:	
Begin:	
End:	
Final Report Date:	
Data acceptable (Y/N):	
	If data unacceptable summarize issues to be addressed:
I certify the review in this	document conforms to all applicable regulatory and project-specific requirements.
QA Officer	

Project Review
The following sections must be completed prior to field sampling or laboratory analysis:
The SAP/QAPP was prepared and submitted for approval by the Corps of Engineers District Office and EPA Region 6.
Submitted by:
Date submitted:
The SAP/QAPP was approved by the Corps of Engineers District Office and EPA Region 6.
Approved by:

Any deviations from District-approved protocols for sampling or analysis were clearly stated to the District and approved by the District office and EPA Region 6.

Laboratory Information			
Use one sheet for each laboratory that will perform analytical work for this project.			
Laboratory Name/Identification:			
Is lab NELAC certified? Yes/No If Yes, please supply certification number			
Can lab meet the QC requirements below as specified in the SAP/QAPP?			
Yes/No Analytical requirement Instrumentation			
MDL's meet project TDL requirements Precision and accuracy Required turnaround time			
Note below any requirements the laboratory is unable to meet.			

Sample Custody

Was all required information on the chain-of-custody form:

Did chain of custody forms accompany samples to subcontract lab? Is the project identification on the chain of custody? Are the analyses requested printed on the sample containers? Were all samples correctly identified? Were the analyses correctly identified on the chain of custody or an attached document listed on the chain of custody? Were sample dates and times listed on the chain of custody? Were the chains of custody signed by both the relinquisher and receiver of the samples? Was the carrier identified on the chain of custody? If more than one chain of custody was needed for samples, are the chains of custody clearly numbered? Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C? Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative? Additional sample custody issues or deficiencies:	(Yes/No)	
Are the analyses requested printed on the sample containers? Were all samples correctly identified? Were the analyses correctly identified on the chain of custody or an attached document listed on the chain of custody? Were sample dates and times listed on the chain of custody? Were the chains of custody signed by both the relinquisher and receiver of the samples? Was the carrier identified on the chain of custody? If more than one chain of custody was needed for samples, are the chains of custody clearly numbered? Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C? Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Did chain of custody forms accompany samples to subcontract lab?
Were all samples correctly identified? Were the analyses correctly identified on the chain of custody or an attached document listed on the chain of custody? Were sample dates and times listed on the chain of custody? Were the chains of custody signed by both the relinquisher and receiver of the samples? Was the carrier identified on the chain of custody? If more than one chain of custody was needed for samples, are the chains of custody clearly numbered? Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C? Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Is the project identification on the chain of custody?
Were the analyses correctly identified on the chain of custody or an attached document listed on the chain of custody? Were sample dates and times listed on the chain of custody? Were the chains of custody signed by both the relinquisher and receiver of the samples? Was the carrier identified on the chain of custody? If more than one chain of custody was needed for samples, are the chains of custody clearly numbered? Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C? Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Are the analyses requested printed on the sample containers?
Were sample dates and times listed on the chain of custody? Were the chains of custody signed by both the relinquisher and receiver of the samples? Was the carrier identified on the chain of custody? If more than one chain of custody was needed for samples, are the chains of custody clearly numbered? Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C? Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Were all samples correctly identified?
Were the chains of custody signed by both the relinquisher and receiver of the samples? Was the carrier identified on the chain of custody? If more than one chain of custody was needed for samples, are the chains of custody clearly numbered? Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C? Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Were the analyses correctly identified on the chain of custody or an attached document listed on the chain of custody?
Was the carrier identified on the chain of custody? If more than one chain of custody was needed for samples, are the chains of custody clearly numbered? Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C? Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Were sample dates and times listed on the chain of custody?
If more than one chain of custody was needed for samples, are the chains of custody clearly numbered? Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C? Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Were the chains of custody signed by both the relinquisher and receiver of the samples?
Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C? Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Was the carrier identified on the chain of custody?
Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		If more than one chain of custody was needed for samples, are the chains of custody clearly numbered?
paperwork? Was the chain of custody submitted as part of the report to the primary contractor? Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C?
Were all requested analyses performed? Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		
Was adequate sample volume provided to the contractor lab? If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Was the chain of custody submitted as part of the report to the primary contractor?
If any anomalous behavior of the samples was found, was it noted in the lab case narrative?		Were all requested analyses performed?
		Was adequate sample volume provided to the contractor lab?
Additional sample custody issues or deficiencies:		If any anomalous behavior of the samples was found, was it noted in the lab case narrative?
	Additional	sample custody issues or deficiencies:

Analytical Review Summary Were all raw data included in the final report? (Yes/No) Prep logs Analytical logs Data reduction logs Calculations Data report QC Package Verify that samples were prepared according to the method specified. 10% check 100% check Verify that samples were analyzed according to the method specified. 10% check 100% check Verify that data were properly transferred from run to data report. 10% check 100% check Verify that QC was calculated and within limits and complete the QC forms provided in this package. 10% check 100% check Additional data quality issues:

List of Acronyms

CCV continuing calibration verification

IC initial calibration
ICB initial calibration blank
ICV initial calibration verification

IS internal standard

LCS/DLCS laboratory control sample/duplicate laboratory control sample

LDR linear dynamic range
LFB laboratory fortified blank

MB method blank
MDL method detection limit
MN Macoma nasuta

MS/MSD matrix spike/matrix spike duplicate

NV Neanthes virens
RL reporting limit

SAP/QAPP Sampling and Analysis Plan/Quality Assurance Project Plan

RIA EPA Region 6 - Regional Implementation Manual

SRM standard reference material

Project Identific	ation:					
Reviewed by:	Reviewed by:					
Review Date:	Review Date:					
Parameter: Meta	Parameter: Metals (e.g. Silver, Arsenic)					
List Metals Analyzed:						
Matrix:	Sediment	☐ Water/Elutriate	☐ Tissue			

QC	Eroguoney	Accontance	Criteria	Review Comments	Data Accontable (V/N)
Measurement	Frequency	Acceptance Criteria	Met (Y/N)	Meview Comments	Data Acceptable (Y/N)
	4 00 1 4		Met (1/N)		
MB	1 per 20 samples or 1	No analyte should			
	per batch up to 20	be detected > RL			
	samples				
MS/MSD	1 set per 20 samples	Method Specifc			
	or per batch	spike recovery and			
		RSD precision limits			
SRM	1 per 20 samples or 1	Sample/Supplier			1
	per batch up to 20	Specific Recovery			
	samples	Limits			
LCS/LFB	1 per 20 samples or 1	Method Specifc			1
	per batch up to 20	spike recovery limits			
	samples				
ICV	Immediately following	Method Specifc			
	calibration curve	recovery limits			
CCV	Minimum - check	Method Specifc			1
	calibration at middle	recovery limits			
	and end of each batch				
	or 1 per 10 analyses,				
	whichever is greater				
1.00	Wasif I DD and a same				
LDR	Verify LDR once per				
	quarter for ICP analyses and one time				
	for mercury analysis				
10		Mathad Occasio			
IC	Verify initial calibration	Method Specific			
	for AA and mercury	Calibration			
	analysis performed	requirements			
	daily				
MDL	Verify MDL study once	Updated annually			
	per year for each				
	analyte of interest				
ICB	Immediately after initial	No analyte should]
	calibration	be detected > RL			

Project Identifica	ation:					
Reviewed by:	Reviewed by:					
Review Date:	Review Date:					
Parameter: Meta	Parameter: Metals (e.g. Silver, Arsenic)					
List Metals Analyzed:						
Matrix:	☐ Sediment		☐ Tissue			

QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)		
MB	1 per 20 samples or 1	No analyte should	,		
	per batch up to 20	be detected > RL			
	samples				
MS/MSD 1	1 set per 20 samples or	Method Specifc			
	per batch	spike recovery and RSD precision limits			
		Nob precision limits			
SRM	1 per 20 samples or 1	Sample/Supplier			
	per batch up to 20	Specific Recovery			
	samples	Limits			
LCS/LFB	1 per 20 samples or 1	Method Specifc			
	per batch up to 20	spike recovery limits			
ICV	samples Immediately following	Method Specifc			
IC V	calibration curve	recovery limits			
		-			
CCV	Minimum - check	Method Specifc			
	calibration at middle	recovery limits			
	and end of each batch or 1 per 10 analyses,				
	whichever is greater				
	•				
LDR	Verify LDR once per				
	quarter for ICP				
	analyses and one time				
L	for mercury analysis	M // 10 '6			
IC	Verify initial calibration for AA and mercury	Method Specific Calibration			
	analysis performed	requirements			
	daily	requirements			
MDL ,	Verify MDL study once	Updated annually			
	per year for each	,			
	analyte of interest				
ICB I	Immediately after initial	No analyte should			
	calibration	be detected > RL			

Project Identific	ation:					
Reviewed by:						
Review Date:	Review Date:					
Parameter: Meta	Parameter: Metals (e.g. Silver, Arsenic)					
List Metals Analyzed:						
Matrix:	☐ Sediment	☐ Water/Elutriate	☑ Tissue			

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)	Comments	
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL			
MS/MSD	1 set per 20 samples or per batch	Method Specifc spike recovery and RSD precision limits			
SRM	1 per 20 samples or 1 per batch up to 20 samples	Sample/Supplier Specific Recovery Limits			
LCS/LFB	1 per 20 samples or 1 per batch up to 20 samples	Method Specifc spike recovery limits			
ICV	Immediately following calibration curve	Method Specifc spike recovery limits			
CCV	Minimum - check calibration at middle and end of each batch or 1 per 10 analyses, whichever is greater	Method Specifc spike recovery limits			
LDR	Verify LDR once per quarter for ICP analyses and one time for mercury analysis				
IC	Verify initial calibration for AA and mercury analysis performed daily	Method Specific Calibration requirements			
MDL	Verify MDL study once per year for each analyte of interest	Updated annually			
ICB	Immediately after initial calibration	No analyte should be detected > RL			

Project Identifica	ation:		
Reviewed by:			
Review Date:			
Parameter: Matrix:	☐ PAHs ☑ Sediment	☑Pesticides ☑Water/Elutriate	□ PCBs □ Tissue

QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable
Measurement	,,	Criteria	Met (Y/N)		(Y/N)
MB	1 per 20 samples or	No analyte should			,
	1 per batch up to 20 samples	be detected > RL			
MS/MSD	1 set per 20	Method Specifc			
	samples or per	spike recovery and			
	batch	RSD precision limits			
SRM	1 per 20 samples or	Within limits			
	1 per batch up to 20	· ·			
	samples	provider			
ICV	Immediately	Method Specific			
	following calibration	Recovery Limits			
	curve				
CCV	At the beginning of	Method Specific			
	every 12 hours of analysis	Recovery Limits			
Surrogates	Every sample	Method Specific			
		Recovery Limits			
Internal Standard	Every sample	Method Specific			
		Recovery Limits			
IC	Verify after each	Method Specific			
	initial calibration	Acceptibility Limits			
MDL	Verify MDL study	Updated annually			
	once per year for				
	each analyte of				
	interest				
ICB	Immediately after	No analyte should	·		
	initial calibration	be detected > RL			

Reviewed by:
Review Date:
Parameter: □ PAHs □ Pesticides/PCP □ PCBs Matrix: □ Sediment □ Water/Elutriate □ Tissue

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)	Comments	(,
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should			
MS/MSD	1 set per 20 samples or per batch	Method Specifc spike recovery and RSD precision limits			
SRM	1 per 20 samples or 1 per batch up to 20 samples				
ICV	Immediately following calibration curve	Method Specific Recovery Limits			
CCV	At the beginning of every 12 hours of analysis	Method Specific Recovery Limits			
Surrogates	Every sample	Method Specific Recovery Limits			
Internal Standard	Every sample	Method Specific Recovery Limits			
IC	Verify after each initial calibration	Method Specific Acceptibility Limits			
MDL	Verify MDL study once per year for each analyte of interest	Updated annually			
ICB	Immediately after initial calibration	No analyte should be detected > RL			

Project Identific	ation:		
Reviewed by:			
Review Date:			
Parameter: Matrix:	☐ PAHs ☐ Sediment	☑ Pesticides/PCP☑ Water/Elutriate	☐ PCBs ☐ Tissue

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement	Troquency	Criteria	Met (Y/N)	Comments	
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should	met (1714)	Comments	
MS/MSD	1 set per 20 samples or per batch	Method Specifc spike recovery and RSD precision limits			
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider			
ICV	Immediately following calibration curve	Method Specific Recovery Limits			
CCV	At the beginning of every 12 hours of analysis	Method Specific Recovery Limits			
Surrogates	Every sample	Method Specific Recovery Limits			
Internal Standard	Every sample	Method Specific Recovery Limits			
IC	Verify after each initial calibration	Method Specific Acceptibility Limits			
MDL	Verify MDL study once per year for each analyte of interest	Updated annually			
ICB	Immediately after initial calibration	No analyte should be detected > RL			

Project Identification:					
Reviewed by:					
Review Date:					
Parameter: Matrix:	☐ PAHs ☑ Sediment	☐ Pesticides ☐ Water/Elutriate	PCBs☐ Tissue		

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)	Comments	
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	mee (1714)	Commonto	
MS/MSD	1 set per 20 samples or per batch	Method Specifc spike recovery and RSD precision limits			
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider			
ICV	Immediately following calibration curve	Method Specifc recovery limits			
CCV	At the beginning of every 12 hours of analysis	Method Specifc recovery limits			
Surrogates	Every sample	Method Specifc recovery limits			
Internal Standard	Every sample	Method Specifc recovery limits			
IC	Verify after each initial calibration	Method Specific Acceptibility Limits			
MDL	Verify MDL study once per year for each analyte of interest	Updated annually			
ICB	Immediately after initial calibration	No analyte should be detected > RL			

Project Identification:						
Reviewed by:						
Review Date:	Review Date:					
Parameter: Matrix:	☐ PAHs ☐ Sediment	☐ Pesticides ☑ Water/Elutriate	PCBs☐ Tissue			

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement	11040.000	Criteria	Met (Y/N)	Comments	
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	mee (1714)	Comments	
MS/MSD	1 set per 20 samples or per batch	Method Specifc spike recovery and RSD precision limits			
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider			
ICV	Immediately following calibration curve	Method Specifc recovery limits			
CCV	At the beginning of every 12 hours of analysis	Method Specifc recovery limits			
Surrogates	Every sample	Method Specifc recovery limits			
Internal Standard	Every sample	Method Specifc recovery limits			
IC	Verify after each initial calibration	Method Specific Acceptibility Limits			
MDL	Verify MDL study once per year for each analyte of interest	Updated annually			
ICB	Immediately after initial calibration	No analyte should be detected > RL			

Project Identifica	ation:				
Reviewed by:					
Review Date:					
Parameter: Matrix:	☐ PAHs ☐ Sediment	☐ Pesticides ☐ Water/Elutriate	PCBs Tissue Tissue		

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
· ·	Frequency	•			Data Acceptable (1/N)
Measurement		Criteria	Met (Y/N)	Comments	
MB	1 per 20 samples or	No analyte should			
	1 per batch up to 20	be detected > RL			
	samples				
MS/MSD	1 set per 20	Method Specifc			
	samples or per	spike recovery and			
	batch	RSD precision limits			
		-			
SRM	1 per 20 samples or	Within limits]
	1 per batch up to 20	specified by			
	samples	provider			
ICV	Immediately	Method Specifc]
	following calibration	recovery limits			
	curve				
CCV	At the beginning of	Method Specifc			
	every 12 hours of	recovery limits			
	analysis				
Surrogates	Every sample	Method Specifc			
		recovery limits			
Internal	Every sample	Method Specifc			
Standard	' '	recovery limits			
	\/:f	Mathad Onceltio			
IC	Verify after each	Method Specific			
MDI	initial calibration	Acceptibility Limits			-
MDL	Verify MDL study	Updated annually			
	once per year for				
	each analyte of				
IOD	interest	No analysia abayda			1
ICB	Immediately after	No analyte should			
	initial calibration	be detected > RL			

Project Identification:					
Reviewed by:					
Review Date:					
Parameter: Matrix:	☑ PAHs & PCP☑ Sediment	☐ Pesticides ☐ Water/Elutriate	☐ PCBs ☐ Tissue		

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement	ricquency	Criteria	Met (Y/N)	Comments	Bata Acceptable (1714)
	1 per 20 samples or	No analyte should	Wet (1/14)	Comments	
MB	1 per 20 samples of 1 per batch up to 20	be detected > RL			
	samples	be detected > RL			
	Samples				
MS/MSD	1 set per 20	Method Specifc			
	samples or per	spike recovery and			
	batch	RSD precision limits			
		-			
SRM	1 per 20 samples or	Within limits			
	1 per batch up to 20	specified by			
	samples	provider			
ICV	Immediately	Method Specifc			1
	following calibration	recovery limits			
	curve				
CCV	At the beginning of	Method Specifc			
	every 12 hours of	recovery limits			
	analysis				
Surrogates	Every sample	Method Specifc			
		recovery limits			
Internal	Every sample	Method Specifc			
Standard	, '	recovery limits			
) / . 'f f(Made at Oak at Co			
IC	Verify after each	Method Specific			
MDI	initial calibration	Acceptibility Limits			
MDL	Verify MDL study	Updated annually			
	once per year for each analyte of				
	interest				
ICB	Immediately after	No analyte should			
ICD	initial calibration	be detected > RL			
	initial calibration	DO GOLOGICA FILE			l .

Project Identification:				
Reviewed by:				
Review Date:				
Parameter: Matrix:	☑ PAHs & PCP☐ Sediment	☐ Pesticides ☑ Water/Elutriate	☐ PCBs ☐ Tissue	

QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement	. ,	Criteria	Met (Y/N)		. ,
МВ	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL			
MS/MSD	1 set per 20 samples or per batch	Method Specifc spike recovery and RSD precision limits			
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider			
ICV	Immediately following calibration curve	Method Specifc recovery limits			
CCV	At the beginning of every 12 hours of analysis	Method Specifc recovery limits			
Surrogates	Every sample	Method Specifc			
Internal	Every sample	Method Specifc			
IC	Verify after each initial calibration	Method Specific Acceptibility Limits			
MDL	Verify MDL study once per year for each analyte of interest	Updated annually			
ICB	Immediately after initial calibration	No analyte should be detected > RL			

Project Identification:						
Reviewed by:						
Review Date:						
Parameter:	☑ PAHs	☐ Pesticides	☐ PCBs			
Matrix:	Sediment		Tissue			

Analytical Method Used: 8151 & 8270D SIM

Measurement Criteria Met (Y/N) MB 1 per 20 samples or 1 per batch up to 20 samples or per batch No analyte should be detected > RL. MS/MSD 1 set per 20 samples or per batch Method Specifc spike recovery and RSD precision limits SRM 1 per 20 samples or 1 per batch up to 20 samples Within limits specified by provider ICV Immediately following calibration curve Method Specific recovery limits CCV At the beginning of every 12 hours of analysis Method Specific recovery limits Surrogates Every sample Method Specific recovery limits Internal Standard Every sample Method Specific recovery limits IC Verify after each initial calibration Acceptibility Limits Method Specific recovery limits IC Verify MDL study once per year for each analyte of interest Method Specific limits	QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
MB 1 per 20 samples or 1 per batch up to 20 samples MS/MSD 1 set per 20 samples or per batch with a part of part of the per batch with a per	-	rrequericy	•		iteview Comments	Data Acceptable (1714)
1 per batch up to 20 samples De detected > RL samples		1 nor 20 comples or		Met (1/N)		
MS/MSD 1 set per 20 samples or per batch SRM 1 per 20 samples or 1 per batch up to 20 samples SRM 1 per 20 samples or 1 per batch up to 20 samples ICV Immediately following calibration curve CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specifc recovery limits recovery limits Method Specifc recovery limits recovery limits Internal Every sample Standard IC Verify after each initial calibration MDL Verify MDL study once per year for each analyte of	MB					
MS/MSD 1 set per 20 samples or per batch SRM 1 per 20 samples or yer spike recovery and RSD precision limits SRM 1 per 20 samples or Within limits specified by samples provider ICV Immediately following calibration curve CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specific recovery limits analysis Surrogates Every sample Method Specific recovery limits Internal Every sample Method Specific recovery limits Updated annually Updated annually once per year for each analyte of		· ·	be detected > RL			
SRM 1 per 20 samples or 1 per batch up to 20 samples specified by provider ICV Immediately following calibration curve CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specific recovery limits Internal Standard Every sample Method Specific recovery limits IC Verify after each initial calibration ACCEPTIBLE ACCEPT		Samples				
SRM 1 per 20 samples or 1 per batch up to 20 samples specified by provider ICV Immediately following calibration curve CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specific recovery limits Internal Every sample Method Specific recovery limits Internal Every sample Method Specific recovery limits IC Verify after each initial calibration MDL Verify MDL study once per year for each analyte of	MS/MSD	1 set per 20	Method Specifc			
SRM 1 per 20 samples or 1 per batch up to 20 samples specified by provider ICV Immediately following calibration curve CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specific recovery limits Internal Every sample Method Specific recovery limits Internal Every sample Method Specific recovery limits IC Verify after each initial calibration MDL Verify MDL study once per year for each analyte of			spike recovery and			
1 per batch up to 20 samples specified by provider ICV Immediately following calibration curve CCV At the beginning of every 12 hours of analysis surrogates Surrogates Every sample Method Specific recovery limits Internal Standard Every sample Method Specific recovery limits IC Verify after each initial calibration Acceptibility Limits MDL Verify MDL study once per year for each analyte of		batch	RSD precision limits			
1 per batch up to 20 samples specified by provider ICV Immediately following calibration curve CCV At the beginning of every 12 hours of analysis surrogates Surrogates Every sample Method Specific recovery limits Internal Standard Every sample Method Specific recovery limits IC Verify after each initial calibration Acceptibility Limits MDL Verify MDL study once per year for each analyte of						
1 per batch up to 20 samples specified by provider ICV Immediately following calibration curve CCV At the beginning of every 12 hours of analysis surrogates Surrogates Every sample Method Specific recovery limits Internal Standard Every sample Method Specific recovery limits IC Verify after each initial calibration Acceptibility Limits MDL Verify MDL study once per year for each analyte of						
ICV Immediately following calibration curve CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specifc recovery limits Internal Standard Every sample Method Specifc recovery limits IC Verify after each initial calibration MDL Verify MDL study once per year for each analyte of	SRM	1 per 20 samples or	Within limits			1
ICV Immediately following calibration curve CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specifc recovery limits Internal Every sample Method Specifc recovery limits IC Verify after each initial calibration MDL Verify MDL study once per year for each analyte of		1 per batch up to 20				
following calibration curve CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specifc recovery limits Internal Every sample Method Specifc recovery limits Internal Every sample Method Specifc recovery limits IC Verify after each initial calibration Method Specific Acceptibility Limits MDL Verify MDL study once per year for each analyte of		samples	provider			
following calibration curve CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specifc recovery limits Internal Every sample Method Specifc recovery limits IC Verify after each initial calibration MDL Verify MDL study once per year for each analyte of						
CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specifc recovery limits Internal Every sample Method Specifc recovery limits IC Verify after each initial calibration MDL Verify MDL study once per year for each analyte of Method Specific recovery limits Method Specific Acceptibility Limits Updated annually	ICV		Method Specifc			
CCV At the beginning of every 12 hours of analysis Surrogates Every sample Method Specifc recovery limits Internal Every sample Method Specifc recovery limits IC Verify after each initial calibration MDL Verify MDL study once per year for each analyte of Method Specifc recovery limits Method Specifc recovery limits Method Specific Acceptibility Limits Updated annually		following calibration	recovery limits			
every 12 hours of analysis Surrogates Every sample Method Specifc recovery limits Internal Standard Every sample Method Specifc recovery limits Method Specifc recovery limits IC Verify after each initial calibration Method Specific Acceptibility Limits MDL Verify MDL study once per year for each analyte of						
Surrogates Every sample Method Specifc recovery limits Internal Every sample Method Specifc Standard Personal Method Specifc recovery limits IC Verify after each initial calibration Acceptibility Limits MDL Verify MDL study once per year for each analyte of	CCV		·			
Surrogates Every sample Method Specifc recovery limits Internal Every sample Method Specifc recovery limits IC Verify after each initial calibration Acceptibility Limits MDL Verify MDL study once per year for each analyte of			recovery limits			
Internal Every sample Method Specifc recovery limits IC Verify after each initial calibration MDL Verify MDL study once per year for each analyte of recovery limits Tecovery limits Method Specific Acceptibility Limits Method Specific Acceptibility Limits Updated annually						
Internal Standard Every sample Method Specific recovery limits IC Verify after each initial calibration Acceptibility Limits MDL Verify MDL study once per year for each analyte of	Surrogates	Every sample				
Standard recovery limits IC Verify after each initial calibration Acceptibility Limits MDL Verify MDL study once per year for each analyte of			recovery limits			
Standard recovery limits IC Verify after each initial calibration Acceptibility Limits MDL Verify MDL study once per year for each analyte of	Internal	Every sample	Method Specifc			
IC Verify after each initial calibration Acceptibility Limits MDL Verify MDL study once per year for each analyte of		, , , , , ,	·			
initial calibration Acceptibility Limits MDL Verify MDL study once per year for each analyte of		Manife a file a second	,			
MDL Verify MDL study Updated annually once per year for each analyte of	IC IC					
once per year for each analyte of	MDI					1
each analyte of	MIDL		Opuated annually			
1 1115(5)						
ICB Immediately after No analyte should	ICB		No analyte should	<u> </u>		
initial calibration be detected > RL	ICB	-	•			

Project Identific	Project Identification:					
Reviewed by:						
Review Date:						
Parameter: Matrix:	☐ PAHs ☑ Sediment	☐ Pesticides ☐ Water/Elutriate	☐ PCBs ☐ Tissue	⊌ SVOCs		

QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement	,,	Criteria	Met (Y/N)		
МВ	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	mee (me)		
MS/MSD	1 set per 20 samples or per batch	Method Specifc spike recovery and RSD precision limits			
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider			
ICV	Immediately following calibration curve	Method Specifc recovery limits			
CCV	At the beginning of every 12 hours of analysis	Method Specifc recovery limits			
Surrogates	Every sample	Method Specifc recovery limits			
Internal Standard	Every sample	Method Specifc recovery limits			
IC	Verify after each initial calibration	Method Specific Acceptibility Limits			
MDL	Verify MDL study once per year for each analyte of interest	Updated annually			
ICB	Immediately after initial calibration	No analyte should be detected > RL			

Project Identific	Project Identification:					
Reviewed by:						
Review Date:						
Parameter: Matrix:	□ PAHs □ Sediment	□ Pesticides/PCP □ Water/Elutriate	□ PCBs □ Tissue	☑ SVOCs		

QC	Frequency	Acceptance	Criteria	Data Acceptable
Measurement		Criteria	Met (Y/N)	(Y/N)
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL		
MS/MSD	1 set per 20 samples or per batch	Method Specifc spike recovery and RSD precision limits		
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider		
ICV	Immediately following calibration curve	Method Specifc recovery limits		
CCV	At the beginning of every 12 hours of analysis	Method Specifc recovery limits		
Surrogates	Every sample	Method Specifc recovery limits		
Internal Standard		Method Specifc recovery limits		
IC	Verify after each initial calibration	Method Specific Acceptibility Limits		
MDL	Verify MDL study once per year for each analyte of interest	Updated annually		
ICB	Immediately after initial calibration	No analyte should be detected > RL		

Project Identif	ication:		
Reviewed by:			
Review Date:			
Parameter:	☐ PAHs	☐ Pesticides	☐ PCBs
Matrix:	☐ Sediment		

Analytical Method Used: 8151 & 8270D SIM

QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement	. roquency	Criteria	Met (Y/N)		
MB	1 per 20 samples or	No analyte should			
	1 per batch up to 20 samples	be detected > RL			
MS/MSD	1 set per 20	Method Specifc			1
	samples or per	spike recovery and			
	batch	RSD precision limits			
SRM	1 per 20 samples or	Within limits			
	1 per batch up to 20	specified by			
	samples	provider			
ICV	Immediately	Method Specifc			1
	following calibration curve	recovery limits			
CCV	At the beginning of	Method Specifc]
	every 12 hours of analysis	recovery limits			
Surrogates	Every sample	Method Specifc]
		recovery limits			
Internal Standard	Every sample	Method Specifc]
		recovery limits			
IC	Verify after each	Method Specific			
	initial calibration	Acceptibility Limits			1
MDL	Verify MDL study	Updated annually			
	once per year for				
	each analyte of interest				
ICB	Immediately after	No analyte should			1
	initial calibration	be detected > RL			

Project Identification:
Reviewed by:
Review Date:
Parameter: TOC

Matrix: Sediment

00	F	A 4	0	D	D-4- A4-I-I- (MAI)
QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)		
MB	1 per 20 samples or	No analyte should			
	1 per batch up to 20	be detected > RL			
	samples				
MS/MSD	1 set per 20	Method Specifc			
	samples or per	spike recovery and			
	batch	RSD precision limits			
SRM	1 per 20 samples or				
	1 per batch up to 20				
	samples	provider			
ICV	Immediately	Method Specifc			
	following calibration	recovery limits			
	curve				
CCV	At the beginning of	Method Specifc			
	every 12 hours of	recovery limits			
	analysis				
IC	Verify after each	Method Specific			
	initial calibration	Acceptibility Limits			
MDL	Verify MDL study	Updated annually			
	once per year for				
	each analyte of				
	interest				

Project Identification:
Reviewed by:

Review Date:

Part I	General Data Reporting Requirements	Included (Y/N)	Comments
SUMMARY	TABULAR DATA AND PROJECT NARRATIVE		
Each of the	following elements should be present as described.		
	A summary table listing the percent survival in all control, reference, and test samples		
	A summary table containing the LC ₅₀ /EC ₅₀ values for the suspended particulate phase (SPP) tests and statistical tests from the solid phase tests		
	A narrative which summarizes all of the deviations from the Green Book/Inland Testing Manual, Regional Implementation Agreement and SAP/QAPP protocols. Deviations of sample handling, test conditions, ammonia purging procedures, control performance, reference toxicant test performance, organism handling/acclimation, and water quality parameters should be provided in this section.		
	A summary table which documents collection dates and holding times for the test, control, and reference sediment samples. Holding times for site water, SPP, and lab saltwater for all tests should be included in this table.		
	The data narrative should describe the major biological project activities and results. Computerized tables of results, water quality, and other pertinent information should be placed in this portion of the biological data package.		
RAW BIOLO	OGICAL AND WATER QUALITY DATA FROM TESTS		
	Survival Data		
	Water Quality Parameters		
	Feeding Schedule and Amount (if applicable)		
	Organism Observations		
	Summary of Test Conditions		
TEST ORGA	ANISM HOLDING, HANDLING AND ACCLIMATION		
	Organism Shipping Data Sheet (or equivalent) if Provided by Supplier		
	Copy of Overnight Shipping Airbill or Courier Tracking Information (if applicable)		
	Holding/Acclimation Records (including any required water quality, renewals, and feeding)		
	Mortality During Holding and Acclimation		
	Taxonomic Identification for Each Species (where available from vendor)		
REFERENC	E TOXICANT DATA (where applicable)		
	Raw Bench Sheets For Reference Toxicant Tests		
	Reference Toxicant Stock & Test Solution Preparation Sheet		
	LC ₅₀ /EC ₅₀ Statistical Calculations		
	Updated Reference Toxicant Control Charts with Acceptability Limits		
STATISTICA	AL DATA FROM DREDGE MATERIAL TESTS		
21711107	Provide all computer-generated statistical output information for the SPP and solid phase tests.		
INVALID TE	ST DATA		
	If a test was repeated for any reason, the data from the original test must be included in the final report. If a serious deviation occurs which has the potential to affect test acceptability, USACE and EPA must be contacted immediately to determine if a retest is needed.		

Part II	Test-Specific Information (additional to items specified in Part I)	Included (Y/N)	Comments
AMPHIPOD	SOLID PHASE TEST		
	Pretest Overlying Water Renewal Log and Total Porewater Ammonia Data		
	Total/Unionized Porewater Ammonia Measured in Dummy Jars During Testing		
MYSID SOLI	ID PHASE TEST		
	Pretest Overlying Water Renewal Log and Total Porewater Ammonia Data		
	Total/Unionized Overlying Unionized Ammonia Measured During Testing		
SUSPENDE	D PARTICULATE PHASE TESTS (SPP)		
	SPP Preparation Log (All volumes, Mixing Times, Centrifuge Information etc.)		
BIOACCUM	ULATION TESTING		
	Daily Flow Calibration or Static Renewal Galibration Log		
	Preparation Logs for All Artificial Saltwater (if applicable)		
	If Control Survival <90%, Provide Detailed Narrative		
	Raw-Statistical Data Output Information Comparing Test and Reference Tissue Chemistry		
	Time 0 tissue samples collected and archived frozen		
SAMPLING A	/ SAMPLE HANDLING		
	Chain of Custody Forms for All Test, Control, and Reference Samples		
	Field Data Sheets and/or Sampling Logs (Including Photos If Available)		
	Log of Test Sediment Composite Preparation		
	Sieving – Size of Mesh Used for Samples Used in Toxicity Tests/Bioaccumulation specified		
	Holding Times for All Samples (Test, Reference, Control, Elutriate, Lab Saltwater) in Summary Chart Format		

Review Date:						
Laboratory:	Suspended Particulate Phase Tests					
	Minnow	Review Comments	Data Acceptable (Y/N)	Mysid	Review Comments	Data Acceptable (Y/N)
Test Species: Identify each species used for toxicology in the cells to the right	Menidia beryllina 9-14 days old			Americamysis bahia 1-5 days old		
Correct species used as stated in the SAP/QAPP? (Y/N)						
Control Survival Criterion Met (where applicable)? (Y/N)						1
Reference Toxicant Response within 2 standard deviations of long term mean (where applicable)? (Y/N)						
Temperature within acceptable limits? (Y/N)						
Dissolved Oxygen within acceptable limits? (Y/N)						
pH within acceptable limits? (Y/N)						
Salinity within acceptable limits? (Y/N)						
Acclimation Procedures followed (where required)? (Y/N)						
Sediment Holding Time <8 wks? (Y/N)]

Project Identification:

Statistical Analyses Appropriate? (Y/N)

Ammonia Management conducted (where required)? (Y/N)

Reviewed by:

			Solid Phase Tests					
Zooplankton	Review Comments	Data Acceptable (Y/N)	Amphipod	Review Comments	Data Acceptable (Y/N)	Crustacean	Review Comments	Data Acceptable (Y/N)
Americamysis bahia or Copepod ≤ 1 day old			Leptocheirus plumulosus 3-5 mm, mixed sexes			Americamysis bahia (1 - 5 days old) or Neathes species		

Bioaccumulation Potential Tests							
Sand Worm	Review Comments	Data Acceptable (Y/N)	Clam	Review Comments	Data Acceptable (Y/N)		
Neanthes (Nereis) virens			Macoma nasuta				

APPENDIX A

SAP ERRATA 1

DEPARTMENT OF THE ARMY

U.S. ARMY CORPS OF ENGINEERS, GALVESTON DISTRICT 2000 FORT POINT RD GALVESTON, TEXAS 77550

Policy Analysis Branch

SUBJECT: Modification of Sampling and Analysis Plans for the Port of Corpus Authorities Department of the Army Permit Applications SWG-2019-00245 and SWG-2019-0067

Ms. Sarah Garza Port of Corpus Christi Authority 400 Harbor Drive Corpus Christi, Texas 78403

Dear Ms. Sarah Garza:

This is in reference to Port of Corpus Christi Authority's (PCCA) approved Sampling and Analysis Plans (SAPs) for both the Harbor Island Terminal permit application (SWG-2019-00245 dated August 2021 v.2) and the Channel Deepening Permit application (SWG-2019-00067 dated July 2021 v.2)

The Corps and EPA approved two sampling analysis plans for the PCCA's Harbor Island Terminal permit application and the Channel Deepening Permit application. The purpose of the approved SAP is to conduct dredge material testing pursuant to Section 103 of the Marine Protection, Research, and Sanctuaries Act. Subsequent to these approvals, PCCA contracted with Terracon to conduct both SAPs concurrently. In reviewing the two SAPs, Terracon identified several inconsistencies that complicated their concurrent collection efforts and requested several variances for safety. Terracon, on PCCA's behalf, submitted the attached errata requesting modifications to the SAPs.

The following is the Corps and EPA response to the attached errata and follow-up emails received from Terracon.

General Note/Variance Requests

- For Bullets 1, 2, 3, 4, and 8; the Corps and EPA agree to changes.
- To clarify for Bullet 5, the Corps and EPA confirm that the duplicate analysis is only for sediment and elutriate chemistry and that the duplicate sample is a separate sample taken at the DMMU, not a split from a single sample at a DMMU.

- In response to Bullet 6, the Corps and EPA agree to allow 300 feet in DMMUs CDP-01-05 in the channel offshore, but will not allow more than 100 feet for DMMUs CDP-06-09 inshore near Harbor Island. If greater distances are required, approval must be received prior to moving the location.
- In response to Bullet 7, you do not need to wait on discrete sediment chemistry results before proceeding to compositing and running further analysis.
- The Corps and EPA agree with Bullet 10, but would like to advise you that difficulties in locating *Mercenaria* for use in the analysis has been difficult recently and *Macoma* has been requested. You may use either species, but must notify the Corps and EPA of which one prior to conducting your analysis.

SAP #1 Harbor Island New Dock and Facilities Project

- To clarify for Bullet 1, the Corps and EPA confirm that the duplicate analysis is only
 for sediment and elutriate chemistry and that the duplicate sample is a separate
 sample taken at the DMMU, not a split from a single sample at a DMMU.
- For Bullets 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 the Corps and EPA agree.
- For Bullet 11, the EPA and Corps are requiring Organotins. Harbor Island is known to have recently had a facility with historic sandblasting, shipbreaking, maintenance, and repair work.

SAP # 2: PCCA CDP SAP

- To clarify for Bullet 1 the Corps and EPA confirm that the duplicate analysis is only for sediment and elutriate chemistry and that the duplicate sample is a separate sample taken at the DMMU, not a split from a single sample at a DMMU.
- Bullet 2 is correct and the Corps and EPA agree to the change.
- To clarify Bullets 3 & 4, the Corps and EPA agree that you are correct that elutriate is not required for reference or ODMDS. Bioassays are not required for ODMDS, but are required for reference. Similar to the Table 1 of the CDP SAP and Section 2.3.2 of the Harbor Island SAP, you should collect 1 composite sediment sample collected from 3 Corpus Christi New Work ODMDS substations for chemical and physical analysis, and collect 1 water sample from substation B.
- EPA and USACE require that samples are sent off within that 3-4 day window, all samples do not need to be together to send off vessel

- To clarify for Bullet 6, the Corps and EPA confirm that the duplicate analysis is only for sediment and elutriate chemistry and that the duplicate sample is a separate sample taken at the DMMU, not a split from a single sample at a DMMU. Table 3 of the PCCA CDP states the same holding times recommended in the Appendix B of the RIA. The Corps and EPA require the holding times recommended in the RIA.
- The Corps and EPA agree to the request in Bullet 7 that the SAP be modified to state that Hexavalent Chromium (Cr6+) will not be filtered or preserved at the lab, but rather in the field to extend the holding time from 24 hours to 28 days. All other constituents needing filtration will be filtered at the lab and where necessary, chemically preserved.
- The Corps and EPA agree with Bullet 8, but would like to advise you that difficulties in locating *Mercenaria* for use in the analysis has been difficult recently and *Macoma* has been requested. You may use either species, but must notify the Corps and EPA of which one prior to conducting your analysis.
- For Bullet 9, the EPA and Corps are requiring Organotins. Harbor Island is known to have recently had a facility with historic sandblasting, shipbreaking, maintenance, and repair work.

Additional Question from 14 January 2022 Email

 The Corps and EPA do not agree to this modification; sediment samples must be collected at three different subsample locations. Sediment subsamples will be collected at the coordinates identified in the SAP. The GIS files are not included in the approved SAP and should not be relied on to assure compliance with the SAP.

Additional Question from 25 January 2022 Email

 The Corps and EPA agree to align language to what is stated in Harbor Island SAP. The Corps and EPA conclude that the changes agreed to in the discussion may be implemented for the upcoming sampling effort. Terracon is scheduled to mobilize their sampling effort January 31, 2022 which does not provide sufficient time to edit and reapprove the SAPs. Therefore, this letter and it's enclosures document the agreed-upon modifications to the SAPs.

Sincerely,

Robert W. Heinly

Chief, Policy Analysis Branch

Robert W. Heinly

Encl.

PCCA CDP and Harbor Island New Dock/Facilities MPRSA Section 103 Projects SAP Errata Sheet

Introduction

This document has been prepared to identify errors and inconsistencies within the two project-specific sampling and analysis plans (SAPs) and make suggestions for corrections prior to finalizing the SAPs and proceeding with the field sampling operations. This document will be reviewed by USACE and EPA, and they will provide feedback on the suggested edits and corrections.

General Notes/Variance Requests

- 1. Based the potential for extended stoppages on vessel traffic within the Corpus Christi Ship Channel (CCSC greater than 6 hours), safety concerns expressed and shared by the Harbor Pilots and Terracon, and safety concerns that will arise due to strong tidal flow within the CCSC which could significantly hinder completion of centerline "B" stations from DMMUs CDP-07 through -09, we are requesting a variance to eliminate the centerline "B" stations from the proposed scope of work. We propose to collect additional sample volume at stations "A" and "C" to achieve adequate volume from these DMMUs.
- 2. Water elevation: The field team proposes to use real-time water level data from the NOAA tide station in Port Aransas (#8775237) for both projects.
- 3. Sample storage and preservation requirements: Samples will be stored at temperatures between 0 and 6°C, never frozen.
- 4. Given that sediment elevations at CDP-05 (estimated at -80 feet MLLW) are already at or near the project depth (less than 3 feet), we request approval to collect grab samples at the three stations rather than cores. The number of cores required to achieve adequate volume (upwards of 30 cores/station) is prohibitive from a sampling operations and logistics standpoint.
- 5. Duplicate sample analysis typically it includes only sediment and elutriate chemistry, not toxicology. Confirm that this is what is required for both projects.
- 6. What are acceptable distances from proposed station locations? PCCA CDP SAP states 100 feet. It also states if a sample cannot be acquired at a designated location, the location will be moved the least distance possible within the DMMU, while remaining within the dredging prism, it must be coordinated with the EPA beforehand. We propose that the acceptable distances from the proposed station locations be extended to 300 feet., ensuring that the borings remain within the dredging prism, to allow for boring placement due to vessel traffic restrictions and/or underwater obstructions. If greater distances are required all modifications will be coordinated with the EPA beforehand.
 - Given that the field team may be sampling at hours outside of the normal business hours, can the field team use professional judgement to relocate a sampling station if an issue is encountered during hours where key agency contacts may not be

available? Reasons for relocation and new station selection will be fully documented.

- 7. Neither SAP indicates that we will wait on discrete sediment chemistry results before proceeding with compositing and running elutriate and toxicological analyses. Please confirm that we can direct the laboratory to move forward with compositing these samples and initiating elutriate and toxicological analyses upon sample receipt. The major concern is that if we have to wait for sediment chemistry results, which could take up to 3 weeks, we will not meet holding times for elutriate preparation because the site water holding times are 2 weeks. Also, we greatly reduce the time allowed for the toxicological testing to be completed within holding times. This could result in a deviation from the SAP(s) and standard holding time criteria, thus allowing parties to potentially challenge the validity of the data.
- Request decontamination procedures are included in both SAPs as follows:
 - Flush with ambient water to remove all remnant sample material
 - Wash with Liquinox
 - Rinse with deionized water
- 9. Coordinate with GLO to see if there is a geophysical hazard survey for the offshore channel extension area.
- 10. For the bioaccumulation, the bent-nose clams (*Macoma nasuta*) are tide dependent; therefore, we would include an alternate, *Mercenaria*. This alternate is also a recommended species and can be found on page 30 of the RIA.

SAP #1: Harbor Island New Dock and Facilities Project

- 1. Page 14, Section 2.1, 1st sentence states "Sediment, water, and elutriate samples, plus one duplicate of each will be collected...."
 - Please confirm how we are collecting the duplicate sample? Is it a true duplicate or a split?
 - Confirm what the duplicate sample is being tested for? It is not clear or indicated in the SAP. Typically, a duplicate sample is analyzed for sediment and elutriate chemistry, not bioassay/bioaccumulation/tissue chemistry.
 - Are we collecting a duplicate water sample as well?
- 2. Page 16, Section 2.4, 3rd sentence states "All samples must be collected within a 3 to 4 day window to meet analytical holding times."
 - This language is a little unclear. Suggest editing this sentence to state "As samples are collected, they will be transported to the laboratory every 3 to 4 days to meet analytical holding times for preparation and analysis."
 - A table for analytical holding times was not included with this SAP. This should be added and match the table within the PCCA CDP SAP.

3. Page 16, Section 2.4, Bullet (3) states "Samples will be iced immediately after collection and be stored at temperatures between 0 and 6°C, never frozen, with 24 hours after collection".

The temperature range varies between the two SAPs. We suggest that the temperature criteria above be used for both projects. Another temperature reference on page 28.

4. Page 18, Section 2.5, 1st paragraph, 2nd sentence states "Before and after each use, all parts will be thoroughly cleaned by flushing with ambient water to remove all remnant sample material, washing with Liquinox, **rinsing with isopropyl alcohol**, and then rinsing with deionized water. Similar decontamination procedures are also mentioned on Page 19, 2nd paragraph, 3rd sentence.

There are some inconsistencies with the decontamination procedures between the two SAPs. We suggest eliminating rinsing with isopropyl alcohol. The recommended decontamination procedures for both projects is listed below:

- 1. Flush with ambient water to remove all remnant sample material
- 2. Wash with Liquinox
- 3. Rinse with deionized water
- 5. Table 1 (page 21), update to allow for appropriate time for duration of bio tests; 10 days, 28 days, etc.
- 6. Table 3 (page 26), error/inconsistency. Site water for DMMU 8 should be collected at 5B, not 5C per instructions in Table 2.

Correct this error in Table 3.

7. Table 3 (page 26), error/inconsistency. Per Table 2, water is being collected at REF-B. Table 3 indicates that no water is being collected at the reference.

Correct this error in Table 3.

8. Table 3 (page 26) – column for sediment chemistry should state "Discrete" instead of "Composite".

Correct in Table 3.

- 9. Page 27, 1st sentence of paragraph should state "In order to complete all required analytical and toxicology testing,"
- 10. Page 29, update to state, "Sediment sample data will be reported as dry weight and tissue sample data will be reported as dry weight and wet weight."
- 11. Page 31, please confirm that Organotins are needed for this project. Sites with historic sandblasting, shipbreaking, maintenance, and repair would warrant this analysis.

12. Page 33, bulleted list – indicates sediment chemistry will be analyzed on composite samples.

Correct this bullet to indicate that sediment chemistry/physicals will be analyzed on discrete samples, not composites.

- 13. Page 41, include option of Mercenaria mercenaria as referenced above.
- 14. In Section 3.3, Table 4, indicates a volume of site water of 10 gallons for each site water per sample.

NWDLS requires about 40-45 gallons of water per site for toxicology. Update Table 4 to reflect volume requirements for NWDLS. Also update the sediment to be 35-40 gallons per sample.

SAP #2: PCCA CDP SAP

- 1. Page 2-1, Section 2.1, first sentence states "Sediment, water, and elutriate samples, plus one duplicate of each will be collected...."
 - Please confirm how we are collecting the duplicate sample? Is it a true duplicate or a split?
 - Confirm what the duplicate sample is being tested for? It is not clear or indicated in the SAP. Typically, a duplicate sample is analyzed for sediment and elutriate chemistry, not bioassay/bioaccumulation/tissue chemistry.
 - Are we collecting a duplicate water sample as well?
- 2. Table 1 indicates that sediment samples and elutriate samples will be comprised of a composite of three (3 subsamples.

This table should be edited to show that DMMU CDP-06 through -09 require discrete sediment chemistry/physical on the subsamples.

- 3. Page 2-4, 1st paragraph, 2nd sentence "Only three water samples will be collected from the New Work ODMDS. One water sample will be collected from the central location at each station from approximately mid-column depth."
 - Confirm that 3 water samples from the ODMDS is required. This does not match the requirements of the other SAP and does not match the bullet on page 2-5.
- 4. Page 2-5, Table 2. Indicates elutriate analysis is required for the reference, and elutriate and bioassays are required for the ODMDS.

This does not match what is in Table 1. Typically elutriate is not required for the reference or ODMDS. Bioassays are not required for the ODMDS.

5. Page 2-6, Section 2.4, 3rd sentence states "All samples must be collected within a 3 to 4 day window to meet analytical holding times."

This language is a little unclear. Suggest editing this sentence to state "As samples are collected, they will be transported to the laboratory every 3 to 4 days to meet analytical holding times for preparation and analysis."

- 6. Table 3 includes holding times for sediment and site water.
 - Under the sediment holding time requirements, it allows up to 8 weeks for the elutriate prep for the sediment. However, under the site water section, it only allows 2 weeks for the elutriate preparation.
 - The table also indicates that 35 gallons of sediment will be collected for the duplicate. This
 implies that the duplicate will be analyzed for full Tier III, including bioassays. Confirm
 what is required for the duplicate sample analysis. Usually it is just physicals and sediment
 and elutriate chemistry.
 - For sediment, PCBs and Pesticides are lumped together but PCBs have an extraction holding time of 365 days. TOC and Ammonia both have holding times of 28 days.
 - For water, PCBs and Pesticides are lumped together but PCBs have an extraction holding time of 365 days and Pesticides is 7 days. Mercury and Ammonia both have holding times of 28 days.
- 7. Section 2.6, page 2-13, 5th paragraph. States "All water samples that will be submitted for any type of chemical analyses will be field filtered....."

We suggest filtering samples at the lab due to time/equipment needed to filter in the field. The one exception is Cr6+ for waters which has to be field filtered and preserved to extend the holding time from 24 hours to 28 days.

- 8. Page 2-14, include option of Mercenaria mercenaria as referenced above.
- 9. Page 4-3, please confirm that Organotins are needed for this project. Sites with historic sandblasting, shipbreaking, maintenance, and repair would warrant this analysis

Hudson, Jayson M CIV USARMY CESWG (USA)

From: Pawlak, Gregg A. <Gregg.Pawlak@terracon.com>

Sent: Tuesday, January 25, 2022 2:09 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA); Garza, Sarah; Schulz, Robert; McNeil, Harrison

Cc: Rajulu, Prasad; Barker, Tom; Michelle Rau; Michael Madonna; Paul Berman

Subject: [URL Verdict: Neutral][Non-DoD Source] RE: Harbor Island SAP and PCCA CDP SAP Errata

Importance: High

Jayson,

Our environmental laboratory just caught one additional discrepancy within the SAPS. In the PCCA CSP SAP, page 2-13 says that all water samples for <u>any</u> type of chemical analyses will be filtered, with the exception of VOC, Hg, and Se. Typically, only Metals, excluding Hg and Se, are filtered. This appears to be an error as the it differs from the Harbor Island SAP and the typical sampling protocol required by the USACE.

Gregg Pawlak Senior Scientist I Environmental Department

11555 Clay Road I Houston, Texas 77043
P (713) 329-2537 (Direct) I P (713) 690-8989 (Main) I F (713) 690-8787 I M (281) 467-2158
gregg.pawlak@terracon.com I terracon.com

From: Hudson, Jayson M CIV USARMY CESWG (USA) <Jayson.M.Hudson@usace.army.mil>

Sent: Tuesday, January 25, 2022 7:22 AM

To: Pawlak, Gregg A. <Gregg.Pawlak@terracon.com>; Garza, Sarah <Sarah@pocca.com>; Schulz, Robert

<rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

<MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman

<PBerman@anamarinc.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

Gregg,

The Corps and EPA have reviewed the request and are currently working to document the administrative record for both permit applications to finalize our response. We should be able to provide our formal response in a few days.

Thanks,

Jayson M Hudson

Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com>

Sent: Monday, January 24, 2022 3:43 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah < <u>Sarah@pocca.com</u>>; Schulz, Robert < <u>rschulz@pocca.com</u>>; McNeil, Harrison < <u>hmcneil@pocca.com</u>>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

<MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman

<PBerman@anamarinc.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] RE: Harbor Island SAP and PCCA CDP SAP Errata

Jayson,

I was just checking as to when we might receive responses to the Errata and the various questions below as we need to begin finalizing everything on our end to be ready to commence by the 31st. Thanks and I look forward to your response.

Gregg Pawlak Senior Scientist I Environmental Department

11555 Clay Road | Houston, Texas 77043 P (713) 329-2537 (Direct) | P (713) 690-8989 (Main) | F (713) 690-8787 | M (281) 467-2158 gregg.pawlak@terracon.com | terracon.com

From: Pawlak, Gregg A.

Sent: Friday, January 21, 2022 3:25 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah < <u>Sarah@pocca.com</u>>; Schulz, Robert < <u>rschulz@pocca.com</u>>; McNeil, Harrison < <u>hmcneil@pocca.com</u>> **Cc:** Rajulu, Prasad < <u>Prasad.Rajulu@terracon.com</u>>; Barker, Tom < <u>Tom.Barker@terracon.com</u>>; Michelle Rau

< <u>MRau@anamarinc.com</u>>; Michael Madonna < <u>mmadonna@anamarinc.com</u>>; Paul Berman

<PBerman@anamarinc.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

Jayson,

The response in red below will hopefully provide the clarification to your questions. Let me know if you need any additional information.

6. Table 3 includes holding times for sediment and site water.

 Under the sediment holding time requirements, it allows up to 8 weeks for the elutriate prep for the sediment. However, under the site water section, it only allows 2 weeks for the elutriate preparation.

As two weeks is the correct hold time for site water elutriate preparation, please modify Table 3 to reflect the same hold time for the sediment elutriate preparation, from 8 weeks down to 2 weeks.

The table also indicates that 35 gallons of sediment will be collected for the duplicate. This
implies that the duplicate will be analyzed for full Tier III, including bioassays.

We need the USACE/EPA to confirm what is required for the duplicate sample analysis. Usually it is just physicals and sediment and elutriate chemistry.

 For sediment, PCBs and Pesticides are lumped together but PCBs have an extraction holding time of 365 days. TOC and Ammonia both have holding times of 28 days.

Please update Table 3 in the SAP to reflect this

- For water, PCBs and Pesticides are lumped together but PCBs have an extraction holding time of 365 days and Pesticides is 7 days. Mercury and Ammonia both have holding times of 28 days.
- Please update Table 3 in the SAP to reflect this
- 7. Section 2.6, page 2-13, 5th paragraph. States "All water samples that will be submitted for any type of chemical analyses will be field filtered....."

Cr6+ is defined as Hexavalent Chromium and the reference method specifically requires field filtration and preservation; therefore, we request that the SAP be modified to state that Hexavalent Chromium (Cr6+) will not be filtered or preserved at the lab, but rather in the field to extend the holding time from 24 hours to 28 days. All other constituents needing filtration will be filtered at the lab and where necessary, chemically preserved.

Gregg Pawlak Senior Scientist I Environmental Department

Terracon Consultants, Inc.

11555 Clay Road I Houston, Texas 77043
P (713) 329-2537 (Direct) I P (713) 690-8989 (Main) I F (713) 690-8787 I M (281) 467-2158
gregg.pawlak@terracon.com I terracon.com

From: Hudson, Jayson M CIV USARMY CESWG (USA) <Jayson.M.Hudson@usace.army.mil>

Sent: Friday, January 21, 2022 10:28 AM

To: Pawlak, Gregg A. Gregg.Pawlak@terracon.com; Garza, Sarah Sarah@enca.com; Schulz, Robert

<rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

<MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman

<PBerman@anamarinc.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

After discussion with EPA, we need some clarification on two of the statements, both on Page 5 under SAP#2. We are unclear what you are asking for under bullet 6 and we would like for you to define Cr6+ under bullet 7.

Thanks,

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com>

Sent: Friday, January 14, 2022 10:29 AM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah < <u>Sarah@pocca.com</u>>; Schulz, Robert < <u>rschulz@pocca.com</u>>; McNeil, Harrison < <u>hmcneil@pocca.com</u>>

Cc: Rajulu, Prasad < Prasad.Rajulu@terracon.com; Barker, Tom < Tom.Barker@terracon.com; Michelle Rau

<<u>MRau@anamarinc.com</u>>; Michael Madonna <<u>mmadonna@anamarinc.com</u>>; Paul Berman

<PBerman@anamarinc.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] RE: Harbor Island SAP and PCCA CDP SAP Errata

Importance: High

Sarah and Jason,

We have one additional question that we would like to ask related to the sampling protocol outlined in the SAPs that was not covered in the Errata. Would it be acceptable to collect all of the volume for the reference sample and the ODMDS sample at a single location (e.g. REF-B, ODMDS-B) rather than at three (3) subsample locations? The reason for this request is that we are collecting these grabs samples from the lift boat, and that will require spudding down to secure the vessel in place before initiating sampling operations. Given the strong tidal currents, potential for rough sea conditions, and the challenges of meeting holding times, we are looking for ways to improve safety and increase efficiency in the field. By only having to secure the lift boat at one location for the reference and ODMDS sample collection, that will allow us to collect all of the required volume of sediment and water in the most efficient manner. The field team will be using a crane on the lift boat to deploy the double van veen sampler. The operator can rotate the crane boom in a semi-radius pattern off the bow to deploy the device at various points for representative sample collection.

Also, attached is a map depicting the proposed reference and ODMDS sample locations. There is some discrepancy in sample locations based on the coordinates provided in the SAPs (CDP and Harbor Island) and the GIS files that were provided by PCCA. Please confirm which set of coordinates we should be using.

Gregg Pawlak
Senior Scientist I Environmental Department

Terracon Consultants, Inc.

11555 Clay Road I Houston, Texas 77043
P (713) 329-2537 (Direct) I P (713) 690-8989 (Main) I F (713) 690-8787 I M (281) 467-2158
gregg.pawlak@terracon.com I terracon.com

From: Pawlak, Gregg A.

Sent: Monday, January 10, 2022 4:48 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah < <u>Sarah@pocca.com</u>>; Schulz, Robert < <u>rschulz@pocca.com</u>>; McNeil, Harrison < <u>hmcneil@pocca.com</u>>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

<<u>MRau@anamarinc.com</u>>; Michael Madonna <<u>mmadonna@anamarinc.com</u>>; Paul Berman

<PBerman@anamarinc.com>

Subject: Harbor Island SAP and PCCA CDP SAP Errata - Filed - 1/11/2022 9:44:07 AM

Importance: High

Sarah and Jason,

Attached is the Errata Sheet which has been prepared to identify errors/inconsistencies within the two project-specific sampling and analysis plans (SAPs) and to make suggestions for corrections prior to finalizing the SAPs and proceeding with the field sampling operations. Please provide any feedback on the suggested edits and corrections. Also, I am pretty sure I did not include all team members on this email, so feel free to forward along to anyone I accidentally omitted.

Click on the link below to download the two SAPS which contain highlights/comments themselves to help show where errors/inconsistencies to be clarified/revised.

https://terracon.sharefile.com/d-se5c64abbc3dd42d987cb2c286e1b28f2

Gregg Pawlak
Senior Scientist I Environmental Department

Terracon Consultants, Inc.

APPENDIX A SAP EMAIL CORRESPONDENCE

Pawlak, Gregg A.

From: Hudson, Jayson M CIV USARMY CESWG (USA) < Jayson.M.Hudson@usace.army.mil>

Sent: Thursday, February 3, 2022 7:21 AM

To: Pawlak, Gregg A.; Garza, Sarah; Schulz, Robert; McNeil, Harrison

Cc: Barker, Tom; Michelle Rau; Michael Madonna; Paul Berman; Jaime Vasquez; Rajulu,

Prasad

Subject: RE: Modification to Sampling Protocols - Harbor Island Land-Based Borings - Filed -

2/3/2022 7:42:53 PM

Greg,

The Corps and EPA agree to the use of the hollow auger to address the sand flows in the DMMU listed below.

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. <Gregg.Pawlak@terracon.com>

Sent: Wednesday, February 2, 2022 12:16 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA) <Jayson.M.Hudson@usace.army.mil>; Garza, Sarah <Sarah@pocca.com>; Schulz, Robert <rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com> Cc: Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau <MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman <PBerman@anamarinc.com>; Jaime Vasquez <jaime@envirotech-

services.com>; Rajulu, Prasad < Prasad.Rajulu@terracon.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] Modification to Sampling Protocols - Harbor Island Land-Based Borings

Jayson,

As discussed on the call this morning, during drilling activities at land-based borings 2A and 2B on Harbor Island yesterday, saturated flowing sands were encountered within both borings at depths commencing between 25 to 30 feet below ground surface (bgs / sample depths of 15 and 20 feet, respectively once top 10 feet of discarded sediment was taken into account per the SAP). Once encountered, these flowing sands extended throughout the depth of the borings (35 and 40 feet from the ground surface) and created substantial problems during drilling activities including significantly reduced sample recovery and sample barrels becoming trapped within the augers due to the upwelling of flowing sands. This upwelling is likely influenced and bolstered by the strong tidal movements within the adjacent channel. Upon removal of the sample barrels, which took up to 20 minutes at greater sample depths, between 5 to 8 feet of flowing sand upwelled into the augers as well. This upwelling of flowing sands will make it virtually impossible to drill beyond a depth of 35 to 40 feet below the ground surface unless a change to the drilling and sampling approach is conducted. Due to the unconsolidated nature of the sand within the proposed dredging footprint, it is Terracon's opinion that these conditions will be encountered throughout the entire site.

Therefore, to address the issue of flowing sands, Terracon proposes to collect sediment samples at all land-based boring locations/DMMUs (1A through 3C) utilizing the following approach:

- 1) Screen off the top 10 feet of sediment which is under the jurisdiction of the Railroad Commission with of Texas (RRC) with 6 5/8-inch diameter decontaminated hollow-stem augers (HSA).
- 2) Drill within the 6 5/8-inch HSA with 6-inch solid flight augers collecting sediment in the form of cuttings from the 0 to 30 feet sampling interval. The sediment will come up inside the HSAs thus preventing contact with the 0 to 10 feet sediment interval.
- 3) Upon completion of sampling, the 6 5/8-inch HSAs will be decontaminated. Following decontamination, drill to a depth of 40 feet bgs (start of the 30 to 60 feet sampling interval). This will screen of the sediment that is under the jurisdiction of the RRC as well as the 0 to 30 feet sample interval (DMMU). To prevent soil from entering the 6 5/8-inch HSAs during drilling, a lead drill plug will be placed within the augers that can be removed upon reaching the target depth.
- 4) Once set at a depth of 40 feet bgs, drill within the 6 5/8-inch HSA with decontaminated 6-inch solid flight augers collecting sediment in the form of cuttings from the 30 to 60 feet sampling interval (DMMU).
- 5) This step will be repeated at each boring location (1A through 3C and associated DMMUs). Note that sampling equipment will be decontaminated prior to commencement of the project and following the installation of each soil boring.

Gregg

Gregg Pawlak Senior Scientist I Environmental Department

From: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>

Sent: Monday, February 14, 2022 8:42 AM

To: Pawlak, Gregg A. <<u>Gregg.Pawlak@terracon.com</u>>; Garza, Sarah@pocca.com>; Schulz, Robert

<rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau <MRau@anamarinc.com>; Michael Madonna

<mmadonna@anamarinc.com>; Paul Berman <PBerman@anamarinc.com>; Rajulu, Prasad

<Prasad.Rajulu@terracon.com>

Subject: RE: Harbor Island SAP and PCCA CDP Update - Filed - 2/15/2022 10:13:09 AM

The Corps and EPA agree you may use the ponar. We have also noted the location variances

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com>

Sent: Friday, February 11, 2022 10:24 AM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah < <u>Sarah@pocca.com</u>>; Schulz, Robert < <u>rschulz@pocca.com</u>>; McNeil, Harrison < <u>hmcneil@pocca.com</u>> **Cc:** Barker, Tom < <u>Tom.Barker@terracon.com</u>>; Michelle Rau < <u>MRau@anamarinc.com</u>>; Michael Madonna < <u>mmadonna@anamarinc.com</u>>; Paul Berman < <u>PBerman@anamarinc.com</u>>; Rajulu, Prasad

<Prasad.Rajulu@terracon.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] Harbor Island SAP and PCCA CDP Update

Jayson,

Below is a brief bulleted summary regarding the status of the project.

• Terracon has completed all of the Harbor Island land-based borings and water-based borings with the exception of DMMU 8 – 5C, which had a deck to mudline of 62' from the top of the barge, or 58 feet MLLW. This location matches the depth of DMMU 8 – 5D, which Terracon completed yesterday. The sediment conditions and both 5C and 5D appear to consist of extremely unconsolidated material, and it took an entire day of drilling with numerous borings to recover 2-gallons of unconsolidated sediment from DMMU – 5D. Surface Water samples have also been collected from DMMU – 4A and DMMU – 4B.

Due to sediment elevations at DMMU 08 – 5C and the lack of sufficient recovery anticipated from the 2-feet of unconsolidated sediment, Terracon requests that we collect samples of the unconsolidated sediment within the dredge prism utilizing a ponar sampler on Monday to compete the last location within DMMU 8. We will be collecting the last set of water samples from DMMU 8 – 5B on Monday utilizing our support boat and can collect the unconsolidated sediment samples from DMMU 8 – 5C at that time.

• As of this morning, February 11th, we have commenced with PCCA CDP borings and are currently advancing boring CDP - 6A.

Location variance for borings DMMU 8 - 5A and DMMU 8 - 5B due to real time encountered conditions

- The gps coordinates for sediment collected from DMMU 8 5A on February 9th are 24.84366349, 97.06833808. This location is approximately 35 feet northwest of the 100-foot radius of the target location, but well within the dredging unit. The location of the boring was affected by strong currents encountered by the lift boat while maneuvering into position and prior to finding the bottom while jacking up the barge. The Captain also wanted to ensure that the barge was positioned a safe distance from daily ferry traffic.
- The gps coordinates for sediment collected from DMMU 8 5B on February 8th are 27.84405967, 97.06603766. Due to deep water surrounding the 5B target location (depths to mudline greater than 50) and strong currents encountered by the lift boat, the boring was moved approximately 15 feet northeast of the 100-foot radius to encounter the only bathymetry within the vicinity of the target location shallow enough to produce a sufficient core for the required sediment volume.

Gregg Pawlak
Senior Scientist I Environmental Department

11555 Clay Road I Houston, Texas 77043
P (713) 329-2537 (Direct) I P (713) 690-8989 (Main) I F (713) 690-8787 I M (281) 467-2158
gregg.pawlak@terracon.com I terracon.com

From: Hudson, Jayson M CIV USARMY CESWG (USA) <Jayson.M.Hudson@usace.army.mil>

Sent: Thursday, February 3, 2022 3:03 PM

To: Rajulu, Prasad < Prasad.Rajulu@terracon.com; Pawlak, Gregg A. < Gregg.Pawlak@terracon.com; Garza, Sarah < Sarah@pocca.com; McNeil, Harrison < hmcneil@pocca.com> Cc: Barker, Tom < a href="mailto:Tom.Barker@terracon.com">Tom.Barker@terracon.com; Michelle Rau < MRau@anamarinc.com; Michael Madonna

cc: Barker, Tom < Tom.Barker@terracon.com >; Wichelle Rau < MRau@anamarinc.com >; Wichael Wadonna < mmadonna@anamarinc.com >; Paul Berman < PBerman@anamarinc.com >; Jaime Vasquez < jaime@envirotech-services.com >;

services.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

The Corps and EPA agree to the changes in location for the DMMU substations listed below.

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Rajulu, Prasad < Prasad.Rajulu@terracon.com>

Sent: Thursday, February 3, 2022 9:33 AM

To: Hudson, Jayson M CIV USARMY CESWG (USA) <Jayson.M.Hudson@usace.army.mil>; Pawlak, Gregg A.

<<u>Gregg.Pawlak@terracon.com</u>>; Garza, Sarah <<u>Sarah@pocca.com</u>>; Schulz, Robert <<u>rschulz@pocca.com</u>>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Barker, Tom < Tom.Barker@terracon.com; Michelle Rau < MRau@anamarinc.com; Michael Madonna < mmadonna@anamarinc.com; Jaime Vasquez < jaime@envirotech-services.com; Jaime Vasquez < jaime@envirotech-services.com;

Subject: [URL Verdict: Neutral][Non-DoD Source] RE: Harbor Island SAP and PCCA CDP SAP Errata

Importance: High

Good Morning Jayson,

As requested yesterday, following inspection of the various water-based boring locations upon arrival to Harbor Island, Terracon in concurrence with the Captain of the Lift Boat, have determined that several of the locations will need to be relocated in order to safely complete the borings as indicated below:

- Location 4A (proposed coordinates 27.844296, -97.068625) Depth of boring in 4 feet of
 water and boat drafts in 10 feet of water. Therefore, we request that the boring be moved 230
 feet to the southeast.
- <u>Location 4C (proposed coordinates 27.844409, -97.065228)</u> Upon arrival to Station 4C with
 the lift barge yesterday, shallow water depths and rock/rubble/concrete debris was observed in
 the location of Station 4C. The lift barge has a draft depth of approximately 10 feet. This is
 considered a safety hazard for the barge and operations. We request that the boring be moved
 400 feet to the west.
- <u>Location 5D (proposed coordinates 27.844819, -97.061532)</u> According to the Captain of the Dularge, they were involved with the original demolition of the structures at Harbor Island. Due to the remnants of the former structures in the vicinity of boring 5D, that boring will need to be relocated a proposed 230 feet to the southeast in order to safely advance the boring.

Please note that the above referenced coordinates are only an estimate and have been provided to the USACE and EPA at their request for approval so that the project can continue to advance in a timely manner with minimal disruptions to the schedule. The ultimate locations of the borings will be based on real time site conditions for tide state, wind direction, weather, midline depth for positioning the lift boat (drafts in 10 feet of water), and ultimate determination by the Captain regarding where he can safely maneuver the Lift Boat in order to advance the borings. Real time boring locations will be provided to the USACE and EPA if we are unable to safely advance the borings within 100 feet of the newly proposed locations.

Prasad Rajulu, P.E.
Senior Associate
Site Investigations Group Mananger I Environmental Department

11555 Clay Road I Houston, Texas 77043
P (713) 939-6461 (Direct) I P (713) 690-8989 (Main) I F (713) 690-8787 I M (832) 236-7937
prajulu@terracon.com I terracon.com

From: Hudson, Jayson M CIV USARMY CESWG (USA) < Jayson.M.Hudson@usace.army.mil>

Sent: Wednesday, February 2, 2022 9:53 AM

To: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com >; Garza, Sarah < Sarah@pocca.com >; Schulz, Robert

<rschulz@pocca.com>; McNeil, Harrison < hmcneil@pocca.com>

Cc: Barker, Tom <<u>Tom.Barker@terracon.com</u>>; Michelle Rau <<u>MRau@anamarinc.com</u>>; Michael Madonna

<mmadonna@anamarinc.com>; Paul Berman <PBerman@anamarinc.com>; Jaime Vasquez <jaime@envirotech-</p>

services.com>; Rajulu, Prasad < Prasad.Rajulu@terracon.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

Thank you, that confirms my suspicion. It is a little easier to coordinate with EPA if you can provide coordinates of the proposed new locations in addition to distance and cardinal direction from the approved location.

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com>

Sent: Wednesday, February 2, 2022 9:47 AM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah

<<u>Sarah@pocca.com</u>>; Schulz, Robert <<u>rschulz@pocca.com</u>>; McNeil, Harrison <<u>hmcneil@pocca.com</u>>

Cc: Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau <MRau@anamarinc.com>; Michael Madonna

<mmadonna@anamarinc.com>; Paul Berman <PBerman@anamarinc.com>; Jaime Vasquez <jaime@envirotech-</pre>

services.com>; Rajulu, Prasad < Prasad.Rajulu@terracon.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] RE: Harbor Island SAP and PCCA CDP SAP Errata

Jayson,

I have spoken with our crew on the boat as well as the Captain of the Dularge (Lift Boat). According to the Captain, they were involved with the original demolition of the structures at Harbor Island and moving east of boring 4C would present similar if not new problems. Also, due to the remnants of the former structures in the vicinity of boring 5D, that boring will likely need to be relocated to the east in order to safely advance the boring later in the project as well.

Gregg Pawlak
Senior Scientist I Environmental Department

From: Hudson, Jayson M CIV USARMY CESWG (USA) < Jayson.M.Hudson@usace.army.mil>

Sent: Wednesday, February 2, 2022 9:18 AM

To: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com >; Garza, Sarah < Sarah@pocca.com >; Schulz, Robert

<rschulz@pocca.com>; McNeil, Harrison < hmcneil@pocca.com>

Cc: Barker, Tom < <u>Tom.Barker@terracon.com</u>>; Michelle Rau < <u>MRau@anamarinc.com</u>>; Michael Madonna

<mmadonna@anamarinc.com>; Paul Berman <PBerman@anamarinc.com>; Jaime Vasquez <jaime@envirotech-</p>

services.com>; Rajulu, Prasad < Prasad.Rajulu@terracon.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

I have reached out to EPA and will let you know ASAP. Quick question, does the debris continue to the east or does station 4C moving east present the same or new problems?

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com>

Sent: Wednesday, February 2, 2022 8:55 AM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah

<<u>Sarah@pocca.com</u>>; Schulz, Robert <<u>rschulz@pocca.com</u>>; McNeil, Harrison <<u>hmcneil@pocca.com</u>>

Cc: Barker, Tom < <u>Tom.Barker@terracon.com</u>>; Michelle Rau < <u>MRau@anamarinc.com</u>>; Michael Madonna

<mmadonna@anamarinc.com>; Paul Berman <PBerman@anamarinc.com>; Jaime Vasquez <jaime@envirotech-</p>

services.com>; Rajulu, Prasad < Prasad.Rajulu@terracon.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] RE: Harbor Island SAP and PCCA CDP SAP Errata

Jayson and Sarah,

Upon arrival to Station 4C with the lift barge this morning, shallow water depths and rock/rubble/concrete debris was observed in the location of Station 4C. The lift barge has a draft depth of approximately 10 feet. This is considered a safety hazard for the barge and operations. Can the distance be expanded greater than 100 feet to be 225 feet west of the current Station 4C to ensure we are out of the rock/rubble/concrete debris?

Gregg Pawlak
Senior Scientist I Environmental Department

From: Rajulu, Prasad < Prasad.Rajulu@terracon.com>

Sent: Tuesday, February 1, 2022 2:32 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Pawlak, Gregg A.

<<u>Gregg.Pawlak@terracon.com</u>>; Garza, Sarah <<u>Sarah@pocca.com</u>>; Schulz, Robert <<u>rschulz@pocca.com</u>>; McNeil,

Harrison < hmcneil@pocca.com>

Cc: Barker, Tom < Tom.Barker@terracon.com; Michelle Rau < MRau@anamarinc.com; Michael Madonna < mmadonna@anamarinc.com; Jaime Vasquez < jaime@envirotech-services.com; Jaime Vasquez < jaime@envirotech-services.com; Jaime Vasquez < jaime@envirotech-services.com; Jaime Vasquez < jaime@envirotech-services.com)

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

Importance: High

Good Afternoon All,

We would like to have a call tomorrow morning to discuss the lithology at Harbor Island with flowing sand that is preventing to drilling deeper than 35 to 40 feet. We will need to discuss potential changes to the sampling plan. Photographs and videos will be send shortly that documents the field activities.

Prasad Rajulu, P.E.
Senior Associate
Site Investigations Group Mananger I Environmental Department

11555 Clay Road I Houston, Texas 77043
P (713) 939-6461 (Direct) I P (713) 690-8989 (Main) I F (713) 690-8787 I M (832) 236-7937
prajulu@terracon.com I terracon.com

From: Hudson, Jayson M CIV USARMY CESWG (USA) <Jayson.M.Hudson@usace.army.mil>

Sent: Monday, January 31, 2022 11:43 AM

To: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com>; Garza, Sarah < Sarah@pocca.com>; Schulz, Robert

<rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

<<u>MRau@anamarinc.com</u>>; Michael Madonna <<u>mmadonna@anamarinc.com</u>>; Paul Berman

<PBerman@anamarinc.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

You are correct that you do not need to test for organotin in the offshore samples of the PCCA CDP SAP.

The Corps and EPA are requiring a separate sample taken at the DMMU for duplicates.

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com >

Sent: Friday, January 28, 2022 1:44 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah < <u>Sarah@pocca.com</u>>; Schulz, Robert < <u>rschulz@pocca.com</u>>; McNeil, Harrison < <u>hmcneil@pocca.com</u>>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

<MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman

<PBerman@anamarinc.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] RE: Harbor Island SAP and PCCA CDP SAP Errata

Importance: High

Jayson,

Thank you for providing us with the USACE's and EPS's responses to the Errata. Upon review of the responses we would still request more clarification regarding collection of duplicate sediment samples.

"The Corps and EPA confirm that the duplicate analysis is only for sediment and elutriate chemistry and that the duplicate sample is a separate sample taken at the DMMU, not a split from a single sample at a DMMU."

• Per our understanding the duplicate samples are to be collected from their own individual core samples. Since the nature of duplicate samples is to assess the precision of the laboratory and the analytical methods used, the duplicate sample is typically collected as a subset of a select sample so that the laboratory is analyzing what would be considered a representative/homogeneous sample. If the duplicate is collected from its own individual core rather than as a subset of a submitted sample, due to the heterogeneity of soil/sediment, it may be difficult to truly cross-check the laboratory as the analytical data from two separate boring locations could differ significantly. This could be even more relevant with the water borings as the barge may need to be repositioned several feet in order to advance separate core samples.

We also want to confirm that organotins are not required for the offshore samples as indicated in the PCCA CDP SAP, but rather only for the inshore borings close to Harbor Island (CDP-06 through CDP-09) where organotins could potentially be a chemical of concern.

Gregg Pawlak Senior Scientist I Environmental Department

From: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>

Sent: Friday, January 28, 2022 8:25 AM

To: Pawlak, Gregg A. <Gregg.Pawlak@terracon.com>; Garza, Sarah@pocca.com>; Schulz, Robert

<rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

<MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman

<PBerman@anamarinc.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

Attached is the Corps and EPA's response to your request to modify the Channel Deepening SAP and the Harbor Island SAP.

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com>

Sent: Tuesday, January 25, 2022 2:09 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah

<<u>Sarah@pocca.com</u>>; Schulz, Robert <<u>rschulz@pocca.com</u>>; McNeil, Harrison <<u>hmcneil@pocca.com</u>>

Cc: Rajulu, Prasad < Prasad.Rajulu@terracon.com; Barker, Tom < Tom.Barker@terracon.com; Michelle Rau

<<u>MRau@anamarinc.com</u>>; Michael Madonna <<u>mmadonna@anamarinc.com</u>>; Paul Berman

<PBerman@anamarinc.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] RE: Harbor Island SAP and PCCA CDP SAP Errata

Importance: High

Jayson,

Our environmental laboratory just caught one additional discrepancy within the SAPS. In the PCCA CSP SAP, page 2-13 says that all water samples for <u>any</u> type of chemical analyses will be filtered, with the exception of VOC, Hg, and Se. Typically, only Metals, excluding Hg and Se, are filtered. This appears to be an error as the it differs from the Harbor Island SAP and the typical sampling protocol required by the USACE.

Gregg Pawlak Senior Scientist I Environmental Department

From: Hudson, Jayson M CIV USARMY CESWG (USA) <Jayson.M.Hudson@usace.army.mil>

Sent: Tuesday, January 25, 2022 7:22 AM

To: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com >; Garza, Sarah < Sarah@pocca.com >; Schulz, Robert

<rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Rajulu, Prasad < Prasad.Rajulu@terracon.com; Barker, Tom < Tom.Barker@terracon.com; Michelle Rau

<MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman

<PBerman@anamarinc.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

Gregg,

The Corps and EPA have reviewed the request and are currently working to document the administrative record for both permit applications to finalize our response. We should be able to provide our formal response in a few days.

Thanks,

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com>

Sent: Monday, January 24, 2022 3:43 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah @pocca.com>; Schulz, Robert < rschulz@pocca.com>; McNeil, Harrison < hmcneil@pocca.com>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

CC. Najulu, Prasau \ Prasau. Najulu@terracon.com/, Barker, Tom \ Tom.Barker@terracon.com/, Michelle Nau

<MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman

<PBerman@anamarinc.com>

Subject: [URL Verdict: Neutral] [Non-DoD Source] RE: Harbor Island SAP and PCCA CDP SAP Errata

Jayson,

I was just checking as to when we might receive responses to the Errata and the various questions below as we need to begin finalizing everything on our end to be ready to commence by the 31st. Thanks and I look forward to your response.

Gregg Pawlak Senior Scientist I Environmental Department

From: Pawlak, Gregg A.

Sent: Friday, January 21, 2022 3:25 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah < <u>Sarah@pocca.com</u>>; Schulz, Robert < <u>rschulz@pocca.com</u>>; McNeil, Harrison < <u>hmcneil@pocca.com</u>>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

<MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman

<PBerman@anamarinc.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

Jayson,

The response in red below will hopefully provide the clarification to your questions. Let me know if you need any additional information.

- 6. Table 3 includes holding times for sediment and site water.
 - Under the sediment holding time requirements, it allows up to 8 weeks for the elutriate prep for the sediment. However, under the site water section, it only allows 2 weeks for the elutriate preparation.

As two weeks is the correct hold time for site water elutriate preparation, please modify Table 3 to reflect the same hold time for the sediment elutriate preparation, from 8 weeks down to 2 weeks.

The table also indicates that 35 gallons of sediment will be collected for the duplicate. This
implies that the duplicate will be analyzed for full Tier III, including bioassays.

We need the USACE/EPA to confirm what is required for the duplicate sample analysis. Usually it is just physicals and sediment and elutriate chemistry.

 For sediment, PCBs and Pesticides are lumped together but PCBs have an extraction holding time of 365 days. TOC and Ammonia both have holding times of 28 days.

Please update Table 3 in the SAP to reflect this

- For water, PCBs and Pesticides are lumped together but PCBs have an extraction holding time of 365 days and Pesticides is 7 days. Mercury and Ammonia both have holding times of 28 days.
- Please update Table 3 in the SAP to reflect this
- 7. Section 2.6, page 2-13, 5th paragraph. States "All water samples that will be submitted for any type of chemical analyses will be field filtered....."

Cr6+ is defined as Hexavalent Chromium and the reference method specifically requires field filtration and preservation; therefore, we request that the SAP be modified to state that

Hexavalent Chromium (Cr6+) will not be filtered or preserved at the lab, but rather in the field to extend the holding time from 24 hours to 28 days. All other constituents needing filtration will be filtered at the lab and where necessary, chemically preserved.

Gregg Pawlak

Senior Scientist I Environmental Department

Terracon Consultants, Inc.

11555 Clay Road I Houston, Texas 77043
P (713) 329-2537 (Direct) I P (713) 690-8989 (Main) I F (713) 690-8787 I M (281) 467-2158
gregg.pawlak@terracon.com I terracon.com

From: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>

Sent: Friday, January 21, 2022 10:28 AM

To: Pawlak, Gregg A. < <u>Gregg.Pawlak@terracon.com</u>>; Garza, Sarah < <u>Sarah@pocca.com</u>>; Schulz, Robert

<<u>rschulz@pocca.com</u>>; McNeil, Harrison <<u>hmcneil@pocca.com</u>>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

< MRau@anamarinc.com >; Michael Madonna < mmadonna@anamarinc.com >; Paul Berman

<PBerman@anamarinc.com>

Subject: RE: Harbor Island SAP and PCCA CDP SAP Errata

After discussion with EPA, we need some clarification on two of the statements, both on Page 5 under SAP#2. We are unclear what you are asking for under bullet 6 and we would like for you to define Cr6+ under bullet 7.

Thanks,

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. < Gregg. Pawlak@terracon.com>

Sent: Friday, January 14, 2022 10:29 AM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u>>; Garza, Sarah

<Sarah@pocca.com>; Schulz, Robert <rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Rajulu, Prasad < Prasad.Rajulu@terracon.com; Barker, Tom < Tom.Barker@terracon.com; Michelle Rau

<MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman

<PBerman@anamarinc.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] RE: Harbor Island SAP and PCCA CDP SAP Errata

Importance: High

Sarah and Jason,

We have one additional question that we would like to ask related to the sampling protocol outlined in the SAPs that was not covered in the Errata. Would it be acceptable to collect all of the volume for the reference sample and the

ODMDS sample at a single location (e.g. REF-B, ODMDS-B) rather than at three (3) subsample locations? The reason for this request is that we are collecting these grabs samples from the lift boat, and that will require spudding down to secure the vessel in place before initiating sampling operations. Given the strong tidal currents, potential for rough sea conditions, and the challenges of meeting holding times, we are looking for ways to improve safety and increase efficiency in the field. By only having to secure the lift boat at one location for the reference and ODMDS sample collection, that will allow us to collect all of the required volume of sediment and water in the most efficient manner. The field team will be using a crane on the lift boat to deploy the double van veen sampler. The operator can rotate the crane boom in a semi-radius pattern off the bow to deploy the device at various points for representative sample collection.

Also, attached is a map depicting the proposed reference and ODMDS sample locations. There is some discrepancy in sample locations based on the coordinates provided in the SAPs (CDP and Harbor Island) and the GIS files that were provided by PCCA. Please confirm which set of coordinates we should be using.

Gregg Pawlak Senior Scientist I Environmental Department

Terracon Consultants, Inc.

11555 Clay Road I Houston, Texas 77043
P (713) 329-2537 (Direct) I P (713) 690-8989 (Main) I F (713) 690-8787 I M (281) 467-2158
gregg.pawlak@terracon.com I terracon.com

From: Pawlak, Gregg A.

Sent: Monday, January 10, 2022 4:48 PM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < <u>Jayson.M.Hudson@usace.army.mil</u> >; Garza, Sarah < <u>Sarah@pocca.com</u> >; Schulz, Robert < <u>rschulz@pocca.com</u> >; McNeil, Harrison < <u>hmcneil@pocca.com</u> >

Cc: Rajulu, Prasad < <u>Prasad.Rajulu@terracon.com</u>>; Barker, Tom < <u>Tom.Barker@terracon.com</u>>; Michelle Rau

<MRau@anamarinc.com>; Michael Madonna <mmadonna@anamarinc.com>; Paul Berman

<PBerman@anamarinc.com>

Subject: Harbor Island SAP and PCCA CDP SAP Errata - Filed - 1/11/2022 9:44:07 AM

Importance: High

Sarah and Jason,

Attached is the Errata Sheet which has been prepared to identify errors/inconsistencies within the two project-specific sampling and analysis plans (SAPs) and to make suggestions for corrections prior to finalizing the SAPs and proceeding with the field sampling operations. Please provide any feedback on the suggested edits and corrections. Also, I am pretty sure I did not include all team members on this email, so feel free to forward along to anyone I accidentally omitted.

Click on the link below to download the two SAPS which contain highlights/comments themselves to help show where errors/inconsistencies to be clarified/revised.

https://terracon.sharefile.com/d-se5c64abbc3dd42d987cb2c286e1b28f2

Gregg Pawlak

Senior Scientist I Environmental Department

Terracon Consultants, Inc.

Pawlak, Gregg A.

From: Hudson, Jayson M CIV USARMY CESWG (USA) < Jayson.M.Hudson@usace.army.mil>

Sent: Tuesday, January 17, 2023 2:11 PM

To: Garza, Sarah

Cc: HEINLY, Robert W CIV USARMY CESWG (USA)
Subject: RE: Harbor Island and CDP Resampling Events

Sarah,

I have spoken with the EPA. The reference sites samples were within holding times. However, since the reference site is being re-sampled, the ODMDS would also need to be re-sampled. All results from this re-sampling effort will be considered the data to be used going forward with the exception of the DMMUs on the CDP that were clarified earlier that they did not have to be re-sampled.

In other words, the consultants don't get to pick and choose the reference data results they want to use in their statistical analysis when the report is written.

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Garza, Sarah < Sarah@pocca.com> Sent: Monday, January 16, 2023 9:31 AM

To: Hudson, Jayson M CIV USARMY CESWG (USA) < Jayson.M. Hudson@usace.army.mil>

Subject: [URL Verdict: Neutral][Non-DoD Source] Fwd: Harbor Island and CDP Resampling Events

Good morning, Jayson,

Terracon is asking if you will require them to repeat the ODMDS samples or only the reference sample. I suggest that only the reference sample would be needed but want to get your concurrence.

Terracon has mobilized this morning and starting both the terrestrial and marine resampling efforts. Terracon also indicated this morning in our weekly call that they will be copying you on the end of day field summary emails.

Please advise if you will require them to repeat the ODMDS sample.

Thank you.

Sarah I Garza

Director of Environmental Planning & Compliance
Port of Corpus Christi

o: (361) 885-6163

1

m: (361) 813-0068

w: portofcc.com e: sarah@pocca.com

From: Pawlak, Gregg A. < Gregg.Pawlak@terracon.com>

Sent: Monday, January 9, 2023 2:45 PM

To: Garza, Sarah <Sarah@pocca.com>; Schulz, Robert <rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Rajulu, Prasad < Prasad. Rajulu@terracon.com >; Barker, Tom < Tom. Barker@terracon.com >

Subject: Harbor Island and CDP Resampling Events

[EXTERNAL EMAIL] CAUTION: This email originated from outside Port of Corpus. Exercise caution when opening attachments or clicking links. Please forward any suspicious content to IT Helpdesk.

Sarah,

As we discussed this morning, we only have one question that requires clarification from the USACE regarding our resampling event related to all of the Harbor Island borings as well as CDP boring locations CDP-06 (A through C) and CDP-07 (A & C).

1. Do we only need to resample the Reference Area for this round of sampling or do we need to include resampling of the ODMDS as well?

Gregg

Gregg Pawlak
Senior Scientist I Environmental Department

11555 Clay Road | Houston, Texas 77043 P (713) 329-2537 (Direct) | P (713) 690-8989 (Main) | F (713) 690-8787 | M (281) 467-2158 gregg.pawlak@terracon.com | terracon.com

Terracon provides environmental, facilities, geotechnical, and materials consulting engineering services delivered with responsiveness, resourcefulness, and reliability.

Private and confidential as detailed here (<u>www.terracon.com/disclaimer</u>). If you cannot access the hyperlink, please e-mail sender.

Pawlak, Gregg A.

From: Hudson, Jayson M CIV USARMY CESWG (USA) < Jayson.M.Hudson@usace.army.mil>

Sent: Tuesday, January 24, 2023 3:43 PM

To: Pawlak, Gregg A.; sarah@pocca.com; Schulz, Robert; McNeil, Harrison; HEINLY, Robert

W CIV USARMY CESWG (USA)

Cc: Rajulu, Prasad; Porter, Sheraden J.; Michael Madonna; Barker, Tom; Michelle Rau

Subject: RE: Update Regarding Station DMMU 8-5D Sampling Efforts

Gregg,

The Corps and EPA have reviewed the information provided and evaluated the requirements of the existing SAP. Based on this analysis we have concluded that that the use of the van veen at DMMU 8-5D will comply with the SAP as long as it is capable of penetrating the sediment surface to the depths outlined in Section 2.6and appropriately weighted to counteract currents during decent. Therefore, the sediment collected will include approximately 2 ft of sediment or approx. -62 MLLW.

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. <Gregg.Pawlak@terracon.com>

Sent: Tuesday, January 24, 2023 9:03 AM

To: sarah@pocca.com; Hudson, Jayson M CIV USARMY CESWG (USA) < Jayson.M.Hudson@usace.army.mil>; Schulz, Robert < rschulz@pocca.com>; McNeil, Harrison < hmcneil@pocca.com>

Cc: Rajulu, Prasad <Prasad.Rajulu@terracon.com>; Porter, Sheraden J. <Sheraden.Porter@terracon.com>; Michael Madonna <mmadonna@anamarinc.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau <MRau@anamarinc.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] Update Regarding Station DMMU 8-5D Sampling Efforts Importance: High

Jayson,

I just wanted to send a follow-up email regarding Terracon's attempt to sample station DMMU 8-5D last Thursday, January 19th. As stated in the email below, while on station DMMU 8-5D, the marine field team on the DuLarge Lift Boat documented water depths greater than the project depth of -60′ MLLW at two separate locations. The first water depth was 60.4′ (adjusted for MLLW) at a location approximately 75′ to the east of the original station location for 5D as listed in the SAP. The second water depth was 66.8′ MLLW at a location approximately 20′ to the west of the original 5D station location. High winds (20 knots), incoming tide, and remnants of the former pier/docking structures observed in close proximity of station DMMU 8-5D prevented the DuLarge Lift Boat from attempting to get closer to Harbor Island to document water depths within the dredge unit boundary. Based on the boat navigation depth plotter reviewed, the water depths increased the further south and east in the direction of the navigation channel. Photographs taken from the Lift Boat of the area at 5D are attached.

• It should be noted that during the February 2022 sampling event Terracon was only able to collect 2.0-gallons of sediment at station DMMU 8-5D from four separate cores and a grab sample as the depth to mudline was - 58.2'MLLW at the tie of sampling.

Due to the depths to mudline in the vicinity of DMMU 8-5D which are already greater than the project depth of -60′ MLLW, Terracon requests authorization to collect a grab sample at station DMMU 8-5D using a double van veen sampler. The field team will collect approximately 5-gallons of sediment from DMMU 8-5D for the discrete chemistry sample analysis and to supplement the composite sample with DMMU-8-5A, 5B, and 5C sediment (all collected to project depth) for appropriate elutriate and toxicology analysis in accordance with the SAP. At present Terracon should complete all Inner Harbor borings by tomorrow and will be releasing the Lift Boat at the end of the day. We plan to collect sediment and/or water from the Reference, ODMDS and Station DMMU 8-5D this coming Friday using a marine vessel supplied by Ryan Marine.

Gregg Pawlak Senior Scientist I Environmental Department

11555 Clay Road | Houston, Texas 77043 P (713) 329-2537 (Direct) | P (713) 690-8989 (Main) | F (713) 690-8787 | M (281) 467-2158 gregg.pawlak@terracon.com | terracon.com

From: Pawlak, Gregg A.

Sent: Thursday, January 19, 2023 8:42 PM

To: po@accpilots.com; Anthony.M.Garofalo@uscg.mil; Russell@pocca.com; ops@accpilots.com; vp@accpilots.com; kmalone@accpilots.com; sarah@pocca.com; Jayson.M.Hudson@usace.army.mil

Cc: Rajulu, Prasad < Prasad. Rajulu@terracon.com >; Porter, Sheraden J. < Sheraden. Porter@terracon.com >; Michael

Madonna <mmadonna@anamarinc.com>; Barker, Tom <Tom.Barker@terracon.com>; Michelle Rau

<MRau@anamarinc.com>

Subject: PCCA End of Day Update - Terracon (01_19_2023)

Importance: High

Everyone,

Terracon completed land-based borings DMMU 5-3C (0-30') / DMMU 6-3C (30-60') and DMMU 3-2A (0-30') / DMMU 4-2A (30-60') today. We will commence with the last remaining land-based boring DMMU 3-2B (0-30') / DMMU 4-2B (30-60') tomorrow morning.

In addition to the land-based borings referenced above, the marine field team completed core sampling at DMMU 8-5B and then moved to station DMMU 8-5D. While on station DMMU 8-5D, the marine field team documented water depths of 60.4' (adjusted for MLLW) at a location ~75' to the east of the original station location for 5D as listed in the SAP, and 66.8' at a location ~20' to the west of the original 5D station location. Wind, incoming tide, and remnants of the former pier/docking structures observed in close proximity of station 5D prevented the Lift Boat from attempting to get closer to Harbor Island to document water depths within the dredge unit boundary. Based on the boat navigation depth plotter reviewed, water depths increase the further south and east in the direction of the navigation channel. The

marine field team also attempted to approach the location of DMMU 8-5C. However, wind and the strong incoming tide prevented Lift Boat maneuverability to setup on this station.

Tomorrow morning the field team will mobilize to DMMU 8-5C to document the water depth and depth to mud line elevation for coring activities. The field team will then move to the Channel Deepening station CDP-07A located on the north side of the shipping channel and then CDP-07C located on the south side of the channel. As requested, they will continue to broadcast their projected moves and location on Channel 12 and 16.

Gregg Pawlak Senior Scientist I Environmental Department

Michael Madonna

From: Pawlak, Gregg A. <Gregg.Pawlak@terracon.com>

Sent: Friday, February 3, 2023 9:47 AM

To: Monica Martin; Paul Berman; Michael Madonna; Michelle Rau

Cc: Rajulu, Prasad

Subject: FW: Clams Species for 28D Bio

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

The EPA and USACE concur with the referenced clam substitution.

Gregg Pawlak Senior Scientist I Environmental Department

11555 Clay Road I Houston, Texas 77043
P (713) 329-2537 (Direct) I P (713) 690-8989 (Main) I F (713) 690-8787 I M (281) 467-2158
gregg.pawlak@terracon.com I terracon.com

From: Hudson, Jayson M CIV USARMY CESWG (USA) <Jayson.M.Hudson@usace.army.mil>

Sent: Friday, February 3, 2023 8:35 AM

To: Pawlak, Gregg A. <Gregg.Pawlak@terracon.com>; Garza, Sarah <Sarah@pocca.com>; Schulz, Robert

<rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Rajulu, Prasad < Prasad. Rajulu@terracon.com >; Barker, Tom < Tom. Barker@terracon.com >

Subject: RE: Clams Species for 28D Bio

I wanted to verify for you that Corps and EPA concur with the substitution.

Jayson M Hudson Regulatory Project Manager 409.766.3108

Please tell me how I am doing by completing the survey found at:

https://regulatory.ops.usace.army.mil/customer-service-survey/

From: Pawlak, Gregg A. < Gregg. Pawlak@terracon.com>

Sent: Thursday, February 2, 2023 11:01 AM

To: Garza, Sarah <Sarah@pocca.com>; Hudson, Jayson M CIV USARMY CESWG (USA)

<Jayson.M.Hudson@usace.army.mil>; Schulz, Robert <rschulz@pocca.com>; McNeil, Harrison <hmcneil@pocca.com>

Cc: Rajulu, Prasad < Prasad.Rajulu@terracon.com>; Barker, Tom < Tom.Barker@terracon.com>

Subject: [URL Verdict: Neutral][Non-DoD Source] FW: Clams Species for 28D Bio

Importance: High

Jayson,

Please see the email from NWDLS below regarding the clams that are available for the upcoming bioassay testing due to the very poor weather that has impacted the west coast recently.

Gregg Pawlak Senior Scientist I Environmental Department

11555 Clay Road I Houston, Texas 77043 P (713) 329-2537 (Direct) | P (713) 690-8989 (Main) | F (713) 690-8787 | M (281) 467-2158 gregg.pawlak@terracon.com | terracon.com

From: Monica Martin <monica@nwdls.com> Sent: Thursday, February 2, 2023 10:40 AM

To: Pawlak, Gregg A. <Gregg.Pawlak@terracon.com>; Rajulu, Prasad <Prasad.Rajulu@terracon.com> **Cc:** Paul Berman < PBerman@anamarinc.com >; Michelle Rau < MRau@anamarinc.com >; Michael Madonna

<mmadonna@anamarinc.com>; Theran Gay <theran.gay@nwdls.com>

Subject: Clams Species for 28D Bio

Importance: High

Good Morning,

Regarding the status of the bent-nose clams (Macoma nasuta), there has been very poor weather on the west coast which has affected the tides. Therefore, our supplier is having a very tough time obtaining them and NWDLS will be utilizing the alternate, Mercenaria mercenaria. These are readily available thus will allow us to adhere to the project schedule.

Let me know if you have any questions.

Regards,

Monica O. Martin Chief Administrative Officer

130 South Trade Center Parkway ● Conroe, TX 77385

936.321.6060, Direct x204

832.482.8975

monica@nwdls.com

This message and any attachments are intended only for the individual(s) to whom it is information. If you are neither the intended recipient nor the agent responsible for delive age to the intended recipient, you are notified that any dissemination of this communication, disclosure, copying, distribution and use are prohibited and may be unlawful. If you feel you have received this communication in error, please notify us immediately by returning this email to the sender and deleting it out of your email.

Terracon provides environmental, facilities, geotechnical, and materials consulting engineering services delivered with responsiveness, resourcefulness, and reliability.

Private and confidential as detailed here (<u>//www.terracon.com/disclaimer</u>). If you cannot access the hyperlink, please e-mail sender.

Pawlak, Gregg A.

From: Pawlak, Gregg A.

Sent: Wednesday, April 5, 2023 12:50 PM

To: Michael Madonna Cc: Rajulu, Prasad

Subject: FW: Sediment Sampling Concurrence - SWG-2019-00067 and SWG-2019-00245

Date of concurrence from EPA and USACE for resampling was December 14th. A quote from the email is provided for reference.

"The EPA and the Corps are requiring all of Tier II and Tier III be conducted on the re-collected samples. To put it simply, this is a complete re-do for DMMUs 6 and 7. DMMUs 8 and 9 were considered compliant and do not need to be re-sampled."

Gregg

Gregg Pawlak
Senior Scientist I Environmental Department

APPENDIX B FIELD PAPERWORK

Core Log (Sheet 1 of __)

Sample ID: DANN 1-14 (0 +030)	Sampled By GP, RU
Sampling Date: 116 2023	Client: PCCA
Start Sampling Time: 1330	End Sampling Time: (-171)
Collection Method (Circle one):	
Vibracore Push Core (Auger) Split Spoon	Total Volume Collected 15 April 1915
Sediment Container(s):	40A
Type and Number: Teffon® Glass Plastic 2	Ziploc [®] Other
Sediment Preservation Method (circle one): "Wet" ice Reing	erated Truck/Trailer Other
V-Datun MLLW MLW NAVD 88 NGVD 29 Other:	H-Datum NAD83 NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTK	Real Time WLR Tide Tables Other
Water Depth Measurement (circle one) : Fathometer Lead Line	
Water Surface Elevation (tide ht) (ft):	Waypoint ID
- Water Depth (ft):	GPS ID:
= Top of Core Elevation (ft): (10' 845)	Latitude (Northing):
Project Depth (ft): -60 (70' kgs)	Longitude (Easting)
Target Penetration (ft): 30 (40 695)	
Tidal Cycle (circle two) Low Mid High [and] Stack Incom	ing Outgoing
	9 34449
Wind Speed (knots): 0-5 5-10 10-15 >15	
Sea State (circle one) Calm 1-2 ft 2-3 ft 3-4 ft 4-5	ff >5 ff Other
Weather (circle one) Sunny P. Cloudy Cloudy Rain?	(drzzie, moderate, heavy)
Wind Direction: N NE E SE S SW W NW	
Notes: 0-10' bas discarded	Core starts at 10' bas
3.	
1 - Sgal banket - Them	. Dec.
2 Sal ball to	
a night theret Toxici	Story
D LC	drilling second interval
LECON AUGEIS OFFOR	erilling second interval
50-60 (40-70 bas)

Core Log (Sheet __ of __)

Sample ID PMMU 1-/A 0 +630) Project Name: PCCA Harbor Island- Section 103 Sampling Date: 116/2023 Photograph(s) Taken (circle one): Yes. No. Core diameter (inches): Core Core Time Core penetration length: Core penetration length Bottom of core elevation (ft) 30 (40 bos) Bottom of core elevation (ft). Recovery Length (ft): 30 % Recovery Recovery Length (ft):____ % Recovery_ Length (ft) CORE DESCRIPTION Length (ft) CORE DESCRIPTION Live Organisms? Yes No (Describe) Live Organisms? Yes No (Describe) Oil Present? Yes No Oil Present? Yes No Odor Present? Yes No Odor Present? Yes No Organic Debris? Yes No. Organic Debris? Yes No Notes: Notes:

Core Log (Sheet 1 of __)
PROJECT: PCCA Harbor Island New Dock Section 103

Sample ID DMMU2 - IA (30 to 60 Sampled By C7P, RU
Sampling Date: 16/2023 Client: PCCA
Start Sampling Time 1000 End Sampling Time 1720
Collection Method (Circle one):
Vibracore Push Core (Auger) Split Spoon Total Volume Collected: 5 4 1013
Sediment Containeris):
Type and Number: Tellion® - Cacim Glass Plastic Z Ziploc® Other
Sediment Preservation Method (circle one). Well ice (Refrigerated Truck/Trailer) Other
V-Datum MLW MLW NAVD 88 NGVD 29 Other: H-Datum NAD83 NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTK Real Time WLR Tide Tables Other:
Water Depth Measurement (circle one) : Fathometer Load Line
Water Surface Elevation (tide ht) (ft): Waypoint ID
- Water Depth (ft): GPS ID:
= Top of Core Elevation (ft): 30 (401) Latitude (Northing):
- Project Depth (ft): (70 by) Longitude (Easting)
= Target Penetration (ft): 3C GC (70'b-s)
Weather (circle one) Sunny P. Cloudy Cloudy Rain? (drizzle, moderate, heavy) Wind Direction: N. NE E. S. S.W. W. NW
Notes
1 Sgal bucket - Chemistry
to the bushets - toxicology
I an auger setore setting up at next statum

Core Log (Sheet __ of __)

Project Name: PCCA Harbor Island- Section 10: Sampling Date 116723 Core diameter (inches): 3	Photograph(s) Taken (circle one): Yes No
Core Time \(\begin{align*} \left(\left(\left) \) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Core penetration length.
Longituto CORE DESCRIPTION LID-55 Savid, Fun / gray Licra Soft luchs Fine grand of the Congruents	plant tent
SS-TID Clayer Smoth green was from the firm of limber of should be agreents	ike
Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No	Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes:

Core Log (Sheet 1 of __)
PROJECT: PCCA Harbor Island New Dock Section 103

Sample ID DMMU - 1B (0 to 2 Sample	od By GP, RU
111212227	PCCA
Start Sampling Time: 0910 End S	impling Time: 0940
Collection Method (Circle one):	
Vibracore Push Core Auges Split Spoon Total	Volume Callected 15 year
Sediment Container(s):	
Type and Number: Teflon* Glass Plastic Z	pioc [®] Other
Sediment Preservation Method (circle one): "Wet" ice Refrigerated T	ruck/Trailer Other
V-Datum MLW MLW NAVD 88 NGVD 29 Other: H-Data	m (AD83) AD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTK. R	Time WLR Tide Tables Other:
Water Depth Measurement (circle one) ; Fathemeter Lead Line	
Water Surface Elevation (tida ht) (ft): Waypo	int ID:
- Water Depth (ft): GPS ID	
	e (Northing):
- Project Depth (ft): -60 (70 bys) Longit	ide (Easting)
= Target Penetration (ft): 30 (40 bas)	
Wind Speed (knots): 0-5 S-10 10-15 >15 Sea State (circle one): Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 Weather (circle one): Sunny P Cloudy Cloudy Rain? (drizzle Wind Direction(N NE E SE 5 SW W NW	
Notes	
0 to 10 bys distarded	(10. FO)
2 Sgal buckets - chem	1.
It can equipment before	next interval (-30 to -60)

Core Log (Sheet __ of __)

Sampling Date: 17/2023 Core diameter (inches): 3	Photograph(s) Taken (circle one): Ses No	
Core DMM 13 Fime 1910 - 0940 Core penetration length: 30 Bottom of core elevation (ft): 30 (40 bgs) Recovery Length (ft): 30 % Recovery	CoreTime Core penetration length: Bottom of core elevation (ft):% Recovery	
Length (t) CORE DESCRIPTION 0-10 DISCOLARD (10' (20))	Length (ft) CORE DESCRIPTION	
10=40 Silty Sand, grew, wet, viry soft, larks plasticity, fine grained, Shell Fragments +hroughout (0 to 30)		
Live Organisms? Yes No (Describe)	Live Organisms? Yes No (Describe)	
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes:	Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes:	

Core Log (Sheet 1 of __)
PROJECT: PCCA Harbor Island New Dock Section 103

Sample ID: DMM(12 - 113	Sampled By: CTP, RU
Sampling Date: 11717073	Client: PCCA
Start Sampling Time: 1040	End Sampling Time: 1130
Collection Method (Circle one): Vibracore Push Core Auger Split Spoon Sediment Container(s):	Total Volume Collected: 15 g cv 1
Type and Number: Teffon Glass Plastic -	Ziploc* Other
Sediment Preservation Method (circle one) "Wet" los Reing	erated Truck/Trailer Other
V-Datum MLLW MLW NAVD 88 NGVD 29 Other:	H-Datum (AD83 NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTK Water Depth Measurement (circle one): Fathemeter Lead Line	Real Time WLR Tide Tables Other:
Water Surface Elevation (tide ht) (/t):	Waypoint ID
- Water Depth (ft):	GPS ID:
= Top of Core Elevation (ft): 30 (40 bys)	Latitude (Northing):
- Project Depth (ft): 6() (70' has)	Longitude (Easting)
= Target Penetration (ft): -6() (70 bq 5)	
Sea State (circle one): Calm 1-2 lt 2-3 ft 3-4 ft 4-5 Weather (circle one): Sunny P. Cloudy Cloudy Rain? Wind Direction: N. NE E SE S SW W NW	(drizzie, moderate, heavy)
Notes	
1-5 gal buckets	- chemistry - toxicology
Decon equipment	before + station

Sample ID. DMML(2-18 Project Name: PCCA Harbor Island-Section 103 Sampling Date: Photograph(s) Taken (circle one): (Yes) Core diameter (inches):_ Time (040-) Core Core Time Core penetration length Core penetration length: Bottom of core elevation (ft):_ Bottom of core elevation (ft) Recovery Length (ft) 30 Recovery Length (ft) % Recovery_ Length (ft) Length (ft) CORE DESCRIPTION Live Organisms? Yes No (Describe) Live Organisms? Yes No (Describe) Oil Present? Yes No Oil Present? Yes No Odor Present? Odor Present? Yes No Organic Debris? Yes (No Organic Debris? Yes No Notes: Notes:

Sample ID DMM(1) - ((0 to 30) Sampled By: GP, KU
Sampling Date: 1772 Glient: PCCA
Start Sampling Time: 1900 End Sampling Time: 1990
Collection Method (Circle one): Vibracore Push Core Auger Split Spoon Total Volume Collected: 5
Sediment Container(s): Type and Number: Teffon Glass Plastic Z Ziploc Other Other
Sediment Preservation Method (circle one): "Wet" Ice Refrigerated Truck/Trailer Other V-Datum MLW MLW NAVD 88 NGVD 29 Other: H-Datum NAD83 NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTK Real Time WLR Tide Tables Other:
- Water Depth (ft): GPS ID: Latitude (Northing):
- Project Depth (ft): 60 10 Longitude (Easting)
Wind Speed (knots): 0-5 5-10 10-15 >15 Sea State (circle one): Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 ft Other Weather (circle one): Sunny P. Cloudy Cloudy Rain? (drizzle, moderate, heavy) Wind Direction: N. NE E. SE S. SW. W. NW
Notes:
16 to 1 descare it to med
2- Sgal buckets - chemistry
Decon equipment between internals

Sample 10: DMMUI-10 (0-30 Project Name: PCCA Harbor Island- Section 103 Sampling Date: Photograph(s) Taken (circle one): Yes Core diameter (inches): 1400-1-140 Core Time Core Time Core penetration length: Core penetration length: Bottom of core elevation (ft): -30 Bottom of core elevation (ft):_ Recovery Length (ft): % Recovery Recovery Length (ft): % Recovery Length (ft) CORE DESCRIPTION Length (ft) CORE DESCRIPTION Live Organisms? Yes No (Describe) Live Organisms? Yes No (Describe) Oil Present? Oil Present? Yes No Odor Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No Notes: Notes:

Sampling Date: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Sampled By CP EU
The state of the s	Client: PCCA
Start Sampling Time: 1545-1630	End Sampling Time:
Collection Method (Circle one):	15
Vibracore Push Core Auger Split Spoon	Total Volume Collected 5
Sediment Container(s):	tun
Type and Number: Teffon Glass Plastic	Z Ziploc* Other
Sediment Preservation Method (circle one): "Wet" ice Re	frigerated Truck/Trailer Other
V-Datun MLW MLW NAVD 88 NGVD 29 Other:	H-Datum (AD83 NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): R	TK Real Time WLR Tide Tables Other:
Water Depth Measurement (circle one) : Fathometer Lead Lin	ne
Water Surface Elevation (tide ht) (ft):	Waypoint ID
- Water Depth (ft):	GPS (D)
Top of Core Elevation (ft): -30 (40645)	Latitude (Northing):
- Project Depth (ft): - 60 (70 bg)	Longitude (Easting)
= Target Penetration (ft): -60 /70 by	
Weather (circle one): Sunny P. Cloudy Gloudy Ra	sin? (drizzle, moderate, heavy)
Wind Direction: N NE E SE S SW W NW	
Wind Direction: N NE E SE S SW W NW Notes:	
Notes:	that - Chemistry
Notes: 1 - 5 yel but	det-chemistry
Notes: 1 - 5 yel but	
Notes: 1 - 5 yel but	
Notes: 1 - 5 yel but	
Notes: 1 - 5 yel but	
Notes: 1 - 5 yel but	
1 - 5 yel bu	
1 - 5 yel bu	
Notes: 1 - 5 yel but	
Notes: 1 - 5 yel but	
1 - 5 yel bu	
Notes: 1 - 5 yel but	
Notes: 1 - 5 yel but	

Project Name: PCCA Harbor Island- Section 103 Sampling Date: 1/17/23 Core diameter (inches):	Photograph(s) Taken (circle one): Yes No
CoreTime/575	Core
Length (th) CORE DESCRIPTION 40-65 Standard grow & Jerssoft lands plant fire general stall (100 h -55)	Length (ft) CORE DESCRIPTION
low plasticity of a	mints.
Live Organisms? Yes No (Oescribe)	Live Organisms? Yes No (Describe)
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No	Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No
Notes:	Notes:

Sample ID: DMMU.5-3A Samp	led By: Ru CTP
Sampling Date 11817073 Client	PCCA
Start Sampling Time: 0850 End S	ampling Time: 0940
Collection Method (Circle one):	
Vibracore Push Core Auger Split Spoon To	ai Volume Collected: 15 ggs/
Sadiment Containeds):	
Type and Number: Teflon® Glass Plastic 2 2	ploc ⁹ Other
Sediment Preservation Method (circle one): "Well Ice Refrigerated 1	ruck/Trailer Other
V-Datum MLW MLW NAVD 88 NGVD 29 Other: H-Dat	m (AD83)NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTK RE	Time WLR Tide Tables Other:
Water Depth Measurement (circle one) ; Fathometer Lead Line	
Water Surface Elevation (tide ht) (ft): Wayp	int ID:
- Water Depth (ft): GPS 1	1
= Top of Core Elevation (ft):	de (Northing):
- Project Depth (ft): -60 (70' bas) Longi	ude (Easting)
= Target Penetration (ft): 50 (40' b45)	CASA AS
Weather (circle one): Sunny P Cloudy Cloudy Rain? (drizzle Wind Direction: N NE E SE S SW W NW	, moderate, heavy)
Notes 10+ to 0 disearded (D to Inthus)
111 10 12 0 000	0 10 10 10 10
1-5 ag) - Chemistry	
2-5 gal . toxicology	
3	

Project Name: PCCA Harbor Island- Section 103 Sampling Date 1/18/7073 Core diameter (inches): 3	Photograph(s) Taken (circle one): Yes No	
Core Time0850 - 00 Core penetration length: 30 40 be Bottom of core elevation (ft): -30 (40) Recovery Length (ft): 30 % Recovery		
0-10 Discarde (10" to (Length (ft) CORE DESCRIPTION	
10-40 Silty sand gray, a large plasticity, very soft, fragments (oto	3	
Live Organisms? Yes No (Describe)	Live Organisms? Yes No (Describe)	
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No	Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No	
Notes:	Notes:	

Sample ID: DMMU-6-3A Sam	pled By: R.W. G.P.
Sampling Date: 1/18/17/023 Clies	nt: PCCA
Start Sampling Time: 1045 End	Sampling Time: 1115
Collection Method (Circle one):	V24
Vibracone Push Core Auger Split Spoon T	otal Volume Collected: 15 nat (an)
Sediment Container(s): 1- Church 2- 135	
	Ziploc [®] Other
Sediment Preservation Method (circle one): "Wel" los Refrigerated	Truck/Trailer Other
V-Datum MLLW MLW NAVD 88 NGVD 29 Other: H-Da	tum (AD83) AD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTK R	al Time WLR Tide Tables Other:
Water Depth Measurement (circle one) : Fathometer Lead Line	
Water Surface Elevation (tide ht) (ft): Ways	point ID
- Water Depth (ft): GPS	io.
= Top of Core Elevation (ft):30 (410 bas) Latit	ude (Northing):
- Project Depth (ft): -60 (70' bgs) Long	itude (Easting):
= Target Penetration (ft): 50 (70' bqs)	
Sea State (circle one): Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft 2 Weather (circle one): Sunny: P. Cloudy: Cloudy: Rain? (drizz Wind Direction: N. NE. E. SE. S. SW. W. NW.)	
Notes	
1-5 gal bucket -1	Chemistry
as a gar maces	100 100 100 M

Project Name: PCCA Harbor Island- Section 19 Sampling Date	Photograph(s) Taken (circle one): (Fes) No			
Core	Core Time Core penetration length: Bottom of core elevation (ft): Recovery Length (ft): % Recovery			
Length (M) CORE DESCRIPTION TID-70 Silty - GE Sand a Wet very oft India Clasticity fine gray Shell fragments f				
Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No	Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes:			

Sample 10 12MMU 5-38	Sampled By 714
Sampling Date:	Client: PCCA
Start Sampling Time:	End Sampling Time:
Vibracore Push Core Auger Split Spoon indiment Container(s): ype and Number: Tefion* Glass Plastic 2 Glastic	Ziploc* Other Other H-Datum (AD83) AAD27 WGS84 Other:
	GPS ID: Latitude (Northing): Longitude (Easting):
	4-5 ft >5 ft Other in? (drizzle, moderate, heavy)
7	arded (0-10' bys) white - Chemistry ackets - toxicology
Degn egu nest interv	pment before

Photograph(s) Tak	sen (circle one): (Yes) No
Core Core penetration ler Sottom of core elevi Recovery Length (ft	ation (ft):
Length (ft)	CORE DESCRIPTION
7, nd,	
1. 2. 94 4. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	res No (Describe)
Organic Debris? Y	(0/1/2)
	Core Core penetration ler A) Bottom of core elevi Recovery Length (fi Length (fi) Oil Present? Organic Debris?

Sample 10 DMMU 6-3B	Sampled By: RU, GP
Sampling Date: 1/8/2023	Client: PCCA
Start Sampling Time 1310-1400 1505	End Sampling Time: 1545
Collection Method (Circle one):	and designed their
Vibracom Push Core Auger Spin Spoon	Total Volume Collected 15 april
The state of the s	9
1- CHEM	Ziploc® Other
Type and Number: Tellon® Glass Plastic C Sediment Preservation Method (circle one). "Wer" ice Refri	
V-Datum MLLW MLW NAVD 88 NGVD 29 Other:	H-Datum (ADB3) NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTi	Real Time WLR Tide Tables Other.
Water Depth Measurement (circle one) : Fathometer Lead Line	Washington and the same of the
Water Surface Elevation (tide ht) (ft):	Waypoint ID:
- Water Depth (ft):	GPS ID:
Top of Core Elevation (ft): 30 (90 bas)	Latitude (Northing):
- Project Depth (ft): -60 (/0 hgs)	Longitude (Easting):
= Target Penetration (ft): -60 (70 bigs)	
the state of the s	ming Oulgoing
Wind Speed (knots) 0-5 (5-10 10-15 >15	
Sea State (circle one) Calm 1-2 ft 2-3 ft 3-4 ft 4-	5 ft >5 ft Other
Weather (circle one): Sunny P. Cloudy Cloudy Rain	? (trizzle, moderate, heavy)
Wind Direction: (N) NE E SE S SW W NW	
Notes:	
1- Sual bu	ichet - chemistry
7. 5001 h	what - taxicology
	Tener (entre entre)
Decon en	Station
to be the	the state the state of
10 Mext	SPECTION

Core penetration length: 30		Photograph(s) Taken (circle one): #65 No	
		Core penetration le Bottom of core elev	CoreTime
97 65-70 S	core description Ity Sanc, grey, to very Soft places whicity, shell agments. Fine aired (-30 to -55) andy clay, grey, with firm, no-low istrictly, fine grang, It fragments	Length (ft)	CORE DESCRIPTION
Odor Present? Organic Debris? Notes: No of	res No res No I Shin or adar	Oil Present?	Yes No (Describe) Yes No Yes No Yes No

Sample ID DMM S 3C	Sampled By KU, C7 F
Sampling Date 1/19/2023	Client: PCCA
Start Sampling Time: 0845	End Sampling Time: 0970
Collection Method (Circle one):	
Vibracore Push Core Auger Split Spoon	Total Volume Collected 15 graffunts
Sediment Container(s):	when
Type and Number: Tellon 1 Glass Plastic 2	Ziploc [®] Other
Sediment Preservation Method (circle one). "Wet" los Refr	gerated Truck/Trailer Other
V-Datum MLLW MLW NAVD 88 NGVD 29 Other:	H-Datum (AD83) AD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RT	K Real Time WLR Tide Tables Other:
Water Depth Measurement (circle one) : Fathometer Lead Line	
Water Surface Elevation (tide ht) (ft):	Waypoint ID:
- Water Depth (ft):	GPS ID:
* Top of Core Elevation (ft): O (0' by 5)	Latitude (Northing):
- Project Depth (ft): -60 (70' bs()	Longitude (Easting):
= Target Penetration (ft): -30 (40 bys)	
A series and the series of the	-5 ft >5 ft Other 7 (drizzle, moderate, heavy)
Notes	
Decon equip	west before must interest
The state of the s	dell'international
1-5 401 k	righet - chemistry
7 - 11	
	siekets - texicology
10+-0 Dec	anded (0-10'bgs)
110 0 010	The organia

Project Name: PCCA Harbor Island- Section 103 Sampling Date: 1/19/2023 Core diameter (inches): 3	Sample ID D/M/M UCS - SC Photograph(s) Taken (circle one): Yes No		
Core Time 0 445 - 090) Core penetration length: 30 Bottom of core elevation (ft): 30	CoreTime		
CORE DESCRIPTION 0-10 DISCURSE (10+-0)	Length (ft) CORE DESCRIPTION		
10-40 Silty Sound, grey, well very soft, lades plasticity, fine grained, shell fraggments			
Live Organisms? Yes No (Describe)	Live Organisms? Yes No (Describe)		
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes:	Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes:		

Sample ID DAMU6-3C Sampled By: GP V4
Sampling Date: 1/19/2023 Client: PCCA
Start Sampling Time: 1000 10/5 End Sampling Time: 1/0
Collection Method (Circle one): Vibracore Push Core Auger Split Spoon Total Volume Collected 15 4 / 6 / 2)
Type and Number Teffon® 1 - Claum Glass Plastic Z Ziploc® Other
Sediment Preservation Method (circle one): "Wet" Ice Refrigerated Truck/Trailer Other
V-Datum MLW MLW NAVD 88 NGVD 29 Other: H-Datum (AD83)NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTK Fool Time WLR Tide Tables Other
Water Surface Elevation (tide ht) (ft): Waypoint ID:
- Water Depth (ft): GPS ID:
= Top of Core Elevation (ft):
- Project Depth (ft):
= Target Penetration (It): -60 (70' bg s)
Wind Speed (knots): 0-5 (5-16) 10-15 >15 Sea State (circle one): Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 ft Other Weather (circle one): Sunny P Cloudy Cloudy Rain? (drizzle, moderate, heavy) Wind Direction: N NE E SE S SW W NW
Notes
1-5 gal bucket - chemistry 2-5 gal buckets-toxicalogy
Decon equipment before mobilizing to next station

	- Lorent III	/s		
Core	Time +	O Core	Time	
Core penetration len		Core penetration le		
Bottom of core eleva	2 4	Bottom of core elev		
Recovery Length (ft)	% Recovery	Recovery Length (t):% Recovery	
Length (ft)	CORE DESCRIPTION	Length (ft)	CORE DESCRIPTION	
40-55 5,	14 Sand, gary			
WE	- Very Suff, lack	5		
Pla	stucky, fine gra	whi		
1.5	ell forguents	2.4		
(-	30 to 45)			
55-70 San	idy Clay, tempo	YEN.		
mo	of turn, low-in	44		
Plu	Sticity i Skills/	GF 10		
56	Il tragmint			
	-45 to 60)			
	-0.			
ive Organisms? Y	es No (Describe)	Live Organisms?	Yes No (Describe)	
Oil Present? Ye	is No	Oil Present?	res No	
Odor Present? Y		Odor Present?		
Organic Debris? Y	es No	Organic Debris?	Yes No	
Notes:		Notes:		

PROJECT: PCCA Harbor Island New Dock Section 103

Sample to DMMU3-ZA (DUP) Samp	ed By RU, GP
11 1010,27	PCCA
137.0	empling Time: 1400
Collection Method (Circle one):	A . = A
Vibracore Push Core Auger Split Spoon Tot	al Volume Collected 1- 5gh bucket
Sediment Container(s):	Dup
Type and Number: Tellon* Glass Plastic Z	plot [®] Other
Sediment Preservation Method (circle one). "Wet" Ice Refrigerated T	ruck/Trailer Other
V-Datum MLLW MLW NAVD 88 NGVD 29 Other: H-Datum	MAD83 NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTK R	Time WLR Tide Tables Other:
Water Depth Measurement (circle one) : Fathometer Lead Line	
Water Surface Elevation (tide ht) (ft): Waype	eint ID:
- Water Depth (ft): GPS II	b
= Top of Core Elevation (ft): O (-10 bes gatitue	le (Northing):
- Project Depth (ft): -60 (70'by Slongit	ude (Easting).
= Target Penetration (#): -30 (-10'655)	
Tidal Cycle (circle two) Low Mid High [and] Stack Incoming O	utgoing
Wind Speed (knots): 0-5 (5-10) 10-15 →15	
Sea State (circle one) Csim 1-2 ft 2-3 ft 3-4 ft 4-5 ft >6	t Other
Weather (circle one) Sunny) P Cloudy Cloudy Rain? (drizzle	moderate, heavy)
Wind Direction: N NE E SE S /SW W NW	
Notes	
1-5gal bucket	for Duplicate
135 DE 1876	hurton
10 to O discorder	(N-10'bas)
/ C 311 C STOLEN	(0.000)
Fallighunt Jacon	and before
Equipment doco	Lind
many to next	207777

Project Name: PCCA Harbor Island-Section 103 Sampling Date: 1197073 Core diameter (inches): 3		Sample ID DMMU3 - ZA (() -30 Photograph(s) Taken (circle one): Yes No		
Core	Core penetration le Bottom of core elev	Core penetration length:		
Length (A) CORE DESCRIPTION 0-10 Discurded (104+00)	Length (ft)	CORE DESCRIPTION		
10-40 Silty Sand, grey, we very soft, lacks plush fine granned, Shell fragments, strong odo (040-30)	c.hy			
Live Organisms? Yes (No Describe) Oil Present? Yes (No Describe) Odor Present? Yes (No Describe) Organic Debris? Yes (No Describe)	Oil Present?	Yes No (Describe) Yes No Yes No		

PROJECT: PCCA Harbor Island New Dock Section 103 MMU3-24 (3-30 Sampled By BU Sample ID: Sampling Date: Client: PCCA Start Sampling Time. End Sampling Time: Collection Method (Circle one): Vibracore Push Care Total Volume Collected Auger Split Spoon Sediment Container(s): - Chem Type and Number: Teffon* Plastic Sediment Preservation Method (circle one): "Wet" los Refrigerated Truck/Traile H-Datum (AD83) NAD27 WGS84 Other: V-Datun MLLW MLW NAVD 88 NGVD 29 Other: Water Surface Elevation (circle method of measurement): RTK Real Time WLR Tide Tables Other. Water Depth Measurement (circle one) : Fathometer Lead Line Water Surface Elevation (tide ht) (ft): Waypoint ID: - Water Depth (ft): GPS ID = Top of Core Elevation (ft): Latitude (Northing): Project Depth (ft): __ Longitude (Easting): __ = Target Penetration (ft): Tidal Cycle (circle two) Low Mid. High [and] Slack Incoming. Dutgoing Wind Speed (knots) 0-5 5-10 10-15 >15 Sea State (circle one) Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 ft Other Weather (circle one) Sunny P. Cloudy Cloudy Rain? (drizzle, moderate, heavy) Wind Direction: N NE E SE S (SW W NW Notes:

Project Name: PCCA Harbor Island - Section 103 Sampling Date		Sample ID: DMMU3-ZA (0.30) Photograph(s) Taken (circle one): Yes) No		
		Core penetration le Bottom of core elev	CoreTime	
	LISCURDED (10+60)	Length (ft) CORE DESCRIPTION		
2	ery soft, lucks plasticulture - grained, stell rugnients	y		
Live Organisms	? Yes No (Describe)	Live Organisms?	Yes No (Describe)	
Oil Present? Odor Present? Organic Debris? Notes:		Oil Present? Odor Present? Organic Debris? Notes:	7 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

PROJECT: PCCA Harbor Island New Dock Section 103 Sampled By Sample ID Client: PCCA Sampling Date Start Sampling Time: End Sampling Time: Collection Method (Circle one): Total Volume Collected O cycy / on s Auger Push Core Split Spoon Vibracore Sediment Container(s): Plastic -Ziploc* Other Type and Number: Teffon* Sediment Preservation Method (circle one): "Wet" Ice Refrigerated Truck/Traile V-Datum MLLW MLW NAVD 88 NGVD 29 Other: H-Datum NAD83 NAD27 WGS84 Other: Water Surface Elevation (circle method of measurement): RTK Feal Time WLR Tide Tables Other Water Depth Measurement (circle one) : Fathometer Lead Line Water Surface Elevation (tide ht) (ft):_ Waypoint ID: - Water Depth (ft):_ GPS ID: = Top of Core Elevation (ft): Latitude (Northing): Longitude (Easting): Project Depth (ft): - Target Penetration (ft): Tidal Cycle (circle two): Low Mid High [and] Slack Incoming Outgoing Wind Speed (knots): 0-5 5-10 10-15 >15 Sea State (circle one). Calm 1-2 ft 2-3 ft 3-4 ft Other 4-511 >511 Weather (circle one) Sunny & Cloudy Cloudy Rain? (drizzle, moderate, heavy) Wind Direction: N NE E SE S SW W NW Notes:

Project Name: PCCA Harbor Island- Section 103	Sample ID. SAMUCI-CA
Sampling Date: 1/4/2023 Core diameter (inches): 3	Photograph(s) Taken (circle one): Yes No
	Core penetration length:
Length (A) CORE DESCRIPTION 40-55 5://g Sound, grey, wet, very soft, lacks plasticity, fine examed, 81ell fragus (-306-45)	Length (ft) CORE DESCRIPTION
55-70 Sandy clay, tem, Must, firm, low- medium plasticity Fine grains dishelt Fragments/shells	ý
Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes:	Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes:

Sample 10: DMMU3- ZB (0%	Sampled By: RU, CP
Sampling Data: 1/20/2023	Client: PCCA
Start Sampling Time 0900	End Sampling Time: 0930
Collection Method (Circle one): Vibracore Push Core Auger Spit Spo	on Total Volume Collected 5 gallons
Sediment Container(s): Type and Number: Tellon* Glass Plast	ioZiploc ⁸ Other
Sediment Preservation Method (circle one): "Wet" los	Refrigerated Truck/Trailer Other
V-DatumMLW MLW NAVD 88 NGVD 29 Other:	H-Datum NAD83 NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): Water Depth Measurement (circle one): Fathometer Lead	
Water Surface Elevation (tide ht) (ft):	Waypoint ID:
- Water Depth (ft):	GPS ID.
= Top of Core Elevation (ft): 0 (=10 bys	Latitude (Northing):
- Project Depth (ft): -60 (-70'b) = Target Penetration (ft): -30 (40'b)	
Weather (circle one) Sunny P Cloudy Cloudy Wind Direction: N NE E SE S SW W NW Notes	Rain? (dnzzle / moderate, heavy)
1-Sgallen bus Mobilite drill Sample after	lest for Duplicate > Chemistry I rig to 2B for schimpling 2B Du?

Project Name; PCCA Harbor Island- Section 103 Sampling Date: 1/20/2023 Core diameter (inches): 3	Photograph(s) Taken (circle one): Yeg No		
Core Time 0900 - 09 Core penetration length 3() Bottom of core elevation (ft) 30	CoreTime		
Lungth (to) CORE DESCRIPTION DISCUISE C	Length (ft) CORE DESCRIPTION		
10-40 Silty Saml grey, a year soft, lucks pla time grained, shell tragments	streety,		
Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No	Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No		
Notes: DUP	Notes:		

Core Log (Sheet 1 of)

PROJECT: PCCA Harbor Island New Dock Section 103 Sample 10 DMMU3-2B (01, 70) Sampled By Sampling Date 170 7023 Client: PCCA Start Sampling Time: End Sampling Time: Collection Method (Circle one): Abgor Total Volume Collected: Vibracore Push Core Split Spoon Sediment Container(s): Type and Number: Teffon® Ziploce Sediment Preservation Method (circle one). "Wet" Ice (Refrigerated Truck/Trailer) V-Datum MLLW) MLW NAVD 88 NGVD 29 Other: H-Datum NAD83 NAD27 WGS84 Other: Water Surface Elevation (circle method of measurement): RTK Real Time WLR Tide Tables Water Depth Measurement (circle one) : Fathometer Lead Line Water Surface Elevation (tide ht) (ft): Waypoint ID: Water Depth (ft): GPS ID: = Top of Core Elevation (ft): Latitude (Northing): _ Project Depth (ft): Longitude (Easting): = Target Penetration (ft): Tidal Cycle (circle two): Low Mid High [and] Slack Incoming Outgoing Wind Speed (knots): 0-5 5-10 (0-15) >15 Sea State (circle one) Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 ft Other Weather (circle one) Sunny P. Cloudy Cloudy Rain? (drizzle, moderate, heavy) Wind Direction: N NE E SE S /SW W NW Notes

Project Name: PCCA Harbor Island- Section 103 Sampling Date 1 20 20 5 Core diameter (inches): 3	Photograph(s) Taken (circle one): Yes No Core		
CoreTime			
Length in CORE DESCRIPTION 0-10 Discarded (10+ to 0) 10-40 Silty sand grey was years soft, lacks plastic fine grained shell fragments (0 to 30)			
Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No	Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes:		

Sample 10: DMMU4-2B (30 h 60) Sampled By: GP, PL
Sampling Date 12017075 Client: PCCA
Start Sampling Time: FVOO End Sampling Time: - 750
Collection Method (Circle one):
Vibracore Push Core Auger Split Spoon Total Volume Collected 20 gc 10k5
Sadiment Containerial
Type and Number: Tellon® Class Plastic 7 Ziploc® Other
Sediment Preservation Method (circle one) "Wet" ice Refrigerated Truck/Trailer Other
V-Datum MLW MLW NAVD 88 NGVD 29 Other: H-Datum (AD83 NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTK Real Time WLR Tide Tables Other:
Water Depth Measurement (circle one) : Falhometer Lead Line
Water Surface Elevation (tide ht) (ft): Waypoint ID:
- Water Depth (ft): GPS ID:
= Top of Core Elevation (ft): -30 (40'bgs), Latitude (Northing):
Project Depth (ft): -60 (70' hq.5) Longitude (Easting)
= Target Penetration (ft): -60 (70' box)
Tidal Cycle (circle two): Low Mid High (and) Slack Incoming Outgoing
Wind Speed (knots): 0-5 5-10 10-15 >15
Sea State (circle one): Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 ft Other
Weather (circle one) Sunny P Cloudy Cloudy Rain? (drizzie, moderate, heavy)
Wind Direction: N NE E SE S SW W NW
Notes
1-5 gal bucket-chim
3-5 gal buckets - toxicology
John Dessiers (Invitorings)

Project Name: PCCA Harbor Island- Section 103 Sampling Date: 120 1075		The second second	Photograph(s) Taken (circle one): Fes No		
Core diameter (inches): Core Time 1260 - 1750 Core penetration length 30 Bottom of core elevation (ft) - 60 (70 by) Recovery Length (ft) 30 % Recovery		Bottom of core ele	Core penetration length:		
Length (11) (10-60) 5 (10-60) 5 (10-60) 5 (10-60) 5	CORE DESCRIPTION In H Sond gray, to very Soft, ell (corporation) (-30 to -50)	Length (ft)	CORE DESCRIPTION		
60-70 Su may 90	1 10	*7			
Live Organisms? \\ Oil Present? \\ Odor Present? \\ Organic Debris? \\ Notes:	es No				

Core Log (Sheet 1 of 3)
PROJECT: PCCA Harbor Islan

PROJECT: PCCA Harbor Island New Dock Section 103

The state of the s	
Sampling Date: 117 2623 Client: PCCA	
Start Sampling Time: 1412 End Sampling Time: 165	
Collection Method (Circle one): (Serve Drill Rig)	
Vibracore Push Core Auger Split Secon Total Volume Collected: 29 34 Sediment Container(s): Type and Number: (Teson Glass Plastic Ziploc Ziploc Other Bushato Lo	
Type and Number: Teson Glass Plastic Ziploc Other Bush To Co	-
V-Datum (AD63) AD27 WGS84 Other: H-Datum (AD63) AD27 WGS84 Other:	
Water Surface Elevation (circle method of measurement): RTK Foll Time WLR Tide Tables Other:	
Water Depth Measurement (circle one): Fathometer (Lead Line) Water Surface Elevation (tide ht) (tip: しろし	
177 (- 1
- 1	
-00 A SUCTOR	-
17 4	-
= Target Penetration (ft): 7 1.7	$\overline{}$
Tidal Cycle (circle two): Low (Mid High [and] Slack (incoming) Outgoing	- 1
Wind Speed (knots): 0-5 5-10 10-15 >15	
Sea State (circle one): Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 ft Other	- 1
Weather (circle one): Sunny (P. Cloudy) Cloudy Rain? (drizzle, moderate, heavy)	- 1
Wind Direction: N NE E SE 3S SW W NW	_
Motors 1320 - Armed on Station - Jackyo left Bood tre	lea
- Deay Shallow-	-
1400 Access to Ded 1412-Measurements - Attach	al-la
1418-Starter Cours	
"Jerry Soft Sedement to "19" from topg Core the	, 14
1615 - Sarales in Rex Transler	
	\neg
	-
	_

Core Log (Sheet 2 of 3)

Project Nam	e: PCCA Harbor Isla		Sample ID	DWINN-1-1H		
Sampling Date 17 ZDZ3			Photograph(s) Taken (circle one): Yes No			
Core diamete	er (inches) 4			Contamed 70 to 40		
Core	Time_\	412-Start-	Core	TimeSee 193		
100			Core penet	ration length ZD		
Bottom of cor	e elevation (ft) = 3	2:1	Bottom of c	core elevation (tt)5 Z(
Recovery Ler	ngth (ft) 17.5's	Recovery 68	Recovery L	ength (ft): 19 % Recovery 95		
Length (ft)	CORE	DESCRIPTION	Length (ft)	CORE DESCRIPTION		
Million (10)		Lucenochettal		Clare on Stt Cla 2-23		
		wa. Ga 2.5		1777		
	P	Rucras		1		
		,	j i	Scarlenze-Olin Gra 23		
5	1		25	+ -		
6	Olux Go	SU Sal	ZL	Blue Gra Sutt Clay 25 to 29		
	Char Ga	SUX Cla-		7770		
		13-13				
				W 4		
10			30	Olve Cra Sit that - 21-30		
u			31	Charles & CC 3432		
				7373		
				Gra Green Ganda Cla - 5310		
1 - 2				G J 3 3 3		
15		1	35	Granceon Jan 35 63		
No	Glue Gra	SILCOL	36	J San Ochan		
1	15	1		3 4		
	1					
-				Ovange Brown Sily Sond Sto		
20	1	1	40	127 Sheet Harry 90		
Live Organis	ms? Yes No Desc	ribe)	Live Organ	nisms? Yes No (Describe)		
Oil Present?	Yes No		Oil Present	t? Yes 🔞		
		yet H25 101	Odor Present? Yes No.			
Organic Deb	rie? Yes Mil					
Notes: 15	sentration	Ctozci	Notes: 7	Executivation 70'to to		

Core Log (Sheet <u>5</u> of <u>3</u>)

Project Name: PCCA Harpor Island- Section 103 Sampling Date 177 2023	Photograph(s) Taken (circle one): Yes No
Core diameter (inches):	tant Time 1412
Core penetration length Bottom of core elevation (ft)	CoreTime
Length (ft) CORE DESCRIPTION	Length (ft) CORE DESCRIPTION
#45 46	<i>y</i> 6
1650 Paget Dath -6	36
16	<i>J</i> 6
Live Organisms? Yes (io (Describe)	Live Organisms? Yes No (Describe)
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes: -40+048 + Reject De	Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Notes:

445/48' 93%

ANAMAR

PROJECT: PCCA Harbor Island N	The state of the s
Sample 10: DMM 4-7-4B	Sampled By: MANN STP Consola
Sampling Date: 1 18 20 23	Client: PCCA
Start Sampling Time: CAZ5	End Sampling Time: 1145
Collection Method (Circle one):	
Vibractire Push Gore Auger Sp	Il Spoon Total Volume Collected: 25-30 50
Sediment Container(s):	- 110
Type and Number: Teflon Glass	Plastic Ziploc® Other Buckelous
Sediment Preservation Method (circle one): "Wet":	Ice (elrigerated Truck/Trailer) Other
V-Datum MLLW MLW NAVD 88 NGVD 29 Other	H-Datum (AD83 IAD27 WGS84 Other:
Water Surface Elevation (circle method of measureme	ent): RTK Roll Time WLR Tide Tables Other:
Water Depth Measurement (circle one) : Fathometer	
Water Surface Elevation (tide ht) (ft): 0.97.8	6918 Waypoint 10: 445 - Garanin
- Water Depth (ft): 14.0	GPS ID: MONTAGE
= Top of Core Elevation (ft):13.\	Latitude (Northing): 27.844524
-Project Depth (ft):	Longitude (Easting)17, 06590104
= Target Penetration (It): 469	
Weather (circle one): Sunny (P. Cloudy) Clour Wind Direction: N NE E SE S SW W NW	
Notice 0915-Access to de	W-1
0925 Measurements	- Set Casing
0935 - Started Corel	
1145- Supling Corple	ted - Saysles in Rel. Trailer "
Decon - Clean	eD Debi-

Core Log (Sheet 2 of 3)

iampling D Core diame	ate 1 18 202 ter (inches): 4"			nh(s) Taken (circle		
	ation lungth35	5925-Start. 48.1 Recovery 77%	1	tration length.	% Recovery_	313
Length (ft)		DESCRIPTION LUNCONSOLIDED LUNCONSOLIDED STALL CALL	Length (ft)	Gray 2	CORE DESCRIPTION	to SAI+CL
5			75			
10			30			
15	Gray grange	and Clayery End	35	Tankon	Ly Shello	e Rtim
20			40	W/6	dum tik rige Studt	ine Sand
il Present? dor Preser Irganic Deb lotes: &	nt? Yes 🚳	tpenhatien 635 due to	Oil Present Odor Prese Organic De Notes:	ebris? Yes	Lon 35 to 4	17 to Project is

Core Log (Sheet 3 of 3)

Core Time 1145 E.O. Core Time Core penetration length 12 + 35 = 41 total Bottom of core elevation (ft)	Core diameter (inc	ches): 4" Contun	O.su			
Core penetration length: Bottom of core elevation (ft) Recovery Length (ft) 12+21 Recovery Length (ft) CORE DESCRIPTION Length (ft) CORE DESCRIPTION Length (ft) CORE DESCRIPTION Length (ft) CORE DESCRIPTION Length (ft) CORE DESCRIPTION Length (ft) CORE DESCRIPTION Live Organisms? Yes No (Describe) Dil Present? Version Organic Debris? Yes No Organic Debris? Yes No Organic Debris? Yes No	Core		-1	Time		
Bottom of core elevation (ft) Recovery Length (ft) 12+21 Recovery 836 Recovery Length (ft) CORE DESCRIPTION Length (ft) CORE DESCRIPTION Length (ft) CORE DESCRIPTION Live Organisms? Yes No (Describe) Live Organisms? Yes No (Describe) Oil Present? Yes No Organic Debris?		Jum Link				
Recovery Length (ft)	Bottom of core elev	ration (ft): -60.	Bottom of core			
Craybrant Sulface Sulf	Recovery Length (f	112+27= Recovery 83%	Recovery Lengt			
Craybrant Sulface Sulf	Length (B)	CODE DESCRIPTION	Langth (ft)			
Live Organisms? Yes No (Describe) Live Organisms? Yes No (Describe) Oil Present? Oil Present? Odor Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No				OOKE DEGUKE ADK		
Cran brown Guller Cran brown Gu		9 01				
Cranterin Grant Gr						
Cran brown Sulling Eigen Sulling Live Organisms? Yes No (Describe) Live Organisms? Yes No (Describe) Oil Present? Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Cranton Guller Regulation Guller Regulation Guller Regulation Guller Regulation Guller Regulation Guller Regulation Guller Live Organisms? Yes No (Describe) Oil Present? Yes No Odor Present? Yes No Odor Present? Yes No Organic Debris?	45					
Live Organisms? Yes No (Describe) Live Organisms? Yes No (Describe) Oil Present? Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No		VVV				
Live Organisms? Yes No (Describe) Live Organisms? Yes No (Describe) Oil Present? Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No	Gre	L brown Get Clay	A			
Live Organisms? Yes No (Describe) Dil Present? Yes No Odor Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No	Pre	the standard	4			
Live Organisms? Yes No (Describe) Dil Present? Yes No Odor Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No	50					
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Oil Present? Yes No Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No						
Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No	Live Organisms?	Yes No (Describe)	Live Organism	s? Yes No (Describe)		
Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No	Oil Present?	Yes (No.)	Oil Present?	Yes No		
			Odor Present?	Yes No		
Notes: 2 No Berton - 35 to - 47 to Regarding Notes:			The second second	? Yes No		
kentrotel 12'	Notes: 2 No	betw-35 to 47 bleade	Notes:			
	Entrotte	12'				

Total Recovery 39' (12+27)
Total Recovery %=83%

Sample ID: DIMMY 7-4C	Sampled By: IMPM STP ConscarCo
Sampling Date: 1/16/7073	Client: PCCA
Start Sampling Time: 163	End Sampling Time: 19500
Vibracore Push Core Auger Split Spoon Sediment Container(s):	Total Volume Collected 3300
Type and Number: Tellon Glass Plastic_	Ziploce Other Buckets 5
Sediment Preservation Method (circle one): "Wet" Ice	
V-Detur MLW MAVD 88 NGVD 29 Other:	H-Datum (AD83) (AD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): R	TK Fall Time WLR Tide Tables Other;
Water Depth Measurement (circle one): Fathometer (Lead Lei Water Surface Elevation (tide ht) (tt): 15	Waypoint 10 (Serinary) = 442 Waypoint 10 (Serinary 2 = 048/049) GPS 10: Moritana
= Top of Core Elevation (ft):	Latitude (Northing): 27-89430096
Project Depth (ft): -60	Longitude (Easting): -97.06507)99
= Target Penetration (ft):	
Wind Direction: N NE E (SELS) SW W NW Notes: 1450 Arriva Dat Station Sit up - Drill Cres Sup 1651 - Mussing were to - Com	1530 Access to Decte

Core Log (Sheet 2 of 2)

Sample ID DIMU-7-4C Project Name: PCCA Harbor Island- Section 103 Photograph(s) Taken (circle one): Yes Sampling Date:_ Core diameter (inches): Time 1657 to 1800 Core Core Time Core penetration length: 16 Core penetration length: -60 Bottom of core elevation (ft) Bottom of core elevation (ft) Recovery Length (ft): 13 8 % Recovery Recovery Length (ft):____ % Recovery Length (ft) CORE DESCRIPTION Length (ft) CORE DESCRIPTION 25 5 Sand-Shall have 10 30 15 16 Live Organisms? Yes (No (Describe) Live Organisms? Yes No (Describe) Oil Present? Oil Present? Yes No Odor Present? Odor Present? Yes No Organic Debris? Yes No Organic Debris? Yes No Notes: Notes:

Core Log (Sheet 1 of __)
PROJECT: PCCA Harbor Island New Dock Section 103

Sample ID: DMMU 7-40	Sampled By Wiph STP Carcalle Crew
Sampling Date: 1 17 7023	Client: PCCA
2075	End Sampling Time: \\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\
, , , , , , , , , , , , , , , , , , , ,	
Collection Method (Circle one): Senic De	A. "7 ii 11
Vibracart Push ore Auger Spit Spoon	Total Volume Collected
Sediment Container(s):	0.65
	Ziploc*Other Buckets-5
Sediment Preservation Method (circle one) "Wet" ice	
V-Datum MLW MAVD 88 NGVD 29 Other:	H-Datum (AD83) AD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RTI	Rai Time WLR Tide Tables Other:
Water Depth Measurement (circle one): Fathometer Line	2012 0 1
Water Surface Elevation (tide ht) (ft): 184 @ 0918	Waypoint 10: 443 - Gazmen
- Water Depth (III): 16.4	GPS ID: Montana
■ Top of Core Elevation (ft):15,5	Latitude (Northing): 27.84456697
Project Depth (ft): -60	Longitude (Easting): 97, 0676796
= Target Penetration (ft): 44.5	
Tidal Cycle (circle two): Low [Md] High [and] Stack [Incom	ning Outgoing
Wind Speed (knots): 0-5 5-10 10-15 >15	
50a State (circle one): Calm 1-2 ft 2-3 ft 3-4 ft 4-	5th >5th Other Wheeler
Weather (circle one): Sunny P. Cloudy Cloudy Rain	
Wind Direction: N NE E SS SW W NW	CS2.04
Man 0530 Strong Strong H	D. Releading 0905-Access to Deck
, OA 20 - Musausumants -	O DS-12220S (G) Care
09:25-Stantia to Coze-	
	T -0
1115 - Sunplan in Refugeration	irale-

Core Log (Sheet 2 of 3)

nestain.

Sample ID ANWYUL-7-41) Project Name: PCCA Harbor Island- Section 103 Photograph(s) Taken (circle one) (Ves No Sampling Date: Core diameter (inches): Time Continued - Py Time_0920-4tent Core Core Core penetration length: Core penetration length Bottom of core elevation (th) Bottom of core elevation (11) % Recovery Recovery Length (ft): 37 Recovery Length (ft) % Recovery CORE DESCRIPTION Length (ft) CORE DESCRIPTION Length (ft) West Unecondedated 21 Suth Olive open 25 5 30 10 35 15 40 20 Live Organisms? Yes No Describe) Live Organisms? Yes No (Describe) Yes (6) Yes No Oil Present? Oil Present? Odor Present? (es No WZS (C-16) Yes No Odor Present? Organic Debris? Yes No Organic Debris? Yes 🜃 -45.5te-60.5 Notes: Notes: 1st pendruction down to 30 Sedement at Surface to 125 berton to coverage total to

Core Log (Sheet 3 of 3)

Core	Time_	11.15 End	Core	7 (36 +645') Time
Core penetra		-lab.5	Core penetration	
	argumin.	Recovery 8Z	Bottom of core	
Recovery Le	ngth (ft). 51 %	Recovery OL	Recovery Leng	th (ft): % Recovery
Length (ft)	CORE	DESCRIPTION	Length (ft)	CORE DESCRIPTION
41	Tan-San	udyClan		
-	(7		
46		1		
46-	- Downand . 5	pon botton of	Core	
	Desous	- Marchaelan		
1 - 1			-	
_			-	
			-	
			= 2 == 1	
Live Organi	sms? Yes No Desc	ribe)	Live Organism	ns? Yes No (Describe)
Oil Present	7 Yes ⑥		Oil Present?	Yes No
Odor Prese	_		Odor Present	? Yes No
	bris? Yes No		Organic Debri	in? Voc No

P.D. = Project Opth-60

Core Log (Sheet 1 of

PROJECT: PCCA Harbor Island New Dock Section 103 Sampled By Alam STP Coocado DMMG-9-5A Sampling Date: Client: PCCA 1626 End Sampling Time: Start Sampling Time Some Drill Ru Split Spots Total Volume Collected Sediment Container(s): Type and Number: Teflon® Plastic Zipłoc[®] Sediment Preservation Method (circle one): "Wet" Ice Celrigerated Truck/Trailer Other V-Datum MLLW MLW NAVD 88 NGVD 29 Other: H-Datum BAD83 NAD27 WGS84 Other: Water Surface Elevation (circle method of measurement): RTK Fig Time WLR Tide Tables Water Depth Measurement (circle one): Fathometer Lead Line Water Surface Elevation (tide ht) (ft): 10 -400 - Water Depth (Ft): GPS ID: Moutana Latitude (Northing): 27.8433769 = Top of Core Elevation (ft): -111.3 Longitude (Easting): -47.06827363 Project Depth (ft): 18,7 Target Penetration (ft): mude to these Tidal Cycle (circle two): Low Mid / High land Stack (Incoming) Outgoing Wind Speed (knots): 0-5 (200) 10-15 >15 Other Walk - Dear Do Sea State (circle one): Caim 1)-2 ft 2-3 ft 3-4 ft 4-5ft >5ft Weather (circle one): Sunny P. Cloudy Cloudy Rain? (drizzle, moderate, heavy) Wind Direction N NE E SE S SW W NW ccessto dad - Macanismanto -Page Extral

Core Log (Sheet 2 of 2

ore diameter (inches):	ENDILZO	n (circle one): (Yes) No
ore Time 1400 - Start	Core	Time
ore penetration length:	Core penetration leng	jth:
ottom of core elevation (ff):	Bottom of core eleval	ion (ft):
ecovery Length (ft): 00 % Recovery 00%	Recovery Length (ft):	% Recovery
Length (ft) CORE DESCRIPTION	Length (ft)	CORE DESCRIPTION
Transcription South	*>	
Tarkeron Sarch		
5	25	
4	3)	
Tom Sund Shell	Hos	
10	20	
10	30	
Tan Brown Sills	500	
1		
15 hapt Gray Sly Sa	35	
16		
	2 1	
19:		
20 Discondell 3 below Projet	40	
ve Organisms? Yes (No) (Describe)	Live Organisms? Yo	es No (Describe)
Present? Yes No		s No
dor Present? Yes No	Odor Present? Ye Organic Debris? Ye	es No
otes:	Notes:	39 INV

Core Log (Sheet 1 of 2)
PROJECT: PCCA Harbor Island New Dock Section 103

NAME: 0 2-0	
Sample ID: DMMU-8-5B	Sampled By WINN, STP, Cascade
Sampling Date: 1 19 2023	Client: PCCA
Start Sampling Time: 0815	End Sampling Time: 1000
Collection Method (Circle one): (Some D	All Right
Vibracore Push Core Auger Split Specin	Total Volume Collected: ~ 25 cgs
Sediment Container(s):	~ \
Type and Number: Tellon	Zipioc® oner Buckella 6
Sediment Preservation Method (circle one): "Wet" Ice	
V-Datum MLW NAVD 88 NGVD 29 Other:	H-Datum (AD83 NAD27 WGS84 Other:
Water Surface Elevation (circle method of measurement): RT	K Real Time WLR Tide Tables Other
Water Depth Measurement (circle one) : Fathometer Lead Line	
Water Surface Elevation (tide ht) (ft): 6.21	Waypoint 10 447 - Garwin (GPS ID: Worldne
- Water Depth (M): 51, 6	CBE ID MONTON
= Top of Core Elevation (ft): — 5	Latitude (Northing): 27.84384004
	Longitude (Easting):
Project Depth (ft): 2 6	Longitude (Easting):
Tidal Cycle (circle two) Low Mid High [and] Slack Inco	
Wind Speed (knots) 2 10 10-15 >15 5 10 15	
Sea State (circle one): Calm 1- ft 2-3 ft 3-4 ft 4	-5ft >5ft Other Jessell
	n? (drizzle, moderate, heavy)
Wind Direction: N NE E SE S SW W NW	
Notes: 0800 Access to Decle	
- strommuras - 3180	Setter 1. Dto Coze
My Regime Z Co	ress for I be sure Mades.
1000 Completed Both	
Cleaning Deck-	to More to rest Staton
	3.7
1	

Core Log (Sheet 7 of 2)

Sample ID: DMML - S Project Name: PCCA Harbor Island- Section 103 Sampling Date: Photograph(s) Taken (circle one): Yes Core diameter (inches): Time 0815 to 0916 Time 0915 to Core Core 10 Core penetration langth; Core penetration length: 61.4 Bottom of core elevation (ff) Bottom of core elevation (R): Recovery Length (ft) 10% Recovery 100/0 % Recovery [CC Recovery Length (ft) Length (ft) Length (ft)f CORE DESCRIPTION CORE DESCRIPTION 6 10 Below t balow 18 35 Live Organisms? Yes No Describe) Live Organisms? Yes No (Describe) Oil Present? Oil Present? Yes No Odor Present? **Odor Present?** Yes No Organic Debris? Ye Organic Debris? Yes No Notes:

Core Log (Sheet 1 of 2)
PROJECT: PCCA Harbor Island New Dock Section 103

Sample ID DMMU-8-5C	Sampled By MAM STP Corrade
Sampling Data: 1 25 2523	Client: PCCA
Start Sampling Time: 0915	End Sampling Time: 070
Collection Method (Circle one): Vibraçure Push Gore Auger Spill Spoon Sediment Container(s):	Total Volume Collected - 23 golds
Type and Number: Tellon Glass Plastic	Ziptoc* Other_Buckets-6
	geraled Truck/Trailer Other
- Water Depth (ft): - Top of Core Elevation (ft): - Project Depth (ft): - Target Penetration (ft): Tidal Cycle (circle two Low Mid High [and] Slack Incor Wind Speed (knots): 0-5 5-10 10-15 > 15 - Soa State (circle one): Calm (1-2 ft 2-3 ft 3-4 ft 4-	Waypoint ID: 451 GPS ID: Montage Latitude (Northing): 27,8443(499 Longitude (Easting): -9460645333 ming Outgoing Shuto Gusto 30-35 5ft >5ft Other Longitude
Mind Direction: N NE E SE S SW W NW Notes: 0830 - Arrived on State (sithing the dudge of State decker S 6915 - Merchanisments - 10:20 - Sayding Conglet	? (drizzle, moderate, heavy) farth Clouds and 1854WWa) Congrand Staton with Lours and Sat - County Staton County - Checker Deck -
* Lainds 30-36 NE	Prevent from mouse & Status

Core Log (Sheet Z of Z)

Sampling D	ate: PCCA Harbor Island- Section 103		ken (circle one): Yes No
Core Core penetra Bottom of co	Time 0915 to 10:2	Core penetration le	
Length (ft) (Gray Cross Silt Saune	Length (ft)	CORE DESCRIPTION
5 6	Tan/Brown SUS	25	
10	Gray to Dank Gray Band	30	
- II	Gray It. Gray king su		
15 \b-	Disconder Of Jon Botte	35 5n	
20		40	
Oil Present? Odor Preser Organic Deb	nt? Yes No	Oil Present? Odor Present? Organic Debris?	Yes No (Describe) Yes No Yes No Yes No
Notes: D	Score John Botton	Notes:	

Core Log (Sheet 1 of ⊥)

Collection Method (Circle ane): Vargoti Push Grin Sediment Containerical Type and Number: Tefton® Glass Plastic Ziptos® Other Sediment Procorvation Method (circle cone): "Wet" ice Shaperated Truck/Traine Other Valur Surface Elevation (circle method of measurement): RTK Water Depth Measurement (circle one): Fathometer Lead Line Water Depth Measurement (circle one): Fathometer Lead Line Water Depth (R): 61.5 Top of Core Elevation (R): -60.4 Latitude (Northing): 27.447560 / 72.8447560 Target Penstration (R): -60.4 Latitude (Northing): 27.447560 / 72.8447560 Target Penstration (R): -60.4 Water Depth (Roots): 0-5 5-10 (10-15 +15 - 6	umple ID: DMM W-8-50 umpling Date: 1 19 7023 art Sampling Time:	Sampled By: MPmy 51P Cascade Client: PCCA End Sampling Time: Collection
Water Depth Measurement (circle method of measurement): RTK Water Depth Measurement (circle one): Fathometer Lend Line Water Depth Measurement (circle one): Fathometer Lend Line Water Depth (ft): 41.5 = Top of Core Elevation (ft): 40.4 Project Depth (ft): 40.5 = Top of Core Elevation (ft): 40.5 = Top of Lend Line Wind Cycle (circle two): Low May (sop) [and] Slace meaning) Outgoing Very Strong Wind Speed (knots): 0-5 5-10 (10-15) × 15 - 4.5 ft × 5 ft Other Water Correction (ft): 70.00 Wind Direction: N (FE E SE S SW W NW Notes 11 - 4.5 ft × 5 ft Other Water Depth (ft): 40.5 Total Cycle (circle one): Calm 2 ft 2-3 ft 3-4 ft 4-5 ft × 5 ft Other Water Depth (ft): 40.5 Total Cycle (circle one): Calm 2 ft 2-3 ft 3-4 ft 4-5 ft × 5 ft Other Water Depth (ft): 40.5 Total Cycle (circle one): Calm 2 ft 2-3 ft 3-4 ft 4-5 ft × 5 ft Other Water Depth (ft): 40.5 Total Cycle (circle one): Calm 2 ft 2-3 ft 3-4 ft 4-5 ft × 5 ft Other Water Depth (ft): 40.5 Total Cycle (circle one): Calm 2 ft 2-3 ft 3-4 ft 4-5 ft × 5 ft Other Water Depth (ft): 40.5 Total Cycle (circle one): Calm 2 ft 2-3 ft 3-4 ft 4-5 ft × 5 ft Other Water Depth (ft): 40.5 Total Cycle (circle one): Calm 2 ft 2-3 ft 3-4 ft 4-5 ft × 5 ft Other Water Depth (ft): 40.5 Total Cycle (circle one): Calm 2 ft 2-3 ft 3-4 ft 4-5 ft × 5 ft Other Water Depth (ft): 40.5 Total Cycle (circle two): Low May (ft): 40.5 Total Cy	Vibracofe Push Gdre Auger Split Spoon adiment Container(s): pe and Number: Teflon® Glass Plastic	Total Volume Collected Ziptoc® Other
Nater Surface Elevation (circle method of measurement): RTK Nater Depth Measurement (circle one): Fathometer (and Line) Nater Surface Elevation (title ht) (n) Water Depth (ft): 61:5 = Top of Core Elevation (ft): -100, 44 Project Depth (ft): -100, 44 Latitude (Northing): 27:447560 27:848 Project Depth (ft): -100, 44 Latitude (Northing): 27:447560 27:848 Longitude (Easting): 70 (p) 70		
Tidal Cycle (circle two): Low Mark Ham) [and] Slack meaning Outgoing Very Strong Wind Speed (knots): 0-5 5-10 (10-15) 15 4 15 See State (circle one): Calm (21) 2-3 ft 3-4 ft 4-5 ft >5 ft Other Weather (circle one): Surry P. Cloudy Cloudy Rain? (drizzle, moderate, heavy) Wind Direction: N (NE) E SE S SW W NW Notes: 115 A 15	Surface Elevation (circle method of measurement): RTK Iter Depth Measurement (circle one): Fathometer Lend Line Iter Surface Elevation (tide ht) (n) Water Depth (ft): 61:5 Top of Core Elevation (ft): 60:4 Project Depth (ft): 60:60	Waypoint ID 448 Gorman 1 449+450 GPS ID: Wastana
Wind Speed (knots): 0-5 5-10 (10-15) 15 - (1		
Weather (clircle one): Europy P. Cloudy Cloudy Rain? (drizzle, moderate, heavy) Wind Direction: N (NE) E SE S SW W NW Nates 115 - Arrange on Statem - 145 Access to decle 1210-Tool 2. Neuropy words - 144 Attempt - Topy Care att to Hard Land (27.84475802 /-97.06197001 1250 - Jacken down to report - Set of Ion 1340- total Carrier to Arrange on Statem - Set of Ion 1340- total Carrier to Many Arrange of Ion 1415- Many of Statem - Many of Ion 1415- Many of Ion 141	nd Speed (knots): 0-5 5-10 (10-15 > 15 (10-15)	.513
Wind Direction: N (NE) E SE S SW W NW Notes: 115 - Arrange on Statueri - 1145 Access to dece 1210 - Tool Measurements - 15t Attempt - Topy Core at the Project Depth - 10.4 - Need letry to at Closen to Harber I dead. (27.84475862 /-97.06197001 1250 - Jackey down to reposition - Setup 10 from 1340 - Hateri Coordinates in SAI - District Measurements - Water Depth - 10.53 Way Pt 449 + 450 - > MWC 18.84 = 1.49 e (15.54) Top Carelles: = - Ulo 8 I des P.(1415 - Maure of Statuer - Warrange Collected Water depth is at Project Depth or Lover Depter) 140 - U. Des S Currant in the of 50 + 50		
1210-Took Measurements - 15t Attempt - Topg Cove at the Percet Depth - 16.4 - Need to try to get Closen to Harbor Toland. (27.84475862 /-97.8497001 1250-Jacking down to reposition - Set up - 10 from 1340-Station Coordinates in SAP - OSTOCK Measurements - Water Depth - 68.3 Liver Pt 449+450 - > MUDC 18.84 = 1.49 c (354) Topg Careller. = - Close I das P.(1415-Maine of Station - No Surgel Collected - Water depth is at Project Depth or Lover Depter) 1450-U. Das & Connect in Tree of 50 + 50		· (unitally, mountain, marry)
12-10-Tool Measurements - 15t Attempt - Topo Coe at the Porget Depth 160.4 - Need letry to get Closen to Harbor Tolomo. (27.84475862 /-97.86197001 1250-Jacking down to reposition - Set up 10 from 1340- Hotion Coordinates in SAP - Of Took Measurements - Water Depth - 68.3 Way Pt 449+450 - > MUDE 18.84 = 1.49 e (1354) Topo Caucher. = - 16.8 belos P.(1415- Maine of Statem - No Sund of Calledia. = - 16.8 belos P.(1415- Maine of Statem - No Sund of Calledia. Water disptin is at Project Depth or Lower Depth 2 1430-U. Day & Current in Hee of 50 + 5C		ori- 1145 Accept to deck
1415-Maine of Statum - No Sund Calledad - Water aleptin in at Project Deptin or Lower Depters 1430-U. Das & Current in Hee of 50 + 50	1210-Took Measurements the Project Dipth - 100. to Harbor Idano. 250-Jacking down to repo	- 1st Attempt - Topg Core at 4 - Need letry to get Closer (27.84475862/-97.06197001 setion - Set up ~ 10 km
1415-Marine of Station - No Surple Collected - Water aleptor in at Project Depter or Lover Depter D. 1430-U. Das & Current in Hee of 50 + 50	340- Station Coordinates	ansap-
1430-U. Des & Current in Head 50 + 5C	Way Pt 449+450-	Topa Careller = - Un 8 lodges P.C
1700 - Ulder of Current in Her of 51) + 5C	water depoter in at	Project Destin or Lovan Desperd
- Capt had to stop indelying Current too strong	Capt had to stop me	alyan Current too strong

PROJECT: PCCA Harbor Island New I Section 103	Dock	
ANAMAR Environmental Consulting Inc.	Samala ID:	DMMU-8-5D
2106 NW 67th Place, Suite 5		MAMICATERNI Rum May
Gainesville, Florida 32653		1 4 - 1 - 1
Phone: 352-377-5770	Sample Date:	011-211-005
SAMPLE COLLECTION INFORMATION	114	22
Start Sampling Time 1405 End	Sampling Time: 14	2.2
Collection Method:		
Double van Veen wan Veen Mod. Petersen Largu P	-	racore Box Core Other
Sediment Preservation Method (circle one): Well Co. R.	efrigerated Trub aller	Other
Sample Containers:		Q -b+ 07 6
Type and Number: Teflon Glass Plastic	: Ziploc Ot	her Tauchan Sport
Sediment Description: Can order must than one texture , if app	plicable	
Texture: Clay Sill Fine Sand Medium Sand	Coarse Sand Shell Ha	ash Shells/Rock preces
Color Lt. Brown Yellowish Orange Greenish Gra	V Olive Gray Lt. Gray	Dk. Gray
Live Organisms? Describe. / Y N Notes	s: 1StAttmatt	Notacle Zulattent No
Organic Debris? Describe.	200-D+5000	Carlos E
Odor Present? Describe.	A COST TOTA	SCHOOL .
	210-45	O AM MIDER
Picture of Sample? N	THE ALC	a di la Cara
Volume Collected:	1.54	- contractor
# Grabs Collected:	No suple-	/ LW/ Sederhans
Penetration Depth (cm):		
Desribe any Leakage, Winnowing, or Overfill here:		
STATION INFORMATION	V- 12-70-	
V-Datum MLLW MLW NAVD 88 NGVD 29 Other:	H-Datum NAD83 NAD27	NGS84 Other:
Water Surface Elevation (circle method of measurement):	R16 Real Time VLF	Tide Tables Other:
Water Depth Measurement (circle one) Fathometer Lead	Line	* *
Water Surface Elevation (tide ht) (ft): 0-16 1	to Waypoint ID	483/484/485/482
- Water Depth (it):	**	Containa Comment
= Sediment Elevation (ft): - 60.3 MLLO	Latitude (No	rthing): 27.84474 /27.8445
Project Depth = -60	Longitude (F	Easting): 97.062274/-97.0622
Wind Speed (knots): 0-5 5-10 0-15 >15		
Wind Direction: N NE E SE S SW W NW		
Sea State: Calmy 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 ft		
	mad.	
Weather: Sunny P. Cloud Cloudy Rain (drizzle, mod he	`	
Tidal Cycle Low Mid High Slack Incoming	Outgoing	
Air Temp (*F): 100		
Additional Observations, Notes: NOON	forman Doc	2-Obstructions
~30 from Crigno States	tocation -	
U		Sheet of 4
		oneel ' G

PROJECT: PCCA CDP Section 103 ANAMAR Environmental Consulting Inc. Sample ID: 2106 NW 67th Place, Suite 5 ANAMAR Sampled By: Gainesville, Florida 32653 27 7022 Sample Date Phone: 352-377-5770 SAMPLE COLLECTION INFORMATION Start Sampling Time: 6920 1000 End Sampling Time: Collection Method: Double van Veen Van Veen Mod. Petersen Large Ponar Petite Ponar Vibracore Box Core Other Sediment Preservation Method (circle one): "Wet Qoe Refrigerated Truck Prailer Other Sample Containers: Other Buch Glass Type and Number: Teflon Plastic_ Ziploc. Sediment Description: Can circle more than one texture, if applicable Fine Sand Medium Sand Coarse Sand C Shell Hash Lt. Brown Yellowish Orange Greenish Gray Olive Gray Lt. Gray Dk. Gray Color: Live Organisms? Describe. Shallo Organic Debris? Describe. Odor Present? Describe. Picture of Sample? Volume Collected: # Grabs Collected: Penetration Depth (cm): Desribe any Leakage, Winnowing, or Overfill here: STATION INFORMATION H-Datum NAD83 NAD27 WGS84 Other: V-Datum MLLW MLW NAVD 88 NGVD 29 Other:_ Real Time WAR **Tide Tables** Other: Water Surface Elevation (circle method of measurement): Water Depth Measurement (circle one)(: Fathometer) Lead Line Water Surface Elevation (tide ht) (ft) 2 Waypoint ID: - Water Depth (ft): GPS ID: 44. 27.5418759 Latitude (Northing): = Sediment Elevation (ft): Longitude (Easting): Project Depth = Wind Speed (knots): 0-5 (5-10) 10-15 Wind Direction: N (NE) E SE S SW W NW Sea State: Calm 1-2 ft (2-3 ft 3-4 ft 4-5 ft >5 ft Weather: Sunny P. Cloudy Chudy Rain (drizzle, mod, heavy) Incoming Outgoing Mid (High) Tidal Cycle: Low Slack Air Temp (°F): Additional Observations, Notes:

PROJECT: PCCA CDP Section 103 ANAMAR Environmental Consulting Inc. Sample ID: 2106 NW 67th Place, Suite 5 Mair ANAMAR Sampled By: Gainesville, Florida 32653 01177 Phone: 352-377-5770 Sample Date: SAMPLE COLLECTION INFORMATION Start Sampling Time: 1053 End Sampling Time: Collection Method: Double van Veen van Veen Mod. Petersen Large Ponar Petre Ponar Vibracore Box Core Other Sediment Preservation Method (circle one): Refrigerated Truck Prailer "Wer Oce Other Sample Containers: Type and Number: Teffon Glass Plastic Ziploc. Other Sediment Description: Can gathe more than one texture, if applicable Clay Silb Gine Sand Medium Sand Coarse Sand Shell Hash Color: Lt. Brown Yellowish Orange Greenish Gray Olive Gray Lt. Gray Dk. Gray (\vec{n}) Live Organisms? Describe Notes: **@** Organic Debris? Describe. Odor Present? Describe. Picture of Sample? Volume Collected: # Grabs Collected: Penetration Depth (cm): Desribe any Leakage, Winnowing, or Overfill here: STATION INFORMATION V-Datum MLLW MLW NAVD 88 NGVD 29 Other: H-Datum NAD83 NAD27 WGS84 Other: Real Time W Water Surface Elevation (circle method of measurement): **Tide Tables** Other. Water Depth Measurement (circle one) (Fathometer) Lead Line 79 E 1048 Water Surface Elevation (tide ht) (ft) Waypoint ID - Water Depth (ft): -44,2 27. 241 70902 = Sediment Elevation (it): Latitude (Northing): Longitude (Easting): - 9し、936010 Project Depth = Wind Speed (knots): 0-5 (5-10 10-15 Wind Direction: N(NE) E SE S SW W NW Sea State: Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 ft Weather: Sunny P. Cloudy /Cloudy Rain (drizzle, mod, heavy) Tidal Cycle: Low Outgoing Slack Incoming Air Temp ("F): Additional Observations, Notes

	0.00 11 10 5 0
ANAMAR Environmental Consulting Inc. 2106 NW 67th Place, Suite 5	Sample ID: REC - C (Re Souple)
Gainesville, Florida 32653	Sampled By: AWAMAR Terrocor Rym Me
Phone: 352-377-5770	Sample Date: 01 27 2623
SAMPLE COLLECTION INFORMATION	14 ****
Start Sampling Time: 1003 End Sam	pling Time: 1050
Collection Method:	
Double van Veen Voor Mod. Petersen Large Pona	Petite Ponar Vibracore Box Core Other
Sediment Preservation Method (circle one) Well Com Refrigor	erated Truck railer Other
Sample Containers: Type and Number: Teflon Glass Plastic	Tiples other Bixtoto 3
	- 11 T-1/
Sediment Description: Can circle more than one texture , if applicable	10 0
Texture Clay Silt Fine Sand Medium Sand Coa	by forest to
Color: Lt. Brown Yellowish Orange Greenish Gray	
Live Organisms? Describe. N Notes:	Small Conch Sand Creek
Organic Debris? Describe. Y	Dhullio - 1
Odor Present? Describe.	
Picture of Sample? (Y) N	2 2 2 2
Volume Collected: 544	
# Grabs Collected:	pla- Washing out from Botton-Just
Penetration Depth (cm): 1.51	ultiple Drops to Callet
Desribe any Leakage, Winnowing, or Overfill here:	Volume regressed.
STATION INFORMATION	
STATION INFORMATION V-Datum MLLW MLW NAVD 88 NGVD 29 Other: H-D	naturn NAD83 NAD27 WGS84 Other:
V-Datum MLW NAVD 88 NGVD 29 Other:H-D	TK Coal Time W R Tide Tables Other
V-Datum MLW MLW NAVD 88 NGVD 29 Other:H-D	e Book Chook Other
V-Datum MLW MLW NAVD 88 NGVD 29 Other: H-D Water Surface Elevation (circle method of measurement): R Water Depth Measurement (circle one): Fathometer Lead Line	e Book Chook Other
V-Datum MLW MLW NAVD 88 NGVD 29 Other: H-D Water Surface Elevation (circle method of measurement): R'Water Depth Measurement (circle one) : Fathometer Lead Line	TK Coul Time W R Tide Tables Other
V-Datum MLW MLW NAVD 88 NGVD 29 Other: H-D Water Surface Elevation (circle method of measurement): R* Water Depth Measurement (circle one): Fathometer Lead Line Water Surface Elevation (tide ht) (ht): H-D Water Surface Elevation (tide ht) (ht	TK Coal Time W.R Tide Tables Other e Waypoint ID: 407, 408, 407, 470, 471, 472, 4 GPS ID: Market Coal Time W.R. Tide Tables Other Latitude (Northing): 27, 841, 48597
V-Datum (ILLW) MLW NAVD 88 NGVD 29 Other: H-D Water Surface Elevation (circle method of measurement): R' Water Depth Measurement (circle one): Fathomater Lead Line Water Surface Elevation (tide ht) (ft):	Waypoint ID 417 468 419 470 471, 472, 4
V-Datum (ILLW) MLW NAVD 88 NGVD 29 Other: H-D Water Surface Elevation (circle method of measurement): R* Water Depth Measurement (circle one): Fathometer Lead Lin Water Surface Elevation (tide ht) (ft): + Company Compa	TK Coal Time W.R Tide Tables Other e Waypoint ID: 467, 468, 467, 470, 471, 472, 4 GPS ID: Market Coal Coal Coal Coal Coal Coal Coal Coal
V-Datum (ILLW) MLW NAVD 88 NGVD 29 Other: H-D Water Surface Elevation (circle method of measurement): R' Water Depth Measurement (circle one): Fathometer Lead Lin Water Surface Elevation (tide ht) (ft): H-D Water Depth (ft): H-D Project Depth = H-D Project Depth MLW NAVD 88 NGVD 29 Other: H-D Project Depth MLW NAVD 88 NGVD 29 Other Project Project Project 88 NGVD 29 Other Project Project 88 NGVD 29 Other Project Project Project 88 NGVD 29 Other Project	TK Coal Time W.R Tide Tables Other e Waypoint ID: 467, 468, 467, 470, 471, 472, 4 GPS ID: Market Coal Coal Coal Coal Coal Coal Coal Coal
V-Datum (ILLW) MLW NAVD 88 NGVD 29 Other: H-D Water Surface Elevation (circle method of measurement): R* Water Depth Measurement (circle one): Fathometer Lead Lin Water Surface Elevation (tide ht) (it): - Water Depth (it): - SedIment Elevation (it): Project Depth = Wind Speed (knots): 0-5 10 10-15 >15 Wind Direction: N NE E SE S SW W NW	TK Coal Time W.R. Tide Tables Other. e Waypoint ID: 467, 468, 469, 470, 471, 472, 46 GPS ID: Market Coal Coal Coal Coal Coal Coal Coal Coal
V-Datum (ILLW) MLW NAVD 88 NGVD 29 Other: H-D Water Surface Elevation (circle method of measurement): R' Water Depth Measurement (circle one): Fathometer Lead Line Water Surface Elevation (tide ht) (it): Water Depth (it): Water Depth (it): Water Depth (it): Water Depth =	TK Coal Time W.R. Tide Tables Other. e Waypoint ID: 407, 470, 471, 472, 47 GPS ID: 127, 841, 42397 Latitude (Northing): 27, 841, 42397 Longitude (Easting): 96, 49394701
V-Datum (ILLW MLW NAVD 88 NGVD 29 Other:	TK Cont Time W.R. Tide Tables Other e Waypoint ID: 4177 428 4470 471 472, 44 GPS ID: 427 42397 Latitude (Northing): 27, 841 42397 Longitude (Easting): 96, 99394700
V-Datum (ILLW) MLW NAVD 88 NGVD 29 Other: H-D Water Surface Elevation (circle method of measurement): R' Water Depth Measurement (circle one): Fathometer Lead Lin Water Surface Elevation (tide ht) (ft): "Water Depth (ft): "Sediment Elevation (ft): Project Depth = Wind Speed (knots): 0-5 4-10 10-15 >15 Wind Direction: N NE E SE S SW W NW Sea State: Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 ft Weather: Surmy F Cloudy Cloudy): Rain (dnzzle mod. heavy) Tidal Cycle: Low Mid. High Slack Incoming (1)	TK Coal Time W.R Tide Tables Other e Waypoint ID: 467 467 470 471 472, 4 GPS ID: Latitude (Northing): 27 841 42397 Longitude (Easting): 96 99394701
V-Datum (ILLW MLW NAVD 88 NGVD 29 Other:	Waypoint ID: 407 408 467 470 471 472, 4 GPS ID: Latitude (Northing): 27, 841 42397 Longitude (Easting): 96, 9939470

Re-Sayle Harbor Isla	va han bar an	Environmental Consulting,
PROJECT: PCCA Harbor Island New	/ Dock	
Section 103		
ANAMAR Environmental Consulting Inc. 2106 NW 67th Place, Suite 5	Sample ID: ON AWA	
Gainesville, Florida 32653 Phone: 352-377-5770		21/2073
Start Sampling Time: 12-30 Enc	d Sampling Time: 1235	34
Collection Method: Double van Veen van Veen Mod. Petersen Large	Poner Petite Poner Vibracore	Box Core Other
Sediment Preservation Method (circle one): Wet Co	Refrigerated Truck Paller Other	
Sample Contaîners:		0 15 3013
Type and Number: Tefion Glass Plast	tic Ziploc [,] Other	Contine w/ Sta
Sediment Description: Can arcle more than one texture , if a		ODMOS-B+C
Texture: Clay Sill Fire Sand Medium Sand		(Sept.) 16 3 16 16 1
Color: Lt. Brown Yallowish Orange Greenish G	Olive Gray Lt, Gray Dk. Gra	ay
Live Organisms? Describe. N Not	es: Oyster Shilles/	Sul Got-
Organic Debris? Describe.	/	
Odor Present? Describe. Y		
Picture of Sample?		
Volume Collected:		
# Grabs Collected:		
Penetration Depth (cm): 1.5		
Desribe any Leakage, Winnowing, or Overfill here:	Quality Caller	Shella
	and a country	
STATION INFORMATION		
V-Datum MLW MLW NAVD 88 NGVD 29 Other:		
Water Surface Elevation (circle method of measurement)		Tables Other
Water Depth Measurement (circle one) Faihometer Le		Q
Water Surface Elevation (tide ht) (ft) Lb = 121		0
- Water Depth (III): 45	GPS ID: Monto	ine-/commin
= Sediment Elevation (m): -44.3	Latitude (Northing):	
Project Depth =	Longitude (Easting):	96.99916701
Wind Speed (knots): 0-5 5-10 10-15 >15		
Wind Direction NE E SE S SW W NW		
Sea State: Calm 1-2 / 2-3 ft 3-4 ft 4-5 ft >5 ft		
	sagur)	
Weather: Sunny P. Cloudy Cloudy Rain (drizzle, mod, h		
Tidal Cycle Low Mid High Slack Incomir	ng Outgoing	
Air Temp (°F):		
Additional Observations, Notes:		

- 0	EET	ANAMAR
ReSuple Channol Desper	was togethe	Environmental Consulting, In-
PROJECT: PCCA Harbor Island New	Dock S	
Section 103		
ANAMAR Environmental Consulting Inc.	Sample ID: 🛆 🗅 🗅	105rB
108 NW 67th Place, Suite 5	Sampled By: ANAM	HIZ/Ternozon
Sainesville, Florida 32653 Phone: 352-377-5770	Sample Date: 112	77023
SAMPLE COLLECTION INFORMATION		+
Start Sampling Time: 1305 End	Sampling Time: 1310	
Collection Method:		
Double van Veen van Veen Mod. Petersen Large F	onar Petite Ponar Vibracore Bo	ox Core Other
Sediment Preservation Method (circle one): "Wet Co F	lefrigerated Truck/Pailler Other	
Sample Containers:	0	10-1- I
Type and Number: Teflon K. Glass Plasti	: Ziploc · Other	udel-1
Sediment Description: Can circle more than one texture , if ap	plicable C6	rul-unade Stol
exture: Clay Sill Fine Sand Medium Sand	Coarse Sand Shell Hash	COMBS At
Color: LI. Brown Yellowish Orange Greenish Gra		
ive Organisms? Describe. Y N Note	5. Phells-	
trganic Debris? Describe.	s. <u>G</u>	
_		
Picture of Sample? N		
/olume Collected:		
Grabs Collected:		
Penetration Depth (cm):		
Desribe any Leakage, Winnowing, or Overfill here:		
STATION INFORMATION	TY TO SERVICE THE	
-Datum MLLW MLW NAVD 88 NGVD 29 Other:	H-Datum NAD83 NAD27 WGS84 Other	ir:
Vater Surface Elevation (circle method of measurement):	RT Real Time VLR Tide To	ables Other:
Vater Depth Measurement (circle one) (Fathometer) Lea	d Line	
Vater Surface Elevation (tide ht) (ft):	Waypoint ID 42	10 0
- Water Depth (ff): 45	GPS ID: Monto	The state of the s
* Sediment Elevation (tt);	Latitude (Northing): 2	7.782529
Project Depth = V/A	Longitude (Easting):	96,997268
Vind Speed (knots): 0-5 5-10 10-15 >15		
Vind Direction: N (NE) E SE S SW W NW		
ea State: Calm 1-2 h 2-3 h 3-4 ft 4-5 ft >5 ft		
	avy)	
Veather: Sunny P. Cloudy Cloudy Rain (drizzle, mod he		
	Dutaoina	
Weather: Sunny P Cloudy Cloudy Rain (drizzle, mod he fidal Cycle: Low Mid High Stack Incomin	g Dutgoing	

SEDIMENT SAMPLING FIELD S	HEET		ANAMAR
Resource Chamael Day	van Porcet	0	Environmental Consulting, Inc.
PROJECT: PCCA Harbor Island Ne	Louis acolor		
Section 103	W DOCK		
	-	0.0000	0
ANAMAR Environmental Consulting Inc. 2106 NW 67th Place, Suite 5	Sample ID:	ODIT IDE	2/5
Gainesville, Fiorida 32653	Sampled By:	MANIMITAS	Terracon
Phone: 352-377-5770	Sample Date:	1121	7073
SAMPLE COLLECTION INFORMATION	,		
Start Sampling Time: 1240 E	nd Sampling Time: 125	22	
Collection Method:			
Double van Veen van Veen Mod. Petersen Larg	e Ponar Petite Ponar Vibr	acore Box Cor	e Other
Sediment Preservation Method (circle one): Wet to	Refrigerated Truck/Paller	Other	
Sample Containers:		0 7	- A- c
Type and Number: Teflon Glass Pla	ıstic Ziploc · Oth	ier Kuck	1 00 60
Sediment Description: Can produce than one texture ,	if applicable	0	who was by state
Texture: Clay Sill Fine Sand Medium San	d Coarse Sand Shell Has	sh	DIMUS A+ 15
Color: LL Brown Yellowish Orange Greenish	Gray Olive Gray Lt. Gray	Dk. Gray	
Live Organisms? Describe. Y N N	otes:		
Organic Debris? Describe.	Hullo		
Odor Present? Describe.			
Picture of Sample? N			
Volume Collected:			
# Grabs Collected: Penetration Depth (cm):			-
Desribe any Leakage, Winnowing, or Overfill here	43		
STATION INFORMATION			
V-Datum MLLW MLW NAVD 88 NGVD 29 Other:	H-Datum NAD83 NAD27 W	/GS84 Other:	
Water Surface Elevation (circle method of measurement	nt): RT Real Time VLR	Tide Tables	Other:
	Lead Line	11-10	
Water Surface Elevation (tide ht) (iii):	236 Waypoint D	411	7 1
- Water Depth (ft): 45	GPS ID:	Joulan	~~~
= Sediment Elevation (n);	Latitude (Nor	thing): 27.79	
Project Depth = V/A	Longitude (Ea	asting):17_	0003460
Wind Speed (knots): 0-5 5-10 10-15 >15			
Wind Direction: N NE E SE S SW W NW			
Sea State: Calm 1-2 23 0 3-4 ft 4-5 ft >5 ft			
Weather: Sunny P. Cloudy Cloudy Rain (drizzie mod	I, heavy)		
Tidal Cycle (Low) Mid High Slack Incor			
Air Temp (°F):	y maring		
All remp(1).		_	_
Additional Observations, Notes:			
			Sheet of

WATER CHEMISTRY FIELD SHEET

ANAMAR
Environmental Consulting, Inc.

PROJECT: PCCA CDP Section 103 ANAMAR Environmental Consulting Inc. 2106 NW 67th Place, Suite 5 Gainesville, Florida 32653 Phone: 352-377-5770 Sample Date: D1 7.7 702.3

Gainesville, Florida 32653		Sampled B	y: ANAMAZ/resource
Phone: 352-377-5770		Sample Dat	e: 01 27 2023
SAMPLE COLLECTION INFORMATI	ON		
Start Sampling Time: 1125	End	Sampling Time: 12	
Collection Method: Submersible Pump Direct Grab	Van Dorn Per	istaltic Pump Pneuma	atic Pump Other
Sample Containers: Type and Number: Teflon G	ilass 7_ Plastic	Vials Y Ott	ner Bucketo-
Sample Description:	Note	s: (8) Soul Bu	relate due
Suspended Material? Describe. Y	AP)	SW Kat Pressu	صفائع لمه
Odor? Describe. Y			polist of Containers
Water Color:	een_	and Pres	evetire Volume-
Volume Collected: 46	cal d	ea SWRIET	,
STATION INFORMATION	-		
Water Depth (ft): 45	Win	d Speed (knots): 0-5	(5-10) 10-15 >15
	ming Sea	d Direction: N (NE)	
Air Temp (°F):: In Situ Readings: Time: Depth (ft): Temp (°C): pH (units): Salinity (ppt) Sp. Cond (mS/cm) OR (µS/cm)	Start Mid-Depth 1128 23' 15.7°C 9.16	1700/Hon 23 15,9°c 2.15	Cloudy Rain (drizzle, mod, heavy) Ptt Station Coordinates: Latitude (Northing): 27.841575 Longitude (Easting): 96.493548 Waypoint #: 477
DO (mg/L): DO (% sat.): Turbidity (NTU):	8.32	8,45	Addt'l Waypoint #:
General Conditions, Observations,			

Sheet of

ă.

WATER CHEMISTRY FIELD SHEET ReSample Hankor Islam Men Dock and Environmental Consulting, Inc. ANAMAR Environmental Consulting Inc. Station ID: 2106 NW 67th Place, Suite 5 Sampled By: RNAMAR2/ Terracor Gainesville, Florida 32653 27/2022 Sample Date: Phone: 352-377-5770 SAMPLE COLLECTION INFORMATION End Sampling Time: 1320 Start Sampling Time: 1316 Collection Method: Submersible Pump Direct Grab Van Dorn Peristaltic Pump Pneumatic Pump Other Sample Containers: Type and Number: Teflon Glass Plastic Vials Other Notes: Substantin Sample Description: Suspended Material? Describe Odor? Describe. Water Color: Volume Collected: STATION INFORMATION Wind Speed (knots): 0-5 / 5-10 10-15 Water Depth (ft): Wind Direction: N (NE)E SE S SW W NW Tidal Cycle: Low Sea State: Calm 1-2 ft 2-3 ft 3-4 ft 4-5 ft >5 ft Mid Incoming Weather: Sunny P Cloudy Cloudy, Rain (drizzle, mod, heavy) High Outgoing Air Temp (°F): : Will Din Station Coordinates: Near-Bottom In Situ Readings Near-Surface Mid-Depth Latitude (Northing): 27.782773 Time: Depth (ft): Longitude (Easting): -969675 القال Temp (°C): 8.14 pH (units): Waypoint#: 482 Salinity (ppt) Sp. Cond (mS/cm) OR (µS/cm): DØ (mg/L) Addt'l Waypoint #: DO (% sat.): Turbidity (NTU): General Conditions, Observations, Notes: Salind Not is/Materlines Sheet

PROJECT: PCCA Harbor Island New Dock Section 103

Name: Grys Pawlale Date: 1/16/23	2106 NW 67th Place Suite 5 Gainesville, FL 32653 (352) 377-5770
Samples Collected: DMMU /- /	
- Parid + Joe	on-site w/ Enviro Tech Prilley
	TESM W/ Team
6PP 135 - Begin drilling omme bys w/ Post bole dig	11-14 (0-10) after cleany hole to 5
	- 1A (0-20') w/ solid flight ayors
1420 - Soyled DMMUI- 14 collected 15 3	2 (0-30') vallons (2 Tox & 1 Chen)
1510 - Deyis Arillis DMM 4 a	1-14 (30-60) to case of top 40'
1600 - Segin drilling DAMAY	1 A (30-60) w/ sold flight ayer
1220 - Sample DMMU 2- collected 15 go	1A (30-60') Mons (2 Tox & 1 (hom)
1830 - off-site after ren	torite chips

PROJECT: PCCA Harbor Island New Dock Section 103

	ANAMAR Environ	mental Consulting, Inc.
1 0 11	2106	NW 67th Place Suite 5
Name: Gress Pawfole		Gainesville, FL 32653
Date: 1/17/83	1	(352) 377-5770
(0-30')	(30-60')	(0-30)
Samples Collected: Dmnu / - /	B, DMM42-10	0 mmu 1-10
DMMUZ-1C	7	7
(30-60')		
1 20 00 7		
Notes, Comments: 0730 - Arrive	on-site + condit	TESM w/ Brille
0850 - Set you pmmi		
0965 Bais drilling On		of too 10.
w/ 614 10 Hays	ors after closing hole	705 555
past hole digge-	and hand prope	
09/0- Dayin drilley OM	mul-15 w/ SFA	from 0-30'69
intervals sto	te at -10 bgo which	is undo
RRC jurisdi		
0940 - So-ple DM.	MU1-1B (0-30'))
377		
* -0 1/80784	15 gallon (2 tox	and I chem)
Ama Asa Ista na	. 1 10 (2 . 11	
1010 - Desta dilling Denn	11 2-113 (30-60) +	o lase of
top 40 w/ 6/4	I augers	
	2	
# * / /		
1010 - Begin deilly DMMU 2	-15 (30-60') w/	sold flike
quijers		
1130 - Su-ple DMMU 2 -11	3 (30-60)	
collect is	- aller (star !	1 chem)
LULIEUR 13	gallons (atox &	/ CHEM)
113- 1	/ / / .	/.
1135 - Begin removing auge	ri & gecontamina	/44
17110 6 1/2 / - 1		
1340- Complete decoming A	yers	

Pesa 2

Daily Quality Control Report

ANAMAR

PROJECT: PCCA Harbor Island New Dock Section 103

Name: Gray Pawlake Date: 1/17/23	2106 NW 67th Place Suite 5 Gainesville, FL 32653 (352) 377-5770
Samples Collected: See	Page #/
Notes,Comments:	
hole to 5 bgs w/	Part hole digger and hand pare
1200 - Begindrilling pmmu	1-10 (0-30') to case of
1423 - Begin drilley DMMU	1-10 (0-50') w/ solid flight Any
440- Sampled Danny	1-16 (0-30') 1 15 gallons (1 chem i d tox)
500 - Begin drilling DMMy 2 top 40' w/ 6/4	I FO Ayers to core off
1545 - Begin deilly DMMUd-	10 (30-60) w/ solid flight ayors
1630 - Soupled DAMUZ =/((30-60') 5 gallons (1 chen & 2 tox)
150 - Complete pulling any	ers
1830 - Deport Site	

ANAMAR

PROJECT: PCCA Harbor Island New Dock Section 103

This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

Page 1

2 11	ANAMAR Environmental Consulting, Inc.
() / / /	2106 NW 67th Place Suite 5
Name: Oregs Pawlale	Gainesville, FL 32653
Date: 1/18/23	(352) 377-5770
Samples Collected: DMMU5-3A (O DMMU 5-3B (O-30')	Duny 6-3B (30-60)
Notes, Comments: 6730 - Arrive on si	
0800 - Deillers decon auges, equip	ment
0826 - Set up on DMMU5-3A	
1	for while by check, probe 5' to slear koing
Correction : Post	11 .7 . 0
1850 - Begin drilling to 10 bgs b	eith HSA to case of top 10'
0920 - Begin Lulling DMMU5-JA	to 30 (40'bas) for sample
DMMUS-3A (0-30), after	setting down playtic lines
0940 - Sample DMans. 3A	2/0-201)
Collect 15	gallons (2 Tox & 1 Chen.)
1010 - Begin drille Ommu	ID augers to case of
1045 - Begin drilling ommu 6	5-3A (30-60') with so lid flight
11/5 - Sorple DMMy 6	- 3A (30-60') - 15 gallons (2 Tox & Ichen)
* Begin pulling	
12to - Complete de con o	(0-30') and setter you

PROJECT: PCCA Harbor Island New Dock Section 103

Name: 6-es Pawlole Date: 1/18/23	ANAMAR Environmental Consulting, Inc. 2106 NW 67th Place Suite 5 Gainesville, FL 32653 (352) 377-5770
Samples Collected: See Page 1	
Notes, Comments: 1250 - Begin drilling OMMU 5 - 31 to case of top 10'	5 (0-20') w/ 61/4" I O ItSA
1310 - Bayin drilly OMMUS-30	10-30') w/ Solid Flight
1400 - Sample DMAUS-3B	(0-20°)
1410 - Besin drilling Ommu 6- top 40 " uf 61/4" ID HSI	3B (30-60') to case of
1505 - Begin drilly DMMU 6-31	3 (30-00') w/ solid flight
1545 - Souple DMM46-3B/	* Collect 15 gallons
1700 - Off-site	

ANAMAR

PROJECT: PCCA Harbor Island New Dock Section 103

This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

Page 1

		ANAMAR Environmental Consulting, Inc.
	10000 (0 11	2106 NW 67th Place Suite 5
	Date: 1 Palis	Gainesville, FL 32653
	17/9/13	(352) 377-5770
	Samples Collected: DMMy 5-3C ((0-3.1) Descript - 30/31
	Ommu 3 - 24 (0-30') DUP,	0-30') DMMy 6-3(30-60
	UMMU 5 - 24 (0-30) DUT,	D1440 4 3-24 (0-30)
	Notes, Comments: 0 730 - August 0	1900 1
		in-site (TESM)
	0830 - Complete decorning and	
	- 0845 - Begin deillig DMM4	
	to case of top 10	
	0800 - Besis deillis AMMUS-	36 1-201 -1 1-1-1-1-1
	Oras - Sample DMM 45 -	30 (0-30)
	Collect 15 gallor	11 (2 Tox & / Chem)
u	1015 - Berin drillin DMMU	6-36 (30-60') to care of
M.	TUTS - Beyon drilling Drilling	6-36 (30-60) to case of
	+0p 40 m/ 6/4 T	D. H.S.H.S.
	1015 - Seula drillia DMMU6-	3/ [38-18] . 16/1/11
	A Segra and of Williams	36 (30-60') w/ Solid fly42
	1112	
	A strong - Cond Drames 1-3	1/30-14/
613	Tabel It all	13 Face & 16 hand
	Collect 13 94116	ins (2 /0x + / chem)
	1245 - Complete decoming a	not a set
	to the second of the	age -
1	1330 - Sein drilling Dmm	13-21 (0-30) DUP
	offer clearithale to 5	
	hand probe -> Cased .	
	11000	The second second

ANAMAR

PROJECT: PCCA Harbor Island New Dock Section 103

This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

Page 2

Name: Gress Parlah Date: 4/19/23	ANAMAR Environmental Consulting, Inc. 2106 NW 67th Place Suite 5 Gainesville, FL 32653 (352) 377-5770
Samples Collected: See Page 1	
Notes, Comments: 1343- Begin drilling w/ Solid flight Augers 1400 - Sample DMMU 3-20	
	15/4, after clearly hole to diver and hand probe
1500 - Begin drilling DMMU 3.	- 24 10-301 w/ Solid flight ayers
1520 - Sa-ple DMM4 3-	cecamented 10' HSA Home
1610 - Begin drilling DMM4 4.	2A (30-60) w/ HSA
1700 - Sample DMMy 4- 2A 1	30-60') w/ 55/il flight ages
cuffin & Londonite	Lige player went

PROJECT: PCCA Harbor Island New Dock Section 103

This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

Pagel

Name: Gress Paulale	ANAMAR Environmental Consulting, Inc. 2106 NW 67th Place Suite 5 Gainesville, FL 32653
Date:	(352) 377-5770 (360) Dup DMM4 3-20 (0-30
Notes, Comments: 0730 · On-site + 0745 · Besin Decorning Augers 0845 · Complete Decorning Augers	
casing seeing of top 10' w/	B(0-30') DUP after 61/4"IN HSA, (0-111 W/SPA)
0830. Sample DMMIA 3-2B (5 gullons
+ Move to OMMU 3-20 18	off SFA
1010 - Basin drilling DMMU 3-	-2B (8-30') to case off
1040. Begindrilling DMAN	3-20/0-10.) w/ SFAS
1100 - Somple DMMU 3-21	10-30')
1115 - Begin drilling pmmay	-2B (3) -60°) to
1200 - Bayin drilling ponn	ny 4-23/30-06'

PROJECT: PCCA Harbor Island New Dock Section 103

This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

Page 2

Name: 6-ess Porlak Date: 1/20/23	ANAMAR Environmental Consulting, Inc. 2106 NW 67th Place Suite 5 Gainesville, FL 32653 (352) 377-5770
Samples Collected: See /g	el
Notes,Comments:	
1250 - Sample DMM	sullons /3 tox & 1 chen)
1860. Complete pull	in Aye-
1445 - Dillers off-sit Clean XAII gafes	Locked!
1530. Depart Martin E.	secure

ANAMAR Environmental Consulting, Inc.

PROJECT: PCCA Harbor Island New Dock Section 103

This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

2106 NW 67th Place Suite 5 Name: Gainesville, FL 32653 Date: (352) 377-5770 Dmm u-7-4C Samples Collected: Notes, Comments: Old-V

PROJECT: PCCA Harbor Island New Dock Section 103

-C 10 ch	2106 NW 67th Place Suite 5
Name: Muchael Madona	Gainesville, FL 32653
Date: 111 2023	(352) 377-5770
Samples Collected: DMMU-7-	-4D
DMMU-T	-4A
Notes, Comments: 0600 - Mount	in Meeting -
	day broad to More to Station 4D
0630- Decon Core Barrels +	
0730- Moving of Station	1C - Mobilize to 4D
0830-Sity on Station	195' homstation -
0905-Access to dede	
BARS- Meaguraments, OF	20 Started Corring -
1115-Soupling DMMU=7-4	D Completed Souther in Ref. Trailin
1140-lineh Break-	
1210-Capta Started Laver	inchoran Studioin Mudi-
Versel Traybina in	Shipping Chammal
1300 - Moving to Amore	
	a location pertinate
1400 Access to deck - &	
1412-Masswamento 141	
1615- NAME - 7-48 Sau	
	ander-
17MM ale Day of the Marata	ELLOW - Crascles in Money
Conditactor ==	Comment of the contract of the
North Oceder M	man la discussion i VPCCA-
magne branger	mo for discussion if PCCA-
7	

PROJECT: PCCA Harbor Island New Dock Section 103

This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

ANAMAR Environmental Consulting, Inc. 2106 NW 67th Place Suite 5 Gainesville, FL 32653 Name (352) 377-5770 Date: DMMU-7-4 Samples Collected: Notes, Comments: 01000

ANAMAR Environmental Consulting, Inc.

PROJECT: PCCA Harbor Island New Dock Section 103

This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

2106 NW 67th Place Suite 5 Name Gainesville, FL 32653 (352) 377-5770 Date: DMMU-8-5B Samples Collected Notes, Comments 64 X See Core Log for

ANAMAR Environmental Consulting, Inc.

PROJECT: PCCA Harbor Island New Dock Section 103

This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

2106 NW 67th Place Suite 5 Name: Gainesville, FL 32653 Date: (352) 377-5770 DMMU-8-5C Samples Collected: Notes, Comments: 6476

PROJECT: PCCA CDP Section 103

This report will contain a description of the work performed, samples collected, general conditions, corrective action taken, departures from the sampling plans and any other notes or comments needed that will document the day's activities.

ANAMAR Environmental Consulting, Inc. 2106 NW 67th Place Suite 5 Gainesville, FL 32653 Name (352) 377-5770 Date: Coleman Sedment + SLD ODMDS Sel + SD. Samples Collected

Re-Souple - - Channel Degrening Projection

PROJECT: PCCA Harber Island New Dock Section 103

Temperature Log

Vehicle: With Boot Dulings

Taken By	Date	Time	Location	Temperature	Acceptable Y/N	Comments
Michael Madonia	1 5 2023	1000	Dulance	Starter		Started Consister -
Tr II	1/16/2023		11	3.5℃	h	- Guarata 1/2 hell-
11 U	uliiv	1700	Li	3.30	T.	- 0
by u	in it hi	1810	4.0			Evel in Generator -
Michael Madeove	1 17 2023	0645	110	3.3°C	- L	
u o		1353	il	3.30	(4)	
11 21	1	1930	r.	3.30	(5)	Guel incoverator - 65
Michael Madorac	1/18/2023	0545	T II	3:30	0	
14 15	111	1440	40	3.3°C	2	Photo of Tempon Screen
11 LX	4	1830	CI.	3.30	10-	Before officedie Sugal
Midnel Madone	1/19/2023	0810	C	-	-0_	Re Started Ry Trails
64 65	, (,	0930	67	3.3 -	5	0.11
11 12		1415	10	3.30	Q	
ti ti	1	2000	1.1	3300	0	50% few level -
Michael Mally	1 20 703		. 11	330	0	40/Shellend.
L	11	1400	18	3.30	2	Gullis Cerenter -
U U \	+	1900	, tx	3.30	0	- Photo of Disda Som
Michael Mandone	1212023	0530	11	3,3°C	0	47% Hall 773
11 11	1	1510	T.C	3.3 0	8	dido of server
u v	4	1830	11	3-3 4	2	Lalousonstadin localed
207 Shettin	nt down		Conser	e hel- No	Southern	120 Trale
32 34 66	O V	-		0		6

ANAMAR Environmental Consulting, Inc

2106 NW 67th PL, Suite 5

Gainesville, FL 32653

(352) 377-5770

Representor Trailer onlift Boot

PROJECT: Corpus Christi Channel Deepening
Temperature Log

Taken By	Date	Time	Box ID	Temperature	Acceptable Y/N	Comments Council Martin
Michaelmade		063			Transportation 1711	Starte Counter-New Albans
CV III	19 11, 12	OUT	h o	330	5	By at Tens - than Sitt Dave
W II	IN II IN	1150	40	3.30	2-	COP-03-3/A Swalssin Rotine
10 - 10-	11 61 11	1500	11	3.40	5	Moto-CDP-03-3C 94 desin By T
Michael Meden	1/23/2023	1745	Marge		4	Starte Coverator -
1- 16	n n n	1300	11 0	3.00€	Len	- Protoc -
		100	1)	3.30	Q	
hebrel theleve	- 1/24/2023	030	Mase	3.3C	1663	- hulinGererator -
		1800	IX 0	3,46	en	05(% land -
milallylone	c 1 25 2022	GAL	11	33€	1	0
is n	i ix ix	13/5	11	3.30	9-	
		1445		3.3	S	-Treunater of Saple 15-40
			1			Land Goal Red Troub
	in half-year the			- 17)	4	U
Michael McDin	1 25 202	51530	Martintier	3.20	1	Suplexin who to set By Trust
a de		1730	4	3,34	9	- Priortoleaury Martieture
11	1/26/2023	0800	MartinEn	x 3.2°C	- 2	Generala 48% fuel
W R	IL IN IN	1240	11 12 0	3.0	N.	Prior to Course Meceune Saple
Muchalladu	in in in	1748			107	> Shut Down ley Unit + Generates
Michaelhelen	1/27/2022	4				
	1					
			18		F	

-1800 ma-

ANAMAR Environmental Consulting, Inc. 2106 NW 67th PL, Suite 5 Gainesville, FL 32653

(352) 377-5770

PROJECT: PCCA Harbor Island New Dock Section 103 P Temperature Log Vehicle: L/B Dulange

Taken By	Date	Time	Location	Temperature	Acceptable Y/N	Comments
Michael Made	14 2 1 202	2 0000		3.600	i.	photo
ti ti	2 2 202	2 0500		3.3%	1040	shote-
it it	2 7 202		(t	3.2°C	4	•
11 11	2 2 202	2 1745	ii ii			Refueld Generator -
(i H	אל נו נן	1835	11 11	24°C	yes	shote-
ti VI	2 3 2022	0535	11 44	3,5°C	7	Olosto
10 11	unn	1730		3.5°C	50	i
ge ee	2 4 2027	2 0600		3,5°c		
11 11	he , to I n	1400	te C		_0_	Republic Generator -
14 (A	li de u	1800	į, i,	3,60	L	dite -
(1 (1	25 202	2 0650		3.60	i X	1
y u	u'u'u	1900	fr 4	3.10	00000	
u v	2 6 2027	- Olelo	いい	3,8%	20	
t) ti	(int.	1445	u la		3	Repuls Severator
31 61	0: 0:11	1800	U1 67	3,4 C	h	U
to to	27202	2-064:	1. 1.	3,3°C	52/5	
11	the UT in	1135	11 11	3.60	4250	
1 Ras	2/8/22	OL.30	11	3. C° C	7	
		inas	1,	30,00	7	
	בכ ודוכ	a.s	ij	3.4° €	4	
	1	1.30	lı	3400	4	technicion des cut quarate ch
	2116122	070		3.4	1	RETURNICION BERICAL GENERALISTA

ANAMAR Environmental Consulting, Inc.

2106 NW 67th PL, Suite 5

Gainesville, FL 32653

(352) 377-5770

Recovered Alarm - 2

Notes: Warm ECU Alarm on Generator 2/5/2022 0900 and 2100 hours - Called Technica 2/4/2022 0830 - Called Technica - Called Macanic 09:15 Call Backfront Technicar - ducks

2000

PROJECT: PCCA Harbor Island New Dock Section 103 (COP) Vehicle: LB Dolarge **Temperature Log**

Taken By	Date	Time	Location	Temperature	Acceptable Y/N	Comments
MRaw	2(101)2	1800	Dolargo	3,40	1	
	בכווווכ	6765	Daloro	3.4	Y	
		182	7	3.4		
	Sliatos	080		3.4	1	Retrieved generalor
TCS	12 Feb 2022	1755	L/B Dularge	3.47	Tes	Fuel is 34 full
TES	13. F.h 2522	0613	u u	3.30€	Yes	count road fire comme but should have
JCS	13662022	1503	' .	3.3.0	425	MORNITHIA !! OF STATE OF STATE STATE !!
Jes	14 Fab 20212	0538	11	3.4°C	Tes	17.7
Jes	14 Feb 2002	0705	×C 11	2.3℃	Yes	Refueled generatur Now Full.
3103	145/1/2022	1427	A M	3.2°C	Yes	
JCS	14 826 2002	2003	(t yt	3.00	Kes	
Tes	15 File 2012		$S^{0} = U$	3.2°C	res	Generales 34 Foll 1/2 Foll
Jes	15 Februsz	1949	11 11	3.3°C	Tes	Turned off Gonerator until we odd Soupl
JUS	15 56 1022	1620	11 /	3.2°C	125	Torred on Government today surples,
		geographica Novellag 2000				Temp. dippel to 3-2°C without to minutes
JCS	16 Feb 2622	0637	41 21	3.130	hes	Generator > 1/4 Full will refull it thust
JES	16 Feb 2012	1005		3.3℃	74.5	Refilled Generator + clocker oil (Foll)
TCS	16 Febrasz	1416		3.4°C	स्डि	
Tes	16 Feb 2022	1801		3.18	res	
TC5	17 Feb 2822	0505		3.100	425	Generation ~ /2 full
JCS	17/E6/2022	1654		2.2°C	Kes	
Jes	177 Feb 2022	1826		3.1℃	725	Transferred Sumples to land-based Fredie Trailer and Turned off generator

2106 NW 67th PL, Suite 5

Gainesville, FL 32653

(352) 377-5770

* Romindet*

REFOR REEFER EVERY OTHER Lay

PCCA CDP Section LOSCO

PROJECT: PCCA Harbor Island New Dock Section 103

Temperature Log

Vehicle: Cold box on 4/8 Dularge

Taken By	Date	Time	Location	Temperature	Acceptable Y/N	Comments
TOS	18 febrozz	131zw		· Foffin	illust backsand	Filel generator
ICS	138667627	148	111	3.4 °C	res	Activa Comproduct Sands
MAM	21922	0536	11 11	3.100	4	73% hicklevel.
MAM	a a co	1738	U CX	3.00	2	55% Jul level
MAM	2 20 2522	054C	11 11	3.60	بي	40% bld line
MAN	a wa	0735	11 6		0	Refuel Generator 85%
man	ii ii a	F135	IL IN	3,0	5.	O .
moun	2/21/2000	-0610	d V-	SD.		Generator Shot Down
				ω		Not Working Contago
		1				Technician.
man	7 21 202	1040	Garol	is were to	arvolerad	to land base ruling
				-OGA CN		
MAM	2 21 2022	11:80		1 10 - 71		
li	111	1250		0 3800	6	Photo
MAN-	2 21 2622	1500	r!	37.60	12	-Sangles Izere Decourd
1	1		-		1	6 Courses placed
						in representation
						trauther transport
						Director to the lab
1						
		1 6				End of Page 3
						See Page 4

ANAMAR Environmental Consulting, Inc.

2106 NW 67th PL, Suite 5

Gainesville, FL 32653

(352) 377-5770

MAM = Michael Madonia

Includes CDP piget sampling (2)

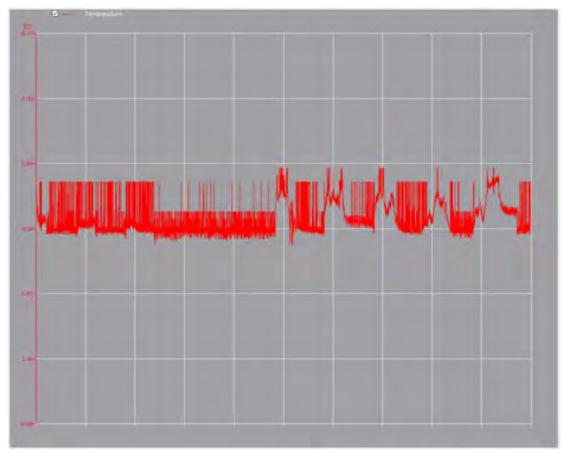
PROJECT: PCCA Deepening Section 103
Temperature Log Vehicle: L/B Dulange

Taken By	Date	Time	Location	Temperature	Acceptable Y/N	Comments
MANO	2 22 2020	1045	L/B Dulance	2.9°	lar	Started 1020 Running
man	with th	1400		3.10	52	, ,
MANN	nech	1900	ίχ	350	0	
man	2 23 2522	0015	11	3.2	0	
Mour	unu	1730	13	3,00	Q-	200000000000000000000000000000000000000
in por	2 23 202	1800	Mentions		Ses	Samples transfered.
MAUN	2 23 2002	-1900	Montenters		Se	photo-
MAN	2 24 200	10545	Montan En	15 3,5°C	2	'bhato-
	1 11			4		G.
mam	2 24 102	060	Dularge			Started Generates + Copyris
man	224 200	CAB	, (1 0	3.4	yes	
more	a a co	ILID	11	29	(2)	
MAIN	to to to	2045	٤١	35	R	
Moon	2 25 2022	6555	L.	3.1	0	
MAM	2 25 2022		Ll	3.3	2	~1/2 Tank
MANN		1935	11	3.1	6-	1.5
MANN	2 20000	0545	v	20	No.	
mon	2 21 2002	1155	u	33	a	
mpar	2 26 7527	1520		2.1	7	
moun	2/24/1022	1910	U	3.0	72	
man	-	0570	61	3.6	TQ.	
more	2 27 250	1343	レト	3.5	(2)	

ANAMAR Environmental Consulting, Inc.

2106 NW 67th PL, Suite 5 Gainesville, FL 32653 (352) 377-5770

PROJECT: PCCA Deepening Section 103
re Log Vehicle: **Temperature Log**


Taken By	Date	Time	Location	Temperature	Acceptable Y/N	Comments
Muchael Male	227 2	2000	Bularge	2,900	Les	
Michael Midn	22822	060		2,400	4	1/2 Tambafeel.
MULD	2 10 22	1130	(1	3:10	Q	U
Thur	225 22	150D	Dularge	3.40	Q	- Belove Oploading Sough
	Total Control	-				O W
(min)	2/28/22		Martintres			Storted Refrigerator Mostin
Mills	2 28 22		Martin Energy		1	38.1°F-Below Cooding Son
author	2/21/22		Monten Energy	53.1	0	38.6 - Surples in Potrices
(IIII)	7 1 7022	- A1:	W 15 C	7 000		
CMMD			Martin Energy			37.96 56/0 tuol livel
min		0900	Mortin Frenz	3,20		37.96
Jung	317072	1150	Moster Georg	5 3.40	5	381° 52% keel Korga
Michael Malme	3 3 2522	132/	MortinEner	3.4°C	()	38.1F
(W)			Martin Enorgy		a l	RekelinGenerator
8	3 4 2022	1200	Mortin Charle	3.20		39.96 56% Jullange
(IP)) Have	17100	\$10000000	5.0		31.11
				1		
					-	
	1					

ANAMAR Environmental Consulting, Inc. 2106 NW 67th PL, Suite 5

Gainesville, FL 32653

(352) 377-5770

MM: Michael Madamer

Senonics Minnow1-T Logger Time Zone UTC + -5 hours

Configuration :

DeviceID SenonicsLoggerCB1
LoggingStart On Disconnection
LoggingStartTime 02.23 0:00:00

LoggingInterval 1 min
TemperatureAlarmThresholdHigh
TemperatureAlarmThresholdLow NA
Celcius/Fahrenheit Celcius

# Sample Ir		Time	#Plot	Tomporatura
Data No	Date	Time	Date/Time	Temperature
	2/23/2022	0:00:00	2/23/2022 0:00	
2	, -, -	0:01:00	2/23/2022 0:01	
	2/23/2022	0:02:00	2/23/2022 0:02	
	2/23/2022	0:03:00	2/23/2022 0:03	
	2/23/2022	0:04:00	2/23/2022 0:04	
	2/23/2022	0:05:00	2/23/2022 0:05	
7	, -, -	0:06:00	2/23/2022 0:06	
8	_,,	0:07:00	2/23/2022 0:07	
9		0:08:00	2/23/2022 0:08	
	2/23/2022	0:09:00	2/23/2022 0:09	
	2/23/2022	0:10:00	2/23/2022 0:10	
	2/23/2022	0:11:00	2/23/2022 0:11	
	2/23/2022	0:12:00	2/23/2022 0:12	
	2/23/2022	0:13:00	2/23/2022 0:13	
	2/23/2022	0:14:00	2/23/2022 0:14	
	2/23/2022	0:15:00	2/23/2022 0:15	
17	2/23/2022	0:16:00	2/23/2022 0:16	
18		0:17:00	2/23/2022 0:17	
19		0:18:00	2/23/2022 0:18	
	2/23/2022	0:19:00	2/23/2022 0:19	5.0199
21	2/23/2022	0:20:00	2/23/2022 0:20	5.0359
22	2/23/2022	0:21:00	2/23/2022 0:21	5.0466
23	2/23/2022	0:22:00	2/23/2022 0:22	5.0359
24	2/23/2022	0:23:00	2/23/2022 0:23	5.0039
25	2/23/2022	0:24:00	2/23/2022 0:24	5.0199
26	2/23/2022	0:25:00	2/23/2022 0:25	5.0359
27	2/23/2022	0:26:00	2/23/2022 0:26	5.0039
28	2/23/2022	0:27:00	2/23/2022 0:27	5.0199
29	2/23/2022	0:28:00	2/23/2022 0:28	5.0359
30	2/23/2022	0:29:00	2/23/2022 0:29	5.0039
21	2/23/2022	0:30:00	2/23/2022 0:30	4.9932

3	2 2/23/2022	0:31:00	2/23/2022 0:31	4.9612
3	3 2/23/2022	0:32:00	2/23/2022 0:32	4.8917
3	4 2/23/2022	0:33:00	2/23/2022 0:33	4.865
3	5 2/23/2022	0:34:00	2/23/2022 0:34	4.853
3	6 2/23/2022	0:35:00	2/23/2022 0:35	4.7529
3	7 2/23/2022	0:36:00	2/23/2022 0:36	4.7529
3	8 2/23/2022	0:37:00	2/23/2022 0:37	4.7102
3	9 2/23/2022	0:38:00	2/23/2022 0:38	4.7102
4	0 2/23/2022	0:39:00	2/23/2022 0:39	4.6941
4	1 2/23/2022	0:40:00	2/23/2022 0:40	4.7102
4	2 2/23/2022	0:41:00	2/23/2022 0:41	4.7262
4	3 2/23/2022	0:42:00	2/23/2022 0:42	4.7529
4	4 2/23/2022	0:43:00	2/23/2022 0:43	4.7636
4	5 2/23/2022	0:44:00	2/23/2022 0:44	4.7796
4	6 2/23/2022	0:45:00	2/23/2022 0:45	4.7796
4	7 2/23/2022	0:46:00	2/23/2022 0:46	4.7956
4	8 2/23/2022	0:47:00	2/23/2022 0:47	4.7956
4	9 2/23/2022	0:48:00	2/23/2022 0:48	4.853
5	0 2/23/2022	0:49:00	2/23/2022 0:49	4.7796
5	1 2/23/2022	0:50:00	2/23/2022 0:50	4.8063
5	2 2/23/2022	0:51:00	2/23/2022 0:51	4.7636
5	3 2/23/2022	0:52:00	2/23/2022 0:52	4.7369
5	4 2/23/2022	0:53:00	2/23/2022 0:53	4.7102
5	5 2/23/2022	0:54:00	2/23/2022 0:54	4.6674
5	6 2/23/2022	0:55:00	2/23/2022 0:55	4.677
5	7 2/23/2022	0:56:00	2/23/2022 0:56	4.566
5	8 2/23/2022	0:57:00	2/23/2022 0:57	4.5499
5	9 2/23/2022	0:58:00	2/23/2022 0:58	4.5393
6		0:59:00	2/23/2022 0:59	4.582
6		1:00:00	2/23/2022 1:00	4.582
6	2 2/23/2022	1:01:00	2/23/2022 1:01	4.582
6	3 2/23/2022	1:02:00	2/23/2022 1:02	4.6087
6	• •	1:03:00	2/23/2022 1:03	4.677
6	5 2/23/2022	1:04:00	2/23/2022 1:04	4.6781

66	2/23/2022	1:05:00	2/23/2022 1:05	4.6514
67	2/23/2022	1:06:00	2/23/2022 1:06	4.6941
68	2/23/2022	1:07:00	2/23/2022 1:07	4.6941
69	2/23/2022	1:08:00	2/23/2022 1:08	4.7262
70	2/23/2022	1:09:00	2/23/2022 1:09	4.7369
71	2/23/2022	1:10:00	2/23/2022 1:10	4.7796
72	2/23/2022	1:11:00	2/23/2022 1:11	4.7529
73	2/23/2022	1:12:00	2/23/2022 1:12	4.7369
74	2/23/2022	1:13:00	2/23/2022 1:13	4.6941
75	2/23/2022	1:14:00	2/23/2022 1:14	4.6781
76	2/23/2022	1:15:00	2/23/2022 1:15	4.6674
77	2/23/2022	1:16:00	2/23/2022 1:16	4.677
78	2/23/2022	1:17:00	2/23/2022 1:17	4.5927
79	2/23/2022	1:18:00	2/23/2022 1:18	4.5499
80	2/23/2022	1:19:00	2/23/2022 1:19	4.5393
81	2/23/2022	1:20:00	2/23/2022 1:20	4.5499
82	2/23/2022	1:21:00	2/23/2022 1:21	4.566
83	2/23/2022	1:22:00	2/23/2022 1:22	4.566
84	2/23/2022	1:23:00	2/23/2022 1:23	4.566
85	2/23/2022	1:24:00	2/23/2022 1:24	4.582
86	2/23/2022	1:25:00	2/23/2022 1:25	4.6087
87	2/23/2022	1:26:00	2/23/2022 1:26	4.6087
88	2/23/2022	1:27:00	2/23/2022 1:27	4.6354
89	2/23/2022	1:28:00	2/23/2022 1:28	4.6514
90	2/23/2022	1:29:00	2/23/2022 1:29	4.6514
91	2/23/2022	1:30:00	2/23/2022 1:30	4.6674
92	2/23/2022	1:31:00	2/23/2022 1:31	4.6514
93	2/23/2022	1:32:00	2/23/2022 1:32	4.6674
94	2/23/2022	1:33:00	2/23/2022 1:33	4.6514
95	2/23/2022	1:34:00	2/23/2022 1:34	4.6087
96	2/23/2022	1:35:00	2/23/2022 1:35	4.566
97	2/23/2022	1:36:00	2/23/2022 1:36	4.562
98	2/23/2022	1:37:00	2/23/2022 1:37	4.5126
99	2/23/2022	1:38:00	2/23/2022 1:38	4.4805

APPENDIX C PHYSICAL LAB REPORT

March 6, 2023

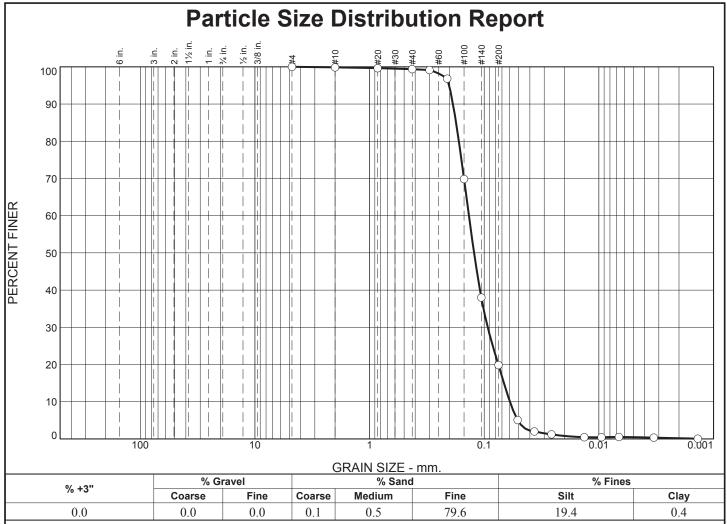
Ms. Monica Martin

Re: North Water District Laboratory Services, Inc. (NWDLS)

NWDLS Geosciences Lab Testing – Task Order #13

Project #23A1459

The Taylor Engineering Coastal & Marine Geosciences Laboratory is pleased to submit the following sediment data for NWDLS project #23A1459. Taylor Engineering received 33 samples for analysis in Jacksonville, Florida on February 1st, 2023. Laboratory testing for project #23A1459 included sieve and hydrometer analysis according to ASTM D-422. Attached to this letter are the individual test results for each sample.


If any additional information is needed or if you have any questions, please contact me at (904) 731-7040 or nlamb@taylorengineering.com.

Sincerely,

Natalie Lamb, G.I.T.

Staff Geologist

Coastal & Marine Geosciences Lab Assistant Manager

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#20	99.6		
#40	99.4		
#50	99.1		
#70	96.8		
#100	69.8		
#140	38.0		
#200	19.8		
0.0511 mm.	5.1		
0.0365 mm.	2.0		
0.0259 mm.	1.2		
0.0134 mm.	0.4		
0.0095 mm.	0.4		
0.0067 mm.	0.5		
0.0033 mm.	0.3		
0.0014 mm.	0.1		

Sand, silty, most	Soil Description ly fine-grained sand-s	ized quartz, little silt, gray
PL=	Atterberg Limits	PI=
D ₉₀ = 0.1872 D ₅₀ = 0.1225 D ₁₀ = 0.0597	Coefficients D85= 0.1759 D30= 0.0932 Cu= 2.28	D ₆₀ = 0.1360 D ₁₅ = 0.0673 C _c = 1.07
USCS= SM	Classification AASHT	¯O=
	<u>Remarks</u>	

Source of Sample: 23A1459 Sample Number: 16

DMMU-1-1A

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

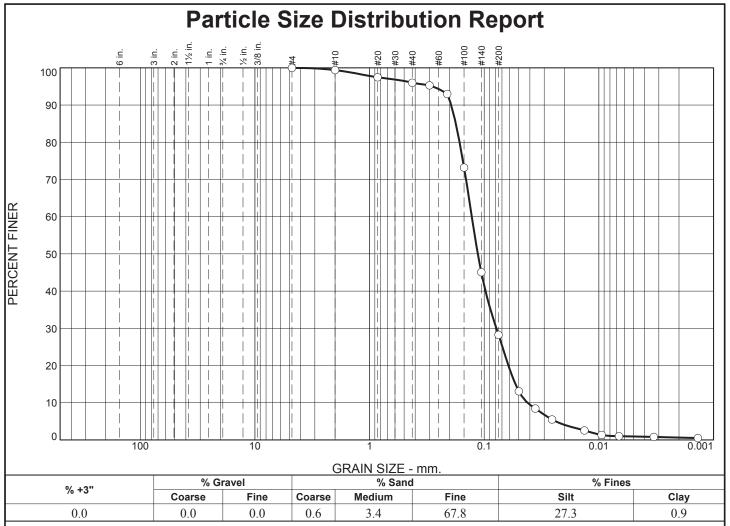
Project: 23A1459

Project No: C2022-020 Figure

	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.5		
#20	98.9		
#40	98.6		
#50	98.2		
#70	95.6		
#100	71.9		
#140	31.3		
#200	17.6		
0.0513 mm.	4.7		
0.0366 mm.	2.0		
0.0259 mm.	1.6		
0.0134 mm.	1.2		
0.0095 mm.	0.8		
0.0067 mm.	0.5		
0.0033 mm.	0.3		
0.0014 mm.	0.1		

Sand, silty, most	Soil Description ly fine-grained sand-siz	red quartz, little silt, tan
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 0.1856 D ₅₀ = 0.1258 D ₁₀ = 0.0606	Coefficients D ₈₅ = 0.1725 D ₃₀ = 0.1043 C _u = 2.25	D ₆₀ = 0.1360 D ₁₅ = 0.0692 C _c = 1.32
USCS= SM	Classification AASHTO)=
	<u>Remarks</u>	

Source of Sample: 23A1459 **Sample Number:** 17


DMMU-1-1B

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

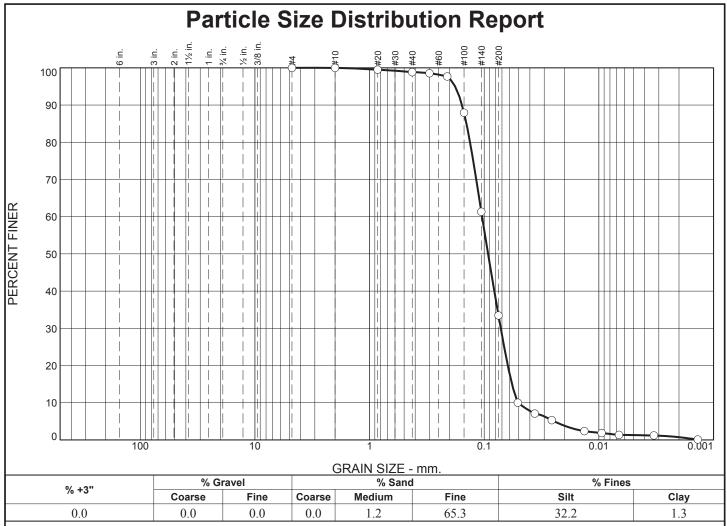
Project: 23A1459

Project No: C2022-020 **Figure**

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.4		
#20	97.5		
#40	96.0		
#50	95.3		
#70	93.0		
#100	73.2		
#140	45.1		
#200	28.2		
0.0499 mm.	13.1		
0.0359 mm.	8.4		
0.0256 mm.	5.5		
0.0134 mm.	2.5		
0.0095 mm.	1.3		
0.0067 mm.	1.0		
0.0033 mm.	0.8		
0.0014 mm.	0.5		
* (no specif	fication provided	1)	

Sand, silty, most	Soil Description ly fine-grained sand-s	ized quartz, little silt, gray
PL=	Atterberg Limits	PI=
D ₉₀ = 0.1941 D ₅₀ = 0.1135 D ₁₀ = 0.0420	Coefficients D85= 0.1768 D30= 0.0783 Cu= 3.05	D ₆₀ = 0.1283 D ₁₅ = 0.0535 C _c = 1.14
USCS= SM	Classification AASHT	-O=
	<u>Remarks</u>	

Source of Sample: 23A1459 **Sample Number:** 18


DMMU-1-1C

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

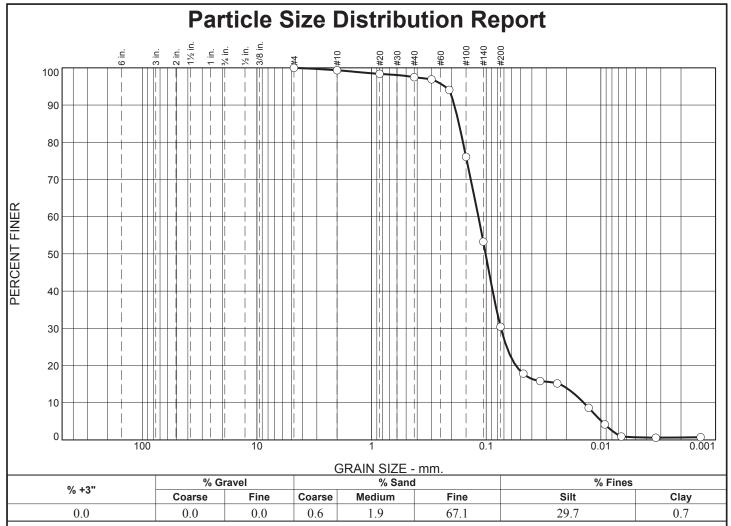
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.5		
#40	98.8		
#50	98.5		
#70	97.7		
#100	88.0		
#140	61.3		
#200	33.5		
0.0509 mm.	10.0		
0.0363 mm.	7.1		
0.0258 mm.	5.3		
0.0134 mm.	2.4		
0.0095 mm.	1.9		
0.0067 mm.	1.3		
0.0033 mm.	1.2		
0.0014 mm.	0.1		
*	fication provided		

Sand, silty, mostl trace clay, tan	Soil Description y fine-grained sand-siz	red quartz, some silt,			
PL=	Atterberg Limits LL=	PI=			
D ₉₀ = 0.1561 D ₅₀ = 0.0925 D ₁₀ = 0.0509	Coefficients D ₈₅ = 0.1428 D ₃₀ = 0.0717 C _u = 2.05	D ₆₀ = 0.1043 D ₁₅ = 0.0572 C _c = 0.97			
USCS= SM	Classification AASHTO)=			
	<u>Remarks</u>				

Source of Sample: 23A1459 **Sample Number:** 20


DMMU-2-1A

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

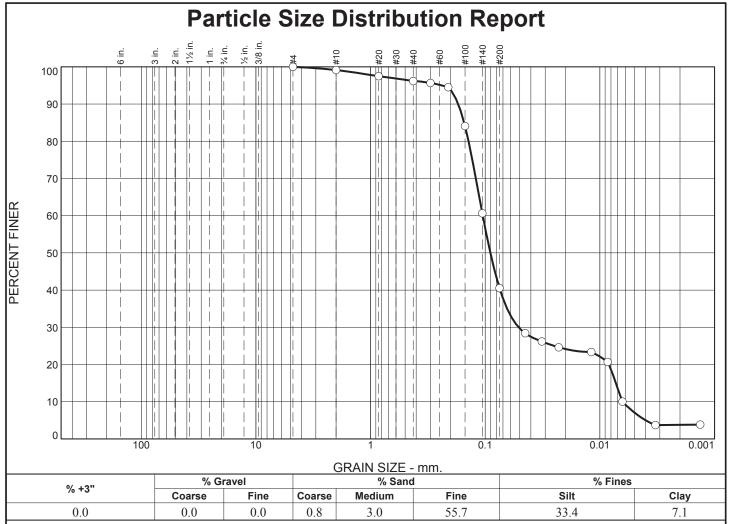
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.4		
#20	98.4		
#40	97.5		
#50	96.9		
#70	94.1		
#100	76.1		
#140	53.3		
#200	30.4		
0.0475 mm.	17.8		
0.0339 mm.	15.8		
0.0240 mm.	15.2		
0.0128 mm.	8.6		
0.0093 mm.	4.2		
0.0066 mm.	0.9		
0.0033 mm.	0.6		
0.0014 mm.	0.7		
*	fication provided		

Sand, silty, mostl gray	Soil Description ly fine-grained sand-si	zed quartz, some silt,
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 0.1897 D ₅₀ = 0.1012 D ₁₀ = 0.0141	Coefficients D ₈₅ = 0.1730 D ₃₀ = 0.0744 C _u = 8.28	$D_{60} = 0.1170$ $D_{15} = 0.0232$ $C_{c} = 3.35$
USCS= SM	Classification AASHT	O=
	Remarks	

Source of Sample: 23A1459 **Sample Number:** 21


DMMU-2-1B

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

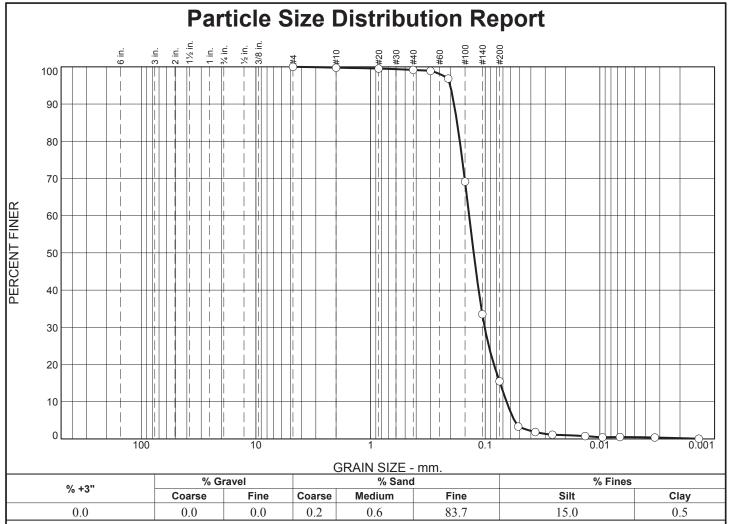
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.2		
#20	97.5		
#40	96.2		
#50	95.7		
#70	94.5		
#100	84.1		
#140	60.6		
#200	40.5		
0.0448 mm.	28.4		
0.0321 mm.	26.2		
0.0229 mm.	24.6		
0.0119 mm.	23.3		
0.0085 mm.	20.7		
0.0064 mm.	10.0		
0.0033 mm.	3.7		
0.0013 mm.	3.8		
* (no specif	fication provided	(l)	

	Soil Description	
Sand, silty, most clay, gray	tly fine-grained sand-size	ed quartz, some silt, few
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 0.1720 D ₅₀ = 0.0900 D ₁₀ = 0.0064	$\begin{array}{c} \textbf{Coefficients} \\ \textbf{D_{85}= 0.1527} \\ \textbf{D_{30}= 0.0511} \\ \textbf{C_{u}= 16.51} \end{array}$	D ₆₀ = 0.1050 D ₁₅ = 0.0073 C _c = 3.91
USCS= SM	Classification AASHTC)=
	Remarks	

Source of Sample: 23A1459 **Sample Number:** 22


DMMU-2-1C

Client: North Water District Laboratory Services

Taylor Engineering, Inc.

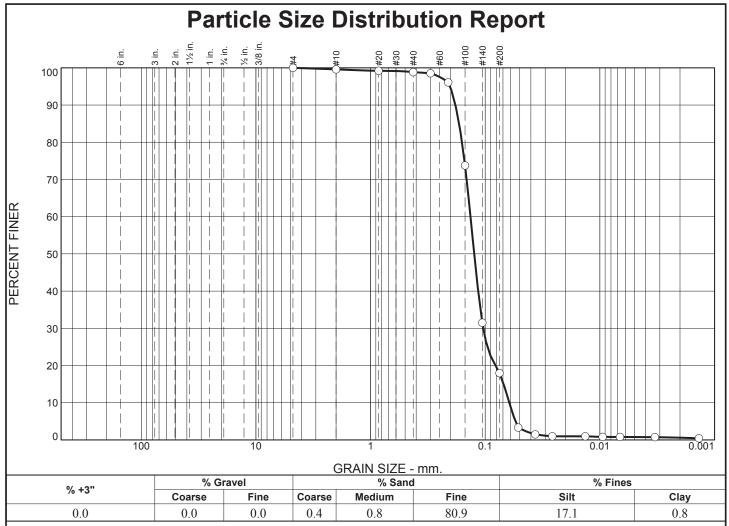
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.8		
#20	99.5		
#40	99.2		
#50	98.9		
#70	96.8		
#100	69.1		
#140	33.5		
#200	15.5		
0.0515 mm.	3.3		
0.0366 mm.	1.8		
0.0260 mm.	1.1		
0.0134 mm.	0.7		
0.0095 mm.	0.4		
0.0067 mm.	0.5		
0.0033 mm.	0.4		
0.0014 mm.	0.1		
* (no specif	fication provided	i)	

Sand	, silty	, mostly	Soil Descr y fine-grained	•	quartz, little silt, gray
PL=			Atterberg	<u>Limits</u>	PI=
D ₉₀ D ₅₀ D ₁₀	= 0.11 = 0.11 = 0.0	869 260 651	Defficience Day	758	D ₆₀ = 0.1381 D ₁₅ = 0.0741 C _c = 1.14
USC	S=	SM	Classifica /	ation AASHTO=	
			Remar	<u>ks</u>	

Source of Sample: 23A1459 **Sample Number:** 24


DMMU-3-2A

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

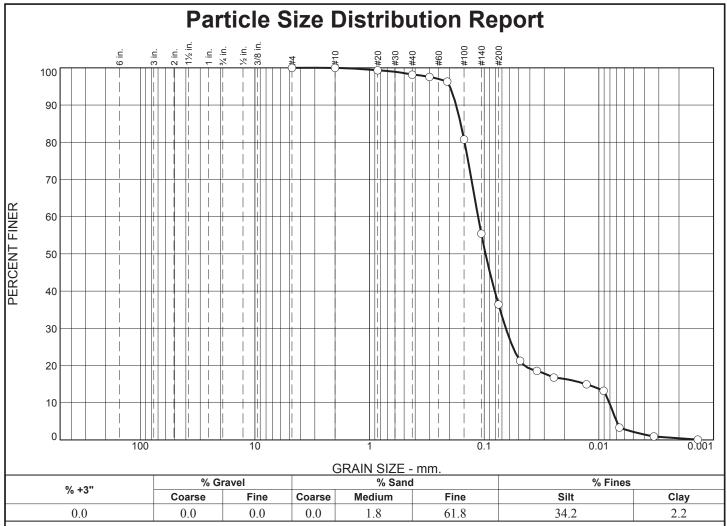
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.6		
#20	99.2		
#40	98.8		
#50	98.6		
#70	96.1		
#100	73.8		
#140	31.5		
#200	17.9		
0.0515 mm.	3.3		
0.0367 mm.	1.5		
0.0260 mm.	1.0		
0.0134 mm.	1.0		
0.0095 mm.	0.8		
0.0067 mm.	0.8		
0.0033 mm.	0.7		
0.0014 mm.	0.4		
*	fication provided		

Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray			
PL=	Atterber LL=	g <u>Limits</u> Pl=	
D ₉₀ = 0 D ₅₀ = 0 D ₁₀ = 0.0	Coefficients Coeffi	0.1689 D ₆₀ =	0.1344 0.0691 .31
USCS=	SM Classif	<u>ication</u> AASHTO=	
	Rem	<u>arks</u>	

Source of Sample: 23A1459 **Sample Number:** 25


DMMU-3-2B

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

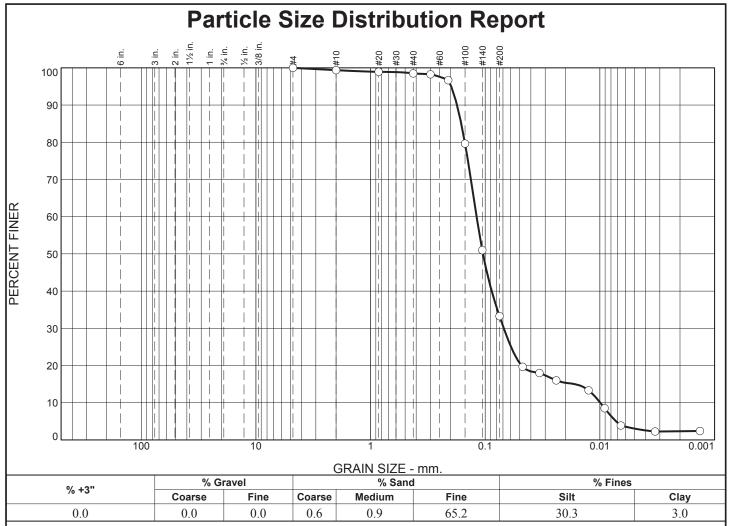
Project: 23A1459

Project No: C2022-020 **Figure**

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.4		
#40	98.2		
#50	97.6		
#70	96.3		
#100	80.8		
#140	55.4		
#200	36.4		
0.0486 mm.	21.3		
0.0347 mm.	18.6		
0.0247 mm.	16.7		
0.0128 mm.	14.9		
0.0091 mm.	13.2		
0.0066 mm.	3.3		
0.0033 mm.	0.9		
0.0014 mm.	0.1		
* (no specif	ication provided	1)	

	Soil Description				
Sand, silty, mostl trace clay, tan	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan				
PL=	Atterberg Limits LL=	PI=			
D ₉₀ = 0.1759 D ₅₀ = 0.0974 D ₁₀ = 0.0081	Coefficients D ₈₅ = 0.1604 D ₃₀ = 0.0647 C _u = 13.94	D ₆₀ = 0.1131 D ₁₅ = 0.0130 C _c = 4.57			
USCS= SM	Classification AASHT	O=			
	<u>Remarks</u>				

Source of Sample: 23A1459 **Sample Number:** 27


DMMU-4-2A

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

Project: 23A1459

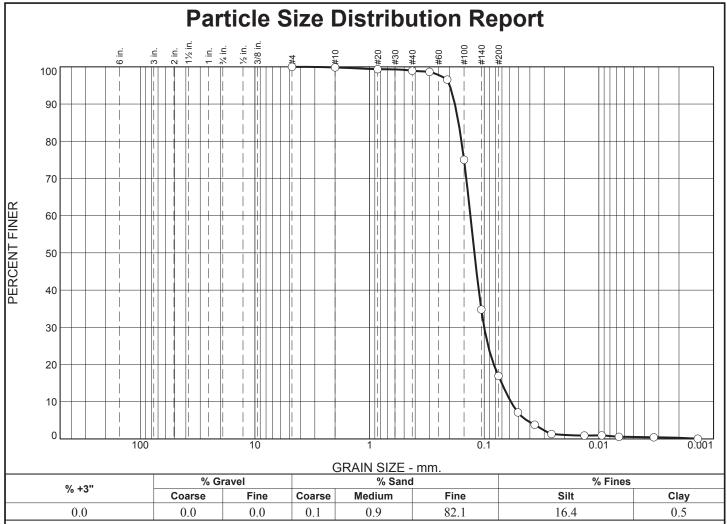
Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.4		
#20	98.9		
#40	98.5		
#50	98.3		
#70	96.7		
#100	79.7		
#140	51.0		
#200	33.3		
0.0472 mm.	19.6		
0.0336 mm.	18.0		
0.0240 mm.	16.0		
0.0125 mm.	13.3		
0.0091 mm.	8.5		
0.0066 mm.	3.9		
0.0033 mm.	2.2		
0.0013 mm.	2.4		

	Soil Description				
Sand, silty, mostl trace clay, gray	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, gray				
PL=	Atterberg Limits LL=	PI=			
D ₉₀ = 0.1762 D ₅₀ = 0.1045 D ₁₀ = 0.0099	Coefficients D ₈₅ = 0.1618 D ₃₀ = 0.0689 C _u = 11.96	D ₆₀ = 0.1188 D ₁₅ = 0.0167 C _c = 4.02			
USCS= SM	Classification AASHTO)=			
	<u>Remarks</u>				

* (no specification provided)

Source of Sample: 23A1459 **Sample Number:** 28


DMMU-4-2B

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

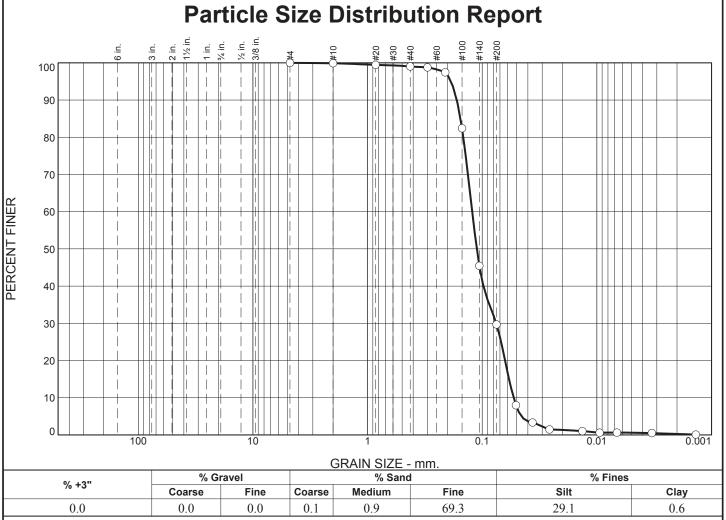
Project: 23A1459

Project No: C2022-020 Figure

	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#20	99.4		
#40	99.0		
#50	98.7		
#70	96.6		
#100	75.0		
#140	34.8		
#200	16.9		
0.0508 mm.	7.1		
0.0363 mm.	3.8		
0.0259 mm.	1.3		
0.0134 mm.	0.9		
0.0094 mm.	0.9		
0.0067 mm.	0.6		
0.0033 mm.	0.4		
0.0014 mm.	0.1		

Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray			
PL=	Atterberg Limits	<u>5</u> PI=	
D ₉₀ = 0.180 D ₅₀ = 0.121 D ₁₀ = 0.058	Coefficients D85= 0.1675 D30= 0.1000 Cu= 2.25	D ₆₀ = 0.1319 D ₁₅ = 0.0704 C _c = 1.29	
USCS= S	Classification M AASH	ТО=	
	Remarks		

Source of Sample: 23A1459 **Sample Number:** 30


DMMU-5-3A

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

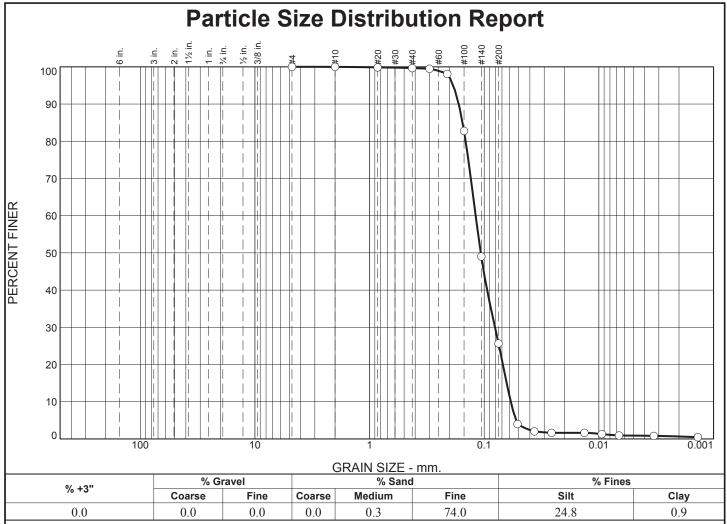
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#20	99.5		
#40	99.0		
#50	98.8		
#70	97.5		
#100	82.4		
#140	45.5		
#200	29.7		
0.0508 mm.	8.0		
0.0364 mm.	3.3		
0.0259 mm.	1.5		
0.0134 mm.	1.0		
0.0095 mm.	0.6		
0.0067 mm.	0.6		
0.0033 mm.	0.5		
0.0014 mm.	0.1		
* (no specif	ication provided	1)	

Soil Description Sand, silty, mostly fine-grained sand-sized quartz, some silt, gray				
PL=	Atterberg Limits	PI=		
D ₉₀ = 0.1666 D ₅₀ = 0.1115 D ₁₀ = 0.0532	Coefficients D ₈₅ = 0.1547 D ₃₀ = 0.0755 C _u = 2.30	D ₆₀ = 0.1223 D ₁₅ = 0.0583 C _c = 0.88		
USCS= SM	Classification AASHT	O=		
	<u>Remarks</u>			

Source of Sample: 23A1459 **Sample Number:** 31


DMMU-5-3B

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

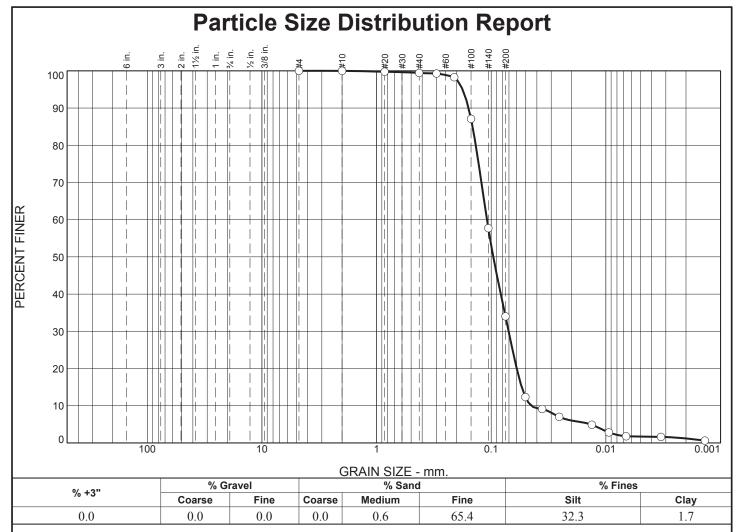
Project: 23A1459

Figure Project No: C2022-020

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.7		
#50	99.5		
#70	98.1		
#100	82.8		
#140	49.0		
#200	25.7		
0.0513 mm.	4.0		
0.0365 mm.	2.0		
0.0259 mm.	1.6		
0.0134 mm.	1.6		
0.0094 mm.	1.3		
0.0067 mm.	0.9		
0.0033 mm.	0.8		
0.0014 mm.	0.5		
* (no specif	fication provided	D)	1

Sand,	Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray			
PL=		Atterberg Limit	<u>s</u> PI=	
D ₉₀ = D ₅₀ = D ₁₀ =	0.1669 0.1072 0.0587	Coefficients D85= 0.1544 D30= 0.0805 Cu= 2.02	D ₆₀ = 0.1188 D ₁₅ = 0.0638 C _c = 0.93	
USC	S= SM	Classification AASH	TO=	
		<u>Remarks</u>		

Source of Sample: 23A1459 **Sample Number:** 32


DMMU-5-3C

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

Project: 23A1459

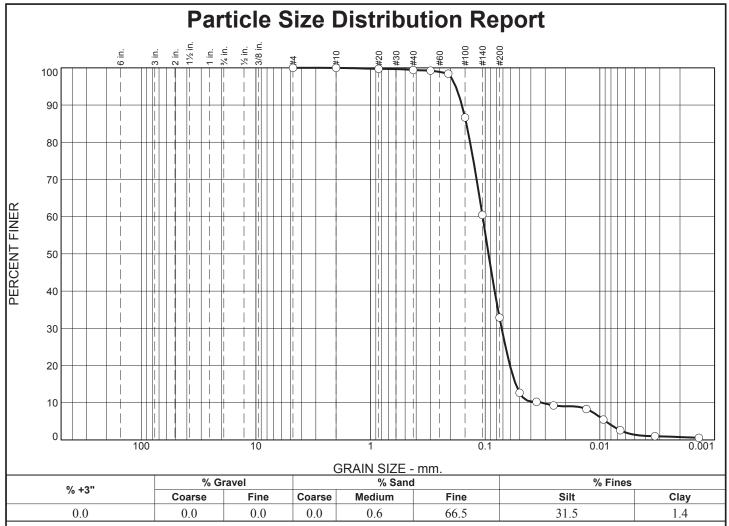
Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.8		
#40	99.4		
#50	99.3		
#70	98.3		
#100	87.1		
#140	57.7		
#200	34.0		
0.0504 mm.	12.3		
0.0359 mm.	9.1		
0.0255 mm.	7.0		
0.0133 mm.	4.9		
0.0094 mm.	2.8		
0.0067 mm.	1.8		
0.0033 mm.	1.6		
0.0014 mm.	0.6		
*	Castian musaidad		l

	Soil Description				
Sand, silty, mostly trace clay, gray	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, gray				
PL=	Atterberg Limits LL=	PI=			
D ₉₀ = 0.1575 D ₅₀ = 0.0959 D ₁₀ = 0.0448	Coefficients D85= 0.1454 D30= 0.0705 Cu= 2.43	D ₆₀ = 0.1089 D ₁₅ = 0.0542 C _c = 1.02			
USCS= SM	Classification AASHT	O=			
	<u>Remarks</u>				

(no specification provided)

Source of Sample: 23A1459 **Sample Number:** 34


DMMU-6-3A

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

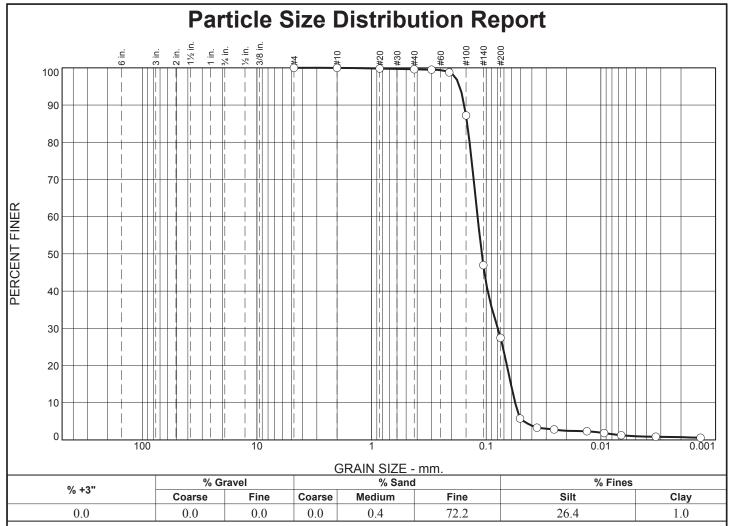
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.7		
#40	99.4		
#50	99.2		
#70	98.4		
#100	86.6		
#140	60.5		
#200	32.9		
0.0502 mm.	12.7		
0.0357 mm.	10.2		
0.0253 mm.	9.3		
0.0131 mm.	8.3		
0.0093 mm.	5.5		
0.0066 mm.	2.6		
0.0033 mm.	1.0		
0.0014 mm.	0.6		

Sand, silty, most trace clay, gray	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, gray			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1597 D ₅₀ = 0.0935 D ₁₀ = 0.0319	Coefficients D85= 0.1459 D30= 0.0720 Cu= 3.30	D ₆₀ = 0.1054 D ₁₅ = 0.0543 C _c = 1.54		
USCS= SM	Classification AASHT	O=		
	Remarks			

Source of Sample: 23A1459 **Sample Number:** 35


DMMU-6-3B

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

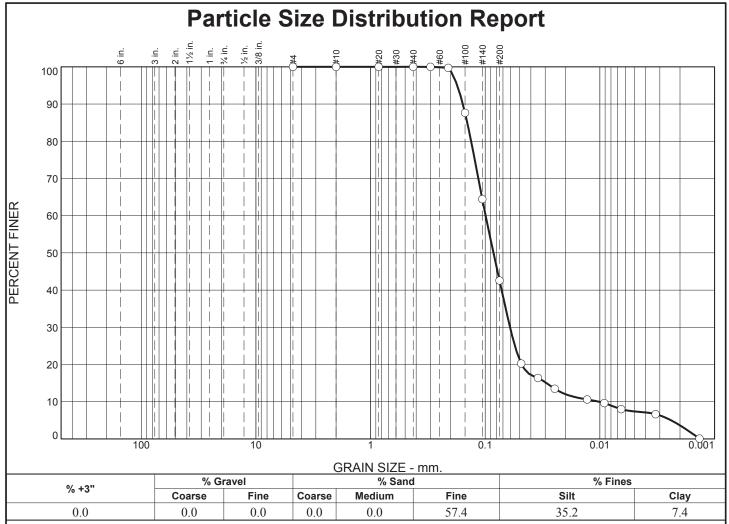
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.8		
#40	99.6		
#50	99.5		
#70	98.8		
#100	87.2		
#140	47.0		
#200	27.4		
0.0507 mm.	5.7		
0.0361 mm.	3.3		
0.0256 mm.	2.8		
0.0132 mm.	2.3		
0.0094 mm.	1.8		
0.0066 mm.	1.2		
0.0033 mm.	0.9		
0.0014 mm.	0.6		
*	fication provided		

	Soil Description				
Sand, silty, mostl trace clay, gray	Sand, silty, mostly fine-grained sand-sized quartz, little silt, trace clay, gray				
PL=	Atterberg Limits LL=	PI=			
D ₉₀ = 0.1554 D ₅₀ = 0.1093 D ₁₀ = 0.0559	Description Descri	D ₆₀ = 0.1190 D ₁₅ = 0.0610 C _c = 0.94			
USCS= SM	Classification AASHTC)=			
	<u>Remarks</u>				

Source of Sample: 23A1459 Sample Number: 36


DMMU-6-3C

Client: North Water District Laboratory Services

Project: 23A1459

Taylor Engineering, Inc.

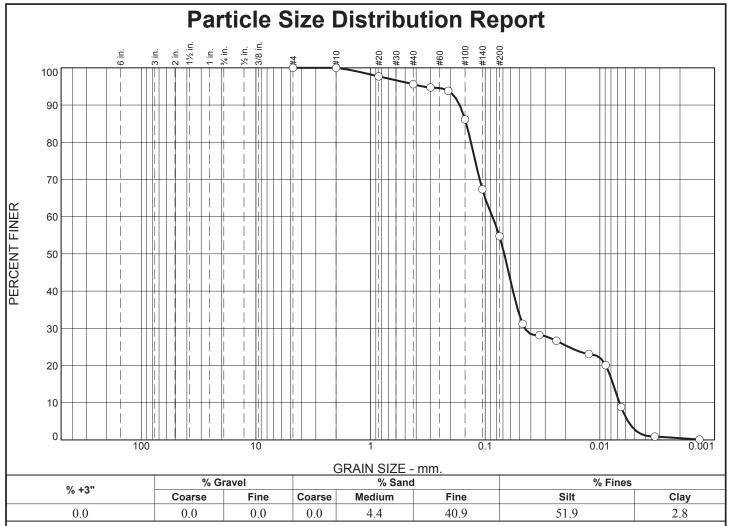
Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#50	100.0		
#70	99.7		
#100	87.6		
#140	64.4		
#200	42.6		
0.0485 mm.	20.3		
0.0347 mm.	16.4		
0.0248 mm.	13.5		
0.0129 mm.	10.6		
0.0091 mm.	9.6		
0.0065 mm.	8.0		
0.0033 mm.	6.6		
0.0014 mm.	0.1		

Sand, silty, mostl clay, brown	Soil Description by fine-grained sand-size	ed quartz, some silt, few
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 0.1567 D ₅₀ = 0.0846 D ₁₀ = 0.0102	Coefficients D ₈₅ = 0.1434 D ₃₀ = 0.0608 C _u = 9.74	D ₆₀ = 0.0992 D ₁₅ = 0.0292 C _c = 3.66
USCS= SM	Classification AASHTC)=
	<u>Remarks</u>	

* (no specification provided)

Source of Sample: 23A1459 **Sample Number:** 38


DMMU-7-4A

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

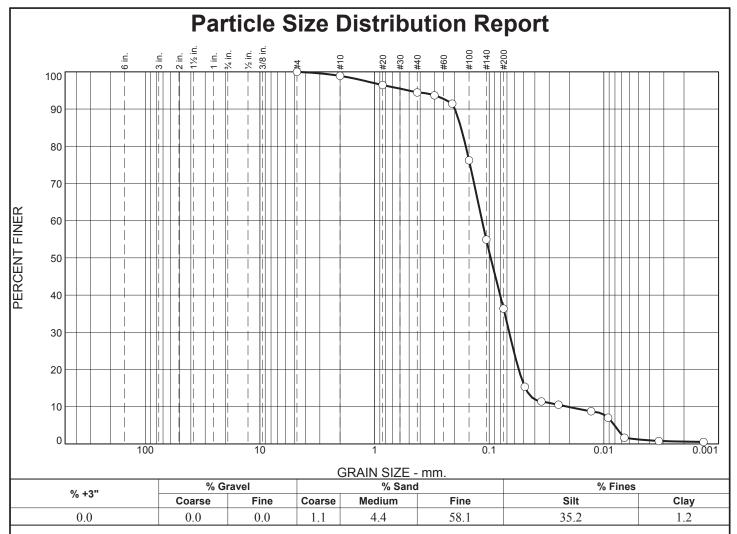
Project: 23A1459

Project No: C2022-020 Figure

100.0 100.0 97.7 95.6	PERCENT	(X=NO)
100.0 97.7		
97.7		
95.6		
94.7		
93.8		
86.1		
67.4		
54.7		
31.2		
28.1		
26.6		
23.1		
20.1		
8.8		
0.9		
0.1		
	86.1 67.4 54.7 31.2 28.1 26.6 23.1 20.1 8.8 0.9 0.1	86.1 67.4 54.7 31.2 28.1 26.6 23.1 20.1 8.8 0.9

Silt, some fine-gr	Soil Description Silt, some fine-grained sand-sized quartz, trace clay, gray			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1670 D ₅₀ = 0.0682 D ₁₀ = 0.0067	Coefficients D ₈₅ = 0.1463 D ₃₀ = 0.0451 C _u = 12.82	D ₆₀ = 0.0865 D ₁₅ = 0.0077 C _c = 3.48		
USCS= ML	Classification AASHT	O=		
	Remarks			

Source of Sample: 23A1459 **Sample Number:** 39


DMMU-7-4B

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

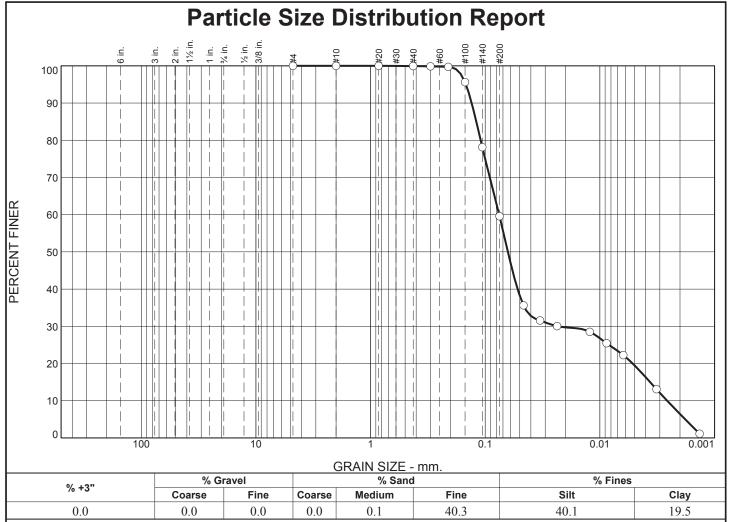
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	98.9		
#20	96.5		
#40	94.5		
#50	93.7		
#70	91.5		
#100	76.2		
#140	54.9		
#200	36.4		
0.0490 mm.	15.3		
0.0351 mm.	11.4		
0.0249 mm.	10.5		
0.0129 mm.	8.8		
0.0092 mm.	7.0		
0.0066 mm.	1.6		
0.0033 mm.	0.8		
0.0014 mm.	0.5		
* (no specifi	cation provided	1)	

	Soil Description			
Sand, silty, mostl trace clay, tan	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1995 D ₅₀ = 0.0970 D ₁₀ = 0.0207	Coefficients D ₈₅ = 0.1763 D ₃₀ = 0.0670 C _u = 5.58	D ₆₀ = 0.1154 D ₁₅ = 0.0484 C _c = 1.88		
USCS= SM	Classification AASHTO)=		
	Remarks			

Source of Sample: 23A1459 **Sample Number:** 40


DMMU-7-4C

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

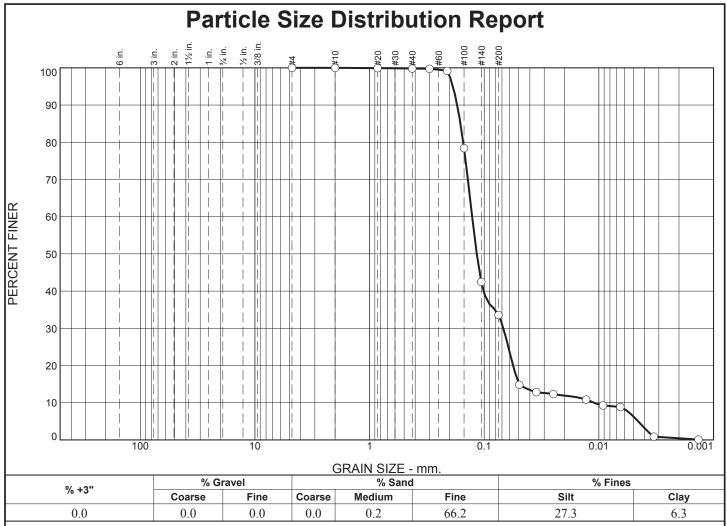
Project: 23A1459

Figure Project No: C2022-020

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	100.0		
#40	99.9		
#50	99.9		
#70	99.7		
#100	95.6		
#140	78.1		
#200	59.6		
0.0464 mm.	35.6		
0.0332 mm.	31.6		
0.0236 mm.	30.0		
0.0122 mm.	28.5		
0.0087 mm.	25.4		
0.0063 mm.	22.3		
0.0032 mm.	13.1		
0.0014 mm.	1.1		
* (no specif	fication provided	D)	1

Silt, some fine-grained sand-sized quartz, little clay, tan				
PL=	Atterberg Limits	PI=		
D ₉₀ = 0.1313 D ₅₀ = 0.0634 D ₁₀ = 0.0026	Coefficients D ₈₅ = 0.1196 D ₃₀ = 0.0234 C _u = 29.17	D ₆₀ = 0.0756 D ₁₅ = 0.0037 C _c = 2.79		
USCS= ML	Classification AASHT	O=		
<u>Remarks</u>				

Source of Sample: 23A1459 Sample Number: 41


DMMU-7-4D

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

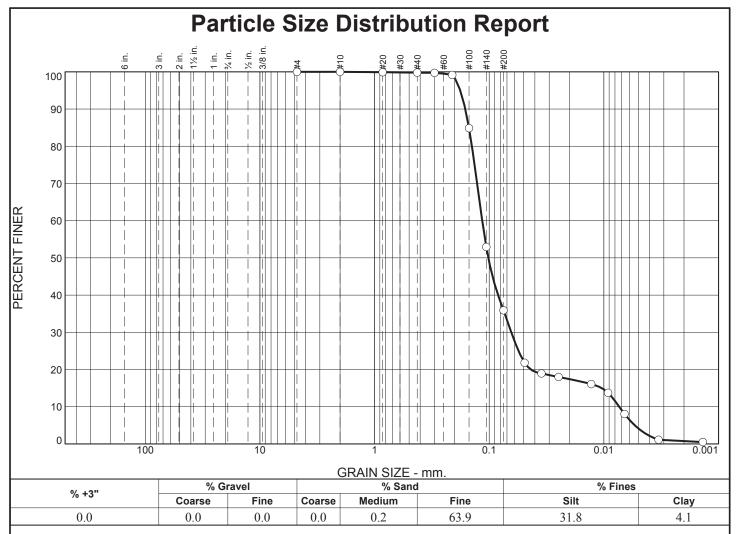
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.8		
#50	99.7		
#70	99.2		
#100	78.4		
#140	42.5		
#200	33.6		
0.0495 mm.	14.8		
0.0352 mm.	12.8		
0.0249 mm.	12.3		
0.0129 mm.	10.8		
0.0092 mm.	9.3		
0.0065 mm.	8.8		
0.0033 mm.	0.9		
0.0014 mm.	0.1		
* (no specif	ication provided	1)	

Sand, silty, mostly fine-grained sand-sized quartz, little silt, few clay, tan				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1720 D ₅₀ = 0.1161 D ₁₀ = 0.0110	Coefficients D ₈₅ = 0.1611 D ₃₀ = 0.0681 C _U = 11.56	D ₆₀ = 0.1274 D ₁₅ = 0.0498 C _c = 3.31		
USCS= SM	Classification AASHTO)=		
	Remarks			

Source of Sample: 23A1459 **Sample Number:** 43


DMMU-8-5A

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

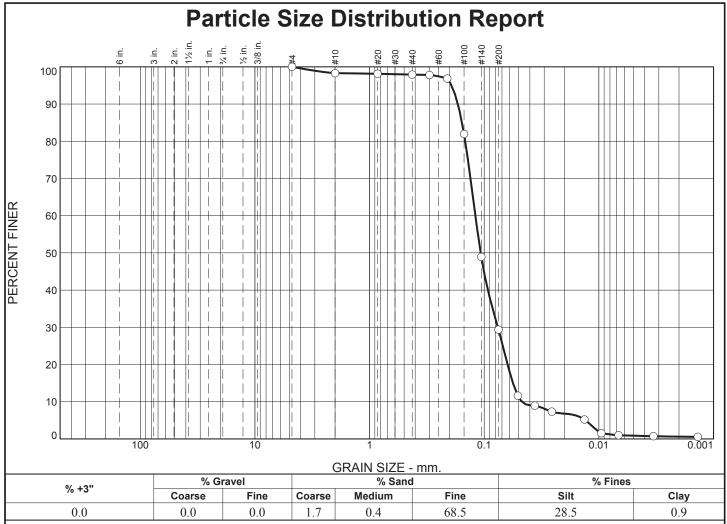
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.8		
#50	99.7		
#70	99.2		
#100	84.9		
#140	52.9		
#200	35.9		
0.0491 mm.	21.8		
0.0350 mm.	18.9		
0.0248 mm.	18.0		
0.0129 mm.	16.1		
0.0092 mm.	13.7		
0.0066 mm.	8.0		
0.0033 mm.	1.1		
0.0014 mm.	0.5		

Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1617 D ₅₀ = 0.1018 D ₁₀ = 0.0074	Coefficients D ₈₅ = 0.1503 D ₃₀ = 0.0642 C _U = 15.65	D ₆₀ = 0.1151 D ₁₅ = 0.0104 C _c = 4.87		
USCS= SM	Classification AASHTO)=		
	Remarks			

* (no specification provided)


Source of Sample: 23A1459 DMMU-8-5B Sample Number: 44

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

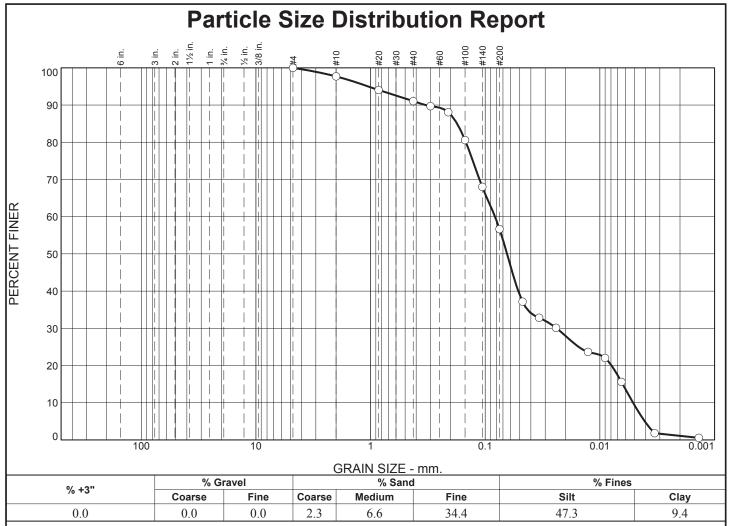
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	98.3		
#20	98.1		
#40	97.9		
#50	97.8		
#70	96.9		
#100	82.0		
#140	48.9		
#200	29.4		
0.0509 mm.	11.6		
0.0362 mm.	8.9		
0.0257 mm.	7.3		
0.0134 mm.	5.2		
0.0095 mm.	1.5		
0.0067 mm.	1.0		
0.0033 mm.	0.7		
0.0014 mm.	0.5		
*	fication provided		

Soil Description Sand, silty, mostly fine-grained sand-sized quartz, some silt, tan				
PL=	Atterberg Limits	PI=		
D ₉₀ = 0.1697 D ₅₀ = 0.1074 D ₁₀ = 0.0469	Coefficients D85= 0.1562 D30= 0.0760 Cu= 2.55	$D_{60} = 0.1194$ $D_{15} = 0.0562$ $C_{c} = 1.03$		
USCS= SM	Classification AASHT	-O=		
	Remarks			

Source of Sample: 23A1459 **Sample Number:** 45


DMMU-8-5C

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

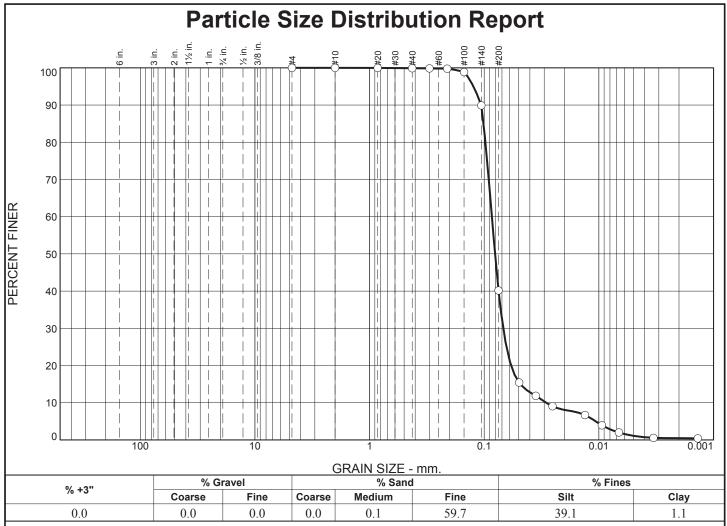
Project: 23A1459

Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	97.7		
#20	94.1		
#40	91.1		
#50	89.7		
#70	88.1		
#100	80.6		
#140	68.0		
#200	56.7		
0.0473 mm.	37.1		
0.0339 mm.	32.8		
0.0241 mm.	30.1		
0.0127 mm.	23.6		
0.0090 mm.	22.0		
0.0065 mm.	15.6		
0.0033 mm.	1.8		
0.0014 mm.	0.6		
* (no specifi	cation provided	1)	

Soil Description Silt, some fine to coarse-grained sand-sized quartz, few clay, tan				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.3307 D ₅₀ = 0.0645 D ₁₀ = 0.0051	Coefficients D ₈₅ = 0.1758 D ₃₀ = 0.0238 C _u = 16.01	D ₆₀ = 0.0822 D ₁₅ = 0.0063 C _c = 1.35		
USCS= ML	Classification AASHT0)=		
	Remarks			

Source of Sample: 23A1459 **Sample Number:** 46


DMMU-8-5D

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

Project: 23A1459

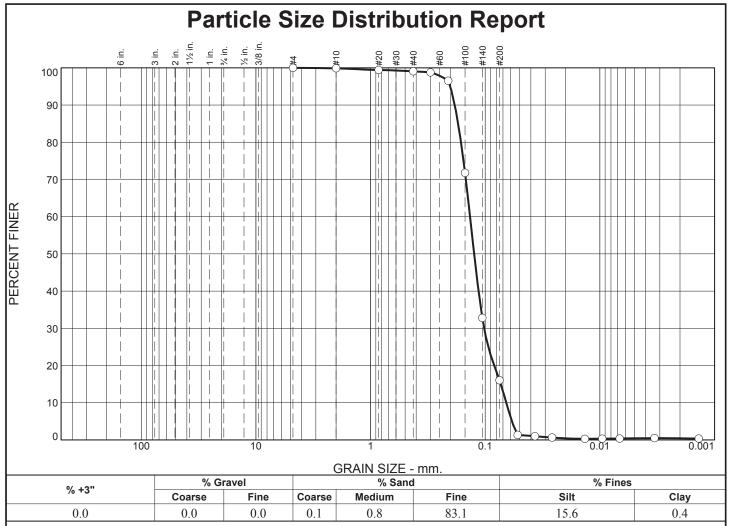
Project No: C2022-020 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	100.0		
#40	99.9		
#50	99.9		
#70	99.8		
#100	98.9		
#140	89.9		
#200	40.2		
0.0496 mm.	15.4		
0.0355 mm.	11.8		
0.0254 mm.	9.1		
0.0132 mm.	6.7		
0.0094 mm.	3.9		
0.0067 mm.	2.0		
0.0033 mm.	0.5		
0.0014 mm.	0.4		
* (no specif	fication provided	D .	<u> </u>

Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1063 D ₅₀ = 0.0804 D ₁₀ = 0.0288	Coefficients D ₈₅ = 0.1014 D ₃₀ = 0.0683 C _U = 2.98	D ₆₀ = 0.0857 D ₁₅ = 0.0484 C _c = 1.89		
USCS= SM	Classification AASHT)=		
	<u>Remarks</u>			

Date: 3/6/2023

Source of Sample: 23A1459 **Sample Number:** 47


Tested By: NEL

Reference

Client: North Water District Laboratory Services

Taylor Engineering, Inc. | Project: 23A1459

Project No: C2022-020 Figure

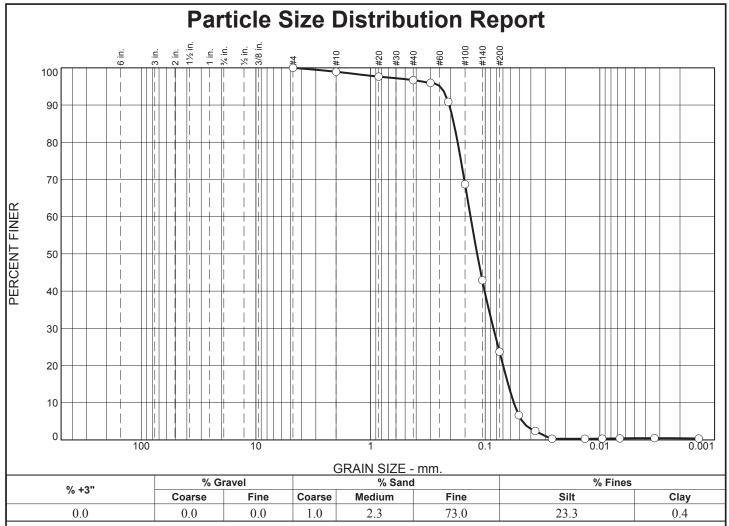
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#20	99.4		
#40	99.1		
#50	98.8		
#70	96.5		
#100	71.8		
#140	32.8		
#200	16.0		
0.0521 mm.	1.3		
0.0369 mm.	1.0		
0.0261 mm.	0.6		
0.0135 mm.	0.3		
0.0095 mm.	0.3		
0.0067 mm.	0.4		
0.0033 mm.	0.5		
0.0014 mm.	0.4		

Soil Description Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1843 D ₅₀ = 0.1249 D ₁₀ = 0.0655	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = \ 0.1722 \\ \text{D}_{30} = \ 0.1022 \\ \text{C}_{\text{U}} = \ 2.07 \end{array}$	D ₆₀ = 0.1356 D ₁₅ = 0.0731 C _c = 1.18		
USCS= SM	Classification AASHT	O=		
	Remarks			

Date: 3/6/2023

* (no specification provided)

Source of Sample: 23A1459 Sample Number: 48


HI-DUP

Taylor Engineering, Inc.

Client: North Water District Laboratory Services

Project: 23A1459

Project No: C2022-020 Figure

#4 #10	FINER	PERCENT	(V-NO)
	100.0		(X=NO)
#10	100.0		
	99.0		
#20	97.6		
#40	96.7		
#50	96.0		
#70	90.9		
#100	68.7		
#140	42.9		
#200	23.7		
0.0510 mm.	6.6		
0.0367 mm.	2.4		
0.0261 mm.	0.3		
0.0135 mm.	0.3		
0.0095 mm.	0.3		
0.0067 mm.	0.4		
0.0033 mm.	0.5		
0.0014 mm.	0.4		

Sand, silty, mostly fine-grained sand-sized quartz, little silt, tan				
PL=	Atterberg Limits	PI=		
D ₉₀ = 0.2058 D ₅₀ = 0.1175 D ₁₀ = 0.0564	Coefficients D85= 0.1875 D30= 0.0847 Cu= 2.38	D ₆₀ = 0.1342 D ₁₅ = 0.0632 C _c = 0.95		
USCS= SM	Classification AASHT	-O=		
	<u>Remarks</u>			

Date: 3/6/2023

Figure

ODMDS

Source of Sample: 23A1459 **Sample Number:** 66

Client: North Water District Laboratory Services

Project: 23A1459

Project No: C2022-020

Taylor Engineering, Inc.

SamplaID	CampleName	ClientMatrix
•	SampleName HI-EQ BLANK	18 MOhm DI Water
	HI-DMMU-7-4A-W	
	HI-DMMU-7-4B-W	
	HI-DMMU-8-5B-W	
	HI-DMMU-1-E	Elutriate
	HI-DMMU-2-E	Elutriate
	HI-DMMU-3-E	Elutriate
	HI-DMMU-4-E	Elutriate
	HI-DMMU-5-E	Elutriate
	HI-DMMU-6-E	Elutriate
	HI-DMMU-7-E	Elutriate
	HI-DMMU-8-E	Elutriate
	HI-DMMU-1-S	Sediment
	HI-DMMU-1-1A-S	
	HI-DMMU-1-1B-S	
	HI-DMMU-1-1C-S	Sediment
	HI-DMMU-2-S	Sediment
22A3987-20	HI-DMMU-2-1A-S	Sediment
22A3987-21	HI-DMMU-2-1B-S	Sediment
22A3987-22	HI-DMMU-2-1C-S	Sediment
22A3987-23	HI-DMMU-3-S	Sediment
22A3987-24	HI-DMMU-3-2A-S	Sediment
22A3987-25	HI-DMMU-3-2B-S	Sediment
22A3987-26	HI-DMMU-4-S	Sediment
22A3987-27	HI-DMMU-4-2A-S	Sediment
22A3987-28	HI-DMMU-4-2B-S	Sediment
22A3987-29	HI-DMMU-5-S	Sediment
22A3987-30	HI-DMMU-5-3A-S	Sediment
22A3987-31	HI-DMMU-5-3B-S	Sediment
22A3987-32	HI-DMMU-5-3C-S	Sediment
22A3987-33	HI-DMMU-6-S	Sediment
22A3987-34	HI-DMMU-6-3A-S	Sediment
22A3987-35	HI-DMMU-6-3B-S	Sediment
22A3987-36	HI-DMMU-6-3C-S	Sediment
22A3987-37	HI-DMMU-7-S	Sediment
22A3987-38	HI-DMMU-7-4A-S	Sediment
22A3987-39	HI-DMMU-7-4B-S	Sediment
22A3987-40	HI-DMMU-7-4C-S	Sediment
22A3987-41	HI-DMMU-7-4D-S	Sediment
22A3987-42	HI-DMMU-8-S	Sediment
22A3987-43	HI-DMMU-8-5A-S	Sediment
	HI-DMMU-8-5B-S	Sediment
	HI-DMMU-8-5C-S	Sediment
	HI-DMMU-8-5D-S	Sediment
22A3987-49		Sediment
22A3987-49		Marine Water
22A3987-50 22A3987-51		Elutriate
~~~JJU/-JI	III DOI -L	Liutilate

Unified Soil Classification System (USCS, from ASTM D 2487)					
Major Divisions		Group Symbol	Typical Names		
	<b>Gravels</b> 50% or more of course fraction	Clean Gravels	GW	Well-graded gravels and gravel-sand mixtures, little or no fines	
			GP	Poorly graded gravels and gravel-sand mixtures, little or no fines	
	retained on the 4.75 mm	Gravels	GM	Silty gravels, gravel-sand-silt mixtures	
Course-Grained Soils More than 50% retained	(No. 4) sieve	with Fines	GC	Clayey gravels, gravel-sand-clay mixtures	
on the 0.075 mm (No. 200) sieve	Sands 50% or more of course fraction passes the 4.75 (No. 4) sieve	Clean Sands	SW	Well-graded sands and gravelly sands, little or no fines	
			SP	Poorly graded sands and gravelly sands, little or no fines	
		Sands with Fines	SM	Silty sands, sand-silt mixtures	
			SC	Clayey sands, sand-clay mixtures	
Fine-Grained Soils More than 50% passes the 0.075 mm (No. 200) sieve	Silts and Clays Liquid Limit 50% or less		ML	Inorganic silts, very fine sands, rock four, silty or clayey fine sands	
			CL	Inorganic clays of low to medium plasticity, gravelly/sandy/silty/lean clays	
			OL	Organic silts and organic silty clays of low plasticity	
	Silts and Clays Liquid Limit greater than 50%		МН	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts	
			CH	Inorganic clays or high plasticity, fat clays	
			ОН	Organic clays of medium to high plasticity	
Highly Organic Soils			PT	Peat, muck, and other highly organic soils	

Prefix: G = Gravel, S = Sand, M = Silt, C = Clay, O = OrganicSuffix: W = Well Graded, P = Poorly Graded, M = Silty, L = Clay (LL < 50%), H = Clay (LL > 50%)

# APPENDIX D CHEMICAL QUALITY ASSURANCE REPORT

# EPA Region 6 Data Review and Validation Requirements Dredged Material Disposal Evaluation

Project:	PCCA Harbor Island Section 103
Project Initiation Date:	November 16, 2021
Project Sampling Dates:	
Begin:	January 17, 2023
End:	January 27, 2023
Final Report Date:	
Final Review Date:	August 3, 2023
Data acceptable (Y/N):	
	If data unacceptable summarize issues to be addressed:
I certify the review in this	s document conforms to all applicable regulatory and project-specific requirements.
Pal Ber	
QA Officer	<del></del>

Use one sheet for each laboratory that will perform analytical work for this project.

Laboratory Name/Identification: North Water District Laboratory Services

Is lab NELAC certified? Yes/No If Yes, please supply certification number TCEQ T104704238-21-33

## Can lab meet the QC requirements below as specified in the SAP/QAPP?

#### Yes/No

Yes	Analytical requirement
Yes	Instrumentation
Yes	MDL's meet project TDL requirements
Yes	Precision and accuracy
Yes	Required turnaround time

Note below any requirements the laboratory is unable to meet.

Various tests were subbed out from NWDLS to ALS Laboratory in Kelso, WA (T104704427),	
Eurofins Laboratory in Stafford, TX (T104704215-19-30), and A&B Laboratory in Houston, TX (T104704213-23-31)	

# **List of Acronyms**

CCV continuing calibration verification

IC initial calibration
ICB initial calibration blank
ICV initial calibration verification

IS internal standard

LCS/DLCS laboratory control sample/duplicate laboratory control sample

LDR linear dynamic range
LFB laboratory fortified blank

MB method blank
MDL method detection limit
MN Macoma nasuta

MS/MSD matrix spike/matrix spike duplicate

NV Neanthes virens
RL reporting limit

SAP/QAPP Sampling and Analysis Plan/Quality Assurance Project Plan

RIA EPA Region 6 - Regional Implementation Manual

SRM standard reference material

# **Sample Custody**

Was all required information on the chain-of-custody form:

### (Yes/No)

Ϋ́	Did chain of custody forms accompany samples to subcontract lab?
Υ	Is the project identification on the chain of custody?
See note	Are the analyses requested printed on the sample containers?
Υ	Were all samples correctly identified?
Υ	Were the analyses correctly identified on the chain of custody or an attached document listed on the chain of custody?
Υ	Were sample dates and times listed on the chain of custody?
Υ	Were the chains of custody signed by both the relinquisher and receiver of the samples?
Υ	Was the carrier identified on the chain of custody?
Υ	If more than one chain of custody was needed for samples, are the chains of custody clearly numbered?
See note	Were samples packed on wet ice, with an expected receipt temperature of 4 ± 2°C?
	Were any sample conditions or irregularities (broken bottles, improper temperature) noted on the chain of custody or accompanying
See note	paperwork?
Υ	Was the chain of custody submitted as part of the report to the primary contractor?
Υ	Were all requested analyses performed?
Υ	Was adequate sample volume provided to the contractor lab?
See note	If any anomalous behavior of the samples was found, was it noted in the lab case narrative?

Additional sample custody issues or deficiencies:

Samples were logged in prior to field sampling. The login printout acted as the chain of custody for the samples.

Samples were stored and shipped in a refrigerated cooler

Samples did not have any identifiable irregularities or anomalous behaviour

Reviewed by: PLB Review Date: 5/22/23

Parameter: Metals (e.g. Silver, Arsenic)

 $List\ Metals\ Analyzed:\ Sb,\ As,\ Be,\ Cd,\ Cr,\ Cu,\ Pb,\ Hg,\ Ni,\ Se,\ Ag,\ TI,\ Zn,\ Cr(III),\ Cr(VI)$ 

Analytical Method Used: 6020, 7471

QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)		
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	Y		
MS/MSD	1 set per 20 samples or per batch	Method-specifc spike recovery and RSD precision limits	See note	Several spikes, primarily for antimony, were outside acceptance criteria, indicating a potential matrix interference in the samples.	
SRM	1 per 20 samples or 1 per batch up to 20 samples	Sample/supplier- specific recovery limits	NA	See LCS	
LCS/LFB	1 per 20 samples or 1 per batch up to 20 samples	Method-specific spike recovery limits	Y		
ICV	Immediately following calibration curve	Method-specific recovery limits	Y	Verification standards not provided, but lab	
CCV	Minimum - check calibration at middle and end of each batch or 1 per 10 analyses, whichever is greater	Method-specific recovery limits	Y	indicates that all analytes were acceptable.	
LDR	Verify LDR once per quarter for ICP analyses and one time for mercury analysis		NA	Not provided by lab	
IC	Verify initial calibration for AA and mercury analysis performed daily	Method-specific calibration requirements	Y	Maintained at lab	
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab	
ICB	Immediately after initial calibration	No analyte should be detected > RL	Y	Maintained at lab	

Reviewed by: PLB Review Date: 5/22/23

Parameter: Metals (e.g. Silver, Arsenic)

List Metals Analyzed: Sb, As, Be, Cd, Cr, Cu, Pb, Hg, Ni, Se, Ag, Tl, Zn, Cr(III), Cr(VI)

Matrix: ☐ Sediment ☐ Water/Elutriate ☐ Tissue

Analytical Method Used: 6020, 7470

QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement	,	Criteria	Met (Y/N)		( )
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	Y		
MS/MSD	1 set per 20 samples or per batch	Method-specific spike recovery and RSD precision limits	See note	All spikes except one for lead and one for nickel were within the acceptance criteria. The exceedances were by less than 5%, so the impact on sample results is low.	
SRM	1 per 20 samples or 1 per batch up to 20 samples	Sample/supplier- specific recovery limits	NA	See LCS	
LCS/LFB	1 per 20 samples or 1 per batch up to 20 samples	Method-specific spike recovery limits	Y		
ICV	Immediately following calibration curve	Method-specific recovery limits	Y	Verification standards not provided, but lab indicates that all	
CCV	Minimum - check calibration at middle and end of each batch or 1 per 10 analyses, whichever is greater	Method-specific recovery limits	Y	analytes were acceptable.	
LDR	Verify LDR once per quarter for ICP analyses and one time for mercury analysis		NA	Not provided by lab	
IC	Verify initial calibration for AA and mercury analysis performed daily	Method-specific calibration requirements	Y	Maintained at lab	
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab	
ICB	Immediately after initial calibration	No analyte should be detected > RL	Y	Maintained at lab	

Project Identification: PCCA CDP Inner Harbor

Reviewed by: PLB Review Date: 8/3/23

Parameter: Metals (e.g. Silver, Arsenic)

List Metals Analyzed: Sb, As, Be, Cd, Cr, Cu, Pb, Hg, Ni, Se, Ag, Tl, Zn, Cr(III), Cr(VI)

 Matrix:
 ☐ Sediment
 ☐ Water/Elutriate
 ☑ Tissue

Analytical Method Used: 6020, 7471

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)	Comments	
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	Ý		
MS/MSD	1 set per 20 samples or per batch	Method-specific spike recovery and RSD precision limits	Z	Matrix spike recoveries for arsenic, selenium, and zinc were above the lab acceptance criteria in at least one set of spikes, indicating a potential high bias in the sample. Further information about selenium and the overall impact may be found in the risk assessment section of the	
SRM	1 per 20 samples or 1 per batch up to 20 samples	Sample/supplier- specific recovery limits	NA	See LCS	
LCS/LFB	1 per 20 samples or 1 per batch up to 20 samples	Method-specific spike recovery limits	Y		
ICV	Immediately following calibration curve	Method-specific spike recovery limits	Y	Verification standards not	
CCV	Minimum - check calibration at middle and end of each batch or 1 per 10 analyses, whichever is greater	Method-specific spike recovery limits	Y	provided, but lab indicates that all analytes were acceptable.	
LDR	Verify LDR once per quarter for ICP analyses and one time for mercury analysis		NA	Not provided by lab	
IC	Verify initial calibration for AA and mercury analysis performed daily	Method-specific calibration requirements	Y	Maintained at lab	
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab	
ICB	Immediately after initial calibration	No analyte should be detected > RL	Y	Maintained at lab	

Reviewed by: PLB Review Date: 5/22/23

Parameter:	□ PAHs	Pesticides	□PCBs
Matrix:	Sediment	☐Water/Elutriate	Tissue

QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable
Measurement	litequency	Criteria	Met (Y/N)	TREVIEW COMMISSION	(Y/N)
MB	1 per 20 samples or	No analyte should	Y		(1714)
IVID	1 per batch up to 20	be detected > RL			
	samples	be detected a IVE			
MS/MSD	1 set per 20	Method-specific	Y		
IVIS/IVISD	samples or per	spike recovery and	1		
	batch	RSD precision limits			
	Daten	Nob precision limits			
SRM	1 per 20 samples or	Within limits	See note	Use LCS as SRM. 4,4'	
OI (IVI	1 per batch up to 20	specified by		DDT had one small	
	samples	provider		exceedance outside	
		p. 5		the lab acceptance	
				criteria for one LCS.	
				All other compounds	
				were acceptable.	
ICV	Immediately	Method-specific	See note	Several calibration	
101	following calibration	recovery limits		verification standards	
	curve	,		were above the	
				acceptance criteria.	
				Since all sample	
CCV	At the beginning of	Method-specific		results for the affected	
	every 12 hours of	recovery limits		compounds were	
	analysis	,		below detection, there	
				is no impact to the	
				results.	
Surrogates	Every sample	Method-specific	Υ		
	' '	recovery limits			
		,			
Internal	Every sample	Method-specific	NA	Not provided by lab	
Standard	), ic c	recovery limits			
IC	Verify after each	Method-specific	Y	Maintained at lab	
MDI	initial calibration	acceptibility limits	Y	Maintained at lat	
MDL	Verify MDL study	Updated annually	Y	Maintained at lab	
	once per year for				
	each analyte of				
IOD	interest	No analyta abayla	· · · · · · · · · · · · · · · · · · ·	Maintained at lab	
ICB	Immediately after	No analyte should	Y	Maintained at lab	
	initial calibration	be detected > RL		1	

Reviewed by: PLB Review Date: 5/22/23

Parameter:	PAHs	Pesticides	PCBs
Matrix:	Sediment		Tissue

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement	. roquonoy	Criteria	Met (Y/N)	Comments	Data / toooptable ( 1711)
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	Y	Commence	
MS/MSD	1 set per 20 samples or per batch	Method-specific spike recovery and RSD precision limits	N	Several spike recoveries were below the acceptance criteria, indicating a potential matrix interference in the sample.	
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider	Υ	Use LCS for SRM.	
ICV	Immediately following calibration curve	Method-specific recovery limits	See note	Several calibration verification standards were above the acceptance criteria. Since all sample results for the	
CCV	At the beginning of every 12 hours of analysis	Method-specific recovery limits		affected compounds were below detection, there is no impact to the results.	
Surrogates	Every sample	Method-specific recovery limits	Y		
Internal Standard	Every sample	Method-specific recovery limits	NA	Not provided by lab	
IC	Verify after each initial calibration	Method-specific acceptibility limits	Y	Maintained at lab	
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab	
ICB	Immediately after initial calibration	No analyte should be detected > RL	Υ	Maintained at lab	

Reviewed by: PLB Review Date: 5/22/23

Parameter:	PAHs	Pesticides	
Matrix:		☐Water/Elutriate	Tissue

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement	, , , , , , , , , , , , , , , , , , , ,	Criteria	Met (Y/N)	Comments	(.//4)
MB	1 per 20 samples or	No analyte should	Y		
	1 per batch up to 20 samples	be detected > RL			
MS/MSD	1 set per 20 samples or per batch	Method-specific spike recovery and RSD precision limits	Y		
SRM	1 per 20 samples or 1 per batch up to 20 samples	provider	Y		
ICV	Immediately following calibration curve	Method-specific recovery limits	See note	Several calibration verification standards were above the acceptance criteria. Since all sample results for the	
CCV	At the beginning of every 12 hours of analysis	Method-specific recovery limits		affected compounds were below detection, there is no impact to the results.	
Surrogates	Every sample	Method-specific recovery limits	See note	Several surrogates were above the acceptance criteria. All sample results were below detection, so the overall impact is low to none.	
Internal Standard	Every sample	Method-specific recovery limits	NA	Not provided by lab	
IC	Verify after each initial calibration	Method-specific acceptibility limits	Y	Maintained at lab	
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab	
ICB	Immediately after initial calibration	No analyte should be detected > RL	Y	Maintained at lab	

**Project Identification: PCCA CDP Inner Harbor** 

Reviewed by: PLB Review Date: 9/28/22

Parameter:	□PAHs	Pesticides	
Matrix:	Sediment	Water/Elutriate	Tissue

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement	rrequericy	Criteria	Met (Y/N)	Comments	Data Acceptable (1714)
	1 per 20 samples or	No analyte should	Met (1/14)	Comments	
MB		be detected > RL	Ť		
	1 per batch up to 20 samples	be detected > RL			
	Samples				
MS/MSD	1 set per 20	Method-specific	N	Several spike	
	samples or per	spike recovery and		recoveries were	
	batch	RSD precision limits		below the acceptance	
				criteria, indicating a	
				potential matrix	
				interference in the	
				sample.	
SRM	1 per 20 samples or	Within limits	Υ	Use LCS for SRM.	
	1 per batch up to 20	specified by			
	samples	provider			
ICV	Immediately	Method-specific	Y	ICV and CCV	
	following calibration	recovery limits		recoveries are not	
	curve			provided, but the lab	
CCV	At the beginning of	Method-specific	Υ	report indicates there	
	every 12 hours of	recovery limits		were no	
	analysis			exceedances.	
Surrogates	Every sample	Method-specific	See note	Several surrogates	
		recovery limits		were above the	
				acceptance criteria.	
				All sample results	
				were below detection,	
				so the overall impact	
				is low to none.	
Internal	Every sample	Method-specific	NA	Not provided by lab	
Standard	, ,	recovery limits		,	
IC	Verify after each	Method-specific	Y	Maintained at lab	
	initial calibration	acceptibility limits			
MDL	Verify MDL study	Updated annually	Y	Maintained at lab	
	once per year for				
	each analyte of				
	interest				
ICB	Immediately after	No analyte should	Y	Maintained at lab	
	initial calibration	be detected > RL			

Reviewed by: PLB Review Date: 5/22/23

QC	Frequency	Acceptance	Criteria	Review	Data Acceptable (Y/N)
Measurement	ricquency	Criteria	Met (Y/N)	Comments	Butta Acceptable (1714)
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	Y		
MS/MSD	1 set per 20 samples or per batch	Method-specific spike recovery and RSD precision limits	Z	The matrix spikes had exceedances outside the acceptance criteria. The sample with the most exceedances also had high levels of SVOC contaminants, and also indicates a likely matrix interference in the sample. The sample was rerun several times to address the spike recovery exceedances.	
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider	Y	Use blank spike/LCS as SRM	
ICV	Immediately following calibration curve	Method-specific recovery limits	Y	ICV and CCV recoveries are not provided, but the	
CCV	At the beginning of every 12 hours of analysis	Method-specific recovery limits	Y	lab report indicates there were no exceedances.	
Surrogates	Every sample	Method-specific recovery limits	See note	Several surrogates were outside the acceptance criteria. The exceedances were generally above the limit, indicating a potential high bias in the sample results. For any results which exceeded the reporting limit, tissue analysis was performed.	
Internal Standard	Every sample	Method-specific recovery limits	NA	Not provided by lab	
IC	Verify after each initial calibration	Method-specific acceptibility limits	Y	Maintained at lab	
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab	
ICB	Immediately after initial calibration	No analyte should be detected > RL	Y	Maintained at lab	

Reviewed by: PLB Review Date: 5/22/23

 Parameter:
 ☑ PAHs
 ☐ Pesticides
 ☐ PCBs

 Matrix:
 ☐ Sediment
 ☑ Water/Elutriate
 ☐ Tissue

QC	Eve avec and	Accontonce	Criteria	Review Comments	Data Assentable (V/N)
*	Frequency	Acceptance		Review Comments	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)		
MB	1 per 20 samples or	No analyte should	Υ		
	1 per batch up to 20	be detected > RL			
	samples				
MS/MSD	1 set per 20	Method-specific	Υ		
	samples or per	spike recovery and			
	batch	RSD precision limits			
SRM	1 per 20 samples or	Within limits	Y		
	1 per batch up to 20	specified by			
	samples	provider			
ICV	Immediately	Method-specific	Y	ICV and CCV	
	following calibration	recovery limits		recoveries are not	
	curve			provided, but the lab	
CCV	At the beginning of	Method-specific	Y	report indicates there	
	every 12 hours of analysis	recovery limits		were no exceedances.	
Surrogates	Every sample	Method-specific	Y		
Carrogates		recovery limits			
Internal	Every sample	Method-specific	NA	Not provided by lab	
Standard		recovery limits			
IC	Verify after each	Method-specific	Y	Maintained at lab	
	initial calibration	acceptibility limits			
MDL	Verify MDL study	Updated annually	Υ	Maintained at lab	
	once per year for				
	each analyte of				
	interest				
ICB	Immediately after	No analyte should	Υ	Maintained at lab	
	initial calibration	be detected > RL			

Reviewed by: PLB Review Date: 8/3/23

 Parameter:
 Image: PAHs in the parameter in t

00	F	A 4	0	D	Data Assessed La (MAI)
QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)		
MB	1 per 20 samples or 1 per batch up to 20	No analyte should be detected > RL			
	samples	be detected a TVE			
			Υ		
MS/MSD	1 set per 20	Method-specific		Numerous spikes had	
	samples or per	spike recovery and		exceedances outside	
	batch	RSD precision limits	N	the laboratory acceptance criteria,	
				likely due to matrix	
				inteference.	
SRM	1 per 20 samples or	Within limits		Use LCS as SRM	
Ortivi	1 per batch up to 20	specified by		000 200 00 01 111	
	samples	provider			
			Υ		
				101/ 1001/	
ICV	Immediately following calibration	Method-specific recovery limits	Υ	ICV and CCV recoveries are not	
	curve	recovery lilling		provided, but the lab	
CCV	At the beginning of	Method-specific	Υ	report indicates there	
	every 12 hours of	recovery limits		were no exceedances.	
	analysis	Mathadan at		NI	
Surrogates	Every sample	Method-specific recovery limits	N	Numerous surrogates	
		recovery lillins		are outside the lab acceptance criteria	
				and below the	
				standard method	
				acceptance criteria,	
				indicating a likely	
				matrix interference. A discussion of sample	
				results that were found	
				to exceed the	
				reference is in the	
				report risk	
				assessment. For	
				results that are below detection, the overall	
				impact is low.	
				·	
Internal	Every sample	Method-specific	NA	Not provided by lab	
Standard	Lvory sample	recovery limits	14/1	ot provided by idb	
IC	Verify after each	Method-specific	Υ	Maintained at lab	
	initial calibration	acceptibility limits			
MDL	Verify MDL study	Updated annually	Υ	Maintained at lab	
	once per year for each analyte of				
	interest				
ICB	Immediately after	No analyte should	Υ	Maintained at lab	
	initial calibration	be detected > RL			

Reviewed by: PLB Review Date: 5/22/23

Parameter: Matrix: ☐ PAHs ☑ Sediment □Pesticides □Water/Elutriate □PCBs □Tissue SVOCs

QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)	The the transfer of the transf	
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	N	Several compounds across all the batches tested had exceedances above the reporting limit.	
MS/MSD	1 set per 20 samples or per batch	Method-specific spike recovery and RSD precision limits	N	The matrix spikes had exceedances outside the acceptance criteria. The sample with the most exceedances also had high levels of SVOC contaminants, and also indicates a likely matrix interference in the sample. The sample was rerun several times to address the spike recovery exceedances.	
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider	See note	Used Blank Spike/LCS for SRM. Several compounds had exceedances outside the acceptance criteria. Since the exceedances are generally small, the overall impact is low.	
ICV	Immediately following calibration curve	Method-specific recovery limits	See note	Several calibration verification standards were above the acceptance criteria. Since all sample results	
CCV	At the beginning of every 12 hours of analysis	Method-specific recovery limits		for the affected compounds were below detection, there is no impact to the results.	
Surrogates	Every sample	Method-specific recovery limits	See note	Several surrogates were outside the acceptance criteria. The exceedances were generally above the limit, indicating a potential high bias in the sample results. For any results which exceeded the reporting limit, tissue analysis was performed.	
Internal Standard	Every sample	Method-specific recovery limits	NA	Not provided by lab	
IC	Verify after each initial calibration	Method-specific acceptibility limits	Υ	Maintained at lab	
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab	
ICB	Immediately after initial calibration	No analyte should be detected > RL	Y	Maintained at lab	

Reviewed by: PLB Review Date: 5/22/23

☐ Pesticides
☑ Water/Elutriate ☐ PCBs ☐ Tissue Parameter: PAHs ☑ SVOCs

Matrix: Sediment

00	F	A 4	Oult and -		Data Assentable
QC	Frequency	Acceptance	Criteria		Data Acceptable
Measurement		Criteria	Met (Y/N)		(Y/N)
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	N	Three compounds had exceedances above the reporting limit.	
MS/MSD	1 set per 20 samples or per batch	Method-specific spike recovery and RSD precision limits	Y		
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider	N	Use blank spike as SRM. Two compounds had slight exceedances outside the lab acceptance criteria. All other compounds tested were within acceptance criteria.	
ICV	Immediately following calibration curve	Method-specific recovery limits	See note	Several calibration verification standards were above the acceptance criteria. Since all sample	
CCV	At the beginning of every 12 hours of analysis	Method-specific recovery limits		results for the affected compounds were below detection, there is no impact to the results.	
Surrogates	Every sample	Method-specific recovery limits	Y		
Internal Standard	Every sample	Method-specific recovery limits	NA	Not provided by lab	
IC	Verify after each initial calibration	Method-specific acceptibility limits	Y	Maintained at lab	
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab	
ICB	Immediately after initial calibration	No analyte should be detected > RL	Y	Maintained at lab	

Reviewed by: PLB Review Date: 8/3/23

Parameter:	☐ PAHs	Pesticides	□PCBs	4	SVOCs
------------	--------	------------	-------	---	-------

Matrix: ☐ Sediment ☐ Water/Elutriate ☐ Tissue

QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement	7.04.0	Criteria	Met (Y/N)		(1/11)
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	N	Several compounds had exceedances, likely due to the use of tissue in the blank.	
MS/MSD	1 set per 20 samples or per batch	Method-specific spike recovery and RSD precision limits	N	Several spikes had exceedances outside the laboratory acceptance criteria, likely due to matrix inteference.	
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider	N	Use LCS as SRM. Several compounds had exceedances, likely due to the use of tissue in the LCS.	
ICV	Immediately following calibration curve	Method-specific recovery limits	Y	ICV and CCV recoveries are not provided, but the lab report indicates there were	
CCV	At the beginning of every 12 hours of analysis	Method-specific recovery limits	Y	no exceedances.	
Surrogates	Every sample	Method-specific recovery limits	Z	Numerous surrogates are outside the lab acceptance criteria and below the standard method acceptance criteria, indicating a likely matrix interference. A discussion of sample results that were found to exceed the reference is in the report risk assessment. For results that are below detection, the overall impact is low.	
Internal Standard	Every sample	Method-specific recovery limits	NA	Not provided by lab	
IC	Verify after each initial calibration	Method-specific acceptibility limits	Y	Maintained at lab	
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab	
ICB	Immediately after initial calibration	No analyte should be detected > RL	Y	Maintained at lab	

Reviewed by: PLB Review Date: 8/2/23

**Parameter: TributyItins** 

**Analytical Method Used: Krone** 

QC Measurement	Frequency	Acceptance Criteria	Criteria Met (Y/N)	Review Comments
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	Y	
MS/MSD/MST	1 set per 20 samples or per batch	40%	Y	
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider	Y	Use LCS as SRM
ICV	Immediately following calibration curve	75-125%	NA	ICV and CCV results not provided from lab.
CCV	At the beginning of every 12 hours of analysis	75-125%	NA	
Surrogates	Every sample	20-150%	Υ	Met lab acceptance criteria
IC	Verify after each initial calibration	<20% RSD	Y	Maintained at lab
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab

Reviewed by: PLB Review Date: 8/2/23

**Parameter: TributyItins** 

Matrix: ☐ Sediment ☐ Water/Elutriate ☐ Tissue

**Analytical Method Used: Krone** 

QC Measurement	Frequency	Acceptance Criteria	Criteria Met (Y/N)	Review Comments
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	Y	
MS/MSD/MST	1 set per 20 samples or per batch	40%	Y	
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider	Y	Use LCS as SRM
ICV	Immediately following calibration curve	75-125%	NA	ICV and CCV results not provided from lab.
CCV	At the beginning of every 12 hours of analysis	75-125%	NA	
Surrogates	Every sample	20-150%	See note	Three samples had exceedances in the surrogate. All corresponding sample results were below the corresponding reporting limit from the lab.
IC	Verify after each initial calibration	<20% RSD	Y	Maintained at lab
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab

Reviewed by: PLB Review Date: 8/3/23

**Parameter: TributyItins** 

Matrix: ☐ Sediment ☐ Water/Elutriate ☐ Tissue

**Analytical Method Used: Krone** 

QC Measurement	Frequency	Acceptance Criteria	Criteria Met (Y/N)	Review Comments
MB	1 per 20 samples or 1 per batch up to 20 samples	No analyte should be detected > RL	Y	
MS/MSD/MST	1 set per 20 samples or per batch	40%	Y	
SRM	1 per 20 samples or 1 per batch up to 20 samples	Within limits specified by provider	Y	Use LCS as SRM
ICV	Immediately following calibration curve	75-125%	NA	ICV and CCV results not provided from lab.
CCV	At the beginning of every 12 hours of analysis	75-125%	NA	
Surrogates	Every sample	20-150%	See note	Three samples had exceedances in the surrogate. All corresponding sample results were below the corresponding reporting limit from the lab.
IC	Verify after each initial calibration	<20% RSD	Y	Maintained at lab
MDL	Verify MDL study once per year for each analyte of interest	Updated annually	Y	Maintained at lab

Note: Samples were reported with an H qualifier, indicating the samples were analyzed past holding time, however the samples were frozen tissues, which have a holding time of 1 year, so the H qualifier does not apply.

Reviewed by: PLB Review Date: 8/2/23

Parameter: TOC

Matrix: Sediment

	1				
QC	Frequency	Acceptance	Criteria	Review Comments	Data Acceptable (Y/N)
Measurement		Criteria	Met (Y/N)		
MB	1 per 20 samples or	No analyte should	Υ		
	1 per batch up to 20	be detected > RL			
	samples				
MS/MSD	1 set per 20	Method-specific	Υ		
	samples or per	spike recovery and			
	batch	RSD precision limits			
			.,		
SRM	1 per 20 samples or		Y	Use :LCS as SRM	
	1 per batch up to 20	specified by provider			
	samples	provider			
ICV	Immediately	Method-specific	See note	Verification standards	
	following calibration	recovery limits		not provided, but lab	
	curve			indicates that all	
CCV	At the beginning of	Method-specific	See note	analytes were	
	every 12 hours of	recovery limits		acceptable.	
	analysis				
IC	Verify after each	Method-specific	NA		
L L	initial calibration	acceptibility limits		Maintain and at tak	
MDL	Verify MDL study	Updated annually	Υ	Maintained at lab	
	once per year for				
	each analyte of				
	interest				

Part I	General Data Reporting Requirements	Included (Y/N)	Comments
SUMMARY TA	BULAR DATA AND PROJECT NARRATIVE		
Each of the fo	llowing elements should be present as described.		
	A summary table listing the percent survival in all control, reference, and test samples	Υ	
	A summary table containing the LC ₅₀ /EC ₅₀ values for the suspended particulate phase (SPP) tests and statistical tests from the solid phase tests	Υ	
	A narrative which summarizes all of the deviations from the Green Book/Inland Testing Manual, Regional Implementation Agreement and SAP/QAPP protocols. Deviations of sample handling, test conditions, ammonia purging procedures, control performance, reference toxicant test performance, organism handling/acclimation, and water quality parameters should be provided in this section.	Y	
	A summary table which documents collection dates and holding times for the test, control, and reference sediment samples. Holding times for site water, SPP, and lab saltwater for all tests should be included in this table.	Y	
	The data narrative should describe the major biological project activities and results. Computerized tables of results, water quality, and other pertinent information should be placed in this portion of the biological data package.	Y	
RAW BIOLOG	ICAL AND WATER QUALITY DATA FROM TESTS		
	Survival Data	Υ	
	Water Quality Parameters	Υ	
	Feeding Schedule and Amount (if applicable)	Υ	
	Organism Observations	Υ	
	Summary of Test Conditions	Y	
TEST ORGAN	ISM HOLDING, HANDLING AND ACCLIMATION		
	Organism Shipping Data Sheet (or equivalent) if Provided by Supplier	Y	For species not laboratory grown.
	Copy of Overnight Shipping Airbill or Courier Tracking Information (if applicable)	NA	, , , , ,
	Holding/Acclimation Records (including any required water quality, renewals, and feeding)	Y	For samples not cultured at the laboratory
	Mortality During Holding and Acclimation	N	Mortality not provided, samples held for less than 2 days after receipt for test setup.
	Taxonomic Identification for Each Species (where available from vendor)	Υ	Provided by supplier
REFERENCE	TOXICANT DATA (where applicable)		
	Raw Bench Sheets For Reference Toxicant Tests	Y	
	Reference Toxicant Stock & Test Solution Preparation Sheet	Y	
	LC ₅₀ /EC ₅₀ Statistical Calculations	Y	
	Updated Reference Toxicant Control Charts with Acceptability Limits	Y	
STATISTICAL	DATA FROM DREDGE MATERIAL TESTS		
GIATISTICAL	Provide all computer-generated statistical output information for the SPP and solid phase tests.	Υ	
		'	
INVALID TEST		NIA	
	If a test was repeated for any reason, the data from the original test must be included in the final report. If a serious deviation occurs which has the potential to affect test acceptability, USACE and EPA must be contacted immediately to determine if a retest is needed.	NA	

Part II	Test-Specific Information (additional to items specified in Part I)	Included (Y/N)	Comments
AMPHIPOD	SOLID PHASE TEST		
	Pretest Overlying Water Renewal Log and Total Porewater Ammonia Data	Y	
	Total/Unionized Porewater Ammonia Measured in Dummy Jars During Testing	Y	
MYSID SOL	ID PHASE TEST		
	Pretest Overlying Water Renewal Log and Total Porewater Ammonia Data	Y	
	Total/Unionized Overlying Unionized Ammonia Measured During Testing	Y	
SUSPENDE	D PARTICULATE PHASE TESTS (SPP)		This information is spread across several different tables,
	SPP Preparation Log (All volumes, Mixing Times, Centrifuge Information etc.)	Υ	but is present in the report.
BIOACCUM	ULATION TESTING		
	Daily Flow Calibration or Static Renewal Log	N	
	Preparation Logs for All Artificial Saltwater (if applicable)	Y	
	If Control Survival <90%, Provide Detailed Narrative	NA	
	Statistical Data Output Information Comparing Test and Reference Tissue Chemistry	Y	
	Time 0 tissue samples collected and archived frozen	Y	
SAMPLING	/ SAMPLE HANDLING		
	Chain of Custody Forms for All Test, Control, and Reference Samples	Y	The lab report indicates the sediment was sieved for the
	Field Data Sheets and/or Sampling Logs (Including Photos If Available)	Y	benthic and bioaccumulation, but the sieve size is not
	Log of Test Sediment Composite Preparation	Y	specified.
	Sieving – Size of Mesh Used for Samples Used in Toxicity Tests/Bioaccumulation specified	N	1

Laboratory:	Suspended Particulate Phase Tests									
	Minnow	Review Comments	Data Acceptable (Y/N)	Mysid	Review Comments	Data Acceptable (Y/N)	Zooplankton	Review Comments	Data Acceptable (Y/N)	
Test Species:	Menidia			Americamysis			Americamysis bahia or			
Identify each species used for toxicology in the cells to the right	beryllina 9-14 days old			bahia 1-5 days old			Copepod < 1 day old			
Correct species used as stated in the SAP/QAPP? (Y/N)	Y			Y			Y			
Control Survival Criterion Met (where applicable)? (Y/N)	Y			Y			Y			
Reference Toxicant Response within 2 standard deviations of long term mean (where applicable)? (Y/N)	Υ			Y			Y			
Temperature within acceptable limits? (Y/N)	Y			Y			Y			
Dissolved Oxygen within acceptable limits? (Y/N)	Y			Y			Y			
pH within acceptable limits? (Y/N)	Y			Y			Y			
Salinity within acceptable limits? (Y/N)	Y			Y			Y			
Acclimation Procedures followed (where required)? (Y/N)	NA			NA			NA			
Sediment Holding Time <8 wks? (Y/N)	Y			Y			Y			
Statistical Analyses Appropriate? (Y/N)	Y			Y			Y			
Ammonia Management conducted (where required)? (Y/N)	NA			NA			NA			

Laboratory:	Solid Phase Tests							
	Amphipod	Review Comments	Data Acceptable (Y/N)	Crustacean	Review Comments	Data Acceptable (Y/N)		
Test Species:								
Identify each species used for toxicology in the cells to the right	Leptocheirus plumulosus			Americamysis bahia (1 - 5 days old)				
Correct species used as stated in the SAP/QAPP? (Y/N)	Υ			Y				
Control Survival Criterion Met (where applicable)? (Y/N)	Υ			Y				
Reference Toxicant Response within 2 standard deviations of long term mean (where applicable)? (Y/N)	Υ			Y				
Temperature within acceptable limits? (Y/N)	Υ			Y				
Dissolved Oxygen within acceptable limits? (Y/N)	Υ			Y				
pH within acceptable limits? (Y/N)	Υ	]		Υ				
Salinity within acceptable limits? (Y/N)	Υ			Y				
Acclimation Procedures followed (where required)? (Y/N)	NA			NA				
Sediment Holding Time <8 wks? (Y/N)	Υ			Υ				
Statistical Analyses Appropriate? (Y/N)	Υ			Y				
Ammonia Management conducted (where required)? (Y/N)	NA			NA				

Laboratory:	Bioaccumulation Potential Tests							
	Sand Worm <i>Alitta viren</i> s	Review Comments	Data Acceptable (Y/N)	Clam Mercenaria mercenaria	Review Comments	Data Acceptable (Y/N)		
Test Species:								
Identify each species used for toxicology in the cells to the right	Neanthes (Nereis) virens			Merenaria mercenaria				
Correct species used as stated in the SAP/QAPP? (Y/N)	Y			Y				
Control Survival Criterion Met (where applicable)? (Y/N)								
Reference Toxicant Response within 2 standard deviations of long term mean (where applicable)? (Y/N)					Mercenaria			
Temperature within acceptable limits? (Y/N)	Y			Y	mercenaria used as alternate species to			
Dissolved Oxygen within acceptable limits? (Y/N)	Y			Y	Macoma nasuta due to availability. This			
pH within acceptable limits? (Y/N)	Y			Y	was approved by			
Salinity within acceptable limits? (Y/N)	Y			Υ	USACE on 2/3/23 by Jayson Hudson.			
Acclimation Procedures followed (where required)? (Y/N)	NA			NA				
Sediment Holding Time <8 wks? (Y/N)	Υ			Υ				
Statistical Analyses Appropriate? (Y/N)	Y			Y				
Ammonia Management conducted (where required)? (Y/N)	NA			NA				

# APPENDIX E CHEMISTRY LAB REPORTS



April 03, 2023

# LAB REPORT

Gregg Pawlak
Terracon_Houston
11555 Clay Road
Houston, TX 77043

Report ID: 20230403140831MM

RE: PCCA HI & CDP Resampling 2023

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Monica O. Martin

Chief Administrative Officer



TCEQ-TOX T104704202-22-17



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

#### **Work Order Case Narrative**

### A total of 52 samples were collected on:

	0 1 11	0 1 5 1
<u>Laboratory ID</u>	Sample Name	Sample Date
23A1459-01	HI-EQ BLANK	01/20/2023 09:50
23A1459-02	HI-DMMU-7-4A-W	01/25/2023 09:30
23A1459-03	HI-DMMU-7-4B-W	01/25/2023 12:50
23A1459-04	HI-DMMU-8-5B-W	01/25/2023 14:50
23A1459-05	HI-REF-W	01/27/2023 11:25
23A1459-06	HI-ODMDS-W	04/12/2022 16:10
23A1459-07	HI-DMMU-1-E	01/16/2023 14:20
23A1459-08	HI-DMMU-2-E	01/16/2023 17:20
23A1459-09	HI-DMMU-3-E	01/19/2023 15:20
23A1459-10	HI-DMMU-4-E	01/19/2023 17:00
23A1459-11	HI-DMMU-5-E	01/18/2023 09:40
23A1459-12	HI-DMMU-6-E	01/18/2023 11:15
23A1459-13	HI-DMMU-7-E	01/16/2023 16:37
23A1459-14	HI-DMMU-8-E	01/18/2023 14:10
23A1459-15	HI-DMMU-1-S	01/16/2023 14:20
23A1459-16	HI-DMMU-1-1A-S	01/16/2023 14:20
23A1459-17	HI-DMMU-1-1B-S	01/17/2023 09:40
23A1459-18	HI-DMMU-1-1C-S	01/17/2023 14:40
23A1459-19	HI-DMMU-2-S	01/16/2023 17:20
23A1459-20	HI-DMMU-2-1A-S	01/16/2023 17:20
23A1459-21	HI-DMMU-2-1B-S	01/17/2023 11:30
23A1459-22	HI-DMMU-2-1C-S	01/17/2023 16:30
23A1459-23	HI-DMMU-3-S	01/19/2023 15:20
23A1459-24	HI-DMMU-3-2A-S	01/19/2023 15:20
23A1459-25	HI-DMMU-3-2B-S	01/20/2023 11:00
23A1459-26	HI-DMMU-4-S	01/19/2023 17:00
23A1459-27	HI-DMMU-4-2A-S	01/19/2023 17:00
23A1459-28	HI-DMMU-4-2B-S	01/20/2023 17:50
23A1459-29	HI-DMMU-5-S	01/18/2023 09:40
23A1459-30	HI-DMMU-5-3A-S	01/18/2023 09:40
23A1459-31	HI-DMMU-5-3A-3	01/18/2023 09:40
23A1459-31 23A1459-32	HI-DMMU-5-36-S	01/19/2023 14.00
23A1459-33	HI-DMMU-6-S	01/18/2023 11:15
23A1459-34	HI-DMMU-6-3A-S	01/18/2023 11:15
23A1459-35	HI-DMMU-6-3B-S	01/18/2023 15:45
23A1459-36	HI-DMMU-6-3C-S	01/19/2023 11:10
23A1459-37	HI-DMMU-7-S	01/16/2023 16:37
23A1459-38	HI-DMMU-7-4A-S	01/17/2023 14:12
23A1459-39	HI-DMMU-7-4B-S	01/18/2023 09:25
23A1459-40	HI-DMMU-7-4C-S	01/16/2023 16:37
23A1459-41	HI-DMMU-7-4D-S	01/17/2023 09:20
23A1459-42	HI-DMMU-8-S	01/18/2023 14:10
23A1459-43	HI-DMMU-8-5A-S	01/18/2023 14:10
23A1459-44	HI-DMMU-8-5B-S	01/19/2023 08:15
23A1459-45	HI-DMMU-8-5C-S	01/20/2023 09:15
23A1459-46	HI-DMMU-8-5D-S	01/27/2023 14:05



Terracon_Housto	n	Project: PCCA HI & CDP Resampling 2023	
11555 Clay Road		Project Number:	Reported:
Houston, TX 770	143	Project Manager: Gregg Pawlak	04/03/2023 14:08
23A1459-47	REF-S	01/27/2023 09:20	
23A1459-48	HI-DUP-S	01/19/2023 14:00	
23A1459-61	HI-DUP-W	01/25/2023 09:30	
23A1459-62	ODMDS-W	01/27/2023 13:10	
23A1459-64	HI-DUP-E	01/19/2023 14:00	
23A1459-66	ODMDS-S	01/27/2023 12:30	

Samples were received and accepted at NWDLS on 01/19/2023 - 01/28//2023. Any receiving discrepancies are recorded and stored in NWDLS' database. The samples received a Work Order of 23A1459. The lab sample IDs, client sample IDs, and dates of collection can be found at the top of each result page.

NWDLS provided their lowest detection limit for all requested analyses. Note that detection and reporting limits are adjusted to account for sample specific parameters.

Any QC that did not meet the laboratory specified control limits was flagged and reported with qualifiers. For additional information, please refer to the included quality control data pages.





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results**

Client Sample ID: HI-EQ BLANK Lab Sample ID:

Sample Alias:

23A1459-01

Sample Matrix: 18 MOhm DI Water

Date Collected: 01/20/2023 9:50 Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Metals, Tota	I									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGA3813	01/30/2023 15:10	NAZ
EPA 200.8	Selenium	Α	0.759J	ug/L	1	0.330	2.00	BGB3632	03/01/2023 10:58	TBB
Metals, Disse	olved									
EPA 200.8	Antimony	Α	<0.200U	ug/L	1	0.200	1.00	BGB0721	02/09/2023 14:04	JLK
EPA 200.8	Arsenic	Α	<0.100U	ug/L	1	0.100	0.500	BGB0721	02/08/2023 15:39	JLK
EPA 200.8	Beryllium	Α	0.0230J	ug/L	1	0.0100	0.200	BGB0721	02/14/2023 16:24	TBB
EPA 200.8	Cadmium	Α	<0.0500U	ug/L	1	0.0500	1.00	BGB0721	02/09/2023 14:04	JLK
EPA 200.8	Chromium	Α	0.373J	ug/L	1	0.0800	3.00	BGB0721	02/08/2023 15:39	JLK
EPA 200.8	Copper	Α	0.781V, J	ug/L	1	0.200	1.00	BGB0721	02/08/2023 15:39	JLK
Calc	Chromium (III)		<1.58U	ug/L	1	1.58	6.00	[CALC]	02/15/2023 14:42	SAB
SM 3500-Cr B	Chromium (VI)	Α	11.1	ug/L	1	1.50	3.00	BGB2104	02/15/2023 14:42	SAB
EPA 200.8	Lead	Α	0.146J	ug/L	1	0.100	0.500	BGB0721	02/08/2023 15:39	JLK
EPA 200.8	Nickel	Α	0.613J	ug/L	1	0.0500	1.00	BGB0721	02/08/2023 15:39	JLK
EPA 200.8	Silver	Α	<0.0300U	ug/L	1	0.0300	0.500	BGB0721	02/08/2023 15:39	JLK
EPA 200.8	Thallium	Α	<0.0300U	ug/L	1	0.0300	0.500	BGB0721	02/08/2023 15:39	JLK
EPA 200.8	Zinc	Α	3.47	ug/L	1	0.200	2.00	BGB0721	02/09/2023 14:04	JLK





Terracon Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4A-W

23A1459-02

Lab Sample ID: Sample Alias:

Sample Matrix: Marine Water

Date Collected: 01/25/2023 9:30

Gregg Pawlak

Collected by:

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS SW-8270 3,3'-Dichlorobenzidine <0.278U 0.278 0.557 BGA3953 02/07/2023 23:13 KRB Α ug/L 1 KRB SW-8270 Benzidine Α <0.278U ug/L 1 0.278 0.557 BGA3953 02/07/2023 23:13 SW-8270 02/07/2023 23:13 Surrogate: 2-Fluorobiphenvl-surr 97.1% 54.6-148 SW-8270 Surrogate: 2-Fluorophenol-surr 121% 55-152 02/07/2023 23:13 02/07/2023 23:13 52.4-136 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr 136% 52-162 02/07/2023 23:13 SW-8270 Surrogate: Nitrobenzene-d5-surr 115% SW-8270 Surrogate: Phenol-d5-surr 121% 58.7-152 02/07/2023 23:13 SW-8270 Surrogate: p-Terphenyl-d14-surr 73.3% 51.9-147 02/07/2023 23:13 Organics by GC SW-8081 4,4'-DDD Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 AI A SW-8081 4,4'-DDE Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 ALA SW-8081 4,4'-DDT Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 ALA 02/06/2023 21:22 <0.00600U SW-8081 Aldrin Α ug/L 1 0.00600 0.00600 BGA3839 ALA <0.00600C+, U 02/06/2023 21:22 SW-8081 alpha-BHC ug/L 0.00600 0.00600 BGA3839 ALA (alpha-Hexachlorocyclohexan e) SW-8081 beta-BHC Α < 0.0060011 ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 AI A (beta-Hexachlorocyclohexane SW-8081 <0.00600U 0.00600 0.00600 BGA3839 02/06/2023 21:22 Chlordane (tech.) Α ug/L 1 ALA SW-8081 cis-Chlordane Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 ALA (alpha-Chlordane) SW-8081 delta-BHC Α <0.00600 U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 ALA Dieldrin <0.00600U 0.00600 BGA3839 02/06/2023 21:22 SW-8081 Α ug/L 1 0.00600 ALA SW-8081 Endosulfan I Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 ALA SW-8081 Endosulfan II <0.00600U 0.00600 0.00600 BGA3839 02/06/2023 21:22 Α ug/L 1 ALA SW-8081 Endosulfan sulfate Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 ALA SW-8081 Endrin <0.00600U 0.00600 0.00600 BGA3839 02/06/2023 21:22 Α ug/L 1 ALA SW-8081 Endrin aldehyde Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 ALA SW-8081 Endrin ketone <0.00600U 0.00600 0.00600 BGA3839 02/06/2023 21:22 Α ug/L 1 ALA SW-8081 gamma-BHC (Lindane, Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 ALA gamma-Hexachlorocyclohexa nE) gamma-Chlordane < 0.00600 U 0.00600 BGA3839 02/06/2023 21:22 SW-8081 Α ug/L 0.00600 1 ALA SW-8081 Heptachlor Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 21:22 ALA <0.00600U 0.00600 BGA3839 02/06/2023 21:22 SW-8081 Heptachlor epoxide Α ug/L 0.00600 ALA 1 SW-8081 Methoxychlor <0.00600U ug/L 0.00600 0.00600 BGA3839 02/06/2023 21:22 ALA SW-8081 <0.300U Toxaphene (Chlorinated 0.300 0.300 BGA3839 02/06/2023 21:22 Α ug/L 1 ALA Camphene) 02/06/2023 21:22 SW-8081 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 93.4% 60-140





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4A-W (Continued)

Lab Sample ID: 23A1459-02

Sample Alias:

Sample Matrix: Marine Water

> Date Collected: 01/25/2023 9:30

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl-s	surr	40.2% S	60-140					02/06/2023 21:22	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB0277	02/11/2023 07:44	cdg
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-r	m-xylene-suri	78.2%	60-140					02/11/2023 07:44	
SW-8082	Surrogate: Decachlorobiphenyl-s	surr	30.1% 5	60-140					02/11/2023 07:44	
Metals, Tota	al									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGA3813	01/30/2023 15:00	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB1605	02/22/2023 13:59	JLK
Metals, Diss	solved									
EPA 200.8	Antimony	Α	<1.00U	ug/L	5	1.00	5.00	BGB0721	02/14/2023 16:15	TBB
EPA 200.8	Arsenic	Α	1.89J	ug/L	5	0.500	2.50	BGB0721	02/08/2023 15:31	JLK
EPA 200.8	Beryllium	Α	<0.0500U	ug/L	5	0.0500	1.00	BGB0721	02/14/2023 16:15	TBB
EPA 200.8	Cadmium	Α	<0.250U	ug/L	5	0.250	5.00	BGB0721	02/14/2023 16:15	TBB
EPA 200.8	Chromium	Α	0.9793	ug/L	5	0.400	15.0	BGB0721	02/08/2023 15:31	JLK
EPA 200.8	Copper	Α	2.09V, J	ug/L	5	1.00	5.00	BGB0721	02/08/2023 15:31	JLK
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/10/2023 14:44	SAB
EPA 200.8	Lead	Α	1.16J	ug/L	5	0.500	2.50	BGB0721	02/08/2023 15:31	JLK
EPA 200.8	Nickel	Α	1.03J	ug/L	5	0.250	5.00	BGB0721	02/08/2023 15:31	JLK
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 15:31	JLK
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 15:31	JLK
EPA 200.8	Zinc	Α	4.16J	ug/L	5	1.00	10.0	BGB0721	02/14/2023 16:15	TBB
General Che	emistry									
EPA 350.1	Ammonia as N	Α	0.618	mg/L	1	0.0200	0.0500	BGB0479	02/03/2023 12:54	DLK
SM 2520 B	Salinity	N	28.9	Salinity units	1	1.00	1.00	BGB1516	02/10/2023 12:47	AKA
SM 2540 D	Residue-nonfilterable (TSS)	Α	249	mg/L	1	1.00	1.00	BGA3833	01/31/2023 12:49	BP / JRU





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4A-W Lab Sample ID:

23A1459-02RE1

Sample Alias:

Sample Matrix: Marine Water Date Collected: 01/25/2023 9:30

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.11U	ug/L	1	1.11	2.23	BGA3953	02/13/2023 19:40	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.555U	ug/L	1	0.555	1.11	BGA3953	02/13/2023 19:40	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.555U	ug/L	1	0.555	1.11	BGA3953	02/13/2023 19:40	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.46C+, U	ug/L	1	4.46	4.46	BGA3953	02/13/2023 19:40	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.555U	ug/L	1	0.555	1.11	BGA3953	02/13/2023 19:40	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.555C+, U	ug/L	1	0.555	1.11	BGA3953	02/13/2023 19:40	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.555U	ug/L	1	0.555	1.11	BGA3953	02/13/2023 19:40	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.555U	ug/L	1	0.555	1.11	BGA3953	02/13/2023 19:40	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.46U	ug/L	1	4.46	4.46	BGA3953	02/13/2023 19:40	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Anthracene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.278U	ug/L	1	0.278	1.11	BGA3953	02/13/2023 19:40	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4A-W (Continued)

23A1459-02RE1

Lab Sample ID: Sample Alias:

Sample Matrix: Marine Water

Date Collected: 01/25/2023 9:30

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS (Conti	nued)							
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Chrysene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	0.522V, J	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.278B, U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	1.19V	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Fluorene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<0.278C+, U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Isophorone (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Naphthalene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<0.278U	ug/L	1	0.278	2.23	BGA3953	02/13/2023 19:40	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.555U	ug/L	1	0.555	1.11	BGA3953	02/13/2023 19:40	KRB
SW-8270	Phenanthrene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Phenol, Total (Rerun)	Α	0.803J	ug/L	1	0.555	1.11	BGA3953	02/13/2023 19:40	KRB
SW-8270	Pyrene (Rerun)	Α	<0.278U	ug/L	1	0.278	0.557	BGA3953	02/13/2023 19:40	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	r (Rerun)	98.1%	54.6-148					02/13/2023 19:40	
SW-8270	Surrogate: 2-Fluorophenol-surr	. ,	128%	55-152					02/13/2023 19:40	
SW-8270	Surrogate: 2,4,6-Tribromopheno		98.4%	<i>52.4-136</i>					02/13/2023 19:40	
SW-8270	Surrogate: Nitrobenzene-d5-sur	•	93.2%	52-162					02/13/2023 19:40	
SW-8270	Surrogate: Phenol-d5-surr (Reru	ın)	122%	<i>58.7-152</i>					02/13/2023 19:40	



130 S. Trade Center Parkway, Conroe TX 77385 Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-38 TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Project Manager: Gregg Pawlak 04/03/2023 14:08 Houston, TX 77043

> Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4A-W (Continued)

Lab Sample ID: 23A1459-02RE1

Sample Alias:

SW-8270

Date Collected: 01/25/2023 9:30 Collected by: Gregg Pawlak

Marine Water

02/13/2023 19:40

Sample Matrix:

Method Analyte Result Q Units DF SDL LRL Analyzed Analyst Batch

Semivolatile Organic Compounds by GCMS (Continued)

Surrogate: p-Terphenyl-d14-surr (Rerun)

Metals, Dissolved SM 3500-Cr B Chromium (VI) (Rerun) 18.8 1.50 3.00 Α ug/L 1 BGB1154 02/10/2023 14:44 SAB

51.9-147

64.6%





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4B-W

23A1459-03

Lab Sample ID: Sample Alias:

Sample Matrix: Marine Water Date Collected: 01/25/2023 12:50

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by	GCMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/07/2023 23:48	KRB
SW-8270	Benzidine	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/07/2023 23:48	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl	surr	93.5%	54.6-148					02/07/2023 23:48	
SW-8270	Surrogate: 2-Fluorophenol-su	ırr	118%	<i>55-152</i>					02/07/2023 23:48	
<i>SW-8270</i>	Surrogate: 2,4,6-Tribromoph	enol-surr	141% S	<i>52.4-136</i>					02/07/2023 23:48	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-s	surr	116%	<i>52-162</i>					02/07/2023 23:48	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		111%	<i>58.7-152</i>					02/07/2023 23:48	
SW-8270	Surrogate: p-Terphenyl-d14-	surr	71.3%	<i>51.9-147</i>					02/07/2023 23:48	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	4,4'-DDE	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	4,4'-DDT	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Aldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.00600C+, U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	A	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Chlordane (tech.)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	delta-BHC	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Dieldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Endosulfan I	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Endosulfan II	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Endosulfan sulfate	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Endrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Endrin aldehyde	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Endrin ketone	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	gamma-Chlordane	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Heptachlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Heptachlor epoxide	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Methoxychlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 21:49	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.300U	ug/L	1	0.300	0.300	BGA3839	02/06/2023 21:49	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachlor	ro-m-xylene-su	rı 93.9%	60-140					02/06/2023 21:49	





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4B-W (Continued)

Lab Sample ID: Sample Alias:

23A1459-03

Sample Matrix: Marine Water

Date Collected: 01/25/2023 12:50

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl	surr	39.5% S	60-140					02/06/2023 21:49	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB0277	02/11/2023 08:11	cdg
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-ı	m-xylene-suri	77.7%	60-140					02/11/2023 08:11	
SW-8082	Surrogate: Decachlorobiphenyl	surr	30.9% 5	60-140					02/11/2023 08:11	
Metals, Tota	al									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGA3813	01/30/2023 15:13	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB1605	02/22/2023 14:02	JLK
Metals, Diss	solved									
EPA 200.8	Antimony	Α	<1.00U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:06	JLK
EPA 200.8	Arsenic	Α	1.66J	ug/L	5	0.500	2.50	BGB0721	02/08/2023 15:42	JLK
EPA 200.8	Beryllium	Α	0.0560J	ug/L	5	0.0500	1.00	BGB0721	02/14/2023 16:27	TBB
EPA 200.8	Cadmium	Α	0.278J	ug/L	5	0.250	5.00	BGB0721	02/09/2023 14:06	JLK
EPA 200.8	Chromium	Α	0.6553	ug/L	5	0.400	15.0	BGB0721	02/08/2023 15:42	JLK
EPA 200.8	Copper	Α	1.40V, J	ug/L	5	1.00	5.00	BGB0721	02/08/2023 15:42	JLK
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/10/2023 14:45	SAB
EPA 200.8	Lead	Α	0.7223	ug/L	5	0.500	2.50	BGB0721	02/08/2023 15:42	JLK
EPA 200.8	Nickel	Α	0.858J	ug/L	5	0.250	5.00	BGB0721	02/08/2023 15:42	JLK
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 15:42	JLK
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 15:42	JLK
EPA 200.8	Zinc	Α	3.74J	ug/L	5	1.00	10.0	BGB0721	02/09/2023 14:06	JLK
General Che	emistry									
EPA 350.1	Ammonia as N	Α	0.615	mg/L	1	0.0200	0.0500	BGB0480	02/03/2023 13:19	DLK
SM 2520 B	Salinity	N	28.6	Salinity units	1	1.00	1.00	BGB1516	02/10/2023 12:15	AKA
SM 2540 D	Residue-nonfilterable (TSS)	Α	133	mg/L	1	1.00	1.00	BGA3841	01/31/2023 12:35	BP





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4B-W Sample Matrix: Marine Water

Lab Sample ID: 23A1459-03RE1 Date Collected: 01/25/2023 12:50

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.12U	ug/L	1	1.12	2.24	BGA3953	02/13/2023 20:15	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGA3953	02/13/2023 20:15	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGA3953	02/13/2023 20:15	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.49C+, U	ug/L	1	4.49	4.49	BGA3953	02/13/2023 20:15	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGA3953	02/13/2023 20:15	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.559C+, U	ug/L	1	0.559	1.12	BGA3953	02/13/2023 20:15	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGA3953	02/13/2023 20:15	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGA3953	02/13/2023 20:15	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.49U	ug/L	1	4.49	4.49	BGA3953	02/13/2023 20:15	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Anthracene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.280U	ug/L	1	0.280	1.12	BGA3953	02/13/2023 20:15	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB





Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

Houston, TX 77043

11555 Clay Road

Project Manager: Gregg Pawlak

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4B-W (Continued) Sample Matrix: Marine Water

Lab Sample ID: 23A1459-03RE1

Date Collected: 01/25/2023 12:50 Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GCM	IS (Conti	nued)							
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Chrysene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	0.611V	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.280B, U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	1.88V	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Fluorene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<0.280C+, U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Isophorone (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Naphthalene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<0.280U	ug/L	1	0.280	2.24	BGA3953	02/13/2023 20:15	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGA3953	02/13/2023 20:15	KRB
SW-8270	Phenanthrene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Phenol, Total (Rerun)	Α	1.07J	ug/L	1	0.559	1.12	BGA3953	02/13/2023 20:15	KRB
SW-8270	Pyrene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGA3953	02/13/2023 20:15	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (	Rerun)	93.9%	54.6-148					02/13/2023 20:15	
SW-8270	Surrogate: 2-Fluorophenol-surr (Re	erun)	117%	<i>55-152</i>					02/13/2023 20:15	
SW-8270	Surrogate: 2,4,6-Tribromophenol-s	surr (Rerur	94.1%	<i>52.4-136</i>					02/13/2023 20:15	
SW-8270	Surrogate: Nitrobenzene-d5-surr (	Rerun)	89.4%	<i>52-162</i>					02/13/2023 20:15	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr (Rerun)		119%	<i>58.7-152</i>					02/13/2023 20:15	



130 S. Trade Center Parkway, Conroe TX 77385 Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

> TCEQ T104704238-23-38 TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results
(Continued)

Client Sample ID: HI-DMMU-7-4B-W (Continued)

Chromium (VI) (Rerun)

23A1459-03RE1

Lab Sample ID: Sample Alias:

SM 3500-Cr B

Sample Matrix: Marine Water

1.50

1

Date Collected: 01/25/2023 12:50

BGB1154

02/10/2023 14:45

SAB

Collected by: Gregg Pawlak

3.00

Method Analyte Result Q Units DF SDL LRL Analyzed Analyst Batch Semivolatile Organic Compounds by GCMS (Continued) SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 63.7% 51.9-147 02/13/2023 20:15 Metals, Dissolved

ug/L

7.48

Α





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-8-5B-W

Lab Sample ID:

Sample Alias:

23A1459-04

Sample Matrix: Marine Water

Date Collected: 01/25/2023 14:50

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by C	GCMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/08/2023 00:23	KRB
SW-8270	Benzidine	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/08/2023 00:23	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	urr	98.0%	54.6-148					02/08/2023 00:23	
SW-8270	Surrogate: 2-Fluorophenol-sui	rr	116%	<i>55-152</i>					02/08/2023 00:23	
SW-8270	Surrogate: 2,4,6-Tribromophe	nol-surr	149% S	<i>52.4-136</i>					02/08/2023 00:23	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-s	urr	120%	<i>52-162</i>					02/08/2023 00:23	
SW-8270	Surrogate: Phenol-d5-surr		121%	<i>58.7-152</i>					02/08/2023 00:23	
SW-8270	Surrogate: p-Terphenyl-d14-s	urr	71.8%	51.9-147					02/08/2023 00:23	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	4,4'-DDE	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	4,4'-DDT	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Aldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.00600C+, U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Chlordane (tech.)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	delta-BHC	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Dieldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Endosulfan I	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Endosulfan II	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Endosulfan sulfate	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Endrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Endrin aldehyde	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Endrin ketone	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	gamma-Chlordane	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Heptachlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Heptachlor epoxide	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Methoxychlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/06/2023 22:15	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.300U	ug/L	1	0.300	0.300	BGA3839	02/06/2023 22:15	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-su	rı 81.2%	60-140					02/06/2023 22:15	





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-8-5B-W (Continued)

Lab Sample ID: Sample Alias:

23A1459-04

Sample Matrix: Marine Water

Date Collected: 01/25/2023 14:50

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl-s	surr	<i>37.1% S</i>	60-140					02/06/2023 22:15	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB0277	02/11/2023 08:37	cdg
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-r	n-xylene-suri	96.8%	60-140					02/11/2023 08:37	
SW-8082	Surrogate: Decachlorobiphenyl-s	surr	35.2% S	60-140					02/11/2023 08:37	
Metals, Tota	ıl									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGA3813	01/30/2023 15:16	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB1605	02/22/2023 15:16	TBB
Metals, Diss	olved									
EPA 200.8	Antimony	Α	1.32J	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:09	JLK
EPA 200.8	Arsenic	Α	1.60J	ug/L	5	0.500	2.50	BGB0721	02/08/2023 15:45	JLK
EPA 200.8	Beryllium	Α	<0.0500U	ug/L	5	0.0500	1.00	BGB0721	02/14/2023 16:30	TBB
EPA 200.8	Cadmium	Α	<0.250U	ug/L	5	0.250	5.00	BGB0721	02/09/2023 14:09	JLK
EPA 200.8	Chromium	Α	1.03J	ug/L	5	0.400	15.0	BGB0721	02/08/2023 15:45	JLK
EPA 200.8	Copper	Α	1.73V, J	ug/L	5	1.00	5.00	BGB0721	02/08/2023 15:45	JLK
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/10/2023 14:46	SAB
EPA 200.8	Lead	Α	0.866J	ug/L	5	0.500	2.50	BGB0721	02/08/2023 15:45	JLK
EPA 200.8	Nickel	Α	1.02J	ug/L	5	0.250	5.00	BGB0721	02/08/2023 15:45	JLK
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 15:45	JLK
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 15:45	JLK
EPA 200.8	Zinc	Α	6.59J	ug/L	5	1.00	10.0	BGB0721	02/09/2023 14:09	JLK
General Che	mistry									
EPA 350.1	Ammonia as N	А	0.617	mg/L	1	0.0200	0.0500	BGB0480	02/03/2023 13:07	DLK
SM 2520 B	Salinity	N	29.0	Salinity units	1	1.00	1.00	BGB1516	02/10/2023 12:23	AKA
SM 2540 D	Residue-nonfilterable (TSS)	Α	124	mg/L	1	1.00	1.00	BGA3879	01/31/2023 12:15	BP / JRU





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5B-W

Lab Sample ID: 23A1459-04RE1

Sample Alias:

Sample Matrix: Marine Water
Date Collected: 01/25/2023 14:50

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.11U	ug/L	1	1.11	2.23	BGA3953	02/13/2023 20:50	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 20:50	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 20:50	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.47C+, U	ug/L	1	4.47	4.47	BGA3953	02/13/2023 20:50	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 20:50	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.556C+, U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 20:50	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 20:50	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 20:50	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.47U	ug/L	1	4.47	4.47	BGA3953	02/13/2023 20:50	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Anthracene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.279U	ug/L	1	0.279	1.12	BGA3953	02/13/2023 20:50	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-8-5B-W (Continued)

Lab Sample ID: 23A1459-04RE1 Sample Alias:

Sample Matrix: Marine Water

Date Collected: 01/25/2023 14:50

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by G	CMS (Conti	nued)							-
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	А	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Chrysene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	0.476V, J	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.279B, U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	1.67V	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Fluorene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<0.279C+, U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Isophorone (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Naphthalene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<0.279U	ug/L	1	0.279	2.23	BGA3953	02/13/2023 20:50	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 20:50	KRB
SW-8270	Phenanthrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Phenol, Total (Rerun)	Α	0.971J	ug/L	1	0.556	1.12	BGA3953	02/13/2023 20:50	KRB
SW-8270	Pyrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 20:50	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sui	rr (Rerun)	95.7%	54.6-148					02/13/2023 20:50	
SW-8270	Surrogate: 2-Fluorophenol-surr	-	120%	<i>55-152</i>					02/13/2023 20:50	
SW-8270	Surrogate: 2,4,6-Tribromophen	ol-surr (Rerur.	92.2%	52.4-136					02/13/2023 20:50	
SW-8270	Surrogate: Nitrobenzene-d5-sur	r (Rerun)	90.7%	<i>52-162</i>					02/13/2023 20:50	
SW-8270	Surrogate: Phenol-d5-surr (Rero	un)	126%	<i>58.7-152</i>					02/13/2023 20:50	



130 S. Trade Center Parkway, Conroe TX 77385 Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-38 TCEQ-TOX T104704202-22-17

02/13/2023 20:50

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:

Project Manager: Gregg Pawlak 04/03/2023 14:08 Houston, TX 77043

> Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5B-W (Continued)

Lab Sample ID: 23A1459-04RE1 Sample Alias:

SW-8270

Sample Matrix: Marine Water

> Date Collected: 01/25/2023 14:50

Collected by: Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Analyzed Analyst Batch Semivolatile Organic Compounds by GCMS (Continued)

51.9-147

Surrogate: p-Terphenyl-d14-surr (Rerun)

Metals, Dissolved SM 3500-Cr B Chromium (VI) (Rerun) 1.50 3.00 Α 58.4 ug/L 1 BGB1154 02/10/2023 14:46 SAB

64.3%





Terracon Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

Client Sample ID: HI-REF-W

Lab Sample ID:

Sample Alias:

23A1459-05

Sample Matrix: Marine Water 01/27/2023 11:25 Date Collected:

Michael Madonna

Collected by:

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS SW-8270 3,3'-Dichlorobenzidine <0.279U 0.279 0.559 BGA3953 02/08/2023 00:57 KRB Α ug/L 1 KRB SW-8270 Benzidine Α <0.279U ug/L 1 0.279 0.559 BGA3953 02/08/2023 00:57 02/08/2023 00:57 SW-8270 Surrogate: 2-Fluorobiphenvl-surr 96.3% 54.6-148 SW-8270 Surrogate: 2-Fluorophenol-surr 121% 55-152 02/08/2023 00:57 146% S 02/08/2023 00:57 52.4-136 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr 52-162 02/08/2023 00:57 SW-8270 Surrogate: Nitrobenzene-d5-surr 118% SW-8270 Surrogate: Phenol-d5-surr 119% 58.7-152 02/08/2023 00:57 SW-8270 Surrogate: p-Terphenyl-d14-surr 79.5% 51.9-147 02/08/2023 00:57 Organics by GC SW-8081 4,4'-DDD Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 AI A SW-8081 4,4'-DDE Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 ALA SW-8081 4,4'-DDT Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 ALA <0.00600U SW-8081 Aldrin Α ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 ALA <0.00600C+, U 02/06/2023 22:42 SW-8081 alpha-BHC ug/L 0.00600 0.00600 BGA3839 ALA (alpha-Hexachlorocyclohexan e) SW-8081 beta-BHC Α < 0.0060011 ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 AI A (beta-Hexachlorocyclohexane SW-8081 <0.00600U 0.00600 0.00600 BGA3839 02/06/2023 22:42 Chlordane (tech.) Α ug/L 1 ALA SW-8081 cis-Chlordane Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 ALA (alpha-Chlordane) SW-8081 delta-BHC Α <0.00600 U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 ALA Dieldrin <0.00600U 0.00600 02/06/2023 22:42 SW-8081 Α ug/L 1 0.00600 BGA3839 ALA SW-8081 Endosulfan I Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 ALA SW-8081 Endosulfan II <0.00600U 0.00600 0.00600 BGA3839 02/06/2023 22:42 Α ug/L 1 ALA SW-8081 Endosulfan sulfate Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 ALA SW-8081 Endrin <0.00600U 0.00600 0.00600 BGA3839 02/06/2023 22:42 Α ug/L 1 ALA ALA SW-8081 Endrin aldehyde Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 SW-8081 Endrin ketone <0.00600U 0.00600 0.00600 BGA3839 02/06/2023 22:42 Α ug/L 1 ALA SW-8081 gamma-BHC (Lindane, Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 ALA gamma-Hexachlorocyclohexa nE) gamma-Chlordane < 0.00600 U 0.00600 BGA3839 02/06/2023 22:42 SW-8081 Α ug/L 0.00600 1 ALA SW-8081 Heptachlor Α <0.00600U ug/L 1 0.00600 0.00600 BGA3839 02/06/2023 22:42 ALA <0.00600U 0.00600 BGA3839 02/06/2023 22:42 SW-8081 Heptachlor epoxide Α ug/L 0.00600 ALA 1 SW-8081 Methoxychlor <0.00600U 0.00600 0.00600 BGA3839 02/06/2023 22:42 ug/L ALA SW-8081 <0.300U Toxaphene (Chlorinated 0.300 0.300 BGA3839 02/06/2023 22:42 Α ug/L 1 ALA Camphene) Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 02/06/2023 22:42 SW-8081 96.6% 60-140





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-REF-W (Continued)

Lab Sample ID: 23A1459-05

Sample Alias:

FF-W (Continued)

Date Collected: 01/27/2023 11:25 Collected by: Michael Madonna

Marine Water

Sample Matrix:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl	surr	62.9%	60-140					02/06/2023 22:42	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB0277	02/11/2023 09:04	cdg
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-ı	m-xylene-suri	93.0%	60-140					02/11/2023 09:04	
SW-8082	Surrogate: Decachlorobiphenyl	surr	62.8%	60-140					02/11/2023 09:04	
Metals, Tota	al									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGA3813	01/30/2023 15:20	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB1605	02/22/2023 13:51	JLK
Metals, Diss	solved									
EPA 200.8	Antimony	Α	<1.00U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:11	JLK
EPA 200.8	Arsenic	Α	1.21J	ug/L	5	0.500	2.50	BGB0721	02/08/2023 15:47	JLK
EPA 200.8	Beryllium	Α	<0.0500U	ug/L	5	0.0500	1.00	BGB0721	02/14/2023 16:33	TBB
EPA 200.8	Cadmium	Α	0.312J	ug/L	5	0.250	5.00	BGB0721	02/09/2023 14:11	JLK
EPA 200.8	Chromium	Α	0.448J	ug/L	5	0.400	15.0	BGB0721	02/08/2023 15:47	JLK
EPA 200.8	Copper	Α	<1.00B, U	ug/L	5	1.00	5.00	BGB0721	02/08/2023 15:47	JLK
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/10/2023 14:47	SAB
EPA 200.8	Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0721	02/08/2023 15:47	JLK
EPA 200.8	Nickel	Α	0.302J	ug/L	5	0.250	5.00	BGB0721	02/08/2023 15:47	JLK
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 15:47	JLK
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 15:47	JLK
EPA 200.8	Zinc	Α	<1.00U	ug/L	5	1.00	10.0	BGB0721	02/09/2023 14:11	JLK
General Che	emistry									
EPA 350.1	Ammonia as N	Α	0.520	mg/L	1	0.0200	0.0500	BGB0479	02/03/2023 12:50	DLK
SM 2520 B	Salinity	N	29.2	Salinity units	1	1.00	1.00	BGB1516	02/10/2023 12:31	AKA
SM 2540 D	Residue-nonfilterable (TSS)	Α	9.47	mg/L	1	1.00	1.00	BGA3833	01/31/2023 12:49	BP / JRU





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-REF-W

Lab Sample ID: Sample Alias:

23A1459-05RE1

Date Collected: 01/27/2023 11:25 Collected by: Michael Madonna

Marine Water

Sample Matrix:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.11U	ug/L	1	1.11	2.23	BGA3953	02/13/2023 21:25	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 21:25	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 21:25	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.47C+, U	ug/L	1	4.47	4.47	BGA3953	02/13/2023 21:25	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 21:25	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.556C+, U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 21:25	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 21:25	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 21:25	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.47U	ug/L	1	4.47	4.47	BGA3953	02/13/2023 21:25	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Anthracene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.279U	ug/L	1	0.279	1.12	BGA3953	02/13/2023 21:25	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB



Reported:



Terracon_Houston

Houston, TX 77043

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number:

Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-REF-W (Continued)

Sample Matrix: Marine Water

Lab Sample ID: 23A1459-05RE1

Date Collected: 01/27/2023 11:25

Sample Alias:

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GCM	IS (Conti	nued)							
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Chrysene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	0.685V	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.279B, U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	0.865V	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Fluorene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<0.279C+, U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Isophorone (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Naphthalene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<0.279U	ug/L	1	0.279	2.23	BGA3953	02/13/2023 21:25	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.556U	ug/L	1	0.556	1.12	BGA3953	02/13/2023 21:25	KRB
SW-8270	Phenanthrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Phenol, Total (Rerun)	Α	0.7663	ug/L	1	0.556	1.12	BGA3953	02/13/2023 21:25	KRB
SW-8270	Pyrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGA3953	02/13/2023 21:25	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (	Rerun)	95.0%	54.6-148					02/13/2023 21:25	
SW-8270	Surrogate: 2-Fluorophenol-surr (Re	erun)	120%	<i>55-152</i>					02/13/2023 21:25	
SW-8270	Surrogate: 2,4,6-Tribromophenol-s	surr (Rerur	88.3%	<i>52.4-136</i>					02/13/2023 21:25	
SW-8270	Surrogate: Nitrobenzene-d5-surr (	Rerun)	81.7%	<i>52-162</i>					02/13/2023 21:25	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr (Rerun)		118%	<i>58.7-152</i>					02/13/2023 21:25	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Project Manager: Gregg Pawlak 04/03/2023 14:08 Houston, TX 77043

> Sample Results (Continued)

Client Sample ID: HI-REF-W (Continued)

Lab Sample ID:

23A1459-05RE1

Sample Alias:

Sample Matrix: Marine Water

Date Collected: 01/27/2023 11:25

Collected by: Michael Madonna

Method Analyte Result Q Units DF SDL LRL Analyzed Analyst Batch

Semivolatile Organic Compounds by GCMS (Continued)

SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 51.9-147 02/13/2023 21:25

Metals, Dissolved

SM 3500-Cr B Chromium (VI) (Rerun) 7.62 1.50 3.00 Α ug/L 1 BGB1154 02/10/2023 14:47 SAB





 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-1-E Sample Matrix: Elutriate

Lab Sample ID: 23A1459-07 Date Collected: 01/16/2023 14:20

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	mivolatile Organic Compou	ınds by G	iCMS							
SW-8270	3,3'-Dichlorobenzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/10/2023 22:08	KRB
SW-8270	Benzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/10/2023 22:08	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	86.0%	54.6-148					02/10/2023 22:08	
SW-8270	Surrogate: 2-Fluorophenol-surr	r	84.7%	<i>55-152</i>					02/10/2023 22:08	
SW-8270	Surrogate: 2,4,6-Tribromopher	nol-surr	116%	<i>52.4-136</i>					02/10/2023 22:08	
SW-8270	Surrogate: Nitrobenzene-d5-su	ırr	96.0%	<i>52-162</i>					02/10/2023 22:08	
SW-8270	Surrogate: Phenol-d5-surr		100%	<i>58.7-152</i>					02/10/2023 22:08	
SW-8270	Surrogate: p-Terphenyl-d14-su	ırr	85.9%	51.9-147					02/10/2023 22:08	
Elutriate Or	ganics by GC									
SW-8081	4,4'-DDD	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	4,4'-DDE	Α	0.00790	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	4,4'-DDT	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Aldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.00600C+, U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	А	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Chlordane (tech.)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	delta-BHC	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Dieldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Endosulfan I	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Endosulfan II	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Endosulfan sulfate	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Endrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Endrin aldehyde	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Endrin ketone	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	А	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	gamma-Chlordane	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Heptachlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Heptachlor epoxide	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Methoxychlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:20	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.300U	ug/L	1	0.300	0.300	BGB0543	02/08/2023 21:20	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xylene-su	rı 101%	60-140					02/08/2023 21:20	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-1-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-07

Date Collected: 01/16/2023 14:20

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Oi	rganics by GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl-	surr	41.0% S	60-140					02/08/2023 21:20	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB1127	02/17/2023 04:17	cro
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-	m-xylene-suri	128%	60-140					02/17/2023 04:17	
SW-8082	Surrogate: Decachlorobiphenyl-	surr	37.6% S	60-140					02/17/2023 04:17	
Elutriate M	etals, Dissolved									
EPA 200.8	Antimony	Α	1.54V2, J	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:21	JLK
EPA 200.8	Arsenic	Α	4.46	ug/L	5	0.500	2.50	BGB0721	02/14/2023 16:44	TBB
EPA 200.8	Beryllium	Α	<0.0500B2, U	ug/L	5	0.0500	1.00	BGB0721	02/28/2023 10:23	TBB
EPA 200.8	Cadmium	Α	0.267J	ug/L	5	0.250	5.00	BGB0721	02/09/2023 14:21	JLK
EPA 200.8	Chromium	Α	<0.400U	ug/L	5	0.400	15.0	BGB0721	02/14/2023 16:44	TBB
EPA 200.8	Copper	Α	<1.00B, B2, U	ug/L	5	1.00	5.00	BGB0721	03/03/2023 16:24	TBB
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/14/2023 16:44	SAB
EPA 200.8	Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0721	02/08/2023 15:58	JLK
EPA 200.8	Nickel	Α	3.03V2, J	ug/L	5	0.250	5.00	BGB0721	02/14/2023 16:44	TBB
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/09/2023 14:21	JLK
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 15:58	JLK
EPA 200.8	Zinc	Α	4.89V2, J	ug/L	5	1.00	10.0	BGB0721	02/09/2023 14:21	JLK
Elutriate M	etals, Total									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGB0678	02/06/2023 16:21	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB3632	03/01/2023 11:00	TBB
Elutriate Ge	eneral Chemistry									
SM 2540 D	Residue-nonfilterable (TSS)	Α	5.16	mg/L	1	1.00	1.00	BGB0150	02/02/2023 11:48	JRU
J 25 10 D		, · ·	3.10	9/ -	-	1.00	1.00	5050150	32, 32, 2023	, 11.10





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-1-E

23A1459-07RE1

Lab Sample ID: Sample Alias:

Sample Matrix: Elutriate

Date Collected: 01/16/2023 14:20

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	mivolatile Organic Compoun	ds by G	CMS							
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.12U	ug/L	1	1.12	2.25	BGB0925	02/14/2023 21:30	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 21:30	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 21:30	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 21:30	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 21:30	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 21:30	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 21:30	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 21:30	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.562U	ug/L	1	0.562	1.12	BGB0925	02/14/2023 21:30	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-1-E (Continued)

Sample Matrix: Elutriate

Collected by:

Lab Sample ID: 23A1459-07RE1

Date Collected: 01/16/2023 14:20

Gregg Pawlak

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compour	nds by GCM	IS (Continued)							
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	0.365	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Chrysene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	0.824V, V2	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.281B, B2, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	4.21V, V2	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Fluorene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Isophorone (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Naphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<0.281U	ug/L	1	0.281	2.25	BGB0925	02/14/2023 21:30	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.560C+, U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 21:30	KRB
SW-8270	Phenanthrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Phenol, Total (Rerun)	Α	<0.560B2, U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 21:30	KRB
SW-8270	Pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 21:30	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr	(Rerun)	96.0%	<i>54.6-148</i>					02/14/2023 21:30	
SW-8270	Surrogate: 2-Fluorophenol-surr (	•	114%	<i>55-152</i>					02/14/2023 21:30	
SW-8270	Surrogate: 2,4,6-Tribromopheno	•	94.7%	52.4-136					02/14/2023 21:30	
SW-8270	Surrogate: Nitrobenzene-d5-surr	. ,	90.2%	<i>52-162</i>					02/14/2023 21:30	
SW-8270	Surrogate: Phenol-d5-surr (Rerui	7)	130%	<i>58.7-152</i>					02/14/2023 21:30	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 04/03/2023 14:08

Project Manager: Gregg Pawlak

**Sample Results** (Continued)

Client Sample ID: HI-DMMU-1-E (Continued) Sample Matrix: Elutriate

Lab Sample ID: 23A1459-07RE1 Date Collected: 01/16/2023 14:20

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Ser	nivolatile Organic Compo	ounds by GC	CMS (Continue	d)						
SW-8270	Surrogate: p-Terphenyl-d14-s	surr (Rerun)	71.0%	51.9-147					02/14/2023 21:30	
Elutriate Met	tals, Dissolved									
SM 3500-Cr B	Chromium (VI) (Rerun)	Α	0.0251V2	mg/L	1	0.00150	0.00300	BGB1154	02/10/2023 14:48	SAB
Elutriate Ger	neral Chemistry									
EPA 350.1	Ammonia as N (Rerun)	Α	0.797	mg/L	1	0.0200	0.0500	BGB0807	02/07/2023 10:27	DLK





 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-2-E Sample Matrix: Elutriate

Lab Sample ID: 23A1459-08 Date Collected: 01/16/2023 17:20

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	mivolatile Organic Compou	ınds by G	CMS							
SW-8270	3,3'-Dichlorobenzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/10/2023 22:43	KRB
SW-8270	Benzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/10/2023 22:43	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	82.9%	54.6-148					02/10/2023 22:43	
SW-8270	Surrogate: 2-Fluorophenol-surr	-	87.6%	<i>55-152</i>					02/10/2023 22:43	
SW-8270	Surrogate: 2,4,6-Tribromopher	nol-surr	114%	<i>52.4-136</i>					02/10/2023 22:43	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-su	ırr	102%	<i>52-162</i>					02/10/2023 22:43	
SW-8270	Surrogate: Phenol-d5-surr		95.3%	<i>58.7-152</i>					02/10/2023 22:43	
<i>SW-8270</i>	Surrogate: p-Terphenyl-d14-su	ırr	74.6%	51.9-147					02/10/2023 22:43	
Elutriate Or	ganics by GC									
SW-8081	4,4'-DDD	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	4,4'-DDE	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	4,4'-DDT	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Aldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.00600C+, U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Chlordane (tech.)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	delta-BHC	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Dieldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Endosulfan I	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Endosulfan II	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Endosulfan sulfate	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Endrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Endrin aldehyde	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Endrin ketone	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	А	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	gamma-Chlordane	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Heptachlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Heptachlor epoxide	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Methoxychlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 21:47	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.300U	ug/L	1	0.300	0.300	BGB0543	02/08/2023 21:47	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xylene-su	rı 115%	60-140					02/08/2023 21:47	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-08

Date Collected: 01/16/2023 17:20

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Or	ganics by GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl-	surr	73.4%	60-140					02/08/2023 21:47	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB1127	02/17/2023 04:44	cro
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-i	m-xylene-suri	125%	60-140					02/17/2023 04:44	
SW-8082	Surrogate: Decachlorobiphenyl-	surr	55.6% S	60-140					02/17/2023 04:44	
Elutriate Me	etals, Dissolved									
EPA 200.8	Antimony	Α	<1.00 B2, U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:24	JLK
EPA 200.8	Arsenic	Α	3.22	ug/L	5	0.500	2.50	BGB0721	02/14/2023 16:47	TBB
EPA 200.8	Beryllium	Α	<0.0500B2, U	ug/L	5	0.0500	1.00	BGB0721	02/28/2023 12:12	TBB
EPA 200.8	Cadmium	Α	0.263J	ug/L	5	0.250	5.00	BGB0721	02/09/2023 14:24	JLK
EPA 200.8	Chromium	Α	0.670J	ug/L	5	0.400	15.0	BGB0721	02/14/2023 16:47	TBB
EPA 200.8	Copper	Α	<1.00B, B2, U	ug/L	5	1.00	5.00	BGB0721	03/03/2023 16:26	TBB
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/14/2023 16:47	SAB
EPA 200.8	Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0721	02/08/2023 16:01	JLK
EPA 200.8	Nickel	Α	1.78V2, J	ug/L	5	0.250	5.00	BGB0721	02/14/2023 16:47	TBB
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/09/2023 14:24	JLK
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 16:01	JLK
EPA 200.8	Zinc	Α	2.15V2, J	ug/L	5	1.00	10.0	BGB0721	02/09/2023 14:24	JLK
Elutriate Me	etals, Total									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGB0678	02/06/2023 16:24	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB3632	03/01/2023 11:03	TBB
Elutriate Ge	eneral Chemistry									
SM 2540 D	Residue-nonfilterable (TSS)	Α	2.84	mg/L	1	1.00	1.00	BGB0150	02/02/2023 11:48	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-2-E

DMMU-2-E Sample Matrix: Elutriate

Lab Sample ID: 23A1459-08RE1 Date Collected: 01/16/2023 17:20 Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compour	nds by G	CMS							
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.12U	ug/L	1	1.12	2.25	BGB0925	02/14/2023 22:05	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:05	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 22:05	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:05	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:05	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:05	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:05	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 22:05	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.562U	ug/L	1	0.562	1.12	BGB0925	02/14/2023 22:05	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-2-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-08RE1

Date Collected: 01/16/2023 17:20

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
	,		-	Office		JDL	LIXL	Datei	Analyzeu	Allalyst
Elutriate Se	emivolatile Organic Compou	nds by GCM	IS (Continued)							
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Chrysene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	0.837V, V2	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.281B, B2, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	3.34V, V2	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Fluorene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Isophorone (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Naphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<0.281U	ug/L	1	0.281	2.25	BGB0925	02/14/2023 22:05	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.560C+, U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:05	KRB
SW-8270	Phenanthrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Phenol, Total (Rerun)	Α	<0.560B2, U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:05	KRB
SW-8270	Pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:05	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sui	rr (Rerun)	93.0%	54.6-148					02/14/2023 22:05	
SW-8270	Surrogate: 2-Fluorophenol-surr	-	105%	<i>55-152</i>					02/14/2023 22:05	
SW-8270	Surrogate: 2,4,6-Tribromophen	ol-surr (Rerur	102%	52.4-136					02/14/2023 22:05	
SW-8270	Surrogate: Nitrobenzene-d5-sur	rr (Rerun)	82.0%	<i>52-162</i>					02/14/2023 22:05	
SW-8270	Surrogate: Phenol-d5-surr (Rero	un)	121%	<i>58.7-152</i>					02/14/2023 22:05	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results (Continued)

Client Sample ID: HI-DMMU-2-E (Continued)

23A1459-08RE1

Lab Sample ID: Sample Alias: MMU-2-E (Continued)

Sample Matrix: Elutriate

Date Collected: 01/16/2023 17:20

Collected by: Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Analyzed Analyst Batch **Elutriate Semivolatile Organic Compounds by GCMS (Continued)** SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 51.9-147 02/14/2023 22:05 **Elutriate Metals, Dissolved** SM 3500-Cr B Chromium (VI) (Rerun) 0.0248V2 0.00150 0.00300 Α mg/L BGB1154 02/10/2023 14:49 1 SAB **Elutriate General Chemistry** EPA 350.1 Ammonia as N (Rerun) 0.456 mg/L 0.0200 0.0500 BGB0807 02/07/2023 10:04 DLK





 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-3-E Sample Matrix: Elutriate

Lab Sample ID: 23A1459-09 Date Collected: 01/19/2023 15:20

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Sei	mivolatile Organic Compo	unds by G	CMS							
SW-8270	3,3'-Dichlorobenzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/10/2023 21:34	KRB
SW-8270	Benzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/10/2023 21:34	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	urr	90.0%	54.6-148					02/10/2023 21:34	
SW-8270	Surrogate: 2-Fluorophenol-sur	rr	94.4%	<i>55-152</i>					02/10/2023 21:34	
SW-8270	Surrogate: 2,4,6-Tribromophe	nol-surr	113%	<i>52.4-136</i>					02/10/2023 21:34	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-surr		101%	<i>52-162</i>					02/10/2023 21:34	
SW-8270	Surrogate: Phenol-d5-surr		94.9%	<i>58.7-152</i>					02/10/2023 21:34	
SW-8270	Surrogate: p-Terphenyl-d14-s	urr	84.5%	51.9-147					02/10/2023 21:34	
Elutriate Org	ganics by GC									
SW-8081	4,4'-DDD	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	4,4'-DDE	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	4,4'-DDT	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Aldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.00600C+, U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	А	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Chlordane (tech.)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	delta-BHC	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Dieldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Endosulfan I	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Endosulfan II	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Endosulfan sulfate	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Endrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Endrin aldehyde	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Endrin ketone	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	А	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	gamma-Chlordane	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Heptachlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Heptachlor epoxide	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Methoxychlor	Α	0.0101P	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 22:14	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.300U	ug/L	1	0.300	0.300	BGB0543	02/08/2023 22:14	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-su	rı 81.1%	60-140					02/08/2023 22:14	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-3-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-09

Sample Alias:

Date Collected: 01/19/2023 15:20 Collected by: Gregg Pawlak

Elutriate Organics by GC (Co SW-8081 Surrogate: Decact SW-8082 PCBs, Total	•	63.9%							
•	, ,	63.9%							
SW-8082 PCBs, Total	Α		<i>60-140</i>					02/08/2023 22:14	
		<0.00600U	ug/L	1	0.00600	0.120	BGB1127	02/17/2023 05:11	cro
SW-8082 Surrogate: 2,4,5,6	Tetrachloro-m-xylene-suri	161% S	60-140					02/17/2023 05:11	
SW-8082 Surrogate: Decach	lorobiphenyl-surr	48.9% S	60-140					02/17/2023 05:11	
Elutriate Metals, Dissolved									
EPA 200.8 Antimony	Α	<1.00B2, U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:26	JLK
EPA 200.8 Arsenic	Α	5.53	ug/L	5	0.500	2.50	BGB0721	02/14/2023 16:50	TBB
EPA 200.8 Beryllium	Α	<0.0500B2, U	ug/L	5	0.0500	1.00	BGB0721	02/28/2023 12:14	TBB
EPA 200.8 Cadmium	Α	<0.250U	ug/L	5	0.250	5.00	BGB0721	02/09/2023 14:26	JLK
EPA 200.8 Chromium	Α	<0.400U	ug/L	5	0.400	15.0	BGB0721	02/14/2023 16:50	TBB
EPA 200.8 Copper	Α	1.08V, V2, J	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:26	JLK
Calc Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/14/2023 16:50	SAB
EPA 200.8 Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0721	02/08/2023 16:04	JLK
EPA 200.8 Nickel	Α	2.90V2, J	ug/L	5	0.250	5.00	BGB0721	02/14/2023 16:50	TBB
EPA 200.8 Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/09/2023 14:26	JLK
EPA 200.8 Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 16:04	JLK
EPA 200.8 Zinc	Α	5.24V2, J	ug/L	5	1.00	10.0	BGB0721	02/09/2023 14:26	JLK
Elutriate Metals, Total									
EPA 245.1 Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGB0678	02/06/2023 16:27	NAZ
EPA 200.8 Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB3632	03/01/2023 11:05	TBB
Elutriate General Chemistry									
SM 2540 D Residue-nonfiltera	ble (TSS) A	5.89	mg/L	1	1.00	1.00	BGB0150	02/02/2023 11:48	JRU





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-3-E

HI-DMMU-3-E Sample Matrix: Elutriate 23A1459-09RE1 Date Collected: 01/19/20

Lab Sample ID: 23A1459-09RE1 Date Collected: 01/19/2023 15:20 Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compour	nds by G	CMS							
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.12U	ug/L	1	1.12	2.25	BGB0925	02/14/2023 20:55	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 20:55	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 20:55	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 20:55	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 20:55	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 20:55	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 20:55	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 20:55	KRB
SW-8270	Acenaphthene (Rerun)	Α	1.29	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Acenaphthylene (Rerun)	Α	0.579	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.562U	ug/L	1	0.562	1.12	BGB0925	02/14/2023 20:55	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-3-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-09RE1

Date Collected: 01/19/2023 15:20

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compound	s by GCM	1S (Continued)							
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Chrysene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	0.898V, V2	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.281B, B2, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	7.87V, V2	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Fluorene (Rerun)	Α	3.55	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Isophorone (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Naphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<0.281U	ug/L	1	0.281	2.25	BGB0925	02/14/2023 20:55	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.560C+, U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 20:55	KRB
SW-8270	Phenanthrene (Rerun)	Α	1.08	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Phenol, Total (Rerun)	Α	<0.560B2, U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 20:55	KRB
SW-8270	Pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 20:55	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (F	Rerun)	95.7%	54.6-148					02/14/2023 20:55	
SW-8270	Surrogate: 2-Fluorophenol-surr (Re	erun)	110%	<i>55-152</i>					02/14/2023 20:55	
SW-8270	Surrogate: 2,4,6-Tribromophenol-s	urr (Rerur	92.2%	<i>52.4-136</i>					02/14/2023 20:55	
SW-8270	Surrogate: Nitrobenzene-d5-surr (R	Rerun)	89.6%	<i>52-162</i>					02/14/2023 20:55	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)		131%	<i>58.7-152</i>					02/14/2023 20:55	



www. NWDLS.com

TCEQ-TOX T104704202-22-17

Lab Sample ID:

Sample Alias:

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: 04/03/2023 14:08 Houston, TX 77043 Project Manager: Gregg Pawlak

> Sample Results (Continued)

HI-DMMU-3-E (Continued) Client Sample ID:

Sample Matrix: Elutriate

23A1459-09RE1 Date Collected: 01/19/2023 15:20

> Collected by: Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Analyzed Analyst Batch **Elutriate Semivolatile Organic Compounds by GCMS (Continued)** SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 76.0% 51.9-147 02/14/2023 20:55 **Elutriate Metals, Dissolved** SM 3500-Cr B Chromium (VI) (Rerun) 0.0258V2 0.00150 0.00300 Α mg/L BGB1154 02/10/2023 14:50 1 SAB **Elutriate General Chemistry** EPA 350.1 Ammonia as N (Rerun) 0.912 mg/L 0.0200 0.0500 BGB0807 02/07/2023 10:07 DLK





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Sample Matrix: Client Sample ID: HI-DMMU-4-E Elutriate

Lab Sample ID: 23A1459-10 Date Collected: 01/19/2023 17:00 Collected by: Gregg Pawlak

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Ser	mivolatile Organic Compo	ınds by G	iCMS							
SW-8270	3,3'-Dichlorobenzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/10/2023 23:18	KRB
SW-8270	Benzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/10/2023 23:18	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	85.6%	54.6-148					02/10/2023 23:18	
SW-8270	Surrogate: 2-Fluorophenol-surr	r	93.0%	<i>55-152</i>					02/10/2023 23:18	
SW-8270	Surrogate: 2,4,6-Tribromopher	nol-surr	119%	52.4-136					02/10/2023 23:18	
SW-8270	Surrogate: Nitrobenzene-d5-su	ırr	101%	<i>52-162</i>					02/10/2023 23:18	
SW-8270	Surrogate: Phenol-d5-surr		96.3%	<i>58.7-152</i>					02/10/2023 23:18	
SW-8270	Surrogate: p-Terphenyl-d14-su	ırr	78.0%	<i>51.9-147</i>					02/10/2023 23:18	
Elutriate Org	ganics by GC									
SW-8081	4,4'-DDD	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	4,4'-DDE	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	4,4'-DDT	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Aldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.00600C+, U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	А	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Chlordane (tech.)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	delta-BHC	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Dieldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Endosulfan I	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Endosulfan II	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Endosulfan sulfate	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Endrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Endrin aldehyde	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Endrin ketone	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	А	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	gamma-Chlordane	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Heptachlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Heptachlor epoxide	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Methoxychlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/08/2023 23:36	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.300 U	ug/L	1	0.300	0.300	BGB0543	02/08/2023 23:36	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xylene-su	rı 124%	60-140					02/08/2023 23:36	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-4-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-10

Date Collected: 01/19/2023 17:00

Sample Alias:

Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Or	ganics by GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl-	surr	78.3%	60-140					02/08/2023 23:36	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB1127	02/17/2023 05:38	cro
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-i	m-xylene-suri	130%	60-140					02/17/2023 05:38	
SW-8082	Surrogate: Decachlorobiphenyl-	surr	49.0% S	60-140					02/17/2023 05:38	
Elutriate Me	etals, Dissolved									
EPA 200.8	Antimony	Α	<1.00 B2, U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:29	JLK
EPA 200.8	Arsenic	Α	2.39J	ug/L	5	0.500	2.50	BGB0721	02/14/2023 16:53	TBB
EPA 200.8	Beryllium	Α	<0.0500B2, U	ug/L	5	0.0500	1.00	BGB0721	02/28/2023 12:16	TBB
EPA 200.8	Cadmium	Α	<0.250U	ug/L	5	0.250	5.00	BGB0721	02/09/2023 14:29	JLK
EPA 200.8	Chromium	Α	<0.400U	ug/L	5	0.400	15.0	BGB0721	02/14/2023 16:53	TBB
EPA 200.8	Copper	Α	<1.00B, B2, U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:29	JLK
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/14/2023 16:53	SAB
EPA 200.8	Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0721	02/08/2023 16:07	JLK
EPA 200.8	Nickel	Α	1.27V2, J	ug/L	5	0.250	5.00	BGB0721	02/14/2023 16:53	TBB
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/09/2023 14:29	JLK
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 16:07	JLK
EPA 200.8	Zinc	Α	1.76V2, J	ug/L	5	1.00	10.0	BGB0721	02/09/2023 14:29	JLK
Elutriate Me	etals, Total									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGB0678	02/06/2023 16:31	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB3632	03/01/2023 11:15	TBB
Elutriate Ge	eneral Chemistry									
SM 2540 D	Residue-nonfilterable (TSS)	Α	3.04	mg/L	1	1.00	1.00	BGB0150	02/02/2023 11:48	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-4-E

DMMU-4-E Sample Matrix: Elutriate

Lab Sample ID: 23A1459-10RE1 Date Collected: 01/19/2023 17:00 Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compour	ds by G	CMS							
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.12U	ug/L	1	1.12	2.25	BGB0925	02/14/2023 22:40	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:40	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 22:40	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:40	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:40	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:40	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:40	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 22:40	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.562U	ug/L	1	0.562	1.12	BGB0925	02/14/2023 22:40	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-4-E (Continued) Sample Matrix: Elutriate

Lab Sample ID: 23A1459-10RE1 Date Collected: 01/19/2023 17:00

Sample Alias:

Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	mivolatile Organic Compound	ls by GCM	1S (Continued)							
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Chrysene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	0.834V, V2	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.281B, B2, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	4.89V, V2	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Fluorene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Isophorone (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Naphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<0.281U	ug/L	1	0.281	2.25	BGB0925	02/14/2023 22:40	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.560C+, U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:40	KRB
SW-8270	Phenanthrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Phenol, Total (Rerun)	Α	<0.560B2, U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 22:40	KRB
SW-8270	Pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 22:40	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (	Rerun)	94.8%	54.6-148					02/14/2023 22:40	
SW-8270	Surrogate: 2-Fluorophenol-surr (Re	-	112%	<i>55-152</i>					02/14/2023 22:40	
SW-8270	Surrogate: 2,4,6-Tribromophenol-s	surr (Rerur	94.7%	<i>52.4-136</i>					02/14/2023 22:40	
SW-8270	Surrogate: Nitrobenzene-d5-surr (	Rerun)	85.3%	<i>52-162</i>					02/14/2023 22:40	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)		129%	<i>58.7-152</i>					02/14/2023 22:40	



01/19/2023 17:00

TCEQ-TOX T104704202-22-17



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: 04/03/2023 14:08 Houston, TX 77043 Project Manager: Gregg Pawlak

> Sample Results (Continued)

Client Sample ID: HI-DMMU-4-E (Continued)

23A1459-10RE1

Sample Matrix: Elutriate

Date Collected:

Lab Sample ID: Sample Alias: Collected by: Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Analyzed Analyst Batch

**Elutriate Semivolatile Organic Compounds by GCMS (Continued)** SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 82.7% 51.9-147 02/14/2023 22:40 **Elutriate Metals, Dissolved** 0.00208V2, J SM 3500-Cr B Chromium (VI) (Rerun) 0.00150 0.00300 Α mg/L BGB1154 02/10/2023 14:51 1 SAB **Elutriate General Chemistry** EPA 350.1 Ammonia as N (Rerun) 0.864 mg/L 0.0200 0.0500 BGB0808 02/07/2023 10:33 DLK





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-5-E Sample Matrix: Elutriate

Lab Sample ID: 23A1459-11 Date Collected: 01/18/2023 9:40

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Ser	nivolatile Organic Compo	unds by G	GCMS							
SW-8270	3,3'-Dichlorobenzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/10/2023 23:52	KRB
SW-8270	Benzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/10/2023 23:52	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	urr	83.6%	54.6-148					02/10/2023 23:52	
SW-8270	Surrogate: 2-Fluorophenol-sur	r	90.9%	<i>55-152</i>					02/10/2023 23:52	
SW-8270	Surrogate: 2,4,6-Tribromophe.	nol-surr	113%	<i>52.4-136</i>					02/10/2023 23:52	
SW-8270	Surrogate: Nitrobenzene-d5-su	urr	104%	<i>52-162</i>					02/10/2023 23:52	
SW-8270	Surrogate: Phenol-d5-surr		97.8%	<i>58.7-152</i>					02/10/2023 23:52	
SW-8270	Surrogate: p-Terphenyl-d14-su	urr	81.9%	51.9-147					02/10/2023 23:52	
Elutriate Org	janics by GC									
SW-8081	4,4'-DDD	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	4,4'-DDE	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	4,4'-DDT	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Aldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.00600C+, U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.00600 U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Chlordane (tech.)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	delta-BHC	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Dieldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Endosulfan I	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Endosulfan II	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Endosulfan sulfate	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Endrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Endrin aldehyde	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Endrin ketone	A	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.00600 U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	gamma-Chlordane	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Heptachlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Heptachlor epoxide	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Methoxychlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:03	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.300U	ug/L	1	0.300	0.300	BGB0543	02/09/2023 00:03	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-su	ırı 103%	60-140					02/09/2023 00:03	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-5-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-11 Date Collected: 01/18/2023 9:40

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Org	ganics by GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl-	surr	67.9%	60-140					02/09/2023 00:03	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB1127	02/17/2023 06:31	cro
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-ı	m-xylene-suri	148% S	60-140					02/17/2023 06:31	
SW-8082	Surrogate: Decachlorobiphenyl-	surr	62.1%	60-140					02/17/2023 06:31	
Elutriate Me	tals, Dissolved									
EPA 200.8	Antimony	Α	<1.00 B2, U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:31	JLK
EPA 200.8	Arsenic	Α	3.09	ug/L	5	0.500	2.50	BGB0721	02/14/2023 16:56	TBB
EPA 200.8	Beryllium	Α	<0.0500B2, U	ug/L	5	0.0500	1.00	BGB0721	02/28/2023 12:19	TBB
EPA 200.8	Cadmium	Α	<0.250U	ug/L	5	0.250	5.00	BGB0721	02/09/2023 14:31	JLK
EPA 200.8	Chromium	Α	<0.400U	ug/L	5	0.400	15.0	BGB0721	02/14/2023 16:56	TBB
EPA 200.8	Copper	Α	<1.00B, B2, U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:31	JLK
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/15/2023 14:44	SAB
SM 3500-Cr B	Chromium (VI)	Α	0.0297V2	mg/L	1	0.00150	0.00300	BGB2104	02/15/2023 14:44	SAB
EPA 200.8	Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0721	02/08/2023 16:10	JLK
EPA 200.8	Nickel	Α	0.895V2, J	ug/L	5	0.250	5.00	BGB0721	02/14/2023 16:56	TBB
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/09/2023 14:31	JLK
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 16:10	JLK
EPA 200.8	Zinc	Α	2.26V2, J	ug/L	5	1.00	10.0	BGB0721	02/09/2023 14:31	JLK
Elutriate Me	tals, Total									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGB0678	02/06/2023 16:41	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB3632	03/01/2023 11:18	TBB
Elutriate Ge	neral Chemistry									
SM 2540 D	Residue-nonfilterable (TSS)	Α	5.64	mg/L	1	1.00	1.00	BGB0150	02/02/2023 11:48	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-5-E

DMMU-5-E Sample Matrix: Elutriate

Lab Sample ID: 23A1459-11RE1 Date Collected: 01/18/2023 9:40 Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compoun	ds by G	CMS							
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.12U	ug/L	1	1.12	2.25	BGB0925	02/14/2023 23:15	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:15	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 23:15	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:15	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:15	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:15	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:15	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 23:15	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	Anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.562U	ug/L	1	0.562	1.12	BGB0925	02/14/2023 23:15	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:15	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

#### Sample Results (Continued)

Client Sample ID: HI-DMMU-5-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-11RE1 Date Collected:
Sample Alias: Collected by:

Collected by: Gregg Pawlak

01/18/2023 9:40

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Elutriate Semivolatile Organic Compounds by GCMS (Continued) SW-8270 bis(2-Chloroethoxy)methane <0.281U 0.281 0.562 BGB0925 02/14/2023 23:15 KRB Α ug/L 1 (Rerun) SW-8270 bis(2-Chloroethyl) ether <0.281U 0.281 0.562 BGB0925 02/14/2023 23:15 KRB Α ua/L 1 (Rerun) SW-8270 Bis(2-ethylhexyl )phthalate Α <0.281U ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 KRB (Rerun) SW-8270 BGB0925 02/14/2023 23:15 Butyl benzyl phthalate Α <0.281U ug/L 1 0.281 0.562 KRB (Rerun) SW-8270 Chrysene (Rerun) Α <0.281U ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 KRB Dibenzo(a,h)anthracene 02/14/2023 23:15 SW-8270 <0.281U 0.281 0.562 BGB0925 KRB Α ug/L 1 (Rerun) SW-8270 Diethyl phthalate (Rerun) Α 0.787V, V2 ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 KRB SW-8270 Dimethyl phthalate (Rerun) Α <0.281B, B2, U ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 **KRB** Di-n-butyl phthalate (Rerun) SW-8270 Α 9.59V, V2 ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 KRB SW-8270 Di-n-octyl phthalate (Rerun) Α < 0.281 U ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 KRB < 0.281 U 0.281 0.562 BGB0925 02/14/2023 23:15 KRB SW-8270 Fluoranthene (Rerun) Α ug/L 1 SW-8270 <0.281U 0.562 BGB0925 02/14/2023 23:15 KRB Fluorene (Rerun) Α ug/L 0.281 <0.281C+, U 0.281 0.562 BGB0925 02/14/2023 23:15 SW-8270 Hexachlorobenzene (Rerun) Α ug/L 1 KRB SW-8270 Hexachlorobutadiene (Rerun) Α <0.281U ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 **KRB** 02/14/2023 23:15 SW-8270 Hexachlorocyclopentadiene Α < 0.281 U ug/L 1 0.281 0.562 BGB0925 KRB (Rerun) < 0.281 U 0.281 SW-8270 Hexachloroethane (Rerun) Α ug/L 1 0.562 BGB0925 02/14/2023 23:15 KRB SW-8270 Indeno(1,2,3-cd) pyrene Α <0.281U ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 KRB (Rerun) SW-8270 Isophorone (Rerun) Α <0.281U ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 KRB SW-8270 <0.281U 0.281 0.562 BGB0925 02/14/2023 23:15 Naphthalene (Rerun) Α ug/L 1 KRB SW-8270 Nitrobenzene (Rerun) Α <0.281U ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 KRB n-Nitrosodimethylamine <0.281U 0.281 BGB0925 02/14/2023 23:15 SW-8270 Α ug/L 1 2.25 KRB (Rerun) <0.281U 0.281 BGB0925 SW-8270 n-Nitrosodi-n-propylamine Α ua/L 1 0.562 02/14/2023 23:15 KRB (Rerun) SW-8270 n-Nitrosodiphenylamine <0.281C+, U 0.281 0.562 BGB0925 02/14/2023 23:15 KRB Α ug/L 1 (Rerun) SW-8270 Pentachlorophenol (Rerun) Α <0.560C+, U 0.560 1.12 BGB0925 02/14/2023 23:15 KRB ug/L 1 SW-8270 Phenanthrene (Rerun) Α < 0.281 U ug/L 1 0.281 0.562 BGB0925 02/14/2023 23:15 KRB SW-8270 Phenol, Total (Rerun) Α <0.560B2, U ug/L 1 0.560 1.12 BGB0925 02/14/2023 23:15 KRB SW-8270 Pyrene (Rerun) <0.281U ug/L 0.281 0.562 BGB0925 02/14/2023 23:15 KRB SW-8270 93.4% 54.6-148 02/14/2023 23:15 Surrogate: 2-Fluorobiphenyl-surr (Rerun) SW-8270 Surrogate: 2-Fluorophenol-surr (Rerun) 112% 55-152 02/14/2023 23:15 96.3% 52.4-136 02/14/2023 23:15 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr (Rerur. SW-8270 86.1% 52-162 02/14/2023 23:15 Surrogate: Nitrobenzene-d5-surr (Rerun) Surrogate: Phenol-d5-surr (Rerun) 58.7-152 02/14/2023 23:15 SW-8270 128%



130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-38
TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results
(Continued)

Client Sample ID: HI-DMMU-5-E (Continued)

DMMU-5-E (Continued)

Lab Sample ID: 23A1459-11RE1 Sample Alias:

Sample Matrix: Elutriate

Date Collected: 01/18/2023 9:40

Collected by: Gregg Pawlak

Method Analyte * Result Q Units DF SDL LRL Batch Analyzed Analyst

**Elutriate Semivolatile Organic Compounds by GCMS (Continued)** 

SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 81.1% 51.9-147 02/14/2023 23:15

**Elutriate General Chemistry** 

EPA 350.1 Ammonia as N (Rerun) A 0.877 mg/L 5 0.100 0.250 BGB0807 02/07/2023 10:10 DLK





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-6-E Sample Matrix: Elutriate

Lab Sample ID: 23A1459-12 Date Collected: 01/18/2023 11:15 Collected by: Gregg Pawlak

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	mivolatile Organic Compou	ınds by G	CMS							
SW-8270	3,3'-Dichlorobenzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/11/2023 00:27	KRB
SW-8270	Benzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/11/2023 00:27	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	rr	84.0%	54.6-148					02/11/2023 00:27	
SW-8270	Surrogate: 2-Fluorophenol-surr		89.4%	<i>55-152</i>					02/11/2023 00:27	
SW-8270	Surrogate: 2,4,6-Tribromophen	ol-surr	111%	<i>52.4-136</i>					02/11/2023 00:27	
SW-8270	Surrogate: Nitrobenzene-d5-su	rr	104%	<i>52-162</i>					02/11/2023 00:27	
SW-8270	Surrogate: Phenol-d5-surr		97.3%	<i>58.7-152</i>					02/11/2023 00:27	
SW-8270	Surrogate: p-Terphenyl-d14-su	rr	80.0%	<i>51.9-147</i>					02/11/2023 00:27	
Elutriate Or	ganics by GC									
SW-8081	4,4'-DDD	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	4,4'-DDE	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	4,4'-DDT	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Aldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.00600C+, U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Chlordane (tech.)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	delta-BHC	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Dieldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Endosulfan I	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Endosulfan II	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Endosulfan sulfate	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Endrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Endrin aldehyde	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Endrin ketone	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	gamma-Chlordane	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Heptachlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Heptachlor epoxide	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Methoxychlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:30	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.300U	ug/L	1	0.300	0.300	BGB0543	02/09/2023 00:30	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-	m-xylene-su	rı 119%	60-140					02/09/2023 00:30	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-6-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-12

Date Collected: 01/18/2023 11:15

Sample Alias:

Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Org	anics by GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl	surr	63.9%	60-140					02/09/2023 00:30	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB1127	02/17/2023 06:58	cro
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-ı	m-xylene-suri	127%	60-140					02/17/2023 06:58	
SW-8082	Surrogate: Decachlorobiphenyl	surr	60.2%	60-140					02/17/2023 06:58	
Elutriate Met	tals, Dissolved									
EPA 200.8	Antimony	Α	1.07V2, J	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:41	JLK
EPA 200.8	Arsenic	Α	0.943J	ug/L	5	0.500	2.50	BGB0721	02/14/2023 17:08	TBB
EPA 200.8	Beryllium	Α	<0.0500B2, U	ug/L	5	0.0500	1.00	BGB0721	02/28/2023 12:21	TBB
EPA 200.8	Cadmium	Α	<0.250U	ug/L	5	0.250	5.00	BGB0721	02/09/2023 14:41	JLK
EPA 200.8	Chromium	Α	0.941J	ug/L	5	0.400	15.0	BGB0721	02/14/2023 17:08	TBB
EPA 200.8	Copper	Α	<1.00B, B2, U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:41	JLK
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/15/2023 14:44	SAB
SM 3500-Cr B	Chromium (VI)	Α	0.0239V2	mg/L	1	0.00150	0.00300	BGB2104	02/15/2023 14:44	SAB
EPA 200.8	Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0721	02/08/2023 16:21	JLK
EPA 200.8	Nickel	Α	2.16V2, J	ug/L	5	0.250	5.00	BGB0721	02/14/2023 17:08	TBB
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/09/2023 14:41	JLK
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 16:21	JLK
EPA 200.8	Zinc	Α	2.09V2, J	ug/L	5	1.00	10.0	BGB0721	02/09/2023 14:41	JLK
Elutriate Met	tals, Total									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGB0678	02/06/2023 16:44	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB3632	03/01/2023 11:20	TBB
Elutriate Ger	neral Chemistry									
SM 2540 D	Residue-nonfilterable (TSS)	Α	1.68	mg/L	1	1.00	1.00	BGB0150	02/02/2023 11:48	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-6-E

Lab Sample ID:

 HI-DMMU-6-E
 Sample Matrix:
 Elutriate

 23A1459-12RE1
 Date Collected:
 01/18/2023 11:15

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compoun	ds by G	CMS							
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.12U	ug/L	1	1.12	2.25	BGB0925	02/14/2023 23:50	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:50	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 23:50	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:50	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:50	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:50	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:50	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/14/2023 23:50	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.562U	ug/L	1	0.562	1.12	BGB0925	02/14/2023 23:50	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-6-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-12RE1

Date Collected: 01/18/2023 11:15

Sample Alias:

Collected by: Gregg Pawlak

Method	Analyte	* Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	mivolatile Organic Compounds	by GCMS (Continued	1)						
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	A <0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	A <0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	A <0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Chrysene (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Diethyl phthalate (Rerun)	0.686V, V2	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Dimethyl phthalate (Rerun)	<0.281B, B2, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	4.03V, V2	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Fluoranthene (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Fluorene (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Hexachlorobenzene (Rerun)	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Hexachlorobutadiene (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Hexachloroethane (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	A <0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Isophorone (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Naphthalene (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Nitrobenzene (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	n-Nitrosodimethylamine A (Rerun)	A <0.281U	ug/L	1	0.281	2.25	BGB0925	02/14/2023 23:50	KRB
SW-8270	n-Nitrosodi-n-propylamine A (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	n-Nitrosodiphenylamine A (Rerun)	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Pentachlorophenol (Rerun)	<0.560C+, U	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:50	KRB
SW-8270	Phenanthrene (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Phenol, Total (Rerun)	0.669V2	ug/L	1	0.560	1.12	BGB0925	02/14/2023 23:50	KRB
SW-8270	Pyrene (Rerun)	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/14/2023 23:50	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (Rer	un) 96.2%	54.6-148					02/14/2023 23:50	
SW-8270	Surrogate: 2-Fluorophenol-surr (Rerui	-	<i>55-152</i>					02/14/2023 23:50	
SW-8270	Surrogate: 2,4,6-Tribromophenol-surr		52.4-136					02/14/2023 23:50	
SW-8270	Surrogate: Nitrobenzene-d5-surr (Ren	un) 83.5%	<i>52-162</i>					02/14/2023 23:50	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)	128%	<i>58.7-152</i>					02/14/2023 23:50	



130 S. Trade Center Parkway, Conroe TX 77385 Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-38 TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: 04/03/2023 14:08 Houston, TX 77043

Project Manager: Gregg Pawlak

Sample Results (Continued)

HI-DMMU-6-E (Continued) Sample Matrix: Elutriate Client Sample ID:

Lab Sample ID: 23A1459-12RE1 Date Collected: 01/18/2023 11:15

Sample Alias: Collected by: Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Analyzed Analyst Batch

**Elutriate Semivolatile Organic Compounds by GCMS (Continued)** 

SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 51.9-147 02/14/2023 23:50

**Elutriate General Chemistry** 

EPA 350.1 Ammonia as N (Rerun) 0.133 0.0200 0.0500 BGB0807 Α mg/L 02/07/2023 10:14 1 DLK





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-7-E

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-13

Date Collected: 01/16/2023 16:37

Sample Alias:

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	mivolatile Organic Compo	unds by G	iCMS							
SW-8270	3,3'-Dichlorobenzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/11/2023 01:02	KRB
SW-8270	Benzidine	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/11/2023 01:02	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	84.5%	54.6-148					02/11/2023 01:02	
<i>SW-8270</i>	Surrogate: 2-Fluorophenol-sur	r	87.3%	<i>55-152</i>					02/11/2023 01:02	
<i>SW-8270</i>	Surrogate: 2,4,6-Tribromopher	nol-surr	114%	<i>52.4-136</i>					02/11/2023 01:02	
SW-8270	Surrogate: Nitrobenzene-d5-su	ırr	100%	<i>52-162</i>					02/11/2023 01:02	
SW-8270	Surrogate: Phenol-d5-surr		94.6%	<i>58.7-152</i>					02/11/2023 01:02	
SW-8270	Surrogate: p-Terphenyl-d14-su	ırr	80.1%	51.9-147					02/11/2023 01:02	
Elutriate Or	ganics by GC									
SW-8081	4,4'-DDD	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	4,4'-DDE	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	4,4'-DDT	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Aldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.00600C+, U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.00600 U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Chlordane (tech.)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	delta-BHC	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Dieldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Endosulfan I	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Endosulfan II	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Endosulfan sulfate	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Endrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Endrin aldehyde	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Endrin ketone	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	gamma-Chlordane	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Heptachlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Heptachlor epoxide	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Methoxychlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGB0543	02/09/2023 00:57	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.300U	ug/L	1	0.300	0.300	BGB0543	02/09/2023 00:57	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xylene-su	rı 104%	60-140					02/09/2023 00:57	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-7-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-13

Date Collected: 01/16/2023 16:37

Sample Alias:

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Org	panics by GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl-	surr	95.0%	60-140					02/09/2023 00:57	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB1127	02/17/2023 07:25	cro
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-i	m-xylene-suri	135%	60-140					02/17/2023 07:25	
SW-8082	Surrogate: Decachlorobiphenyl-	surr	81.8%	60-140					02/17/2023 07:25	
Elutriate Me	tals, Dissolved									
EPA 200.8	Antimony	Α	<1.00 B2, U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:44	JLK
EPA 200.8	Arsenic	Α	9.28	ug/L	5	0.500	2.50	BGB0721	02/14/2023 17:11	TBB
EPA 200.8	Beryllium	Α	<0.0500B2, U	ug/L	5	0.0500	1.00	BGB0721	02/28/2023 12:23	TBB
EPA 200.8	Cadmium	Α	<0.250U	ug/L	5	0.250	5.00	BGB0721	02/09/2023 14:44	JLK
EPA 200.8	Chromium	Α	<0.400U	ug/L	5	0.400	15.0	BGB0721	02/14/2023 17:11	TBB
EPA 200.8	Copper	Α	<1.00B, B2, U	ug/L	5	1.00	5.00	BGB0721	02/09/2023 14:44	JLK
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/15/2023 14:45	SAB
SM 3500-Cr B	Chromium (VI)	Α	0.0103V2	mg/L	1	0.00150	0.00300	BGB2104	02/15/2023 14:45	SAB
EPA 200.8	Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0721	02/08/2023 16:24	JLK
EPA 200.8	Nickel	Α	2.41V2, J	ug/L	5	0.250	5.00	BGB0721	02/14/2023 17:11	TBB
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/09/2023 14:44	JLK
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 16:24	JLK
EPA 200.8	Zinc	Α	2.12V2, J	ug/L	5	1.00	10.0	BGB0721	02/09/2023 14:44	JLK
Elutriate Me	tals, Total									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGB0678	02/06/2023 16:47	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	1	1.65	10.0	BGB3632	03/01/2023 10:51	TBB
Elutriate Gei	neral Chemistry									
SM 2540 D	Residue-nonfilterable (TSS)	Α	2.32	mg/L	1	1.00	1.00	BGB0150	02/02/2023 11:48	JRU



Elutriate

TCEQ-TOX T104704202-22-17



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-7-E

-DMMU-7-E Sample Matrix:

Lab Sample ID: 23A1459-13RE1 Date Collected: 01/16/2023 16:37
Sample Alias: Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compoun	ds by G	CMS							
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.12U	ug/L	1	1.12	2.25	BGB0925	02/15/2023 00:26	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/15/2023 00:26	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/15/2023 00:26	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/15/2023 00:26	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/15/2023 00:26	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/15/2023 00:26	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.560U	ug/L	1	0.560	1.12	BGB0925	02/15/2023 00:26	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.50U	ug/L	1	4.50	4.50	BGB0925	02/15/2023 00:26	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.562U	ug/L	1	0.562	1.12	BGB0925	02/15/2023 00:26	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB



TCEQ T104704238-23-38 TCEQ-TOX T104704202-22-17



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-7-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-13RE1

Date Collected: 01/16/2023 16:37 Collected by: Michael Madonna

Sample Alias:

Elutriate Sen	nivolatile Organic Compounds	s by GCN								
		s by GCI	IS (Continued)							
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	0.290	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Chrysene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	0.939V, V2	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.281B, B2, U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	3.82V, V2	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Fluorene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Isophorone (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Naphthalene (Rerun)	Α	0.328	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<0.281U	ug/L	1	0.281	2.25	BGB0925	02/15/2023 00:26	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.281C+, U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.560C+, U	ug/L	1	0.560	1.12	BGB0925	02/15/2023 00:26	KRB
SW-8270	Phenanthrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Phenol, Total (Rerun)	Α	0.610V2	ug/L	1	0.560	1.12	BGB0925	02/15/2023 00:26	KRB
SW-8270	Pyrene (Rerun)	Α	<0.281U	ug/L	1	0.281	0.562	BGB0925	02/15/2023 00:26	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (R	erun)	96.7%	54.6-148					02/15/2023 00:26	
SW-8270	Surrogate: 2-Fluorophenol-surr (Rei	run)	113%	<i>55-152</i>					02/15/2023 00:26	
SW-8270	Surrogate: 2,4,6-Tribromophenol-su	ırr (Rerur	106%	52.4-136					02/15/2023 00:26	
SW-8270	Surrogate: Nitrobenzene-d5-surr (Ri	erun)	86.2%	<i>52-162</i>					02/15/2023 00:26	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)		133%	<i>58.7-152</i>					02/15/2023 00:26	



130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-38
TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results
(Continued)

Client Sample ID: HI-DMMU-7-E (Continued) Sample Matrix: Elutriate

Lab Sample ID: 23A1459-13RE1 Date Collected: 01/16/2023 16:37

Sample Alias: Collected by: Michael Madonna

Method Analyte * Result Q Units DF SDL LRL Batch Analyzed Analyst

**Elutriate Semivolatile Organic Compounds by GCMS (Continued)** 

SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 87.2% 51.9-147 02/15/2023 00:26

**Elutriate General Chemistry** 

EPA 350.1 Ammonia as N (Rerun) A 7.62 mg/L 20 0.400 1.00 BGB0807 02/07/2023 10:08 DLK





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

#### Sample Results (Continued)

Client Sample ID: HI-DMMU-8-E Sample Matrix: Elutriate

Lab Sample ID: 23A1459-14 Date Collected: 01/18/2023 14:10
Sample Alias: Collected by: Michael Madonna

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst **Elutriate Semivolatile Organic Compounds by GCMS** SW-8270 3,3'-Dichlorobenzidine <0.280U 0.280 0.561 BGB0925 02/11/2023 05:39 KRB Α ug/L 1 SW-8270 Benzidine Α <0.280U ug/L 1 0.280 0.561 BGB0925 02/11/2023 05:39 KRB 02/11/2023 05:39 SW-8270 Surrogate: 2-Fluorobiphenvl-surr 84.9% 54.6-148 SW-8270 Surrogate: 2-Fluorophenol-surr 78.2% 55-152 02/11/2023 05:39 02/11/2023 05:39 52.4-136 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr 101% 02/11/2023 05:39 SW-8270 Surrogate: Nitrobenzene-d5-surr 96.5% 52-162 SW-8270 Surrogate: Phenol-d5-surr 85.6% 58.7-152 02/11/2023 05:39 SW-8270 Surrogate: p-Terphenyl-d14-surr 79.7% 51.9-147 02/11/2023 05:39 **Elutriate Organics by GC** SW-8081 4,4'-DDD Α <0.00599U ug/L 1 0.00599 0.00599 BGB0543 02/09/2023 04:06 AI A SW-8081 4,4'-DDE Α < 0.00599 U ug/L 1 0.00599 0.00599 BGB0543 02/09/2023 04:06 ALA SW-8081 4,4'-DDT Α <0.00599U ug/L 1 0.00599 0.00599 BGB0543 02/09/2023 04:06 ALA SW-8081 Aldrin Α < 0.00599 U ug/L 1 0.00599 0.00599 BGB0543 02/09/2023 04:06 ALA <0.00599C+, U 0.00599 02/09/2023 04:06 SW-8081 alpha-BHC ug/L 0.00599 BGB0543 ALA (alpha-Hexachlorocyclohexan e) SW-8081 beta-BHC Α < 0.0059911 ug/L 1 0.00599 0.00599 BGB0543 02/09/2023 04:06 AI A (beta-Hexachlorocyclohexane SW-8081 <0.00599U 0.00599 0.00599 BGB0543 02/09/2023 04:06 Chlordane (tech.) Α ug/L 1 ALA SW-8081 cis-Chlordane Α <0.00599U ug/L 1 0.00599 0.00599 BGB0543 02/09/2023 04:06 ALA (alpha-Chlordane) ALA SW-8081 delta-BHC Α <0.00599B2, U ug/L 1 0.00599 0.00599 BGB0543 02/09/2023 04:06 Dieldrin <0.00599U 0.00599 BGB0543 SW-8081 Α ug/L 1 0.00599 02/09/2023 04:06 ALA SW-8081 Endosulfan I Α <0.00599U ug/L 1 0.00599 0.00599 BGB0543 02/09/2023 04:06 ALA SW-8081 Endosulfan II < 0.00599 U 0.00599 0.00599 BGB0543 02/09/2023 04:06 Α ug/L 1 ALA SW-8081 Endosulfan sulfate Α <0.00599U ug/L 1 0.00599 0.00599 BGB0543 02/09/2023 04:06 ALA SW-8081 Endrin <0.00599U 0.00599 0.00599 BGB0543 02/09/2023 04:06 Α ug/L 1 ALA ALA SW-8081 Endrin aldehyde Α <0.00599U ug/L 1 0.00599 0.00599 BGB0543 02/09/2023 04:06 SW-8081 Endrin ketone <0.00599U 0.00599 0.00599 BGB0543 02/09/2023 04:06 Α ug/L 1 ALA SW-8081 gamma-BHC (Lindane, Α <0.00599U ug/L 0.00599 0.00599 BGB0543 02/09/2023 04:06 ALA gamma-Hexachlorocyclohexa nE)

ug/L

ug/L

ug/L

ug/L

ug/L

60-140

0.00599

0.00599

0.00599

0.00599

0.300

0.00599

0.00599

0.00599

0.00599

0.300

1

1

1

1

BGB0543

BGB0543

BGB0543

BGB0543

BGB0543

02/09/2023 04:06

02/09/2023 04:06

02/09/2023 04:06

02/09/2023 04:06

02/09/2023 04:06

02/09/2023 04:06

< 0.00599 U

<0.00599U

<0.00599U

<0.00599U

< 0.300 U

141% 5

Α

Α

Α

Α

ALA

ALA

ALA

ALA

ALA

SW-8081

SW-8081

SW-8081

SW-8081

SW-8081

SW-8081

gamma-Chlordane

Heptachlor epoxide

Toxaphene (Chlorinated

Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri

Heptachlor

Methoxychlor

Camphene)





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-E (Continued)

Sample Matrix: Elutriate

Date Collected: 01/18/20

Lab Sample ID: 23A1459-14

01/18/2023 14:10

Sample Alias:

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Org	panics by GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl	surr	93.9%	60-140					02/09/2023 04:06	
SW-8082	PCBs, Total	Α	<0.00597U	ug/L	1	0.00597	0.119	BGB1127	02/17/2023 10:59	cro
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-ı	m-xylene-suri	132%	60-140					02/17/2023 10:59	
SW-8082	Surrogate: Decachlorobiphenyl	surr	93.6%	60-140					02/17/2023 10:59	
Elutriate Met	tals, Dissolved									
EPA 200.8	Antimony	Α	<1.00 U	ug/L	5	1.00	5.00	BGB0720	02/09/2023 12:14	JLK
EPA 200.8	Arsenic	Α	2.88	ug/L	5	0.500	2.50	BGB0720	02/08/2023 10:11	TBB
EPA 200.8	Beryllium	Α	<0.0500B, B2, U	ug/L	5	0.0500	1.00	BGB0720	03/01/2023 15:43	TBB
EPA 200.8	Cadmium	Α	<0.250U	ug/L	5	0.250	5.00	BGB0720	02/08/2023 10:11	TBB
EPA 200.8	Chromium	Α	<0.400B2, U	ug/L	5	0.400	15.0	BGB0720	02/08/2023 10:11	TBB
EPA 200.8	Copper	Α	1.12V2, J	ug/L	5	1.00	5.00	BGB0720	02/08/2023 13:09	TBB
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/15/2023 14:46	SAB
SM 3500-Cr B	Chromium (VI)	Α	0.00286V2, J	mg/L	1	0.00150	0.00300	BGB2104	02/15/2023 14:46	SAB
EPA 200.8	Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0720	02/08/2023 10:11	TBB
EPA 200.8	Nickel	Α	2.02V2, J	ug/L	5	0.250	5.00	BGB0720	02/08/2023 10:11	TBB
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0720	03/01/2023 15:43	TBB
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0720	02/08/2023 10:11	TBB
EPA 200.8	Zinc	Α	2.28V2, J	ug/L	5	1.00	10.0	BGB0720	02/08/2023 10:11	TBB
Elutriate Met	tals, Total									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGB0678	02/06/2023 16:51	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB1605	02/22/2023 15:19	TBB
Elutriate Ger	neral Chemistry									
SM 2540 D	Residue-nonfilterable (TSS)	A	6.59V2	mg/L	1	1.00	1.00	BGB0805	02/07/2023 13:44	BP





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-E

Lab Sample ID: 23A1459-14RE1

Sample Alias:

Sample Matrix: Elutriate

Date Collected: 01/18/2023 14:10

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compoun	ds by G	CMS							
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.12U	ug/L	1	1.12	2.24	BGB0925	02/15/2023 05:06	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.559U	ug/L	1	0.559	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGB0925	02/15/2023 05:06	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.49U	ug/L	1	4.49	4.49	BGB0925	02/15/2023 05:06	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGB0925	02/15/2023 05:06	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGB0925	02/15/2023 05:06	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGB0925	02/15/2023 05:06	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGB0925	02/15/2023 05:06	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.49U	ug/L	1	4.49	4.49	BGB0925	02/15/2023 05:06	KRB
SW-8270	Acenaphthene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	Anthracene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.561U	ug/L	1	0.561	1.12	BGB0925	02/15/2023 05:06	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.280U	ug/L	1	0.280	0.561	BGB0925	02/15/2023 05:06	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

Client Sample ID: HI-DMMU-8-E (Continued)

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-14RE1

Date Collected: 01/18/2023 14:10
Collected by: Michael Madonna

Sample Alias:

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Elutriate Semivolatile Organic Compounds by GCMS (Continued) SW-8270 bis(2-Chloroethoxy)methane <0.280U 0.280 0.561 BGB0925 02/15/2023 05:06 KRB ug/L 1 Α (Rerun) SW-8270 bis(2-Chloroethyl) ether <0.280U 0.280 0.561 BGB0925 02/15/2023 05:06 KRB Α ua/L 1 (Rerun) SW-8270 Bis(2-ethylhexyl )phthalate Α <0.280U ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 KRB (Rerun) SW-8270 BGB0925 02/15/2023 05:06 Butyl benzyl phthalate Α <0.280U ug/L 1 0.280 0.561 KRB (Rerun) SW-8270 Chrysene (Rerun) Α <0.280U ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 KRB Dibenzo(a,h)anthracene 02/15/2023 05:06 SW-8270 <0.280U 0.280 0.561 BGB0925 Α ug/L 1 KRB (Rerun) SW-8270 Diethyl phthalate (Rerun) Α 1.15V, V2 ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 KRB 02/15/2023 05:06 SW-8270 Dimethyl phthalate (Rerun) Α <0.280B, B2, U ug/L 1 0.280 0.561 BGB0925 **KRB** SW-8270 Di-n-butyl phthalate (Rerun) Α 1.56V, V2 ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 KRB SW-8270 Di-n-octyl phthalate (Rerun) Α <0.280U ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 KRB < 0.28011 0.280 0.561 BGB0925 KRB SW-8270 Fluoranthene (Rerun) Α 02/15/2023 05:06 ug/L 1 SW-8270 <0.280U 0.280 BGB0925 02/15/2023 05:06 Fluorene (Rerun) Α ug/L 1 0.561 KRB <0.280C+, U 0.280 0.561 BGB0925 SW-8270 Hexachlorobenzene (Rerun) Α ug/L 1 02/15/2023 05:06 KRB SW-8270 Hexachlorobutadiene (Rerun) Α <0.280U ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 **KRB** <0.280U SW-8270 Hexachlorocyclopentadiene Α ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 KRB (Rerun) <0.280U SW-8270 Hexachloroethane (Rerun) Α ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 KRB SW-8270 Indeno(1,2,3-cd) pyrene Α <0.280U ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 KRB (Rerun) SW-8270 Isophorone (Rerun) Α <0.280U ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 KRB 0.299 0.280 0.561 BGB0925 02/15/2023 05:06 SW-8270 Naphthalene (Rerun) Α ug/L 1 KRB SW-8270 Nitrobenzene (Rerun) Α <0.280U ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 KRB n-Nitrosodimethylamine <0.280U 0.280 BGB0925 SW-8270 Α ug/L 1 2.24 02/15/2023 05:06 KRB (Rerun) <0.280U 0.280 0.561 BGB0925 SW-8270 n-Nitrosodi-n-propylamine Α ua/L 1 02/15/2023 05:06 KRB (Rerun) SW-8270 n-Nitrosodiphenylamine <0.280C+, U 0.280 0.561 BGB0925 02/15/2023 05:06 KRB Α ug/L 1 (Rerun) SW-8270 Pentachlorophenol (Rerun) Α <0.559C+, U 0.559 BGB0925 02/15/2023 05:06 KRB ug/L 1 1.12 SW-8270 Phenanthrene (Rerun) Α < 0.280 U ug/L 1 0.280 0.561 BGB0925 02/15/2023 05:06 **KRB** SW-8270 Phenol, Total (Rerun) Α 0.779V2 ug/L 1 0.559 1.12 BGB0925 02/15/2023 05:06 KRB SW-8270 Pyrene (Rerun) <0.280U ug/L 0.280 0.561 BGB0925 02/15/2023 05:06 KRB SW-8270 92.6% 54.6-148 02/15/2023 05:06 Surrogate: 2-Fluorobiphenyl-surr (Rerun) SW-8270 Surrogate: 2-Fluorophenol-surr (Rerun) 110% 55-152 02/15/2023 05:06 95.6% 52.4-136 02/15/2023 05:06 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr (Rerur. SW-8270 75.2% 02/15/2023 05:06 Surrogate: Nitrobenzene-d5-surr (Rerun) 52-162 Surrogate: Phenol-d5-surr (Rerun) 58.7-152 02/15/2023 05:06 SW-8270 123%



130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-38
TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results (Continued)

Client Sample ID: HI-DMMU-8-E (Continued) Sample Matrix: Elutriate

Lab Sample ID: 23A1459-14RE1 Date Collected: 01/18/2023 14:10

Sample Alias: Collected by: Michael Madonna

Method Analyte * Result Q Units DF SDL LRL Batch Analyzed Analyst

**Elutriate Semivolatile Organic Compounds by GCMS (Continued)** 

SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 82.1% 51.9-147 02/15/2023 05:06

**Elutriate General Chemistry** 

EPA 350.1 Ammonia as N (Rerun) A 0.698 mg/L 5 0.100 0.250 BGB0807 02/07/2023 10:12 DLK





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

Client Sample ID: HI-DMMU-1-1A-S

Lab Sample ID: 23A1459-16

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/16/2023 14:20
Collected by: Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS SW-8270 3,3'-Dichlorobenzidine BGA3094 02/08/2023 22:58 KRB Α <1.64U 1 1.64 3.28 ug/kg dry KRB SW-8270 Benzidine Α <1.64U ug/kg dry 1 1.64 3.28 BGA3094 02/08/2023 22:58 123% 60-140 02/08/2023 22:58 SW-8270 Surrogate: 2-Fluorobiphenvl-surr 60-140 SW-8270 Surrogate: 2-Fluorophenol-surr 114% 02/08/2023 22:58 02/08/2023 22:58 60-140 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr 162% 5 60-140 02/08/2023 22:58 SW-8270 Surrogate: Nitrobenzene-d5-surr 123% SW-8270 Surrogate: Phenol-d5-surr 124% 60-140 02/08/2023 22:58 SW-8270 Surrogate: p-Terphenyl-d14-surr 106% 60-140 02/08/2023 22:58 Organics by GC SW-8081 4,4'-DDD Α < 0.390 U ua/ka dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 AI A SW-8081 4,4'-DDE Α < 0.39011 ug/kg dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 ALA SW-8081 4,4'-DDT Α <0.390U ug/kg dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 ALA SW-8081 Aldrin Α < 0.390 U ug/kg dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 ALA 02/01/2023 22:15 SW-8081 alpha-BHC < 0.390 U ug/kg dry 10 0.390 1.30 BGA3044 ALA (alpha-Hexachlorocyclohexan e) SW-8081 beta-BHC Α < 0.39011 ug/kg dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 AI A (beta-Hexachlorocyclohexane SW-8081 <0.390U 02/01/2023 22:15 Chlordane (tech.) Α ua/ka drv 10 0.390 1.30 BGA3044 ALA SW-8081 cis-Chlordane Α < 0.390 U ug/kg dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 ALA (alpha-Chlordane) SW-8081 delta-BHC Α < 0.390 U ug/kg dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 ALA Dieldrin <0.390U 02/01/2023 22:15 SW-8081 Α ua/ka drv 10 0.390 1.30 BGA3044 ALA SW-8081 Endosulfan I Α <0.390U ug/kg dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 ALA SW-8081 Endosulfan II <0.390U 10 0.390 1.30 BGA3044 02/01/2023 22:15 Α ug/kg dry ALA SW-8081 Endosulfan sulfate Α < 0.390 U ug/kg dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 ALA SW-8081 Endrin <0.390U 10 0.390 1.30 BGA3044 02/01/2023 22:15 Α ALA ug/kg dry ALA SW-8081 Endrin aldehyde Α < 0.390 U 10 0.390 1.30 BGA3044 02/01/2023 22:15 ug/kg dry SW-8081 Endrin ketone <0.390U 10 0.390 1.30 BGA3044 02/01/2023 22:15 Α ug/kg dry ALA SW-8081 gamma-BHC (Lindane, Α <0.390U ug/kg dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 ALA gamma-Hexachlorocyclohexa nE) gamma-Chlordane < 0.390 U 02/01/2023 22:15 SW-8081 Α 10 0.390 1.30 BGA3044 ug/kg dry ALA SW-8081 Heptachlor Α < 0.390 U ug/kg dry 10 0.390 1.30 BGA3044 02/01/2023 22:15 ALA <0.390U 02/01/2023 22:15 SW-8081 Heptachlor epoxide Α 10 0.390 1.30 BGA3044 ALA ua/ka drv SW-8081 Methoxychlor <0.390U 10 0.390 1.30 BGA3044 02/01/2023 22:15 ug/kg dry ALA SW-8081 Toxaphene (Chlorinated <19.5U 19.5 19.5 BGA3044 02/01/2023 22:15 Α ug/kg dry 10 ALA Camphene) Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 02/01/2023 22:15 SW-8081 87.7% 60-140



Sediment

TCEO-TOX T104704202-22-17



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results (Continued)

Client Sample ID: HI-DMMU-1-1A-S (Continued)

-1A-S (Continued) Sample Matrix:

Lab Sample ID: 23A1459-16 Date Collected: 01/16/2023 14:20 Sample Alias: Collected by: Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Organics by GC (Continued) SW-8081 Surrogate: Decachlorobiphenyl-surr 109% 60-140 02/01/2023 22:15 SW-8082 PCBs, Total <1.34C+, U ug/kg dry 1.34 2.69 BGA3182 01/28/2023 17:40 CRO SW-8082 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr 174% S 60-140 01/28/2023 17:40 SW-8082 Surrogate: Decachlorobiphenyl-surr 60.9% 60-140 01/28/2023 17:40 Metals, Total EPA 200.8 Antimony Α <0.0277U mg/kg dry 1 0.0277 0.0556 BGA3226 01/30/2023 14:05 TBB EPA 200.8 Arsenic Α 0.891 1 0.00277 0.0277 BGA3226 01/30/2023 14:05 TBB mg/kg dry EPA 200.8 0.000556 0.0111 BGA3226 Beryllium 0.0436 01/30/2023 14:05 TBB Α mg/kg dry 1 EPA 200.8 Cadmium Α 0.0132J mg/kg dry 0.00277 0.0556 BGA3226 01/31/2023 09:57 TBB 01/31/2023 09:57 EPA 200.8 Chromium 1.10 0.00833 0.167 BGA3226 Α mg/kg dry 1 TBB EPA 200.8 Copper Α 0.568V mg/kg dry 1 0.0111 0.0556 BGA3226 01/31/2023 09:57 TBB Calc Chromium (III) 0.953J mg/kg (dry 1 0.142 5.17 [CALC] 02/01/2023 12:12 EΜ wt) dry SW-7196 Chromium (VI) 0.150J 0.133 5.00 BGA3843 02/01/2023 12:12 EΜ 1 Α mg/kg dry SW-7471B Mercury Α 0.00962J mg/kg dry 1 0.00916 0.0183 BGA3912 01/31/2023 14:31 NAZ EPA 200.8 Lead Α 1.23 mg/kg dry 1 0.00277 0.0277 BGA3226 01/30/2023 14:05 TBB EPA 200.8 Nickel Α 0.998 mg/kg dry 0.0556 0.0556 BGA3226 01/31/2023 15:20 TBB 1 EPA 200.8 Selenium Α 0.312 0.0556 0.111 BGA3226 01/31/2023 09:57 TBB mg/kg dry 1 0.0277 EPA 200.8 Silver Α 0.00472Jmg/kg dry 1 0.00139 BGA3226 01/30/2023 14:05 TBB EPA 200.8 Thallium 0.0241J 0.00139 0.0277 BGA3226 01/31/2023 09:57 TBB Α 1 mg/kg dry EPA 200.8 Zinc Α 3.48 mg/kg dry 1 0.0556 0.111 BGA3226 01/30/2023 14:05 **TBB General Chemistry** <0.0320U 0.0320 SW-9014 Total Cyanide Α mg/kg dry 1 0.0640 BGA3214 01/26/2023 15:42 GJG EPA 350.2 Ammonia as N Α 8.26J mg/kg dry 6.70 BGA4008 02/01/2023 09:08 GIW 1 13.4 SW-9045C 8.16H pH Units @ 0.100 BGA2930 01/23/2023 14:09 рΗ Α 1 AKA 25 °C SM 2540 G % Solids 74.4V 1 0.100 0.100 BGA2916 01/24/2023 10:55 JRU Α





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-1-1A-S Lab Sample ID:

23A1459-16RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/16/2023 14:20 Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3094	02/25/2023 02:37	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3094	02/25/2023 02:37	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3094	02/25/2023 02:37	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3094	02/25/2023 02:37	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3094	02/25/2023 02:37	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<13.1U	ug/kg dry	1	13.1	26.2	BGA3094	02/25/2023 02:37	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3094	02/25/2023 02:37	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3094	02/25/2023 02:37	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	Anthracene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3094	02/25/2023 02:37	KRB





Terracon Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

HI-DMMU-1-1A-S (Continued) Client Sample ID:

Sediment Sample Matrix:

Lab Sample ID: 23A1459-16RE1 Date Collected: 01/16/2023 14:20

Sample Alias:

Collected by: Gregg Pawlak Method Analyte Result O Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS (Continued) SW-8270 bis(2-Chloroethyl) ether <1.64U 3.28 BGA3094 02/25/2023 02:37 KRB Α ug/kg dry 1 1.64 (Rerun) SW-8270 Bis(2-ethylhexyl)phthalate 2.32V, J 3.28 BGA3094 02/25/2023 02:37 KRB Α ua/ka drv 1 1.64 (Rerun)





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-1-1B-S

Lab Sample ID: 23A1459-17

Sample Alias:

Sample Matrix: Sediment

Date Collected:

Collected by: Gregg Pawlak

01/17/2023 9:40

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by G	CMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/08/2023 23:32	KRB
SW-8270	Benzidine	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/08/2023 23:32	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	109%	60-140					02/08/2023 23:32	
SW-8270	Surrogate: 2-Fluorophenol-sur	r	103%	60-140					02/08/2023 23:32	
SW-8270	Surrogate: 2,4,6-Tribromopher	nol-surr	139%	60-140					02/08/2023 23:32	
SW-8270	Surrogate: Nitrobenzene-d5-su	ırr	105%	60-140					02/08/2023 23:32	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		111%	60-140					02/08/2023 23:32	
SW-8270	Surrogate: p-Terphenyl-d14-su	ırr	94.7%	60-140					02/08/2023 23:32	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	4,4'-DDE	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	4,4'-DDT	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Aldrin	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Chlordane (tech.)	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	delta-BHC	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Dieldrin	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Endosulfan I	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Endosulfan II	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Endosulfan sulfate	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Endrin	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Endrin aldehyde	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Endrin ketone	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	А	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	gamma-Chlordane	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Heptachlor	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Heptachlor epoxide	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Methoxychlor	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/01/2023 21:49	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<19.9U	ug/kg dry	10	19.9	19.9	BGA3044	02/01/2023 21:49	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xvlene-suri	90.3%	60-140					02/01/2023 21:49	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-1-1B-S (Continued) Sample Matrix: Sediment

Lab Sample ID: 23A1459-17 Date Collected: 01/17/2023 9:40

Sample Alias:

Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	106%	60-140					02/01/2023 21:49	
SW-8082	PCBs, Total	Α	<1.34C+, U	ug/kg dry	1	1.34	2.68	BGA3182	01/28/2023 18:07	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrac	hloro-m-xylene-suri	182% S	60-140					01/28/2023 18:07	
SW-8082	Surrogate: Decachlorobip	henyl-surr	102%	60-140					01/28/2023 18:07	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0276U	mg/kg dry	1	0.0276	0.0554	BGA3226	01/30/2023 14:20	TBB
EPA 200.8	Arsenic	Α	0.666	mg/kg dry	1	0.00276	0.0276	BGA3226	01/30/2023 14:20	TBB
EPA 200.8	Beryllium	Α	0.0394	mg/kg dry	1	0.000554	0.0110	BGA3226	01/30/2023 14:20	TBB
EPA 200.8	Cadmium	Α	0.0105J	mg/kg dry	1	0.00276	0.0554	BGA3226	01/31/2023 10:04	TBB
EPA 200.8	Chromium	Α	0.886	mg/kg dry	1	0.00830	0.166	BGA3226	01/31/2023 10:04	TBB
EPA 200.8	Copper	Α	0.502V	mg/kg dry	1	0.0110	0.0554	BGA3226	01/31/2023 10:04	TBB
Calc	Chromium (III)		<0.139U	mg/kg (dry wt) dry	1	0.139	5.17	[CALC]	02/01/2023 12:17	EM
SW-7196	Chromium (VI)	Α	1.50J	mg/kg dry	1	0.131	5.00	BGA3843	02/01/2023 12:17	EM
SW-7471B	Mercury	Α	<0.00966U	mg/kg dry	1	0.00966	0.0193	BGA3912	01/31/2023 14:41	NAZ
EPA 200.8	Lead	Α	1.19	mg/kg dry	1	0.00276	0.0276	BGA3226	01/30/2023 14:20	TBB
EPA 200.8	Nickel	Α	0.818	mg/kg dry	1	0.0554	0.0554	BGA3226	01/31/2023 15:28	TBB
EPA 200.8	Selenium	Α	0.266	mg/kg dry	1	0.0554	0.110	BGA3226	01/31/2023 10:04	TBB
EPA 200.8	Silver	Α	0.00415J	mg/kg dry	1	0.00138	0.0276	BGA3226	01/30/2023 14:20	TBB
EPA 200.8	Thallium	Α	0.0220J	mg/kg dry	1	0.00138	0.0276	BGA3226	01/31/2023 10:04	TBB
EPA 200.8	Zinc	Α	2.69	mg/kg dry	1	0.0554	0.110	BGA3226	01/30/2023 14:20	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0325U	mg/kg dry	1	0.0325	0.0651	BGA3214	01/26/2023 15:43	GJG
EPA 350.2	Ammonia as N	Α	6.743	mg/kg dry	1	6.69	13.4	BGA4008	02/01/2023 09:08	GIW
SW-9045C	рН	Α	8.84H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	74.6V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-1-1B-S

Lab Sample ID: 23A1459-17RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/17/2023 9:40 Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GCI	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3094	02/25/2023 03:12	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3094	02/25/2023 03:12	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3094	02/25/2023 03:12	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3094	02/25/2023 03:12	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3094	02/25/2023 03:12	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<12.5U	ug/kg dry	1	12.5	24.9	BGA3094	02/25/2023 03:12	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3094	02/25/2023 03:12	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3094	02/25/2023 03:12	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Anthracene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB





Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

04/03/2023 14:08

Reported:

TCEQ-TOX T104704202-22-17

11555 Clay Road Houston, TX 77043

Project Manager: Gregg Pawlak

# Sample Results (Continued)

Client Sample ID: HI-DMMU-1-1B-S (Continued)

Sample Matrix: Sediment

Lab Sample ID:

23A1459-17RE1

Date Collected: 01/17/2023 9:40

Sample Alias:

Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GC	MS (Conti	inued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	2.26V, J	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Chrysene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	1.73V, J	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	5.03V	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Fluorene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Isophorone (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3094	02/25/2023 03:12	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Phenol, Total (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3094	02/25/2023 03:12	KRB
SW-8270	Pyrene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 03:12	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr	(Rerun)	81.1%	60-140					02/25/2023 03:12	
SW-8270	Surrogate: 2-Fluorophenol-surr (	Rerun)	73.7%	60-140					02/25/2023 03:12	
SW-8270	Surrogate: 2,4,6-Tribromopheno	l-surr (Rerur	84.3%	60-140					02/25/2023 03:12	
SW-8270	Surrogate: Nitrobenzene-d5-surr	(Rerun)	66.4%	60-140					02/25/2023 03:12	
SW-8270	Surrogate: Phenol-d5-surr (Rerui	n)	74.7%	60-140					02/25/2023 03:12	
SW-8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	71.9%	60-140					02/25/2023 03:12	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-1-1C-S

Lab Sample ID: 23A1459-18

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/17/2023 14:40

Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by C	GCMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/09/2023 00:07	KRB
SW-8270	Benzidine	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/09/2023 00:07	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	surr	108%	60-140					02/09/2023 00:07	
SW-8270	Surrogate: 2-Fluorophenol-sul	rr	109%	60-140					02/09/2023 00:07	
SW-8270	Surrogate: 2,4,6-Tribromophe	enol-surr	154% S	60-140					02/09/2023 00:07	
SW-8270	Surrogate: Nitrobenzene-d5-s	rurr	111%	60-140					02/09/2023 00:07	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		119%	60-140					02/09/2023 00:07	
SW-8270	Surrogate: p-Terphenyl-d14-s	curr	94.5%	60-140					02/09/2023 00:07	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	4,4'-DDE	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	4,4'-DDT	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Aldrin	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Chlordane (tech.)	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	delta-BHC	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Dieldrin	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Endosulfan I	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Endosulfan II	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Endosulfan sulfate	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Endrin	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Endrin aldehyde	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Endrin ketone	A	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	gamma-Chlordane	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Heptachlor	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Heptachlor epoxide	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Methoxychlor	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/01/2023 22:42	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<20.1U	ug/kg dry	10	20.1	20.1	BGA3044	02/01/2023 22:42	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-suri	91.4%	60-140					02/01/2023 22:42	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-1-1C-S (Continued) Sample Matrix: Sediment

Lab Sample ID: 23A1459-18 Date Collected: 01/17/2023 14:40

Sample Alias:

Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobipl	henyl-surr	114%	60-140					02/01/2023 22:42	
SW-8082	PCBs, Total	Α	<1.34C+, U	ug/kg dry	1	1.34	2.69	BGA3182	01/28/2023 17:13	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrach	hloro-m-xylene-suri	177% S	60-140					01/28/2023 17:13	
SW-8082	Surrogate: Decachlorobiph	henyl-surr	30.7% S	60-140					01/28/2023 17:13	
Metals, Tota	I									
EPA 200.8	Antimony	Α	<0.0279U	mg/kg dry	1	0.0279	0.0560	BGA3226	01/30/2023 14:33	TBB
EPA 200.8	Arsenic	Α	1.05	mg/kg dry	1	0.00279	0.0279	BGA3226	01/30/2023 14:33	TBB
EPA 200.8	Beryllium	Α	0.0692	mg/kg dry	1	0.000560	0.0112	BGA3226	01/30/2023 14:33	TBB
EPA 200.8	Cadmium	Α	0.0443J	mg/kg dry	1	0.00279	0.0560	BGA3226	01/31/2023 10:07	TBB
EPA 200.8	Chromium	Α	1.52	mg/kg dry	1	0.00838	0.168	BGA3226	01/31/2023 10:07	TBB
EPA 200.8	Copper	Α	1.39V	mg/kg dry	1	0.0112	0.0560	BGA3226	01/31/2023 10:07	TBB
Calc	Chromium (III)		1.19J	mg/kg (dry wt) dry	1	0.142	5.17	[CALC]	02/01/2023 12:18	EM
SW-7196	Chromium (VI)	Α	0.334J	mg/kg dry	1	0.134	5.00	BGA3843	02/01/2023 12:18	EM
SW-7471B	Mercury	Α	<0.00902U	mg/kg dry	1	0.00902	0.0180	BGA3912	01/31/2023 14:44	NAZ
EPA 200.8	Lead	Α	1.36	mg/kg dry	1	0.00279	0.0279	BGA3226	01/30/2023 14:33	TBB
EPA 200.8	Nickel	Α	1.57	mg/kg dry	1	0.0560	0.0560	BGA3226	01/31/2023 15:30	TBB
EPA 200.8	Selenium	Α	0.375	mg/kg dry	1	0.0560	0.112	BGA3226	01/31/2023 10:07	TBB
EPA 200.8	Silver	Α	0.00844J	mg/kg dry	1	0.00140	0.0279	BGA3226	01/30/2023 14:33	TBB
EPA 200.8	Thallium	Α	0.0404	mg/kg dry	1	0.00140	0.0279	BGA3226	01/31/2023 10:07	TBB
EPA 200.8	Zinc	Α	3.34	mg/kg dry	1	0.0560	0.112	BGA3226	01/30/2023 14:33	TBB
General Che	mistry									
SW-9014	Total Cyanide	Α	<0.0323U	mg/kg dry	1	0.0323	0.0646	BGA3214	01/26/2023 15:43	GJG
EPA 350.2	Ammonia as N	Α	12.8J	mg/kg dry	1	6.70	13.4	BGA4008	02/01/2023 09:08	GIW
SW-9045C	рН	А	8.27H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	74.4V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Project: PCCA HI & CDP Resampling 2023 Terracon_Houston

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-1-1C-S

Lab Sample ID: 23A1459-18RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/17/2023 14:40 Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.37	BGA3094	02/25/2023 03:47	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.37	BGA3094	02/25/2023 03:47	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.37	BGA3094	02/25/2023 03:47	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.37	BGA3094	02/25/2023 03:47	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.37	BGA3094	02/25/2023 03:47	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<12.7U	ug/kg dry	1	12.7	25.5	BGA3094	02/25/2023 03:47	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.37	BGA3094	02/25/2023 03:47	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.37	BGA3094	02/25/2023 03:47	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Anthracene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB





Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

11555 Clay Road Houston, TX 77043

Project Manager: Gregg Pawlak

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-1-1C-S (Continued) Sample Matrix: Sediment

Lab Sample ID: 23A1459-18RE1 Date Collected: 01/17/2023 14:40 Collected by: Gregg Pawlak

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS (Conti	nued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	2.06V, J	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Chrysene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	2.32V, J	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	4.39V	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Fluorene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Isophorone (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	A	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.37	BGA3094	02/25/2023 03:47	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Phenol, Total (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.37	BGA3094	02/25/2023 03:47	KRB
SW-8270	Pyrene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 03:47	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	r (Rerun)	85.5%	60-140					02/25/2023 03:47	
SW-8270	Surrogate: 2-Fluorophenol-surr (	-	75.6%	60-140					02/25/2023 03:47	
SW-8270	Surrogate: 2,4,6-Tribromopheno	•	86.4%	60-140					02/25/2023 03:47	
SW-8270	Surrogate: Nitrobenzene-d5-surr	(Rerun)	68.6%	60-140					02/25/2023 03:47	
SW-8270	Surrogate: Phenol-d5-surr (Reru	n)	76.3%	60-140					02/25/2023 03:47	
SW-8270	Surrogate: p-Terphenyl-d14-surr	r (Rerun)	69.2%	60-140					02/25/2023 03:47	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-1A-S

Lab Sample ID: 23A1459-20

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/16/2023 17:20

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by G	смѕ								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/09/2023 00:42	KRB
SW-8270	Benzidine	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/09/2023 00:42	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	rr	91.4%	60-140					02/09/2023 00:42	
SW-8270	Surrogate: 2-Fluorophenol-surr		112%	60-140					02/09/2023 00:42	
SW-8270	Surrogate: 2,4,6-Tribromophen	ol-surr	141% S	60-140					02/09/2023 00:42	
SW-8270	Surrogate: Nitrobenzene-d5-sur	r	99.0%	60-140					02/09/2023 00:42	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		118%	60-140					02/09/2023 00:42	
SW-8270	Surrogate: p-Terphenyl-d14-sui	rr	60.7%	60-140					02/09/2023 00:42	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	4,4'-DDE	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	4,4'-DDT	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Aldrin	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	А	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Chlordane (tech.)	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	delta-BHC	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Dieldrin	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Endosulfan I	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Endosulfan II	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Endosulfan sulfate	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Endrin	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Endrin aldehyde	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Endrin ketone	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	А	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	gamma-Chlordane	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Heptachlor	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Heptachlor epoxide	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Methoxychlor	Α	<0.445U	ug/kg dry	10	0.445	1.48	BGA3044	02/01/2023 23:09	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	А	<22.2U	ug/kg dry	10	22.2	22.2	BGA3044	02/01/2023 23:09	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-		88.8%	60-140					02/01/2023 23:09	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-1A-S (Continued)

Sample Matrix: Sediment

Collected by:

Lab Sample ID: 23A1459-20

Date Collected: 01/16/2023 17:20

Gregg Pawlak

Sample Alias:

Organies by CC	(Continued)									
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst

Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	phenyl-surr	108%	60-140					02/01/2023 23:09	
SW-8082	PCBs, Total	Α	<1.48C+, U	ug/kg dry	1	1.48	2.96	BGA3182	01/28/2023 18:33	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrac	chloro-m-xylene-suri	162% S	60-140					01/28/2023 18:33	
SW-8082	Surrogate: Decachlorobip	ohenyl-surr	95.9%	60-140					01/28/2023 18:33	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0298U	mg/kg dry	1	0.0298	0.0598	BGA3226	01/30/2023 14:35	TBB
EPA 200.8	Arsenic	Α	3.07	mg/kg dry	1	0.00298	0.0298	BGA3226	01/30/2023 14:35	TBB
EPA 200.8	Beryllium	Α	0.167	mg/kg dry	1	0.000598	0.0119	BGA3226	01/30/2023 14:35	TBB
EPA 200.8	Cadmium	Α	0.0607	mg/kg dry	1	0.00298	0.0598	BGA3226	01/31/2023 10:09	TBB
EPA 200.8	Chromium	Α	3.85	mg/kg dry	1	0.00895	0.179	BGA3226	01/31/2023 10:09	TBB
EPA 200.8	Copper	Α	3.22V	mg/kg dry	1	0.0119	0.0598	BGA3226	01/31/2023 10:09	TBB
Calc	Chromium (III)		3.61J	mg/kg (dry wt) dry	1	0.153	5.18	[CALC]	02/01/2023 12:20	EM
SW-7196	Chromium (VI)	Α	0.248J	mg/kg dry	1	0.144	5.00	BGA3843	02/01/2023 12:20	EM
SW-7471B	Mercury	Α	<0.00940U	mg/kg dry	1	0.00940	0.0188	BGA3912	01/31/2023 14:47	NAZ
EPA 200.8	Lead	Α	3.11	mg/kg dry	1	0.00298	0.0298	BGA3226	01/30/2023 14:35	TBB
EPA 200.8	Nickel	Α	3.40	mg/kg dry	1	0.0598	0.0598	BGA3226	01/31/2023 15:32	TBB
EPA 200.8	Selenium	Α	0.703	mg/kg dry	1	0.0598	0.119	BGA3226	01/31/2023 10:09	TBB
EPA 200.8	Silver	Α	0.0125J	mg/kg dry	1	0.00149	0.0298	BGA3226	01/30/2023 14:35	TBB
EPA 200.8	Thallium	Α	0.0499	mg/kg dry	1	0.00149	0.0298	BGA3226	01/31/2023 10:09	TBB
EPA 200.8	Zinc	Α	8.13	mg/kg dry	1	0.0598	0.119	BGA3226	01/30/2023 14:35	TBB
General Che	emistry									
SW-9014	Total Cyanide	А	<0.0363U	mg/kg dry	1	0.0363	0.0727	BGA3214	01/26/2023 15:44	GJG
EPA 350.2	Ammonia as N	Α	8.71J	mg/kg dry	1	7.40	14.8	BGA4008	02/01/2023 09:08	GIW
SW-9045C	рН	Α	8.19H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	67.5V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-1A-S

Lab Sample ID: 23A1459-20RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/16/2023 17:20

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.61U	ug/kg dry	1	3.61	7.22	BGA3094	02/25/2023 04:22	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.61U	ug/kg dry	1	3.61	7.22	BGA3094	02/25/2023 04:22	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.61U	ug/kg dry	1	3.61	7.22	BGA3094	02/25/2023 04:22	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.61U	ug/kg dry	1	3.61	7.22	BGA3094	02/25/2023 04:22	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.61U	ug/kg dry	1	3.61	7.22	BGA3094	02/25/2023 04:22	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<14.4U	ug/kg dry	1	14.4	28.9	BGA3094	02/25/2023 04:22	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.61U	ug/kg dry	1	3.61	7.22	BGA3094	02/25/2023 04:22	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.61U	ug/kg dry	1	3.61	7.22	BGA3094	02/25/2023 04:22	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Anthracene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-1A-S (Continued)

Sample Matrix: Sediment

Collected by:

Lab Sample ID: 23A1459-20RE1

Date Collected: 01/16/2023 17:20

Gregg Pawlak

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS (Conti	nued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	1.89V, J	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Chrysene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	2.10V, J	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	6.35V	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Fluorene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Isophorone (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.61U	ug/kg dry	1	3.61	7.22	BGA3094	02/25/2023 04:22	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Phenol, Total (Rerun)	Α	<3.61U	ug/kg dry	1	3.61	7.22	BGA3094	02/25/2023 04:22	KRB
SW-8270	Pyrene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.61	BGA3094	02/25/2023 04:22	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-suri	· (Rerun)	66.2%	60-140					02/25/2023 04:22	
SW-8270	Surrogate: 2-Fluorophenol-surr (	. ,	75.2%	60-140					02/25/2023 04:22	
SW-8270	Surrogate: 2,4,6-Tribromopheno	•	76.7%	60-140					02/25/2023 04:22	
SW-8270	Surrogate: Nitrobenzene-d5-surr	(Rerun)	61.6%	60-140					02/25/2023 04:22	
SW-8270	Surrogate: Phenol-d5-surr (Reru	n)	74.3%	60-140					02/25/2023 04:22	
SW-8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	41.0% S	60-140					02/25/2023 04:22	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-1B-S

Lab Sample ID: 23A1459-21

Sample Alias: 23A1459-21

IMU-2-1B-S

Date Collected: 01/17/2023 11:30 Collected by: Gregg Pawlak

Sediment

Sample Matrix:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by GCI	MS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/09/2023 01:16	KRB
SW-8270	Benzidine	Α	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/09/2023 01:16	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr		89.2%	60-140					02/09/2023 01:16	
SW-8270	Surrogate: 2-Fluorophenol-surr		106%	60-140					02/09/2023 01:16	
SW-8270	Surrogate: 2,4,6-Tribromophenol-	-surr	143% S	60-140					02/09/2023 01:16	
SW-8270	Surrogate: Nitrobenzene-d5-surr		105%	60-140					02/09/2023 01:16	
SW-8270	Surrogate: Phenol-d5-surr		112%	60-140					02/09/2023 01:16	
SW-8270	Surrogate: p-Terphenyl-d14-surr		49.8% S	60-140					02/09/2023 01:16	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	4,4'-DDE	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	4,4'-DDT	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Aldrin	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Chlordane (tech.)	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	delta-BHC	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Dieldrin	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Endosulfan I	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Endosulfan II	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Endosulfan sulfate	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Endrin	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Endrin aldehyde	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Endrin ketone	A	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	gamma-Chlordane	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Heptachlor	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Heptachlor epoxide	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Methoxychlor	Α	<0.443U	ug/kg dry	10	0.443	1.48	BGA3044	02/02/2023 00:28	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<22.1U	ug/kg dry	10	22.1	22.1	BGA3044	02/02/2023 00:28	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-m	-xylene-suri	88.6%	60-140					02/02/2023 00:28	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-1B-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-21

Date Collected: 01/17/2023 11:30

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	111%	60-140					02/02/2023 00:28	
SW-8082	PCBs, Total	A	<1.48C+, U	ug/kg dry	1	1.48	2.95	BGA3182	01/28/2023 19:00	CRO
SW-8082	Surrogate: 2,4,5,6 Tetraci	hloro-m-xylene-suri	183% S	60-140					01/28/2023 19:00	
SW-8082	Surrogate: Decachlorobip	henyl-surr	71.8%	60-140					01/28/2023 19:00	
Metals, Tota	ıl									
EPA 200.8	Antimony	Α	<0.0302U	mg/kg dry	1	0.0302	0.0606	BGA3226	01/30/2023 14:38	TBB
EPA 200.8	Arsenic	Α	1.69	mg/kg dry	1	0.00302	0.0302	BGA3226	01/30/2023 14:38	TBB
EPA 200.8	Beryllium	Α	0.151	mg/kg dry	1	0.000606	0.0121	BGA3226	01/30/2023 14:38	TBB
EPA 200.8	Cadmium	Α	0.0570J	mg/kg dry	1	0.00302	0.0606	BGA3226	01/31/2023 10:12	TBB
EPA 200.8	Chromium	Α	3.74	mg/kg dry	1	0.00908	0.182	BGA3226	01/31/2023 10:12	TBB
EPA 200.8	Copper	Α	2.64V	mg/kg dry	1	0.0121	0.0606	BGA3226	01/31/2023 10:12	TBB
Calc	Chromium (III)		3.74J	mg/kg (dry wt) dry	1	0.153	5.18	[CALC]	02/01/2023 12:21	EM
SW-7196	Chromium (VI)	Α	<0.144U	mg/kg dry	1	0.144	5.00	BGA3843	02/01/2023 12:21	EM
SW-7471B	Mercury	Α	<0.00947U	mg/kg dry	1	0.00947	0.0189	BGA3912	01/31/2023 14:51	NAZ
EPA 200.8	Lead	Α	2.46	mg/kg dry	1	0.00302	0.0302	BGA3226	01/30/2023 14:38	TBB
EPA 200.8	Nickel	Α	2.54	mg/kg dry	1	0.0606	0.0606	BGA3226	01/31/2023 15:35	TBB
EPA 200.8	Selenium	Α	0.755	mg/kg dry	1	0.0606	0.121	BGA3226	01/31/2023 10:12	TBB
EPA 200.8	Silver	Α	0.00847J	mg/kg dry	1	0.00151	0.0302	BGA3226	01/30/2023 14:38	TBB
EPA 200.8	Thallium	Α	0.0382	mg/kg dry	1	0.00151	0.0302	BGA3226	01/31/2023 10:12	TBB
EPA 200.8	Zinc	Α	5.43	mg/kg dry	1	0.0606	0.121	BGA3226	01/30/2023 14:38	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0358U	mg/kg dry	1	0.0358	0.0716	BGA3214	01/26/2023 15:47	GJG
EPA 350.2	Ammonia as N	Α	15.1	mg/kg dry	1	7.31	14.6	BGA4008	02/01/2023 09:08	GIW
SW-9045C	рН	Α	8.03H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	67.8V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

HI-DMMU-2-1B-S Client Sample ID:

Lab Sample ID: 23A1459-21RE1

Sample Alias:

Sample Matrix: Sediment

Collected by:

Date Collected: 01/17/2023 11:30

Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS SW-8270 1,2,4-Trichlorobenzene BGA3094 02/25/2023 04:57 KRB Α <1.83U 1 1.83 3.65 ug/kg dry (Rerun) SW-8270 <1.83U 1.83 3.65 BGA3094 02/25/2023 04:57 KRB 1,2-Dichlorobenzene Α ua/ka drv 1 (o-Dichlorobenzene) (Rerun) SW-8270 1,2-Diphenylhydrazine Α <1.83U ua/ka drv 1 1.83 3.65 BGA3094 02/25/2023 04:57 KRB (Rerun) SW-8270 1,3-Dichlorobenzene Α <1.83U ug/kg dry 1 1.83 3.65 BGA3094 02/25/2023 04:57 KRB (m-Dichlorobenzene) (Rerun) SW-8270 1,4-Dichlorobenzene Α <1.83U ug/kg dry 1 1.83 3.65 BGA3094 02/25/2023 04:57 KRB (p-Dichlorobenzene) (Rerun) SW-8270 BGA3094 02/25/2023 04:57 2,2'-Oxybis(1-chloropropane), Α <1.83U ug/kg dry 1 1.83 3.65 KRB bis(2-Chloro-1-methy (Rerun) SW-8270 <3.65U 7.31 BGA3094 02/25/2023 04:57 KRB 2,4,6-Trichlorophenol (Rerun) Α ug/kg dry 1 3.65 02/25/2023 04:57 SW-8270 2,4-Dichlorophenol (Rerun) <3.65U 3.65 7.31 BGA3094 KRB Α ug/kg dry 1 SW-8270 2,4-Dimethylphenol (Rerun) 02/25/2023 04:57 Α <3.65U ug/kg dry 3.65 7.31 BGA3094 **KRB** SW-8270 2,4-Dinitrophenol (Rerun) Α <3.65U ug/kg dry 1 3.65 7.31 BGA3094 02/25/2023 04:57 KRB SW-8270 2,4-Dinitrotoluene (2,4-DNT) Α <1.83U ug/kg dry 1 1.83 3.65 BGA3094 02/25/2023 04:57 KRB (Rerun) SW-8270 2,6-Dinitrotoluene (2,6-DNT) Α <1.83U ug/kg dry 1 1.83 3.65 BGA3094 02/25/2023 04:57 **KRB** (Rerun) SW-8270 <1.83U 3.65 BGA3094 02/25/2023 04:57 2-Chloronaphthalene (Rerun) Α ug/kg dry 1 1.83 **KRB** SW-8270 BGA3094 2-Chlorophenol (Rerun) <3.65U 3.65 7.31 02/25/2023 04:57 KRB Α ug/kg dry 1 SW-8270 2-Methyl-4,6-dinitrophenol <14.6U 29.2 BGA3094 02/25/2023 04:57 KRB Α ug/kg dry 1 14.6 (4,6-Dinitro-2-methylph (Rerun) SW-8270 <3.65U 3.65 7.31 BGA3094 02/25/2023 04:57 KRB 2-Nitrophenol (Rerun) Α ug/kg dry 1 SW-8270 BGA3094 02/25/2023 04:57 4-Bromophenyl phenyl ether <1.83U ug/kg dry 1.83 3.65 **KRB** (BDE-3) (Rerun) SW-8270 <3.65U BGA3094 02/25/2023 04:57 KRB 4-Chloro-3-methylphenol Α ug/kg dry 1 3.65 7.31 (Rerun) SW-8270 4-Chlorophenyl phenylether Α <1.83U ug/kg dry 1 1.83 3.65 BGA3094 02/25/2023 04:57 KRB (Rerun) SW-8270 4-Nitrophenol (Rerun) Α <1.83U ug/kg dry 1 1.83 3.65 BGA3094 02/25/2023 04:57 KRB Acenaphthene (Rerun) SW-8270 <1.83U ug/kg dry 1.83 3.65 BGA3094 02/25/2023 04:57 KRB Α 1 SW-8270 Acenaphthylene (Rerun) Α <1.83U ug/kg dry 1 1.83 3.65 BGA3094 02/25/2023 04:57 KRB SW-8270 Anthracene (Rerun) Α <1.83U 1 1.83 3.65 BGA3094 02/25/2023 04:57 KRB ug/kg dry SW-8270 Benzo(a)anthracene (Rerun) Α <1.83U 1.83 3.65 BGA3094 02/25/2023 04:57 KRB ug/kg dry 1 SW-8270 <1.83U ug/kg dry 3.65 02/25/2023 04:57 KRB Benzo(a)pyrene (Rerun) Α 1.83 BGA3094 1 SW-8270 Benzo(b)fluoranthene (Rerun) Α <1.83U 1.83 3.65 BGA3094 02/25/2023 04:57 KRB ug/kg dry 1 SW-8270 Α <1.83U 1.83 3.65 BGA3094 02/25/2023 04:57 KRB Benzo(g,h,i)perylene (Rerun) ug/kg dry 1 SW-8270 Benzo(k)fluoranthene (Rerun) Α <1.83U ug/kg dry 1 1.83 3.65 BGA3094 02/25/2023 04:57 KRB SW-8270 bis(2-Chloroethoxy)methane Α <1.83U 1 1.83 3.65 BGA3094 02/25/2023 04:57 KRB ug/kg dry (Rerun)





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-1B-S (Continued)

Sample Matrix: Sediment

Date Collected:

Lab Sample ID: 23A1459-21RE1

Sample Alias:

Collected by: Gregg Pawlak

01/17/2023 11:30

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GCMS	(Contin	ued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	A	2.00V, J	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Chrysene (Rerun)	Α	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	2.17V, J	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Dimethyl phthalate (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	8.89V	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Fluorene (Rerun)	Α	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	А	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Hexachloroethane (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Isophorone (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	n-Nitrosodi-n-propylamine // (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Pentachlorophenol (Rerun)	A	<3.65U	ug/kg dry	1	3.65	7.31	BGA3094	02/25/2023 04:57	KRB
SW-8270	Phenanthrene (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Phenol, Total (Rerun)	A	<3.65U	ug/kg dry	1	3.65	7.31	BGA3094	02/25/2023 04:57	KRB
SW-8270	Pyrene (Rerun)	A	<1.83U	ug/kg dry	1	1.83	3.65	BGA3094	02/25/2023 04:57	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (Rei	run)	58.5% S	60-140					02/25/2023 04:57	
SW-8270	Surrogate: 2-Fluorophenol-surr (Reru	ın)	77.5%	60-140					02/25/2023 04:57	
SW-8270	Surrogate: 2,4,6-Tribromophenol-suri	•	73.5%	60-140					02/25/2023 04:57	
SW-8270	Surrogate: Nitrobenzene-d5-surr (Ren	run)	67.0%	60-140					02/25/2023 04:57	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)		78.5%	60-140					02/25/2023 04:57	
SW-8270	Surrogate: p-Terphenyl-d14-surr (Rei	run)	32.4% S	60-140					02/25/2023 04:57	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-1C-S

Lab Sample ID: 23A1459-22

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/17/2023 16:30

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by 0	CMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/09/2023 01:51	KRB
SW-8270	Benzidine	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/09/2023 01:51	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	urr	113%	60-140					02/09/2023 01:51	
SW-8270	Surrogate: 2-Fluorophenol-sui	rr	98.1%	60-140					02/09/2023 01:51	
<i>SW-8270</i>	Surrogate: 2,4,6-Tribromophe	nol-surr	166% S	60-140					02/09/2023 01:51	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-s	urr	55.4% S	60-140					02/09/2023 01:51	
SW-8270	Surrogate: Phenol-d5-surr		111%	60-140					02/09/2023 01:51	
SW-8270	Surrogate: p-Terphenyl-d14-s	urr	75.4%	60-140					02/09/2023 01:51	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	4,4'-DDE	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	4,4'-DDT	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Aldrin	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Chlordane (tech.)	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	delta-BHC	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Dieldrin	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Endosulfan I	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Endosulfan II	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Endosulfan sulfate	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Endrin	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Endrin aldehyde	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Endrin ketone	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	gamma-Chlordane	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Heptachlor	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Heptachlor epoxide	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Methoxychlor	Α	<0.518U	ug/kg dry	10	0.518	1.73	BGA3044	02/02/2023 00:55	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<25.9U	ug/kg dry	10	25.9	25.9	BGA3044	02/02/2023 00:55	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-sun	85.1%	60-140					02/02/2023 00:55	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-1C-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-22

Date Collected: 01/17/2023 16:30

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	112%	60-140					02/02/2023 00:55	
SW-8082	PCBs, Total	Α	<1.73C+, U	ug/kg dry	1	1.73	3.45	BGA3182	01/28/2023 19:27	CRO
SW-8082	Surrogate: 2,4,5,6 Tetraca	hloro-m-xylene-suri	179% S	60-140					01/28/2023 19:27	
SW-8082	Surrogate: Decachlorobip	henyl-surr	96.3%	60-140					01/28/2023 19:27	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0350U	mg/kg dry	1	0.0350	0.0703	BGA3226	01/30/2023 14:40	TBB
EPA 200.8	Arsenic	Α	2.40	mg/kg dry	1	0.00350	0.0350	BGA3226	01/30/2023 14:40	TBB
EPA 200.8	Beryllium	Α	0.211	mg/kg dry	1	0.000703	0.0140	BGA3226	01/30/2023 14:40	TBB
EPA 200.8	Cadmium	Α	0.0585J	mg/kg dry	1	0.00350	0.0703	BGA3226	01/31/2023 10:21	TBB
EPA 200.8	Chromium	Α	4.63	mg/kg dry	1	0.0105	0.210	BGA3226	01/31/2023 10:21	TBB
EPA 200.8	Copper	Α	2.91V	mg/kg dry	1	0.0140	0.0703	BGA3226	01/31/2023 10:21	TBB
Calc	Chromium (III)		3.72J	mg/kg (dry wt) dry	1	0.178	5.21	[CALC]	02/01/2023 12:22	EM
SW-7196	Chromium (VI)	Α	0.909J	mg/kg dry	1	0.168	5.00	BGA3843	02/01/2023 12:22	EM
SW-7471B	Mercury	Α	<0.00936U	mg/kg dry	1	0.00936	0.0187	BGA3912	01/31/2023 14:54	NAZ
EPA 200.8	Lead	Α	2.80	mg/kg dry	1	0.00350	0.0350	BGA3226	01/30/2023 14:40	TBB
EPA 200.8	Nickel	Α	3.59	mg/kg dry	1	0.0703	0.0703	BGA3226	01/31/2023 15:45	TBB
EPA 200.8	Selenium	Α	0.612	mg/kg dry	1	0.0703	0.140	BGA3226	01/31/2023 10:21	TBB
EPA 200.8	Silver	Α	0.0113J	mg/kg dry	1	0.00175	0.0350	BGA3226	01/30/2023 14:40	TBB
EPA 200.8	Thallium	Α	0.0515	mg/kg dry	1	0.00175	0.0350	BGA3226	01/31/2023 10:21	TBB
EPA 200.8	Zinc	Α	7.30	mg/kg dry	1	0.0703	0.140	BGA3226	01/30/2023 14:40	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0423U	mg/kg dry	1	0.0423	0.0846	BGA3214	01/26/2023 15:48	GJG
EPA 350.2	Ammonia as N	Α	17.3	mg/kg dry	1	8.58	17.2	BGA4008	02/01/2023 09:08	GIW
SW-9045C	рН	Α	8.23H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	58.0 V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-2-1C-S

23A1459-22RE1

Lab Sample ID:

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/17/2023 16:30

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<4.19U	ug/kg dry	1	4.19	8.37	BGA3094	02/25/2023 05:32	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<4.19U	ug/kg dry	1	4.19	8.37	BGA3094	02/25/2023 05:32	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<4.19U	ug/kg dry	1	4.19	8.37	BGA3094	02/25/2023 05:32	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.19U	ug/kg dry	1	4.19	8.37	BGA3094	02/25/2023 05:32	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<4.19U	ug/kg dry	1	4.19	8.37	BGA3094	02/25/2023 05:32	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<16.7U	ug/kg dry	1	16.7	33.5	BGA3094	02/25/2023 05:32	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<4.19U	ug/kg dry	1	4.19	8.37	BGA3094	02/25/2023 05:32	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<4.19U	ug/kg dry	1	4.19	8.37	BGA3094	02/25/2023 05:32	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	Acenaphthene (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	Anthracene (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<2.09U	ug/kg dry	1	2.09	4.19	BGA3094	02/25/2023 05:32	KRB



Reported:



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Project Number:

# Sample Results (Continued)

Client Sample ID: HI-DMMU-2-1C-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-22RE1

Date Collected: 01/17/2023 16:30

Sample Alias:

11555 Clay Road

SW-8270   Big(2-ethylhexyl )phthalate   A   2.42V, J   ug/kg dry   1   2.09   4.19   BGA3094   02/2	nalyzed /	Analyst
SW-8270   Bis(2-ethylhexyl)phthalate   A   2.42V, J   ug/kg dry   1   2.09   4.19   BGA3094   02/2		
SW-8270   Bury henzyl phthalate   A   <2.09U   ug/kg dry   1   2.09   4.19   BGA3094   022   022   024   022   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   024   0	5/2023 05:32	KRB
(Rerun)	5/2023 05:32	KRB
SW-8270         Dibenzo(a,h)anthracene (Rerun)         A         < 2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2 (Rerun)           SW-8270         Diethyl phthalate (Rerun)         A         3.57V, J         ug/kg dry         1         2.09         4.19         BGA3094         02/2 (SW-8270)           SW-8270         Di-n-butyl phthalate (Rerun)         A         11.4V         ug/kg dry         1         2.09         4.19         BGA3094         02/2 (SW-8270)           SW-8270         Di-n-butyl phthalate (Rerun)         A         42.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2 (SW-8270)         Fluoranthene (Rerun)         A         42.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2 (SW-8270)         Hexachlorobenzene (Rerun)         A         42.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2 (SW-8270)         Hexachlorocyclopentadiene (Rerun)         A         42.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2 (SW-8270)         Hexachlorocyclopentadiene (Rerun)         A         42.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2 (SW-827	5/2023 05:32	KRB
CREUN   SW-8270   Diethyl phthalate (Rerun)   A   3.57V, J   ug/kg dry   1   2.09   4.19   BGA3094   02/2	5/2023 05:32	KRB
SW-8270         Dimethyl phthalate (Rerun)         A         < 2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2           SW-8270         Di-n-butyl phthalate (Rerun)         A         11.4V         ug/kg dry         1         2.09         4.19         BGA3094         02/2           SW-8270         Di-n-octyl phthalate (Rerun)         A         < 2.09U	5/2023 05:32	KRB
SW-8270         Di-n-butyl phthalate (Rerun)         A         11.4V         ug/kg dry         1         2.09         4.19         BGA3094         02/2           SW-8270         Di-n-octyl phthalate (Rerun)         A         <2.09U	5/2023 05:32	KRB
SW-8270         Di-n-octyl phthalate (Rerun)         A         < 2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2           SW-8270         Fluoranthene (Rerun)         A         < 2.09U	5/2023 05:32	KRB
SW-8270         Fluoranthene (Rerun)         A         < 2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2           SW-8270         Fluorene (Rerun)         A         < 2.09U	5/2023 05:32	KRB
SW-8270         Fluorene (Rerun)         A         < 2.09U         ug/kg dry         1         2.09         4.19         BGA3094         2022           SW-8270         Hexachlorobenzene (Rerun)         A         < 2.09U	5/2023 05:32	KRB
SW-8270         Hexachlorobenzene (Rerun)         A         < 2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2           SW-8270         Hexachlorocytopentadiene (Rerun)         A         < 2.09U	5/2023 05:32	KRB
SW-8270         Hexachlorobutadiene (Rerun)         A         <2.09U         ug/kg dry         1         2.09         4.19         BGA3094         22/2           SW-8270         Hexachlorocyclopentadiene (Rerun)         A         <2.09U	5/2023 05:32	KRB
SW-8270         Hexachlorocyclopentadiene (Rerun)         A         <2.09U         ug/kg dry         1         2.09         4.19         BGA3094         22/2 (2)           SW-8270         Hexachlorocethane (Rerun)         A         <2.09U	5/2023 05:32	KRB
Company   Comp	5/2023 05:32	KRB
SW-8270         Indeno(1,2,3-cd) pyrene (Rerun)         A         <2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2 (2/2 (2/2 (2/2 (2/2 (2/2 (2/2 (2/2	5/2023 05:32	KRB
SW-8270   Isophorone (Rerun)   A   <2.09U   ug/kg dry   1   2.09   4.19   BGA3094   02/2	5/2023 05:32	KRB
SW-8270         Naphthalene (Rerun)         A         <2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2           SW-8270         Nitrobenzene (Rerun)         A         <2.09U	5/2023 05:32	KRB
SW-8270         Nitrobenzene (Rerun)         A         <2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2           SW-8270         n-Nitrosodimethylamine (Rerun)         A         <2.09U	5/2023 05:32	KRB
SW-8270         n-Nitrosodimethylamine (Rerun)         A         <2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2 (02/2	5/2023 05:32	KRB
(Rerun)         SW-8270       n-Nitrosodi-n-propylamine (Rerun)       A       <2.09U	5/2023 05:32	KRB
(Rerun)  SW-8270 n-Nitrosodiphenylamine A <2.09U ug/kg dry 1 2.09 4.19 BGA3094 02/2 (Rerun)  SW-8270 Pentachlorophenol (Rerun) A <4.19U ug/kg dry 1 4.19 8.37 BGA3094 02/2 SW-8270 Phenanthrene (Rerun) A <2.09U ug/kg dry 1 2.09 4.19 BGA3094 02/2 SW-8270 Phenol, Total (Rerun) A <4.19U ug/kg dry 1 4.19 8.37 BGA3094 02/2 SW-8270 Pyrene (Rerun) A <4.19U ug/kg dry 1 4.19 8.37 BGA3094 02/2 SW-8270 Pyrene (Rerun) A <2.09U ug/kg dry 1 2.09 4.19 BGA3094 02/2 SW-8270 Surrogate: 2-Fluorobiphenyl-surr (Rerun) 71.4% 60-140  SW-8270 Surrogate: 2-Fluorobiphenol-surr (Rerun) 77.2% 60-140  SW-8270 Surrogate: 2,4,6-Tribromophenol-surr (Rerun 77.7% 60-140  SW-8270 Surrogate: Nitrobenzene-d5-surr (Rerun) 35.6% S 60-140  SW-8270 Surrogate: Phenol-d5-surr (Rerun) 78.8% 60-140	5/2023 05:32	KRB
(Rerun)         SW-8270       Pentachlorophenol (Rerun)       A       <4.19U       ug/kg dry       1       4.19       8.37       BGA3094       02/2         SW-8270       Phenanthrene (Rerun)       A       <2.09U	5/2023 05:32	KRB
SW-8270         Phenanthrene (Rerun)         A         <2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2           SW-8270         Phenol, Total (Rerun)         A         <4.19U	5/2023 05:32	KRB
SW-8270       Phenol, Total (Rerun)       A       <4.19U       ug/kg dry       1       4.19       8.37       BGA3094       02/2         SW-8270       Pyrene (Rerun)       A       <2.09U	5/2023 05:32	KRB
SW-8270         Pyrene (Rerun)         A         <2.09U         ug/kg dry         1         2.09         4.19         BGA3094         02/2           SW-8270         Surrogate: 2-Fluorophenol-surr (Rerun)         71.4%         60-140         02/2           SW-8270         Surrogate: 2-Fluorophenol-surr (Rerun)         77.2%         60-140         02/2           SW-8270         Surrogate: 2,4,6-Tribromophenol-surr (Rerun)         77.7%         60-140         02/2           SW-8270         Surrogate: Nitrobenzene-d5-surr (Rerun)         35.6% S         60-140         02/2           SW-8270         Surrogate: Phenol-d5-surr (Rerun)         78.8%         60-140         02/2	5/2023 05:32	KRB
SW-8270       Surrogate: 2-Fluorobiphenyl-surr (Rerun)       71.4%       60-140       02/2         SW-8270       Surrogate: 2-Fluorophenol-surr (Rerun)       77.2%       60-140       02/2         SW-8270       Surrogate: 2,4,6-Tribromophenol-surr (Rerun)       77.7%       60-140       02/2         SW-8270       Surrogate: Nitrobenzene-d5-surr (Rerun)       35.6% S       60-140       02/2         SW-8270       Surrogate: Phenol-d5-surr (Rerun)       78.8%       60-140       02/2	5/2023 05:32	KRB
SW-8270         Surrogate: 2-Fluorophenol-surr (Rerun)         77.2%         60-140         02/2           SW-8270         Surrogate: 2,4,6-Tribromophenol-surr (Rerur.         77.7%         60-140         02/2           SW-8270         Surrogate: Nitrobenzene-d5-surr (Rerun)         35.6% S         60-140         02/2           SW-8270         Surrogate: Phenol-d5-surr (Rerun)         78.8%         60-140         02/2	5/2023 05:32	KRB
SW-8270         Surrogate: 2,4,6-Tribromophenol-surr (Rerur.         77.7%         60-140         02/2           SW-8270         Surrogate: Nitrobenzene-d5-surr (Rerun)         35.6% S         60-140         02/2           SW-8270         Surrogate: Phenol-d5-surr (Rerun)         78.8%         60-140         02/2	5/2023 05:32	
SW-8270         Surrogate: Nitrobenzene-d5-surr (Rerun)         35.6% S         60-140         02/2           SW-8270         Surrogate: Phenol-d5-surr (Rerun)         78.8%         60-140         02/2	5/2023 05:32	
SW-8270         Surrogate: Phenol-d5-surr (Rerun)         78.8%         60-140         02/2	5/2023 05:32	
	5/2023 05:32	
CIV 0270 Company Tamband 414 and (Parin) 46 00/ C C C 140	5/2023 05:32	
SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 46.8% S 60-140 02/2	5/2023 05:32	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-3-2A-S

Lab Sample ID: 23A1459-24

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/19/2023 15:20

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by (	GCMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.69CQ, U	ug/kg dry	1	1.69	3.38	BGA3368	02/13/2023 23:13	KRB
SW-8270	Benzidine	Α	<1.69CQ, U	ug/kg dry	1	1.69	3.38	BGA3368	02/13/2023 23:13	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	surr	203% CQ, S	60-140					02/13/2023 23:13	
SW-8270	Surrogate: 2-Fluorophenol-su	rr	1450% CQ, S	60-140					02/13/2023 23:13	
SW-8270	Surrogate: 2,4,6-Tribromophe	enol-surr	105% CQ	60-140					02/13/2023 23:13	
SW-8270	Surrogate: Nitrobenzene-d5-s	<i>Surr</i>	2190% CQ, S	60-140					02/13/2023 23:13	
SW-8270	Surrogate: Phenol-d5-surr		1270% CQ, S	60-140					02/13/2023 23:13	
SW-8270	Surrogate: p-Terphenyl-d14-s	Surr	176% CQ, S	60-140					02/13/2023 23:13	
Organics by	GC									
SW-8082	PCBs, Total	Α	<1.32U	ug/kg dry	1	1.32	2.64	BGA3651	02/24/2023 21:20	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-suri	% S, U	60-140					02/24/2023 21:20	
SW-8082	Surrogate: Decachlorobipheny	yl-surr	10.4% S	60-140					02/24/2023 21:20	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0285U	mg/kg dry	1	0.0285	0.0571	BGA3226	01/30/2023 14:43	TBB
EPA 200.8	Arsenic	Α	0.741	mg/kg dry	1	0.00285	0.0285	BGA3226	01/30/2023 14:43	TBB
EPA 200.8	Beryllium	Α	0.0341	mg/kg dry	1	0.000571	0.0114	BGA3226	01/30/2023 14:43	TBB
EPA 200.8	Cadmium	Α	0.0141J	mg/kg dry	1	0.00285	0.0571	BGA3226	01/31/2023 10:24	TBB
EPA 200.8	Chromium	Α	0.748	mg/kg dry	1	0.00855	0.171	BGA3226	01/31/2023 10:24	TBB
EPA 200.8	Copper	Α	0.459V	mg/kg dry	1	0.0114	0.0571	BGA3226	01/31/2023 10:24	TBB
Calc	Chromium (III)		0.228J	mg/kg (dry wt) dry	1	0.144	5.17	[CALC]	02/01/2023 12:24	EM
SW-7196	Chromium (VI)	Α	0.520J	mg/kg dry	1	0.135	5.00	BGA3843	02/01/2023 12:24	EM
SW-7471B	Mercury	Α	<0.00929U	mg/kg dry	1	0.00929	0.0186	BGA3912	01/31/2023 14:57	NAZ
EPA 200.8	Lead	Α	1.32	mg/kg dry	1	0.00285	0.0285	BGA3226	01/30/2023 14:43	TBB
EPA 200.8	Nickel	Α	0.679	mg/kg dry	1	0.0571	0.0571	BGA3226	01/31/2023 15:47	TBB
EPA 200.8	Selenium	Α	0.269	mg/kg dry	1	0.0571	0.114	BGA3226	01/31/2023 10:24	TBB
EPA 200.8	Silver	Α	0.00730J	mg/kg dry	1	0.00143	0.0285	BGA3226	01/30/2023 14:43	TBB
EPA 200.8	Thallium	Α	0.0235J	mg/kg dry	1	0.00143	0.0285	BGA3226	01/31/2023 10:24	TBB
EPA 200.8	Zinc	Α	2.28	mg/kg dry	1	0.0571	0.114	BGA3226	01/30/2023 14:43	TBB
General Che	emistry									
SW-9014	Total Cyanide	А	<0.0333U	mg/kg dry	1	0.0333	0.0666	BGA3214	01/26/2023 15:49	GJG
EPA 350.2	Ammonia as N	Α	<6.91U	mg/kg dry	1	6.91	13.8	BGA4008	02/01/2023 09:08	GIW
SW-9045C	рН	Α	8.47H	pH Units @ 25 °C	1		0.100	BGA3071	01/24/2023 13:11	AKA
SM 2540 G	% Solids	Α	72.2V	%	1	0.100	0.100	BGA3093	01/25/2023 11:53	JRU





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-3-2A-S

Lab Sample ID: 23A1459-24RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/19/2023 15:20

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<16.9A, CQ, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<33.8A, U	ug/kg dry	10	33.8	67.5	BGA3368	02/27/2023 23:40	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<33.8A, U	ug/kg dry	10	33.8	67.5	BGA3368	02/27/2023 23:40	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<33.8A, U	ug/kg dry	10	33.8	67.5	BGA3368	02/27/2023 23:40	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<33.8A, U	ug/kg dry	10	33.8	67.5	BGA3368	02/27/2023 23:40	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<33.8A, U	ug/kg dry	10	33.8	67.5	BGA3368	02/27/2023 23:40	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<135A, U	ug/kg dry	10	135	270	BGA3368	02/27/2023 23:40	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<33.8A, U	ug/kg dry	10	33.8	67.5	BGA3368	02/27/2023 23:40	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<16.9A, CQ, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<33.8A, U	ug/kg dry	10	33.8	67.5	BGA3368	02/27/2023 23:40	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<16.9A, CQ, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<16.9A, CQ, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Acenaphthene (Rerun)	Α	355A	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Acenaphthylene (Rerun)	Α	333A	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Anthracene (Rerun)	Α	<16.9A, CQ, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	52.9A	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<16.9CQ, A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	65.2A, CQ	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB





Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

11555 Clay Road Houston, TX 77043

Project Manager: Gregg Pawlak

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

# Sample Results (Continued)

Client Sample ID: HI-DMMU-3-2A-S (Continued)

Sample Matrix: Sediment

Lab Sample ID:

23A1459-24RE1

Date Collected: 01/19/2023 15:20

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GO	CMS (Conti	nued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	21.3A, V, J	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Chrysene (Rerun)	Α	71.5A	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<16.9A, CQ, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	<16.9A, B, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	293A, CQ, V	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Fluoranthene (Rerun)	Α	181CQ, A	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Fluorene (Rerun)	Α	1840A, CQ, L	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<16.9A, CQ, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<16.9A, CQ, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	44.3A, CQ	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Isophorone (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Naphthalene (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<16.9A, U	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<33.8CQ, A, U	ug/kg dry	10	33.8	67.5	BGA3368	02/27/2023 23:40	KRB
SW-8270	Phenanthrene (Rerun)	Α	1380A, CQ	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Phenol, Total (Rerun)	Α	<33.8A, U	ug/kg dry	10	33.8	67.5	BGA3368	02/27/2023 23:40	KRB
SW-8270	Pyrene (Rerun)	Α	232A, CQ	ug/kg dry	10	16.9	33.8	BGA3368	02/27/2023 23:40	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	r (Rerun)	540% S	60-140					02/27/2023 23:40	
SW-8270	Surrogate: 2-Fluorophenol-surr	-	58.8% S	60-140					02/27/2023 23:40	
SW-8270	Surrogate: 2,4,6-Tribromopheno	. ,	55.6% CQ, S	60-140					02/27/2023 23:40	
SW-8270	Surrogate: Nitrobenzene-d5-sur	•	846% S	60-140					02/27/2023 23:40	
SW-8270	Surrogate: Phenol-d5-surr (Reru	ın)	110%	60-140					02/27/2023 23:40	
SW-8270	Surrogate: p-Terphenyl-d14-sur	r (Rerun)	104% CQ	60-140					02/27/2023 23:40	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Project Manager: Gregg Pawlak 04/03/2023 14:08 Houston, TX 77043

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-3-2A-S (Continued) Sample Matrix: Sediment

Collected by:

Lab Sample ID: 23A1459-24RE1 Date Collected: 01/19/2023 15:20 Gregg Pawlak

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	y GC									
SW-8081	4,4'-DDD (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	4,4'-DDE (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	4,4'-DDT (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Aldrin (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e) (Rerun)	A	<0.409C+, U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane ) (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Chlordane (tech.) (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	cis-Chlordane (alpha-Chlordane) (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	delta-BHC (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Dieldrin (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Endosulfan I (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Endosulfan II (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Endosulfan sulfate (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Endrin (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Endrin aldehyde (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Endrin ketone (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE) (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	gamma-Chlordane (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Heptachlor (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Heptachlor epoxide (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Methoxychlor (Rerun)	Α	<0.409U	ug/kg dry	10	0.409	1.36	BGA3603	02/10/2023 02:44	ALA
SW-8081	Toxaphene (Chlorinated Camphene) (Rerun)	Α	<20.4U	ug/kg dry	10	20.4	20.4	BGA3603	02/10/2023 02:44	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-n	n-xylene-suri	156% S	60-140					02/10/2023 02:44	
SW-8081	Surrogate: Decachlorobiphenyl-s	•	86.2%	60-140					02/10/2023 02:44	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-3-2A-S

Lab Sample ID: 23A1459-24RE2

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/19/2023 15:20

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<33.7A, H, U	ug/kg dry	10	33.7	67.3	BGC0816	03/15/2023 11:04	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<33.7H, A, U	ug/kg dry	10	33.7	67.3	BGC0816	03/15/2023 11:04	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<33.7A, H, U	ug/kg dry	10	33.7	67.3	BGC0816	03/15/2023 11:04	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<33.7A, H, U	ug/kg dry	10	33.7	67.3	BGC0816	03/15/2023 11:04	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<135A, H, U	ug/kg dry	10	135	269	BGC0816	03/15/2023 11:04	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<33.7H, A, U	ug/kg dry	10	33.7	67.3	BGC0816	03/15/2023 11:04	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<33.7A, H, U	ug/kg dry	10	33.7	67.3	BGC0816	03/15/2023 11:04	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Acenaphthene (Rerun)	Α	416A, H	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Acenaphthylene (Rerun)	Α	323A, H	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Anthracene (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	31.3A, H, J	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	22.3A, H, J	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	18.8V, A, H, J	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Chrysene (Rerun)	Α	36.7A, H	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB





Terracon_Houston

11555 Clay Road

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

TCEQ-TOX T104704202-22-17

Houston, TX 77043 Project Manager: Gregg Pawlak

04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-3-2A-S (Continued)

Sample Matrix: Sediment

Date Collected:

Lab Sample ID: 23A1459-24RE2

01/19/2023 15:20

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GC	MS (Conti	nued)							
SW-8270	Dibenzo(a,h)anthracene (Rerun)	А	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	120A, H	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Fluoranthene (Rerun)	Α	81.3A, H	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Isophorone (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Naphthalene (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<16.8A, H, U	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<33.7A, H, U	ug/kg dry	10	33.7	67.3	BGC0816	03/15/2023 11:04	KRB
SW-8270	Phenanthrene (Rerun)	Α	522A, H	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Phenol, Total (Rerun)	Α	<33.7A, H, U	ug/kg dry	10	33.7	67.3	BGC0816	03/15/2023 11:04	KRB
SW-8270	Pyrene (Rerun)	Α	90.3A, H	ug/kg dry	10	16.8	33.7	BGC0816	03/15/2023 11:04	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	r (Rerun)	52.1% A, S	60-140					03/15/2023 11:04	
SW-8270	Surrogate: 2-Fluorophenol-surr	(Rerun)	112% A	60-140					03/15/2023 11:04	
SW-8270	Surrogate: 2,4,6-Tribromopheno	ol-surr (Rerur	41.7% A, S	60-140					03/15/2023 11:04	
SW-8270	Surrogate: Nitrobenzene-d5-surr	(Rerun)	73.7% A	60-140					03/15/2023 11:04	
SW-8270	Surrogate: Phenol-d5-surr (Reru	n)	66.6% A	<i>60-140</i>					03/15/2023 11:04	
SW-8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	59.8% A, S	60-140					03/15/2023 11:04	
Organics by	GC									
SW-8082	PCBs, Total (Rerun)	Α	<13.2C+, U	ug/kg dry	10	13.2	26.5	BGC1392	03/11/2023 17:07	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-ri	n-xylene-suri	154% S	60-140					03/11/2023 17:07	
SW-8082	Surrogate: Decachlorobiphenyl-s	surr (Rerun)	92.7%	60-140					03/11/2023 17:07	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results
(Continued)

Sample Matrix:

Sediment

Client Sample ID: HI-DMMU-3-2A-S

Lab Sample ID: 23A1459-24RE3 Date Collected: 01/19/2023 15:20

Sample Alias: Collected by: Gregg Pawlak

Method Analyte * Result Q Units DF SDL LRL Batch Analyzed Analyst

Semivolatile Organic Compounds by GCMS

03/16/2023 13:29 SW-8270 1470HP ug/kg dry Fluorene (Rerun) 25 42.2 84.4 BGA3368 KRB SW-8270 Surrogate: 2-Fluorobiphenyl-surr (Rerun) % S, U 60-140 03/16/2023 13:29 SW-8270 Surrogate: Nitrobenzene-d5-surr (Rerun) *934% 5* 60-140 03/16/2023 13:29 SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) % S, U 60-140 03/16/2023 13:29





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results
(Continued)

Client Sample ID: HI-DMMU-3-2A-S Sample Matrix: Sediment

Lab Sample ID: 23A1459-24RE4 Date Collected: 01/19/2023 15:20

Sample Alias: Collected by: Gregg Pawlak

Method Analyte * Result Q Units DF SDL LRL Batch Analyzed Analyst

Semivolatile Organic Compounds by GCMS

SW-8270 Fluorene (Rerun) A 1190H ug/kg dry 25 42.1 84.1 BGC0816 03/16/2023 15:13 KRB

ug/kg dry 03/16/2023 15:13 Fluorene (Rerun) 1190H 25 42.1 84.1 KRB SW-8270 Surrogate: 2-Fluorobiphenyl-surr (Rerun) 80.1% 60-140 03/16/2023 15:13 SW-8270 Surrogate: Nitrobenzene-d5-surr (Rerun) 269% S 60-140 03/16/2023 15:13 SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 66.4% 60-140 03/16/2023 15:13





Project: PCCA HI & CDP Resampling 2023 Terracon_Houston

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-3-2B-S

Sample Alias:

Lab Sample ID:

23A1459-25

Sample Matrix: Sediment

Date Collected: 01/20/2023 11:00

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by 0	GCMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/13/2023 23:47	KRB
SW-8270	Benzidine	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/13/2023 23:47	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	urr	161% S	60-140					02/13/2023 23:47	
SW-8270	Surrogate: 2-Fluorophenol-sui	r	151% S	60-140					02/13/2023 23:47	
SW-8270	Surrogate: 2,4,6-Tribromophe	nol-surr	198% S	60-140					02/13/2023 23:47	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-s	urr	155% S	60-140					02/13/2023 23:47	
SW-8270	Surrogate: Phenol-d5-surr		184% S	60-140					02/13/2023 23:47	
<i>SW-8270</i>	Surrogate: p-Terphenyl-d14-s	urr	120%	60-140					02/13/2023 23:47	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	4,4'-DDE	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	4,4'-DDT	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Aldrin	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Chlordane (tech.)	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	delta-BHC	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Dieldrin	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Endosulfan I	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Endosulfan II	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Endosulfan sulfate	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Endrin	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Endrin aldehyde	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Endrin ketone	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	gamma-Chlordane	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Heptachlor	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Heptachlor epoxide	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Methoxychlor	Α	<0.397U	ug/kg dry	10	0.397	1.32	BGA3603	02/03/2023 21:38	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<19.8C+, U	ug/kg dry	10	19.8	19.8	BGA3603	02/03/2023 21:38	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-suri	96.8%	60-140					02/03/2023 21:38	





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-3-2B-S (Continued) Sample Matrix: Sediment

Lab Sample ID: 23A1459-25 01/20/2023 11:00

Sample Alias:

Date Collected: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	108%	60-140					02/03/2023 21:38	
SW-8082	PCBs, Total	Α	<1.31U	ug/kg dry	1	1.31	2.63	BGA3651	02/11/2023 18:21	cdg
SW-8082	Surrogate: 2,4,5,6 Tetrac	hloro-m-xylene-suri	107%	60-140					02/11/2023 18:21	
SW-8082	Surrogate: Decachlorobip	henyl-surr	99.4%	60-140					02/11/2023 18:21	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0276U	mg/kg dry	1	0.0276	0.0554	BGA3226	01/30/2023 14:45	TBB
EPA 200.8	Arsenic	Α	0.793	mg/kg dry	1	0.00276	0.0276	BGA3226	01/30/2023 14:45	TBB
EPA 200.8	Beryllium	Α	0.0373	mg/kg dry	1	0.000554	0.0110	BGA3226	01/30/2023 14:45	TBB
EPA 200.8	Cadmium	Α	0.0220J	mg/kg dry	1	0.00276	0.0554	BGA3226	01/31/2023 10:26	TBB
EPA 200.8	Chromium	Α	0.939	mg/kg dry	1	0.00829	0.166	BGA3226	01/31/2023 10:26	TBB
EPA 200.8	Copper	Α	0.633V	mg/kg dry	1	0.0110	0.0554	BGA3226	01/31/2023 10:26	TBB
Calc	Chromium (III)		<0.141U	mg/kg (dry wt) dry	1	0.141	5.17	[CALC]	02/01/2023 12:25	EM
SW-7196	Chromium (VI)	Α	0.966J	mg/kg dry	1	0.132	5.00	BGA3843	02/01/2023 12:25	EM
SW-7471B	Mercury	Α	<0.00964U	mg/kg dry	1	0.00964	0.0193	BGA3912	01/31/2023 15:07	NAZ
EPA 200.8	Lead	Α	0.983	mg/kg dry	1	0.00276	0.0276	BGA3226	01/30/2023 14:45	TBB
EPA 200.8	Nickel	Α	0.819	mg/kg dry	1	0.0554	0.0554	BGA3226	01/31/2023 15:49	TBB
EPA 200.8	Selenium	Α	0.288	mg/kg dry	1	0.0554	0.110	BGA3226	01/31/2023 10:26	TBB
EPA 200.8	Silver	Α	0.00630J	mg/kg dry	1	0.00138	0.0276	BGA3226	01/30/2023 14:45	TBB
EPA 200.8	Thallium	Α	0.0285	mg/kg dry	1	0.00138	0.0276	BGA3226	01/31/2023 10:26	TBB
EPA 200.8	Zinc	Α	2.20	mg/kg dry	1	0.0554	0.110	BGA3226	01/30/2023 14:45	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0334U	mg/kg dry	1	0.0334	0.0667	BGA3214	01/26/2023 15:49	GJG
EPA 350.2	Ammonia as N	Α	6.78J	mg/kg dry	1	6.73	13.5	BGA4008	02/01/2023 09:08	GIW
SW-9045C	рН	Α	9.04H	pH Units @ 25 °C	1		0.100	BGA3071	01/24/2023 13:11	AKA
SM 2540 G	% Solids	Α	74.2V	%	1	0.100	0.100	BGA3093	01/25/2023 11:53	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-3-2B-S

Lab Sample ID: 23A1459-25RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/20/2023 11:00

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3368	02/28/2023 00:15	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3368	02/28/2023 00:15	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3368	02/28/2023 00:15	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3368	02/28/2023 00:15	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3368	02/28/2023 00:15	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<13.1U	ug/kg dry	1	13.1	26.2	BGA3368	02/28/2023 00:15	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3368	02/28/2023 00:15	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.28U	ug/kg dry	1	3.28	6.56	BGA3368	02/28/2023 00:15	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	Anthracene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.28	BGA3368	02/28/2023 00:15	KRB





Terracon Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

HI-DMMU-3-2B-S (Continued) Client Sample ID:

Sample Matrix: Sediment

Collected by:

Lab Sample ID: 23A1459-25RE1 Date Collected: 01/20/2023 11:00 Gregg Pawlak

Sample Alias:

Method Analyte Result O Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS (Continued) SW-8270 bis(2-Chloroethyl) ether <1.64U 3.28 BGA3368 02/28/2023 00:15 KRB Α ug/kg dry 1 1.64 (Rerun) SW-8270 Bis(2-ethylhexyl)phthalate 2.57V, J 3.28 BGA3368 02/28/2023 00:15 KRB Α ua/ka drv 1 1.64 (Rerun) SW-8270 Butyl benzyl phthalate Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB (Rerun) SW-8270 02/28/2023 00:15 Chrysene (Rerun) Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 KRB SW-8270 Dibenzo(a,h)anthracene Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB (Rerun) 2.86V, J 02/28/2023 00:15 SW-8270 Diethyl phthalate (Rerun) Α ug/kg dry 1 1.64 3.28 BGA3368 **KRB** Dimethyl phthalate (Rerun) <1.64U 02/28/2023 00:15 SW-8270 ug/kg dry 1 1.64 3.28 BGA3368 KRB Di-n-butyl phthalate (Rerun) 14.1V SW-8270 Α ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB SW-8270 Di-n-octyl phthalate (Rerun) Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB SW-8270 Fluoranthene (Rerun) Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB SW-8270 Fluorene (Rerun) Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB SW-8270 Hexachlorobenzene (Rerun) Α <1.64U 3.28 BGA3368 02/28/2023 00:15 KRB ug/kg dry 1 1.64 Hexachlorobutadiene (Rerun) SW-8270 Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB Hexachlorocyclopentadiene BGA3368 02/28/2023 00:15 KRR SW-8270 Δ <1.64U ug/kg dry 1 1.64 3.28 (Rerun) SW-8270 Hexachloroethane (Rerun) Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB SW-8270 Indeno(1,2,3-cd) pyrene Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB (Rerun) SW-8270 Isophorone (Rerun) Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB SW-8270 Naphthalene (Rerun) Α <1.64U ua/ka dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB SW-8270 Nitrobenzene (Rerun) <1.64U 3.28 BGA3368 02/28/2023 00:15 KRB Α ug/kg dry 1 1.64 SW-8270 n-Nitrosodimethylamine <1.64U BGA3368 02/28/2023 00:15 KRB Α ug/kg dry 1.64 3.28 1 (Rerun) SW-8270 n-Nitrosodi-n-propylamine Α <1.64U ua/ka drv 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB (Rerun) BGA3368 SW-8270 n-Nitrosodiphenylamine Α <1.64U ua/ka dry 1 1.64 3.28 02/28/2023 00:15 KRB (Rerun) SW-8270 Pentachlorophenol (Rerun) <3.28U 3.28 BGA3368 02/28/2023 00:15 KRB Α ug/kg dry 6.56 1 SW-8270 Phenanthrene (Rerun) Α <1.64U ug/kg dry 1 1.64 3.28 BGA3368 02/28/2023 00:15 KRB SW-8270 Phenol, Total (Rerun) Α 3.92J 1 3.28 6.56 BGA3368 02/28/2023 00:15 KRB ua/ka drv SW-8270 Pyrene (Rerun) <1.64U ug/kg dry 1.64 3.28 BGA3368 02/28/2023 00:15 KRB SW-8270 64.8% 60-140 02/28/2023 00:15 Surrogate: 2-Fluorobiphenyl-surr (Rerun) 65.3% 60-140 02/28/2023 00:15 SW-8270 Surrogate: 2-Fluorophenol-surr (Rerun) SW-8270 Surrogate: 2,4,6-Tribromophenol-surr (Rerur. 71.1% 60-140 02/28/2023 00:15 64.8% 60-140 02/28/2023 00:15 SW-8270 Surrogate: Nitrobenzene-d5-surr (Rerun) 60-140 02/28/2023 00:15 SW-8270 Surrogate: Phenol-d5-surr (Rerun) 58.2% S

60-140

64.2%

Surrogate: p-Terphenyl-d14-surr (Rerun)

SW-8270

02/28/2023 00:15





 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-4-2A-S

Lab Sample ID: 23A1459-27

Sample Alias:

Sample Matrix: Sediment

Date Collected:

Collected by: Gregg Pawlak

01/19/2023 17:00

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by G	CMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/14/2023 00:22	KRB
SW-8270	Benzidine	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/14/2023 00:22	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	133%	60-140					02/14/2023 00:22	
SW-8270	Surrogate: 2-Fluorophenol-surr	-	126%	<i>60-140</i>					02/14/2023 00:22	
SW-8270	Surrogate: 2,4,6-Tribromopher	nol-surr	177% S	60-140					02/14/2023 00:22	
SW-8270	Surrogate: Nitrobenzene-d5-su	ırr	124%	60-140					02/14/2023 00:22	
SW-8270	Surrogate: Phenol-d5-surr		177% S	<i>60-140</i>					02/14/2023 00:22	
SW-8270	Surrogate: p-Terphenyl-d14-su	ırr	73.4%	60-140					02/14/2023 00:22	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	4,4'-DDE	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	4,4'-DDT	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Aldrin	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	A	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	А	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Chlordane (tech.)	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	delta-BHC	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Dieldrin	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Endosulfan I	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Endosulfan II	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Endosulfan sulfate	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Endrin	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Endrin aldehyde	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Endrin ketone	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	А	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	gamma-Chlordane	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Heptachlor	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Heptachlor epoxide	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Methoxychlor	Α	<0.453U	ug/kg dry	10	0.453	1.51	BGA3603	02/03/2023 22:32	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<22.7C+, U	ug/kg dry	10	22.7	22.7	BGA3603	02/03/2023 22:32	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xylene-suri	<i>75.9%</i>	60-140					02/03/2023 22:32	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

Client Sample ID: HI-DMMU-4-2A-S (Continued)

Sample Matrix: Sediment

Date Collected:

Lab Sample ID: 23A1459-27

Sample Alias:

Collected by: Gregg Pawlak

01/19/2023 17:00

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Organics by GC (Continued) SW-8081 Surrogate: Decachlorobiphenyl-surr 118% 60-140 02/03/2023 22:32 SW-8082 PCBs, Total <1.50U ug/kg dry 1.50 3.00 BGA3651 02/11/2023 17:01 cdq SW-8082 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr 73.7% 60-140 02/11/2023 17:01 SW-8082 Surrogate: Decachlorobiphenyl-surr 85.3% 60-140 02/11/2023 17:01 Metals, Total EPA 200.8 Antimony Α <0.0313U mg/kg dry 1 0.0313 0.0627 BGA3226 01/30/2023 14:48 TBB EPA 200.8 Arsenic Α 2.78 1 0.00313 0.0313 BGA3226 01/30/2023 14:48 TBB mg/kg dry EPA 200.8 0.000627 0.0125 BGA3226 Beryllium 0.131 01/30/2023 14:48 TBB Α mg/kg dry 1 EPA 200.8 Cadmium Α 0.100 mg/kg dry 0.00313 0.0627 BGA3226 01/31/2023 10:29 TBB 01/31/2023 10:29 EPA 200.8 Chromium Α 2.73 0.00938 0.188 BGA3226 mg/kg dry 1 TBB EPA 200.8 Copper Α 2.00 V mg/kg dry 1 0.0125 0.0627 BGA3226 01/31/2023 10:29 TBB Calc Chromium (III) 2.50J mg/kg (dry 1 0.162 5.19 [CALC] 02/01/2023 12:26 EΜ wt) dry SW-7196 Chromium (VI) 0.230J 0.153 5.00 BGA3843 02/01/2023 12:26 ΕM 1 Α mg/kg dry SW-7471B Mercury Α <0.00979U mg/kg dry 1 0.00979 0.0196 BGA3912 01/31/2023 15:11 NAZ EPA 200.8 Lead Α 2.36 mg/kg dry 1 0.00313 0.0313 BGA3226 01/30/2023 14:48 TBB EPA 200.8 Nickel Α 3.64 mg/kg dry 0.0627 0.0627 BGA3226 01/31/2023 15:52 TBB EPA 200.8 Selenium Α 0.550 0.0627 0.125 BGA3226 01/31/2023 10:29 TBB mg/kg dry 1 0.0313 EPA 200.8 Silver Α 0.0121J mg/kg dry 1 0.00156 BGA3226 01/30/2023 14:48 TBB EPA 200.8 Thallium 0.0570 0.00156 0.0313 BGA3226 01/31/2023 10:29 TBB Α 1 mg/kg dry EPA 200.8 Zinc Α 5.61 mg/kg dry 1 0.0627 0.125 BGA3226 01/30/2023 14:48 **TBB General Chemistry** <0.0384U 0.0384 0.0768 SW-9014 Total Cyanide Α mg/kg dry 1 BGA3214 01/26/2023 15:50 GJG EPA 350.2 Ammonia as N Α 9.86J mg/kg dry 7.66 15.3 BGB0953 02/08/2023 09:15 GIW 1 SW-9045C 8.09H pH Units @ 0.100 BGA3071 01/24/2023 13:11 рΗ Α 1 AKA 25 °C SM 2540 G % Solids 65.1 V 1 0.100 0.100 BGA3093 01/25/2023 11:53 JRU Α





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-4-2A-S Lab Sample ID:

23A1459-27RE1

Sample Alias:

Sample Matrix: Sediment

> Date Collected: 01/19/2023 17:00

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.60U	ug/kg dry	1	3.60	7.19	BGA3368	02/28/2023 00:50	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.60U	ug/kg dry	1	3.60	7.19	BGA3368	02/28/2023 00:50	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.60U	ug/kg dry	1	3.60	7.19	BGA3368	02/28/2023 00:50	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.60U	ug/kg dry	1	3.60	7.19	BGA3368	02/28/2023 00:50	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.60U	ug/kg dry	1	3.60	7.19	BGA3368	02/28/2023 00:50	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<14.4U	ug/kg dry	1	14.4	28.8	BGA3368	02/28/2023 00:50	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.60U	ug/kg dry	1	3.60	7.19	BGA3368	02/28/2023 00:50	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.60U	ug/kg dry	1	3.60	7.19	BGA3368	02/28/2023 00:50	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Acenaphthylene (Rerun)	Α	2.03J	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Anthracene (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-4-2A-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-27RE1

Date Collected: 01/19/2023 17:00

Sample Alias:

Method	Analyte	* Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GCMS	(Continued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	2.51V,	J ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	A <1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Chrysene (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	A <1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Diethyl phthalate (Rerun)	2.97V,	J ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Dimethyl phthalate (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	13.7V	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Fluoranthene (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Fluorene (Rerun)	4.00	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Hexachlorobenzene (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Hexachlorobutadiene (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Hexachloroethane (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	A <1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Isophorone (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Naphthalene (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Nitrobenzene (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	n-Nitrosodimethylamine A (Rerun)	A <1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	n-Nitrosodi-n-propylamine A (Rerun)	A <1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	n-Nitrosodiphenylamine A (Rerun)	A <1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Pentachlorophenol (Rerun)	×3.60U	ug/kg dry	1	3.60	7.19	BGA3368	02/28/2023 00:50	KRB
SW-8270	Phenanthrene (Rerun)	2.743	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Phenol, Total (Rerun)	×3.60U	ug/kg dry	1	3.60	7.19	BGA3368	02/28/2023 00:50	KRB
SW-8270	Pyrene (Rerun)	×1.80U	ug/kg dry	1	1.80	3.60	BGA3368	02/28/2023 00:50	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (Rer	run) 62.7%	60-140					02/28/2023 00:50	
SW-8270	Surrogate: 2-Fluorophenol-surr (Rerui	*	60-140					02/28/2023 00:50	
SW-8270	Surrogate: 2,4,6-Tribromophenol-surr	•	60-140					02/28/2023 00:50	
SW-8270	Surrogate: Nitrobenzene-d5-surr (Ren		60-140					02/28/2023 00:50	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)	67.2%	60-140					02/28/2023 00:50	
SW-8270	Surrogate: p-Terphenyl-d14-surr (Rer	run) 43.2% S	60-140					02/28/2023 00:50	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-4-2B-S

Lab Sample ID:

Sample Alias:

23A1459-28

Sample Matrix: Sediment

Date Collected: 01/20/2023 12:50

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by G	GCMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/14/2023 00:57	KRB
SW-8270	Benzidine	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/14/2023 00:57	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	urr	100%	60-140					02/14/2023 00:57	
SW-8270	Surrogate: 2-Fluorophenol-sui	r	115%	60-140					02/14/2023 00:57	
SW-8270	Surrogate: 2,4,6-Tribromophe	enol-surr	139%	60-140					02/14/2023 00:57	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-sa	urr	122%	60-140					02/14/2023 00:57	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		133%	60-140					02/14/2023 00:57	
SW-8270	Surrogate: p-Terphenyl-d14-s	urr	41.6% S	60-140					02/14/2023 00:57	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	4,4'-DDE	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	4,4'-DDT	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Aldrin	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.425C+, U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	А	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Chlordane (tech.)	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	delta-BHC	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Dieldrin	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Endosulfan I	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Endosulfan II	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Endosulfan sulfate	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Endrin	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Endrin aldehyde	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Endrin ketone	A	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	gamma-Chlordane	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Heptachlor	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Heptachlor epoxide	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Methoxychlor	Α	<0.425U	ug/kg dry	10	0.425	1.42	BGA3603	02/03/2023 23:52	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<21.2C+, U	ug/kg dry	10	21.2	21.2	BGA3603	02/03/2023 23:52	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-suri	93.4%	60-140					02/03/2023 23:52	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-4-2B-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-28

Date Collected: 01/20/2023 12:50

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
	,									,
	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	105%	60-140					02/03/2023 23:52	
SW-8082	PCBs, Total	Α	<1.35U	ug/kg dry	1	1.35	2.71	BGA3651	02/11/2023 18:47	cdg
SW-8082	Surrogate: 2,4,5,6 Tetraci	hloro-m-xylene-suri	144% S	60-140					02/11/2023 18:47	
SW-8082	Surrogate: Decachlorobip	henyl-surr	94.6%	60-140					02/11/2023 18:47	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0285U	mg/kg dry	1	0.0285	0.0572	BGA3226	01/30/2023 14:50	TBB
EPA 200.8	Arsenic	Α	1.17	mg/kg dry	1	0.00285	0.0285	BGA3226	01/30/2023 14:50	TBB
EPA 200.8	Beryllium	Α	0.117	mg/kg dry	1	0.000572	0.0114	BGA3226	01/30/2023 14:50	TBB
EPA 200.8	Cadmium	Α	0.0312J	mg/kg dry	1	0.00285	0.0572	BGA3226	01/31/2023 10:31	TBB
EPA 200.8	Chromium	Α	2.63	mg/kg dry	1	0.00856	0.171	BGA3226	01/31/2023 10:31	TBB
EPA 200.8	Copper	Α	2.06V	mg/kg dry	1	0.0114	0.0572	BGA3226	01/31/2023 10:31	TBB
Calc	Chromium (III)		2.39J	mg/kg (dry wt) dry	1	0.151	5.17	[CALC]	02/01/2023 12:28	EM
SW-7196	Chromium (VI)	Α	0.249J	mg/kg dry	1	0.143	5.00	BGA3843	02/01/2023 12:28	EM
SW-7471B	Mercury	Α	<0.00991U	mg/kg dry	1	0.00991	0.0198	BGA3912	01/31/2023 15:14	NAZ
EPA 200.8	Lead	Α	2.17	mg/kg dry	1	0.00285	0.0285	BGA3226	01/30/2023 14:50	TBB
EPA 200.8	Nickel	Α	2.03	mg/kg dry	1	0.0572	0.0572	BGA3226	01/31/2023 15:54	TBB
EPA 200.8	Selenium	Α	0.422	mg/kg dry	1	0.0572	0.114	BGA3226	01/31/2023 10:31	TBB
EPA 200.8	Silver	Α	0.0105J	mg/kg dry	1	0.00143	0.0285	BGA3226	01/30/2023 14:50	TBB
EPA 200.8	Thallium	Α	0.0328	mg/kg dry	1	0.00143	0.0285	BGA3226	01/31/2023 10:31	TBB
EPA 200.8	Zinc	Α	4.51	mg/kg dry	1	0.0572	0.114	BGA3226	01/30/2023 14:50	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0355U	mg/kg dry	1	0.0355	0.0711	BGA3214	01/26/2023 15:50	GJG
EPA 350.2	Ammonia as N	Α	8.01J	mg/kg dry	1	7.15	14.3	BGB0953	02/08/2023 09:15	GIW
SW-9045C	рН	Α	8.43H	pH Units @ 25 °C	1		0.100	BGA3071	01/24/2023 13:11	AKA
SM 2540 G	% Solids	Α	69.7V	%	1	0.100	0.100	BGA3093	01/25/2023 11:53	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-4-2B-S

Lab Sample ID: 23A1459-28RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/20/2023 12:50

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.47U	ug/kg dry	1	3.47	6.94	BGA3368	02/28/2023 01:25	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.47U	ug/kg dry	1	3.47	6.94	BGA3368	02/28/2023 01:25	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.47U	ug/kg dry	1	3.47	6.94	BGA3368	02/28/2023 01:25	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.47U	ug/kg dry	1	3.47	6.94	BGA3368	02/28/2023 01:25	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.47U	ug/kg dry	1	3.47	6.94	BGA3368	02/28/2023 01:25	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<13.9U	ug/kg dry	1	13.9	27.8	BGA3368	02/28/2023 01:25	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.47U	ug/kg dry	1	3.47	6.94	BGA3368	02/28/2023 01:25	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.47U	ug/kg dry	1	3.47	6.94	BGA3368	02/28/2023 01:25	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Anthracene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-4-2B-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-28RE1

Date Collected: 01/20/2023 12:50

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GCMS	S (Cont	inued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	2.26V, J	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Chrysene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	2.48V, J	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	14.2V	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Fluorene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Isophorone (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.47U	ug/kg dry	1	3.47	6.94	BGA3368	02/28/2023 01:25	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Phenol, Total (Rerun)	Α	<3.47U	ug/kg dry	1	3.47	6.94	BGA3368	02/28/2023 01:25	KRB
SW-8270	Pyrene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.47	BGA3368	02/28/2023 01:25	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (R	erun)	48.0% S	60-140					02/28/2023 01:25	
SW-8270	Surrogate: 2-Fluorophenol-surr (Ren	run)	63.2%	60-140					02/28/2023 01:25	
SW-8270	Surrogate: 2,4,6-Tribromophenol-su	•	59.3% S	60-140					02/28/2023 01:25	
SW-8270	Surrogate: Nitrobenzene-d5-surr (Ri	erun)	65.7%	60-140					02/28/2023 01:25	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)		53.5% S	60-140					02/28/2023 01:25	
SW-8270	Surrogate: p-Terphenyl-d14-surr (Ri	erun)	25.7% S	60-140					02/28/2023 01:25	





Terracon Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

HI-DMMU-5-3A-S Client Sample ID:

Lab Sample ID:

Sample Alias:

23A1459-30

Sediment Sample Matrix:

Collected by:

Date Collected: 01/18/2023 9:40

Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS SW-8270 3,3'-Dichlorobenzidine BGA3094 02/09/2023 02:26 KRB Α <1.62U 1 1.62 3.24 ug/kg dry KRB SW-8270 Benzidine Α <1.62U ug/kg dry 1 1.62 3.24 BGA3094 02/09/2023 02:26 105% 60-140 02/09/2023 02:26 SW-8270 Surrogate: 2-Fluorobiphenvl-surr 60-140 SW-8270 Surrogate: 2-Fluorophenol-surr 115% 02/09/2023 02:26 151% S 60-140 02/09/2023 02:26 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr 60-140 02/09/2023 02:26 SW-8270 Surrogate: Nitrobenzene-d5-surr 120% SW-8270 Surrogate: Phenol-d5-surr 120% 60-140 02/09/2023 02:26 SW-8270 Surrogate: p-Terphenyl-d14-surr 96.9% 60-140 02/09/2023 02:26 Organics by GC SW-8081 4,4'-DDD Α <0.405U ua/ka dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 AI A SW-8081 4,4'-DDE Α < 0.40511 ug/kg dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 ALA SW-8081 4,4'-DDT Α <0.405U ug/kg dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 ALA SW-8081 Aldrin Α < 0.405 U ug/kg dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 ALA 02/02/2023 01:22 SW-8081 alpha-BHC < 0.405 U ug/kg dry 10 0.405 1.35 BGA3044 ALA (alpha-Hexachlorocyclohexan e) SW-8081 beta-BHC Α < 0.40511 ug/kg dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 AI A (beta-Hexachlorocyclohexane SW-8081 <0.405U 0.405 BGA3044 02/02/2023 01:22 Chlordane (tech.) Α ua/ka drv 10 1.35 ALA SW-8081 cis-Chlordane Α <0.405U ug/kg dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 ALA (alpha-Chlordane) SW-8081 delta-BHC Α < 0.405 U ug/kg dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 ALA Dieldrin <0.405U 02/02/2023 01:22 SW-8081 Α ua/ka drv 10 0.405 1.35 BGA3044 ALA SW-8081 Endosulfan I Α <0.405U ug/kg dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 ALA SW-8081 Endosulfan II < 0.405 U 10 0.405 1.35 BGA3044 02/02/2023 01:22 Α ug/kg dry ALA SW-8081 Endosulfan sulfate Α < 0.405 U ug/kg dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 ALA SW-8081 Endrin <0.405U 10 0.405 1.35 BGA3044 02/02/2023 01:22 Α ALA ug/kg dry ALA SW-8081 Endrin aldehyde Α < 0.405 U 10 0.405 1.35 BGA3044 02/02/2023 01:22 ug/kg dry SW-8081 Endrin ketone <0.405U 10 0.405 BGA3044 02/02/2023 01:22 Α ug/kg dry 1.35 ALA SW-8081 gamma-BHC (Lindane, Α <0.405U ug/kg dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 ALA gamma-Hexachlorocyclohexa nE) gamma-Chlordane < 0.405 U 02/02/2023 01:22 SW-8081 Α 10 0.405 1.35 BGA3044 ug/kg dry ALA SW-8081 Heptachlor Α <0.405U ug/kg dry 10 0.405 1.35 BGA3044 02/02/2023 01:22 ALA <0.405U 02/02/2023 01:22 SW-8081 Heptachlor epoxide 10 0.405 1.35 BGA3044 ALA Α ua/ka drv SW-8081 Methoxychlor <0.405U 10 0.405 1.35 BGA3044 02/02/2023 01:22 ug/kg dry ALA SW-8081 Toxaphene (Chlorinated <20.3U 20.3 20.3 BGA3044 02/02/2023 01:22 Α ug/kg dry 10 ALA Camphene) Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 02/02/2023 01:22 SW-8081 60-140

96.0%





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-5-3A-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-30

Date Collected: 01/18/2023 9:40

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobiphe	nyl-surr	111%	60-140					02/02/2023 01:22	
SW-8082	PCBs, Total	Α	<1.35C+, U	ug/kg dry	1	1.35	2.70	BGA3182	01/28/2023 19:54	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrachlo	oro-m-xylene-suri	181% S	60-140					01/28/2023 19:54	
SW-8082	Surrogate: Decachlorobiphe	nyl-surr	63.6%	60-140					01/28/2023 19:54	
Metals, Tota	ıl									
EPA 200.8	Antimony	Α	<0.0268U	mg/kg dry	1	0.0268	0.0537	BGA3226	01/30/2023 14:53	TBB
EPA 200.8	Arsenic	Α	0.867	mg/kg dry	1	0.00268	0.0268	BGA3226	01/30/2023 14:53	TBB
EPA 200.8	Beryllium	Α	0.0412	mg/kg dry	1	0.000537	0.0107	BGA3226	01/30/2023 14:53	TBB
EPA 200.8	Cadmium	Α	0.0319J	mg/kg dry	1	0.00268	0.0537	BGA3226	01/31/2023 10:33	TBB
EPA 200.8	Chromium	Α	1.10	mg/kg dry	1	0.00804	0.161	BGA3226	01/31/2023 10:33	TBB
EPA 200.8	Copper	Α	0.652V	mg/kg dry	1	0.0107	0.0537	BGA3226	01/31/2023 10:33	TBB
Calc	Chromium (III)		1.10J	mg/kg (dry wt) dry	1	0.142	5.16	[CALC]	02/01/2023 12:34	EM
SW-7196	Chromium (VI)	Α	<0.134U	mg/kg dry	1	0.134	5.00	BGA3843	02/01/2023 12:34	EM
SW-7471B	Mercury	Α	<0.00926U	mg/kg dry	1	0.00926	0.0185	BGA3912	01/31/2023 15:17	NAZ
EPA 200.8	Lead	Α	1.06	mg/kg dry	1	0.00268	0.0268	BGA3226	01/30/2023 14:53	TBB
EPA 200.8	Nickel	Α	0.918	mg/kg dry	1	0.0537	0.0537	BGA3226	01/31/2023 15:57	TBB
EPA 200.8	Selenium	Α	0.320	mg/kg dry	1	0.0537	0.107	BGA3226	01/31/2023 10:33	TBB
EPA 200.8	Silver	Α	0.00820J	mg/kg dry	1	0.00134	0.0268	BGA3226	01/30/2023 14:53	TBB
EPA 200.8	Thallium	Α	0.0311	mg/kg dry	1	0.00134	0.0268	BGA3226	01/31/2023 10:33	TBB
EPA 200.8	Zinc	Α	2.52	mg/kg dry	1	0.0537	0.107	BGA3226	01/30/2023 14:53	TBB
General Che	emistry									
SW-9014	Total Cyanide	А	<0.0331U	mg/kg dry	1	0.0331	0.0662	BGA3214	01/26/2023 15:51	GJG
EPA 350.2	Ammonia as N	Α	<6.71U	mg/kg dry	1	6.71	13.4	BGB0685	02/07/2023 09:38	GIW
SW-9045C	рН	Α	8.81H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	74.0V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-5-3A-S

Lab Sample ID: Sample Alias:

23A1459-30RE1

Sample Matrix: Sediment

Date Collected: 01/18/2023 9:40 Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.24U	ug/kg dry	1	3.24	6.49	BGA3094	02/25/2023 06:07	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.24U	ug/kg dry	1	3.24	6.49	BGA3094	02/25/2023 06:07	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.24U	ug/kg dry	1	3.24	6.49	BGA3094	02/25/2023 06:07	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.24U	ug/kg dry	1	3.24	6.49	BGA3094	02/25/2023 06:07	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.24U	ug/kg dry	1	3.24	6.49	BGA3094	02/25/2023 06:07	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<13.0U	ug/kg dry	1	13.0	25.9	BGA3094	02/25/2023 06:07	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.24U	ug/kg dry	1	3.24	6.49	BGA3094	02/25/2023 06:07	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.24U	ug/kg dry	1	3.24	6.49	BGA3094	02/25/2023 06:07	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Anthracene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB





Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

11555 Clay Road Houston, TX 77043

Project Manager: Gregg Pawlak

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

## Sample Results (Continued)

Client Sample ID: HI-DMMU-5-3A-S (Continued)

23A1459-30RE1

Sample Matrix: Sediment

Lab Sample ID:

Date Collected: 01/18/2023 9:40

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GO	CMS (Conti	nued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<1.62B, U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Chrysene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	2.13V, J	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	6.45V	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Fluorene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Isophorone (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.24U	ug/kg dry	1	3.24	6.49	BGA3094	02/25/2023 06:07	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Phenol, Total (Rerun)	Α	<3.24U	ug/kg dry	1	3.24	6.49	BGA3094	02/25/2023 06:07	KRB
SW-8270	Pyrene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.24	BGA3094	02/25/2023 06:07	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	rr (Rerun)	68.5%	60-140					02/25/2023 06:07	
SW-8270	Surrogate: 2-Fluorophenol-surr	-	76.3%	60-140					02/25/2023 06:07	
SW-8270	Surrogate: 2,4,6-Tribromopheno	. ,	77.8%	60-140					02/25/2023 06:07	
SW-8270	Surrogate: Nitrobenzene-d5-sur	•	70.9%	60-140					02/25/2023 06:07	
SW-8270	Surrogate: Phenol-d5-surr (Reru	. ,	80.7%	60-140					02/25/2023 06:07	
SW-8270	Surrogate: p-Terphenyl-d14-sur	*	69.9%	60-140					02/25/2023 06:07	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-5-3B-S

Lab Sample ID: 23A1459-31

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/18/2023 14:00

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GO	CMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/09/2023 03:00	KRB
SW-8270	Benzidine	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/09/2023 03:00	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	r	167% S	60-140					02/09/2023 03:00	
SW-8270	Surrogate: 2-Fluorophenol-surr		92.3%	60-140					02/09/2023 03:00	
<i>SW-8270</i>	Surrogate: 2,4,6-Tribromopheno	ol-surr	156% S	60-140					02/09/2023 03:00	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-sur	r	108%	60-140					02/09/2023 03:00	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		133%	60-140					02/09/2023 03:00	
SW-8270	Surrogate: p-Terphenyl-d14-sur	r	64.4%	60-140					02/09/2023 03:00	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	4,4'-DDE	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	4,4'-DDT	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Aldrin	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Chlordane (tech.)	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	delta-BHC	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Dieldrin	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Endosulfan I	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Endosulfan II	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Endosulfan sulfate	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Endrin	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Endrin aldehyde	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Endrin ketone	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	А	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	gamma-Chlordane	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Heptachlor	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Heptachlor epoxide	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Methoxychlor	Α	<0.412U	ug/kg dry	10	0.412	1.37	BGA3044	02/02/2023 01:48	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<20.6U	ug/kg dry	10	20.6	20.6	BGA3044	02/02/2023 01:48	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-i		57.8% S	60-140					02/02/2023 01:48	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-5-3B-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-31

Date Collected: 01/18/2023 14:00

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	112%	60-140					02/02/2023 01:48	
SW-8082	PCBs, Total	Α	<1.37C+, U	ug/kg dry	1	1.37	2.74	BGA3182	01/28/2023 20:21	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrac	chloro-m-xylene-suri	265% S	60-140					01/28/2023 20:21	
SW-8082	Surrogate: Decachlorobip	henyl-surr	59.2% S	60-140					01/28/2023 20:21	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0277U	mg/kg dry	1	0.0277	0.0554	BGA3226	01/30/2023 15:08	TBB
EPA 200.8	Arsenic	Α	0.790	mg/kg dry	1	0.00277	0.0277	BGA3226	01/30/2023 15:08	TBB
EPA 200.8	Beryllium	Α	0.0626	mg/kg dry	1	0.000554	0.0111	BGA3226	02/01/2023 10:25	TBB
EPA 200.8	Cadmium	Α	0.0220J	mg/kg dry	1	0.00277	0.0554	BGA3226	01/31/2023 10:41	TBB
EPA 200.8	Chromium	Α	1.12	mg/kg dry	1	0.00830	0.166	BGA3226	01/31/2023 10:41	TBB
EPA 200.8	Copper	Α	0.812V	mg/kg dry	1	0.0111	0.0554	BGA3226	01/31/2023 10:41	TBB
Calc	Chromium (III)		0.612J	mg/kg (dry wt) dry	1	0.143	5.17	[CALC]	02/01/2023 12:35	EM
SW-7196	Chromium (VI)	Α	0.510J	mg/kg dry	1	0.135	5.00	BGA3843	02/01/2023 12:35	EM
SW-7471B	Mercury	Α	<0.00945U	mg/kg dry	1	0.00945	0.0189	BGA3912	01/31/2023 15:27	NAZ
EPA 200.8	Lead	Α	1.18	mg/kg dry	1	0.00277	0.0277	BGA3226	01/30/2023 15:08	TBB
EPA 200.8	Nickel	Α	1.18	mg/kg dry	1	0.0554	0.0554	BGA3226	01/31/2023 16:04	TBB
EPA 200.8	Selenium	Α	0.302	mg/kg dry	1	0.0554	0.111	BGA3226	01/31/2023 10:41	TBB
EPA 200.8	Silver	Α	0.00697J	mg/kg dry	1	0.00138	0.0277	BGA3226	01/30/2023 15:08	TBB
EPA 200.8	Thallium	Α	0.0298	mg/kg dry	1	0.00138	0.0277	BGA3226	01/31/2023 10:41	TBB
EPA 200.8	Zinc	Α	3.15	mg/kg dry	1	0.0554	0.111	BGA3226	01/30/2023 15:08	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0336U	mg/kg dry	1	0.0336	0.0673	BGA3214	01/26/2023 15:52	GJG
EPA 350.2	Ammonia as N	Α	9.91J	mg/kg dry	1	6.81	13.6	BGB0685	02/07/2023 09:38	GIW
SW-9045C	рН	Α	8.92H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	72.9V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-5-3B-S

Lab Sample ID: 23A1459-31RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/18/2023 14:00
Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.27U	ug/kg dry	1	3.27	6.54	BGA3094	02/25/2023 06:42	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.27U	ug/kg dry	1	3.27	6.54	BGA3094	02/25/2023 06:42	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.27U	ug/kg dry	1	3.27	6.54	BGA3094	02/25/2023 06:42	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.27U	ug/kg dry	1	3.27	6.54	BGA3094	02/25/2023 06:42	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.27U	ug/kg dry	1	3.27	6.54	BGA3094	02/25/2023 06:42	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<13.1U	ug/kg dry	1	13.1	26.2	BGA3094	02/25/2023 06:42	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.27U	ug/kg dry	1	3.27	6.54	BGA3094	02/25/2023 06:42	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.27U	ug/kg dry	1	3.27	6.54	BGA3094	02/25/2023 06:42	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	Acenaphthene (Rerun)	Α	12.6	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	Acenaphthylene (Rerun)	Α	4.35	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	Anthracene (Rerun)	Α	23.1	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	17.2	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	2.94J	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	3.46	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	1.78J	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.64U	ug/kg dry	1	1.64	3.27	BGA3094	02/25/2023 06:42	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

Client Sample ID: HI-DMMU-5-3B-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-31RE1 Date Collected: 01/18/2023 14:00
Sample Alias: Collected by: Gregg Pawlak

Method Analyte Result O Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS (Continued) SW-8270 bis(2-Chloroethyl) ether <1.64U 3.27 BGA3094 02/25/2023 06:42 KRB Α ug/kg dry 1 1.64 (Rerun) SW-8270 Bis(2-ethylhexyl)phthalate 2.36V, J 3.27 BGA3094 02/25/2023 06:42 KRB Α ua/ka drv 1 1.64 (Rerun) SW-8270 Butyl benzyl phthalate Α <1.64U ug/kg dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB (Rerun) SW-8270 7.95 02/25/2023 06:42 Chrysene (Rerun) Α ug/kg dry 1 1.64 3.27 BGA3094 KRB 02/25/2023 06:42 SW-8270 Dibenzo(a,h)anthracene Α <1.64U ug/kg dry 1 1.64 3.27 BGA3094 KRB (Rerun) 4.64V 02/25/2023 06:42 SW-8270 Diethyl phthalate (Rerun) Α ug/kg dry 1 1.64 3.27 BGA3094 **KRB** <1.64U SW-8270 Dimethyl phthalate (Rerun) ug/kg dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB Di-n-butyl phthalate (Rerun) 7.08V SW-8270 Α ug/kg dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB SW-8270 Di-n-octyl phthalate (Rerun) Α <1.64U ug/kg dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB SW-8270 Fluoranthene (Rerun) Α 3.80 ug/kg dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB SW-8270 Fluorene (Rerun) Α 5.38 ug/kg dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB SW-8270 Hexachlorobenzene (Rerun) Α <1.64U 3.27 BGA3094 02/25/2023 06:42 KRB ug/kg dry 1 1.64 Hexachlorobutadiene (Rerun) SW-8270 Α <1.64U ug/kg dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB Hexachlorocyclopentadiene BGA3094 02/25/2023 06:42 KRR SW-8270 Δ 3.96 ug/kg dry 1 1.64 3.27 (Rerun) SW-8270 Hexachloroethane (Rerun) Α <1.64U ug/kg dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB 02/25/2023 06:42 SW-8270 Indeno(1,2,3-cd) pyrene Α <1.64U ug/kg dry 1 1.64 3.27 BGA3094 KRB (Rerun) SW-8270 Isophorone (Rerun) Α <1.64U ug/kg dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB SW-8270 Naphthalene (Rerun) Α <1.64U ua/ka dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB SW-8270 Nitrobenzene (Rerun) <1.64U 3.27 BGA3094 02/25/2023 06:42 KRB Α ug/kg dry 1 1.64 SW-8270 n-Nitrosodimethylamine <1.64U BGA3094 02/25/2023 06:42 KRB Α ug/kg dry 1.64 3.27 1 (Rerun) SW-8270 n-Nitrosodi-n-propylamine Α <1.64U ua/ka drv 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB (Rerun) BGA3094 SW-8270 n-Nitrosodiphenylamine Α <1.64U ua/ka dry 1 1.64 3.27 02/25/2023 06:42 KRB (Rerun) SW-8270 Pentachlorophenol (Rerun) <3.27U 3.27 BGA3094 02/25/2023 06:42 KRB Α ug/kg dry 1 6.54 SW-8270 Phenanthrene (Rerun) Α 20.1 ug/kg dry 1 1.64 3.27 BGA3094 02/25/2023 06:42 KRB SW-8270 Phenol, Total (Rerun) Α 4.43] 1 3.27 6.54 BGA3094 02/25/2023 06:42 KRB ua/ka drv SW-8270 Pyrene (Rerun) 11.1 ug/kg dry 1.64 3.27 BGA3094 02/25/2023 06:42 KRB SW-8270 154% S 60-140 02/25/2023 06:42 Surrogate: 2-Fluorobiphenvl-surr (Rerun) 78.5% 60-140 02/25/2023 06:42 SW-8270 Surrogate: 2-Fluorophenol-surr (Rerun) SW-8270 Surrogate: 2,4,6-Tribromophenol-surr (Rerur. 106% 60-140 02/25/2023 06:42 78.7% 60-140 02/25/2023 06:42 SW-8270 Surrogate: Nitrobenzene-d5-surr (Rerun) 60-140 02/25/2023 06:42 SW-8270 Surrogate: Phenol-d5-surr (Rerun) 88.6% SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 69.6% 60-140 02/25/2023 06:42





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-5-3C-S

Sample Alias:

Lab Sample ID:

23A1459-32

Sample Matrix: Sediment

Date Collected: 01/19/2023 9:20

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by C	GCMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/09/2023 03:35	KRB
SW-8270	Benzidine	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/09/2023 03:35	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	curr	120%	60-140					02/09/2023 03:35	
<i>SW-8270</i>	Surrogate: 2-Fluorophenol-sur	rr	103%	60-140					02/09/2023 03:35	
<i>SW-8270</i>	Surrogate: 2,4,6-Tribromophe	enol-surr	136%	60-140					02/09/2023 03:35	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-s	urr	110%	60-140					02/09/2023 03:35	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		126%	60-140					02/09/2023 03:35	
SW-8270	Surrogate: p-Terphenyl-d14-s	rurr	81.9%	60-140					02/09/2023 03:35	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	4,4'-DDE	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	4,4'-DDT	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Aldrin	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Chlordane (tech.)	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	delta-BHC	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Dieldrin	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Endosulfan I	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Endosulfan II	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Endosulfan sulfate	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Endrin	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Endrin aldehyde	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Endrin ketone	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	gamma-Chlordane	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Heptachlor	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Heptachlor epoxide	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Methoxychlor	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 02:15	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<20.5U	ug/kg dry	10	20.5	20.5	BGA3044	02/02/2023 02:15	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-suri	91.2%	60-140					02/02/2023 02:15	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-5-3C-S (Continued)

Sample Matrix: Sediment

Collected by:

0.114

BGA3226

0.0572

01/30/2023 15:10

TBB

Lab Sample ID: 23A1459-32

Date Collected: 01/19/2023 9:20

Gregg Pawlak

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	109%	60-140					02/02/2023 02:15	
SW-8082	PCBs, Total	Α	<1.37C+, U	ug/kg dry	1	1.37	2.73	BGA3182	01/28/2023 20:47	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrac	chloro-m-xylene-suri	226% 5	60-140					01/28/2023 20:47	
SW-8082	Surrogate: Decachlorobip	henyl-surr	83.7%	60-140					01/28/2023 20:47	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0285U	mg/kg dry	1	0.0285	0.0572	BGA3226	01/30/2023 15:10	ТВВ
EPA 200.8	Arsenic	Α	0.744	mg/kg dry	1	0.00285	0.0285	BGA3226	01/30/2023 15:10	TBB
EPA 200.8	Beryllium	Α	0.0410	mg/kg dry	1	0.000572	0.0114	BGA3226	02/01/2023 10:27	TBB
EPA 200.8	Cadmium	Α	0.0131J	mg/kg dry	1	0.00285	0.0572	BGA3226	01/31/2023 10:43	TBB
EPA 200.8	Chromium	Α	0.868	mg/kg dry	1	0.00856	0.171	BGA3226	01/31/2023 10:43	TBB
EPA 200.8	Copper	Α	0.437V	mg/kg dry	1	0.0114	0.0572	BGA3226	01/31/2023 10:43	TBB
Calc	Chromium (III)		0.868J	mg/kg (dry wt) dry	1	0.141	5.17	[CALC]	02/01/2023 12:36	EM
SW-7196	Chromium (VI)	Α	<0.133U	mg/kg dry	1	0.133	5.00	BGA3843	02/01/2023 12:36	EM
SW-7471B	Mercury	Α	<0.00913U	mg/kg dry	1	0.00913	0.0183	BGA3912	01/31/2023 15:31	NAZ
EPA 200.8	Lead	Α	0.866	mg/kg dry	1	0.00285	0.0285	BGA3226	01/30/2023 15:10	TBB
EPA 200.8	Nickel	Α	0.768	mg/kg dry	1	0.0572	0.0572	BGA3226	01/31/2023 16:06	TBB
EPA 200.8	Selenium	Α	0.286	mg/kg dry	1	0.0572	0.114	BGA3226	01/31/2023 10:43	TBB
EPA 200.8	Silver	Α	0.00479J	mg/kg dry	1	0.00143	0.0285	BGA3226	01/30/2023 15:10	TBB
EPA 200.8	Thallium	Α	0.0241J	mg/kg dry	1	0.00143	0.0285	BGA3226	01/31/2023 10:43	TBB

General	Chemistry

Zinc

EPA 200.8

S	W-9014	Total Cyanide	Α	<0.0341U	mg/kg dry	1	0.0341	0.0683	BGA3214	01/26/2023 15:53	GJG
Е	PA 350.2	Ammonia as N	Α	7.26J	mg/kg dry	1	6.83	13.7	BGB0953	02/08/2023 09:15	GIW
S	W-9045C	pH	Α	8.70H	pH Units @	1		0.100	BGA2930	01/23/2023 14:09	AKA
					25 °C						
S	M 2540 G	% Solids	Α	73.2V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU

mg/kg dry

2.68





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-5-3C-S

Lab Sample ID: Sample Alias:

23A1459-32RE1

Sample Matrix: Sediment

Date Collected: 01/19/2023 9:20 Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.23	BGA3094	02/25/2023 07:17	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.23	BGA3094	02/25/2023 07:17	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.23	BGA3094	02/25/2023 07:17	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.23	BGA3094	02/25/2023 07:17	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.23	BGA3094	02/25/2023 07:17	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<12.5U	ug/kg dry	1	12.5	24.9	BGA3094	02/25/2023 07:17	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.23	BGA3094	02/25/2023 07:17	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.23	BGA3094	02/25/2023 07:17	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Anthracene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB





Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-5-3C-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-32RE1

Date Collected: 01/19/2023 9:20

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GCM	1S (Conti	inued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	1.60V, J	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Chrysene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	1.80V, J	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	6.49V	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Fluorene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Isophorone (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.23	BGA3094	02/25/2023 07:17	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Phenol, Total (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.23	BGA3094	02/25/2023 07:17	KRB
SW-8270	Pyrene (Rerun)	A	<1.56U	ug/kg dry	1	1.56	3.12	BGA3094	02/25/2023 07:17	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (	(Rerun)	91.4%	60-140					02/25/2023 07:17	
SW-8270	Surrogate: 2-Fluorophenol-surr (Re	erun)	73.5%	60-140					02/25/2023 07:17	
SW-8270	Surrogate: 2,4,6-Tribromophenol-s	surr (Rerur	81.1%	60-140					02/25/2023 07:17	
SW-8270	Surrogate: Nitrobenzene-d5-surr (	•	69.0%	60-140					02/25/2023 07:17	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)		72.4%	<i>60-140</i>					02/25/2023 07:17	
SW-8270	Surrogate: p-Terphenyl-d14-surr (	Rerun)	73.2%	60-140					02/25/2023 07:17	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-6-3A-S

23A1459-34

Lab Sample ID: Sample Alias:

Sample Matrix: Sediment

Date Collected:

Collected by: Gregg Pawlak

01/18/2023 11:15

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by G	CMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/09/2023 04:10	KRB
SW-8270	Benzidine	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/09/2023 04:10	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	113%	60-140					02/09/2023 04:10	
SW-8270	Surrogate: 2-Fluorophenol-sur	r	113%	60-140					02/09/2023 04:10	
SW-8270	Surrogate: 2,4,6-Tribromopher	nol-surr	146% S	60-140					02/09/2023 04:10	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-su	ırr	113%	60-140					02/09/2023 04:10	
SW-8270	Surrogate: Phenol-d5-surr		129%	60-140					02/09/2023 04:10	
SW-8270	Surrogate: p-Terphenyl-d14-su	ırr	71.7%	60-140					02/09/2023 04:10	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	4,4'-DDE	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	4,4'-DDT	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Aldrin	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Chlordane (tech.)	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	delta-BHC	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Dieldrin	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Endosulfan I	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Endosulfan II	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Endosulfan sulfate	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Endrin	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Endrin aldehyde	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Endrin ketone	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	А	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	gamma-Chlordane	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Heptachlor	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Heptachlor epoxide	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Methoxychlor	Α	<0.396U	ug/kg dry	10	0.396	1.32	BGA3044	02/02/2023 02:41	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<19.8U	ug/kg dry	10	19.8	19.8	BGA3044	02/02/2023 02:41	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xylene-suri	106%	60-140					02/02/2023 02:41	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-6-3A-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-34

Date Collected: 01/18/2023 11:15

Gregg Pawlak

Sample Alias: Collected by:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Ficulou	Analyte		Nesuit Q	Office	DI DI	JDL	LINE	Datcii	Analyzeu	Allalyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	109%	60-140					02/02/2023 02:41	
SW-8082	PCBs, Total	Α	<1.32C+, U	ug/kg dry	1	1.32	2.64	BGA3182	01/28/2023 21:14	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrac	hloro-m-xylene-suri	221% 5	60-140					01/28/2023 21:14	
SW-8082	Surrogate: Decachlorobip	henyl-surr	97.1%	60-140					01/28/2023 21:14	
Metals, Tota	I									
EPA 200.8	Antimony	Α	<0.0273U	mg/kg dry	1	0.0273	0.0548	BGA3226	01/30/2023 15:13	TBB
EPA 200.8	Arsenic	Α	0.740	mg/kg dry	1	0.00273	0.0273	BGA3226	01/30/2023 15:13	TBB
EPA 200.8	Beryllium	Α	0.0698	mg/kg dry	1	0.000548	0.0109	BGA3226	02/01/2023 10:30	TBB
EPA 200.8	Cadmium	Α	0.0212J	mg/kg dry	1	0.00273	0.0548	BGA3226	01/31/2023 10:53	TBB
EPA 200.8	Chromium	Α	1.37	mg/kg dry	1	0.00820	0.164	BGA3226	01/31/2023 10:53	TBB
EPA 200.8	Copper	Α	1.04V	mg/kg dry	1	0.0109	0.0548	BGA3226	01/31/2023 10:53	TBB
Calc	Chromium (III)		1.04J	mg/kg (dry wt) dry	1	0.138	5.16	[CALC]	02/01/2023 12:43	EM
SW-7196	Chromium (VI)	Α	0.326J	mg/kg dry	1	0.130	5.00	BGA3843	02/01/2023 12:43	EM
SW-7471B	Mercury	Α	<0.00891U	mg/kg dry	1	0.00891	0.0178	BGA3912	01/31/2023 15:34	NAZ
EPA 200.8	Lead	Α	1.20	mg/kg dry	1	0.00273	0.0273	BGA3226	01/30/2023 15:13	TBB
EPA 200.8	Nickel	Α	1.35	mg/kg dry	1	0.0548	0.0548	BGA3226	01/31/2023 16:16	TBB
EPA 200.8	Selenium	Α	0.285	mg/kg dry	1	0.0548	0.109	BGA3226	02/01/2023 10:30	TBB
EPA 200.8	Silver	Α	0.00459J	mg/kg dry	1	0.00137	0.0273	BGA3226	01/30/2023 15:13	TBB
EPA 200.8	Thallium	Α	0.0178J	mg/kg dry	1	0.00137	0.0273	BGA3226	01/31/2023 10:53	TBB
EPA 200.8	Zinc	Α	2.41	mg/kg dry	1	0.0548	0.109	BGA3226	01/30/2023 15:13	TBB
<b>General Che</b>	mistry									
SW-9014	Total Cyanide	Α	<0.0314U	mg/kg dry	1	0.0314	0.0628	BGA3214	01/26/2023 15:55	GJG
EPA 350.2	Ammonia as N	Α	6.99J	mg/kg dry	1	6.57	13.1	BGB0685	02/07/2023 09:38	GIW
SW-9045C	рН	Α	8.48H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	75.8V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Sample Matrix:

Sediment

01/18/2023 11:15

Client Sample ID: HI-DMMU-6-3A-S

Lab Sample ID: 23A1459-34RE1 Date Collected:

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.08U	ug/kg dry	1	3.08	6.17	BGA3094	02/25/2023 07:52	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.08U	ug/kg dry	1	3.08	6.17	BGA3094	02/25/2023 07:52	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.08U	ug/kg dry	1	3.08	6.17	BGA3094	02/25/2023 07:52	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.08U	ug/kg dry	1	3.08	6.17	BGA3094	02/25/2023 07:52	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.08U	ug/kg dry	1	3.08	6.17	BGA3094	02/25/2023 07:52	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<12.3U	ug/kg dry	1	12.3	24.7	BGA3094	02/25/2023 07:52	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.08U	ug/kg dry	1	3.08	6.17	BGA3094	02/25/2023 07:52	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.08U	ug/kg dry	1	3.08	6.17	BGA3094	02/25/2023 07:52	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	Anthracene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB





Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

11555 Clay Road Houston, TX 77043

Project Manager: Gregg Pawlak

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

## Sample Results (Continued)

Client Sample ID: HI-DMMU-6-3A-S (Continued)

Sample Matrix: Sediment

Date Collected:

Lab Sample ID:

23A1459-34RE1

01/18/2023 11:15

Sample Alias:

nod	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
nivolatile	Organic Compounds by GCI	MS (Conti	inued)							
3270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	1.66V, J	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Butyl benzyl phthalate (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Chrysene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Diethyl phthalate (Rerun)	Α	<1.54B, U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Dimethyl phthalate (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Di-n-butyl phthalate (Rerun)	Α	3.32V	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Di-n-octyl phthalate (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Fluoranthene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Fluorene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Hexachlorobenzene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Hexachlorobutadiene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Hexachlorocyclopentadiene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Hexachloroethane (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Isophorone (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Naphthalene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Nitrobenzene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	n-Nitrosodimethylamine (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	n-Nitrosodiphenylamine (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Pentachlorophenol (Rerun)	Α	<3.08U	ug/kg dry	1	3.08	6.17	BGA3094	02/25/2023 07:52	KRB
3270	Phenanthrene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
3270	Phenol, Total (Rerun)	Α	<3.08U	ug/kg dry	1	3.08	6.17	BGA3094	02/25/2023 07:52	KRB
3270	Pyrene (Rerun)	Α	<1.54U	ug/kg dry	1	1.54	3.08	BGA3094	02/25/2023 07:52	KRB
8270	Surrogate: 2-Fluorobiphenyl-surr	(Rerun)	69.4%	60-140					02/25/2023 07:52	
8270	Surrogate: 2-Fluorophenol-surr (F	Rerun)	77.1%	60-140					02/25/2023 07:52	
8270	Surrogate: 2,4,6-Tribromophenol-	-surr (Rerur	79.4%	60-140					02/25/2023 07:52	
8270	Surrogate: Nitrobenzene-d5-surr	(Rerun)	66.7%	60-140					02/25/2023 07:52	
8270	Surrogate: Phenol-d5-surr (Rerun	<i>1)</i>	78.4%	60-140					02/25/2023 07:52	
8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	51.8% S	60-140					02/25/2023 07:52	
8270		•	51.8% S	60-140						





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-6-3B-S

Lab Sample ID: 23A1459-35

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/18/2023 15:45

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by C	CMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/09/2023 04:45	KRB
SW-8270	Benzidine	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/09/2023 04:45	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	urr	95.5%	60-140					02/09/2023 04:45	
<i>SW-8270</i>	Surrogate: 2-Fluorophenol-sur	rr	98.7%	60-140					02/09/2023 04:45	
<i>SW-8270</i>	Surrogate: 2,4,6-Tribromophe	nol-surr	134%	60-140					02/09/2023 04:45	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-s	urr	95.8%	60-140					02/09/2023 04:45	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		113%	60-140					02/09/2023 04:45	
SW-8270	Surrogate: p-Terphenyl-d14-s	urr	62.6%	60-140					02/09/2023 04:45	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	4,4'-DDE	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	4,4'-DDT	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Aldrin	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Chlordane (tech.)	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	delta-BHC	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Dieldrin	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Endosulfan I	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Endosulfan II	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Endosulfan sulfate	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Endrin	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Endrin aldehyde	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Endrin ketone	A	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	gamma-Chlordane	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Heptachlor	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Heptachlor epoxide	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Methoxychlor	Α	<0.410U	ug/kg dry	10	0.410	1.37	BGA3044	02/02/2023 03:08	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<20.5U	ug/kg dry	10	20.5	20.5	BGA3044	02/02/2023 03:08	ALA
 SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-sun	93.6%	60-140					02/02/2023 03:08	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-6-3B-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-35

Date Collected: 01/18/2023 15:45

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobipa	henyl-surr	112%	60-140					02/02/2023 03:08	
SW-8082	PCBs, Total	Α	<1.37C+, U	ug/kg dry	1	1.37	2.74	BGA3182	01/28/2023 21:41	CRO
SW-8082	Surrogate: 2,4,5,6 Tetraci	hloro-m-xylene-suri	203% 5	60-140					01/28/2023 21:41	
SW-8082	Surrogate: Decachlorobipi	henyl-surr	91.7%	60-140					01/28/2023 21:41	
Metals, Tota	l									
EPA 200.8	Antimony	Α	<0.0276U	mg/kg dry	1	0.0276	0.0553	BGA3226	01/30/2023 15:15	TBB
EPA 200.8	Arsenic	Α	1.10	mg/kg dry	1	0.00276	0.0276	BGA3226	01/30/2023 15:15	TBB
EPA 200.8	Beryllium	Α	0.127	mg/kg dry	1	0.000553	0.0110	BGA3226	02/01/2023 10:32	TBB
EPA 200.8	Cadmium	Α	0.0900	mg/kg dry	1	0.00276	0.0553	BGA3226	01/31/2023 10:55	TBB
EPA 200.8	Chromium	Α	2.18	mg/kg dry	1	0.00828	0.166	BGA3226	01/31/2023 10:55	TBB
EPA 200.8	Copper	Α	2.56V	mg/kg dry	1	0.0110	0.0553	BGA3226	01/31/2023 10:55	TBB
Calc	Chromium (III)		0.948J	mg/kg (dry wt) dry	1	0.143	5.17	[CALC]	02/01/2023 12:32	EM
SW-7196	Chromium (VI)	Α	1.23J	mg/kg dry	1	0.135	5.00	BGA3843	02/01/2023 12:32	EM
SW-7471B	Mercury	Α	<0.00977U	mg/kg dry	1	0.00977	0.0195	BGA3912	01/31/2023 15:37	NAZ
EPA 200.8	Lead	Α	2.94	mg/kg dry	1	0.00276	0.0276	BGA3226	01/30/2023 15:15	TBB
EPA 200.8	Nickel	Α	2.24	mg/kg dry	1	0.0553	0.0553	BGA3226	01/31/2023 16:19	TBB
EPA 200.8	Selenium	Α	0.422	mg/kg dry	1	0.0553	0.110	BGA3226	02/01/2023 10:32	TBB
EPA 200.8	Silver	Α	0.0169J	mg/kg dry	1	0.00138	0.0276	BGA3226	01/30/2023 15:15	TBB
EPA 200.8	Thallium	Α	0.0576	mg/kg dry	1	0.00138	0.0276	BGA3226	01/31/2023 10:55	TBB
EPA 200.8	Zinc	Α	7.78	mg/kg dry	1	0.0553	0.110	BGA3226	01/30/2023 15:15	TBB
General Che	mistry									
SW-9014	Total Cyanide	А	<0.0342U	mg/kg dry	1	0.0342	0.0684	BGA3214	01/26/2023 15:55	GJG
EPA 350.2	Ammonia as N	Α	7.283	mg/kg dry	1	6.84	13.7	BGB0685	02/07/2023 09:38	GIW
SW-9045C	рН	Α	8.47H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	73.1V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-6-3B-S

Lab Sample ID: 23A1459-35RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/18/2023 15:45

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.32U	ug/kg dry	1	3.32	6.63	BGA3094	02/25/2023 08:27	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.32U	ug/kg dry	1	3.32	6.63	BGA3094	02/25/2023 08:27	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.32U	ug/kg dry	1	3.32	6.63	BGA3094	02/25/2023 08:27	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.32U	ug/kg dry	1	3.32	6.63	BGA3094	02/25/2023 08:27	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.32U	ug/kg dry	1	3.32	6.63	BGA3094	02/25/2023 08:27	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<13.3U	ug/kg dry	1	13.3	26.5	BGA3094	02/25/2023 08:27	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.32U	ug/kg dry	1	3.32	6.63	BGA3094	02/25/2023 08:27	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.32U	ug/kg dry	1	3.32	6.63	BGA3094	02/25/2023 08:27	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Anthracene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB





Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number:

04/03/2023 14:08

Reported:

TCEQ-TOX T104704202-22-17

Project Manager: Gregg Pawlak

## Sample Results (Continued)

Client Sample ID: HI-DMMU-6-3B-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-35RE1

Date Collected: 01/18/2023 15:45

Sample Alias:

Houston, TX 77043

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GCMS	(Conti	nued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	A	<1.66B, U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	А	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Chrysene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	<1.66B, U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	5.64V	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Fluorene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	A	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Isophorone (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.32U	ug/kg dry	1	3.32	6.63	BGA3094	02/25/2023 08:27	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Phenol, Total (Rerun)	Α	3.61J	ug/kg dry	1	3.32	6.63	BGA3094	02/25/2023 08:27	KRB
SW-8270	Pyrene (Rerun)	Α	<1.66U	ug/kg dry	1	1.66	3.32	BGA3094	02/25/2023 08:27	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (Re	erun)	61.1%	60-140					02/25/2023 08:27	
SW-8270	Surrogate: 2-Fluorophenol-surr (Reru	ın)	70.5%	60-140					02/25/2023 08:27	
SW-8270	Surrogate: 2,4,6-Tribromophenol-sur	•	72.6%	60-140					02/25/2023 08:27	
SW-8270	Surrogate: Nitrobenzene-d5-surr (Re	run)	60.6%	60-140					02/25/2023 08:27	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)		72.7%	60-140					02/25/2023 08:27	
SW-8270	Surrogate: p-Terphenyl-d14-surr (Re	run)	45.1% S	60-140					02/25/2023 08:27	





Terracon Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

HI-DMMU-6-3C-S Client Sample ID:

Lab Sample ID:

Sample Alias:

23A1459-36

Sediment Sample Matrix:

Date Collected: 01/19/2023 11:10 Collected by: Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS SW-8270 3,3'-Dichlorobenzidine BGA3094 02/09/2023 05:19 KRB Α <1.60U 1 1.60 3.20 ug/kg dry KRB SW-8270 Benzidine Α <1.60U ug/kg dry 1 1.60 3.20 BGA3094 02/09/2023 05:19 108% 02/09/2023 05:19 SW-8270 Surrogate: 2-Fluorobiphenvl-surr 60-140 60-140 SW-8270 Surrogate: 2-Fluorophenol-surr 107% 02/09/2023 05:19 60-140 02/09/2023 05:19 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr 133% 60-140 02/09/2023 05:19 SW-8270 Surrogate: Nitrobenzene-d5-surr 115% SW-8270 Surrogate: Phenol-d5-surr 119% 60-140 02/09/2023 05:19 SW-8270 Surrogate: p-Terphenyl-d14-surr 71.7% 60-140 02/09/2023 05:19 **Organics by GC** SW-8081 4,4'-DDD Α <0.406U ua/ka dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 AI A SW-8081 4,4'-DDE Α < 0.40611 ug/kg dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 ALA SW-8081 4,4'-DDT Α <0.406U ug/kg dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 ALA SW-8081 Aldrin Α < 0.406 U ug/kg dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 ALA 02/02/2023 03:35 SW-8081 alpha-BHC < 0.406 U ug/kg dry 10 0.406 1.35 BGA3044 ALA (alpha-Hexachlorocyclohexan e) SW-8081 beta-BHC Α < 0.40611 ug/kg dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 AI A (beta-Hexachlorocyclohexane SW-8081 <0.406U 02/02/2023 03:35 Chlordane (tech.) Α ua/ka drv 10 0.406 1.35 BGA3044 ALA SW-8081 cis-Chlordane Α <0.406U ug/kg dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 ALA (alpha-Chlordane) SW-8081 delta-BHC Α < 0.406 U ug/kg dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 ALA Dieldrin 02/02/2023 03:35 SW-8081 Α < 0.406 U ua/ka drv 10 0.406 1.35 BGA3044 ALA SW-8081 Endosulfan I Α < 0.406 U ug/kg dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 ALA SW-8081 Endosulfan II < 0.406 U 10 0.406 1.35 BGA3044 02/02/2023 03:35 Α ug/kg dry ALA SW-8081 Endosulfan sulfate Α < 0.406 U ug/kg dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 ALA SW-8081 Endrin <0.406U 10 0.406 1.35 BGA3044 02/02/2023 03:35 Α ALA ug/kg dry ALA SW-8081 Endrin aldehyde Α < 0.406 U 10 0.406 1.35 BGA3044 02/02/2023 03:35 ug/kg dry SW-8081 Endrin ketone <0.406U 10 0.406 1.35 BGA3044 02/02/2023 03:35 Α ug/kg dry ALA SW-8081 gamma-BHC (Lindane, Α <0.406U ug/kg dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 ALA gamma-Hexachlorocyclohexa nE) gamma-Chlordane 02/02/2023 03:35 SW-8081 < 0.406 U 10 0.406 1.35 BGA3044 Α ug/kg dry ALA SW-8081 Heptachlor Α <0.406U ug/kg dry 10 0.406 1.35 BGA3044 02/02/2023 03:35 ALA 02/02/2023 03:35 SW-8081 Heptachlor epoxide < 0.406 U 10 0.406 1.35 BGA3044 ALA Α ua/ka drv SW-8081 Methoxychlor <0.406U 10 0.406 1.35 BGA3044 02/02/2023 03:35 ug/kg dry ALA SW-8081 Toxaphene (Chlorinated <20.3U 20.3 20.3 BGA3044 02/02/2023 03:35 Α ug/kg dry 10 ALA Camphene) Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 02/02/2023 03:35 SW-8081 97.6% 60-140





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-6-3C-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-36

Date Collected: 01/19/2023 11:10

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	108%	60-140					02/02/2023 03:35	
SW-8082	PCBs, Total	Α	<1.35C+, U	ug/kg dry	1	1.35	2.71	BGA3182	01/28/2023 22:08	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrac	hloro-m-xylene-suri	215% S	60-140					01/28/2023 22:08	
SW-8082	Surrogate: Decachlorobip	henyl-surr	109%	60-140					01/28/2023 22:08	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0274U	mg/kg dry	1	0.0274	0.0550	BGA3226	01/30/2023 15:18	TBB
EPA 200.8	Arsenic	Α	1.16	mg/kg dry	1	0.00274	0.0274	BGA3226	01/30/2023 15:18	TBB
EPA 200.8	Beryllium	Α	0.121	mg/kg dry	1	0.000550	0.0110	BGA3226	02/01/2023 10:35	TBB
EPA 200.8	Cadmium	Α	0.0227J	mg/kg dry	1	0.00274	0.0550	BGA3226	01/31/2023 10:58	TBB
EPA 200.8	Chromium	Α	2.79	mg/kg dry	1	0.00824	0.165	BGA3226	01/31/2023 10:58	TBB
EPA 200.8	Copper	Α	1.60 V	mg/kg dry	1	0.0110	0.0550	BGA3226	01/31/2023 10:58	TBB
Calc	Chromium (III)		1.01J	mg/kg (dry wt) dry	1	0.140	5.16	[CALC]	01/31/2023 17:17	EM
SW-7196	Chromium (VI)	Α	1.78J	mg/kg dry	1	0.132	5.00	BGA3845	01/31/2023 17:17	EM
SW-7471B	Mercury	Α	<0.00932U	mg/kg dry	1	0.00932	0.0186	BGA3912	01/31/2023 15:47	NAZ
EPA 200.8	Lead	Α	2.15	mg/kg dry	1	0.00274	0.0274	BGA3226	01/30/2023 15:18	TBB
EPA 200.8	Nickel	Α	1.81	mg/kg dry	1	0.0550	0.0550	BGA3226	01/31/2023 16:21	TBB
EPA 200.8	Selenium	Α	0.466	mg/kg dry	1	0.0550	0.110	BGA3226	02/01/2023 10:35	TBB
EPA 200.8	Silver	Α	0.007473	mg/kg dry	1	0.00137	0.0274	BGA3226	01/30/2023 15:18	TBB
EPA 200.8	Thallium	Α	0.0302	mg/kg dry	1	0.00137	0.0274	BGA3226	01/31/2023 10:58	TBB
EPA 200.8	Zinc	Α	5.56	mg/kg dry	1	0.0550	0.110	BGA3226	01/30/2023 15:18	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0322U	mg/kg dry	1	0.0322	0.0645	BGA3582	01/27/2023 17:29	GJG
EPA 350.2	Ammonia as N	Α	<6.76U	mg/kg dry	1	6.76	13.5	BGB0685	02/07/2023 09:38	GIW
SW-9045C	рН	Α	8.58H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	73.8V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-6-3C-S

23A1459-36RE1

Lab Sample ID: Sample Alias: Sample Matrix: Sediment

Date Collected: 01/19/2023 11:10

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.20U	ug/kg dry	1	3.20	6.39	BGA3094	02/25/2023 09:02	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.20U	ug/kg dry	1	3.20	6.39	BGA3094	02/25/2023 09:02	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.20U	ug/kg dry	1	3.20	6.39	BGA3094	02/25/2023 09:02	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.20U	ug/kg dry	1	3.20	6.39	BGA3094	02/25/2023 09:02	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.20U	ug/kg dry	1	3.20	6.39	BGA3094	02/25/2023 09:02	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<12.8U	ug/kg dry	1	12.8	25.6	BGA3094	02/25/2023 09:02	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.20U	ug/kg dry	1	3.20	6.39	BGA3094	02/25/2023 09:02	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.20U	ug/kg dry	1	3.20	6.39	BGA3094	02/25/2023 09:02	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Anthracene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-6-3C-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-36RE1

Date Collected: 01/19/2023 11:10

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GCN	1S (Conti	inued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<1.60B, U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Chrysene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	<1.60B, U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	3.03V, J	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Fluorene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	A	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Isophorone (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.60 U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.20U	ug/kg dry	1	3.20	6.39	BGA3094	02/25/2023 09:02	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Phenol, Total (Rerun)	Α	3.37J	ug/kg dry	1	3.20	6.39	BGA3094	02/25/2023 09:02	KRB
SW-8270	Pyrene (Rerun)	Α	<1.60U	ug/kg dry	1	1.60	3.20	BGA3094	02/25/2023 09:02	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr (	'Rerun)	71.0%	60-140					02/25/2023 09:02	
SW-8270	Surrogate: 2-Fluorophenol-surr (R.	•	72.4%	60-140					02/25/2023 09:02	
SW-8270	Surrogate: 2,4,6-Tribromophenol-	•	75.8%	60-140					02/25/2023 09:02	
SW-8270	Surrogate: Nitrobenzene-d5-surr (	•	67.3%	60-140					02/25/2023 09:02	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)		76.1%	60-140					02/25/2023 09:02	
SW-8270	Surrogate: p-Terphenyl-d14-surr (	Rerun)	50.9% S	60-140					02/25/2023 09:02	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4A-S

Lab Sample ID: 23A1459-38

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/17/2023 14:12

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by G	CMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/09/2023 05:54	KRB
SW-8270	Benzidine	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/09/2023 05:54	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	81.2%	60-140					02/09/2023 05:54	
SW-8270	Surrogate: 2-Fluorophenol-sur	r	98.4%	60-140					02/09/2023 05:54	
<i>SW-8270</i>	Surrogate: 2,4,6-Tribromopher	nol-surr	119%	60-140					02/09/2023 05:54	
SW-8270	Surrogate: Nitrobenzene-d5-su	ırr	102%	60-140					02/09/2023 05:54	
SW-8270	Surrogate: Phenol-d5-surr		115%	60-140					02/09/2023 05:54	
SW-8270	Surrogate: p-Terphenyl-d14-su	ırr	59.0% S	60-140					02/09/2023 05:54	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	4,4'-DDE	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	4,4'-DDT	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Aldrin	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Chlordane (tech.)	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	delta-BHC	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Dieldrin	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Endosulfan I	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Endosulfan II	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Endosulfan sulfate	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Endrin	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Endrin aldehyde	A	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Endrin ketone	A	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	gamma-Chlordane	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Heptachlor	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Heptachlor epoxide	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Methoxychlor	Α	<0.401U	ug/kg dry	10	0.401	1.34	BGA3044	02/02/2023 04:01	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	A	<20.0U	ug/kg dry	10	20.0	20.0	BGA3044	02/02/2023 04:01	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xylene-sun	83.3%	60-140					02/02/2023 04:01	





Terracon_Houston

11555 Clay Road Project Number: Reported:

Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Project: PCCA HI & CDP Resampling 2023

## Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4A-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-38

Date Collected: 01/17/2023 14:12

Sample Alias:

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henvl-surr	108%	60-140					02/02/2023 04:01	
SW-8082	PCBs, Total	Α	<1.34C+, U	ug/kg dry	1	1.34	2.67	BGA3182	01/28/2023 23:01	CRO
SW-8082	Surrogate: 2,4,5,6 Tetraci	hloro-m-xylene-suri	215% S	60-140					01/28/2023 23:01	
SW-8082	Surrogate: Decachlorobip	henyl-surr	135%	60-140					01/28/2023 23:01	
Metals, Tota	nl .									
EPA 200.8	Antimony	Α	<0.0265U	mg/kg dry	1	0.0265	0.0531	BGA3226	01/30/2023 15:20	TBB
EPA 200.8	Arsenic	Α	2.53	mg/kg dry	1	0.00265	0.0265	BGA3226	01/30/2023 15:20	TBB
EPA 200.8	Beryllium	Α	0.240	mg/kg dry	1	0.000531	0.0106	BGA3226	02/01/2023 10:37	TBB
EPA 200.8	Cadmium	Α	0.0518J	mg/kg dry	1	0.00265	0.0531	BGA3226	01/31/2023 11:00	TBB
EPA 200.8	Chromium	Α	3.60	mg/kg dry	1	0.00796	0.159	BGA3226	01/31/2023 11:00	TBB
EPA 200.8	Copper	Α	2.71V	mg/kg dry	1	0.0106	0.0531	BGA3226	01/31/2023 11:00	TBB
Calc	Chromium (III)		2.19J	mg/kg (dry wt) dry	1	0.140	5.16	[CALC]	01/31/2023 17:05	EM
SW-7196	Chromium (VI)	Α	1.41J	mg/kg dry	1	0.132	5.00	BGA3845	01/31/2023 17:05	EM
SW-7471B	Mercury	Α	<0.00924U	mg/kg dry	1	0.00924	0.0185	BGA3912	01/31/2023 15:51	NAZ
EPA 200.8	Lead	Α	4.41	mg/kg dry	1	0.00265	0.0265	BGA3226	01/30/2023 15:20	TBB
EPA 200.8	Nickel	Α	4.18	mg/kg dry	1	0.0531	0.0531	BGA3226	01/31/2023 16:23	TBB
EPA 200.8	Selenium	Α	0.832	mg/kg dry	1	0.0531	0.106	BGA3226	02/01/2023 10:37	TBB
EPA 200.8	Silver	Α	0.0163J	mg/kg dry	1	0.00133	0.0265	BGA3226	01/30/2023 15:20	TBB
EPA 200.8	Thallium	Α	0.0467	mg/kg dry	1	0.00133	0.0265	BGA3226	01/31/2023 11:00	TBB
EPA 200.8	Zinc	Α	12.9	mg/kg dry	1	0.0531	0.106	BGA3226	01/30/2023 15:20	TBB
General Che	emistry									
SW-9014	Total Cyanide	А	<0.0321U	mg/kg dry	1	0.0321	0.0643	BGA3582	01/27/2023 17:30	GJG
EPA 350.2	Ammonia as N	Α	124	mg/kg dry	1	6.66	13.3	BGB0685	02/07/2023 09:38	GIW
SW-9045C	рН	Α	8.47H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	74.8V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4A-S

Lab Sample ID: 23A1459-38RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/17/2023 14:12

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GCI	чs								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.36	BGA3094	02/25/2023 09:37	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.36	BGA3094	02/25/2023 09:37	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.36	BGA3094	02/25/2023 09:37	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.36	BGA3094	02/25/2023 09:37	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.36	BGA3094	02/25/2023 09:37	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<12.7U	ug/kg dry	1	12.7	25.5	BGA3094	02/25/2023 09:37	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.36	BGA3094	02/25/2023 09:37	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.18U	ug/kg dry	1	3.18	6.36	BGA3094	02/25/2023 09:37	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	Acenaphthene (Rerun)	Α	21.3	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	Acenaphthylene (Rerun)	Α	3.66	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	12.8	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	7.37	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	8.96	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	3.22	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	4.27	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.59U	ug/kg dry	1	1.59	3.18	BGA3094	02/25/2023 09:37	KRB





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4A-S (Continued) Sample Matrix: Sediment

Lab Sample ID: 23A1459-38RE1 01/17/2023 14:12

Sample Alias:

Date Collected: Collected by: Michael Madonna

Semivolatile Organic Compounds by GCMS (Continued)           SW-8270         bis(2-Chloroethyl) ether (Rerun)         A         <1.59U         ug/kg dry         1         1.59           SW-8270         Bis(2-ethylhexyl )phthalate (Rerun)         A         <1.59B, U         ug/kg dry         1         1.59           SW-8270         Butyl benzyl phthalate (Rerun)         A         <1.59U         ug/kg dry         1         1.59           SW-8270         Chrysene (Rerun)         A         14.8         ug/kg dry         1         1.59	3.18 3.18 3.18	BGA3094 BGA3094	02/25/2023 09:37 02/25/2023 09:37	KRB
(Rerun)  SW-8270 Bis(2-ethylhexyl )phthalate A <1.59B, U ug/kg dry 1 1.59 (Rerun)  SW-8270 Butyl benzyl phthalate A <1.59U ug/kg dry 1 1.59 (Rerun)	3.18	BGA3094		KRB
(Rerun)  SW-8270 Butyl benzyl phthalate A <1.59U ug/kg dry 1 1.59 (Rerun)			02/25/2023 09:37	
(Rerun)	3.18			KRB
SW-8270 Chrysene (Rerun) A 14.8 ug/kg dry 1 1.59		BGA3094	02/25/2023 09:37	KRB
	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Dibenzo(a,h)anthracene A <1.59U ug/kg dry 1 1.59 (Rerun)	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Diethyl phthalate (Rerun) A <1.59B, U ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Dimethyl phthalate (Rerun) A <1.59U ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Di-n-butyl phthalate (Rerun) A 3.77V ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Di-n-octyl phthalate (Rerun) A <1.59U ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Fluorene (Rerun) A 28.5 ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Hexachlorobenzene (Rerun) A <1.59U ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Hexachlorobutadiene (Rerun) A <1.59U ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Hexachlorocyclopentadiene A <1.59U ug/kg dry 1 1.59 (Rerun)	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Hexachloroethane (Rerun) A <1.59U ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Indeno(1,2,3-cd) pyrene A 2.53J ug/kg dry 1 1.59 (Rerun)	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Isophorone (Rerun) A <1.59U ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Naphthalene (Rerun) A 1.63J ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Nitrobenzene (Rerun) A <1.59U ug/kg dry 1 1.59	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 n-Nitrosodimethylamine A <1.59U ug/kg dry 1 1.59 (Rerun)	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 n-Nitrosodi-n-propylamine A <1.59U ug/kg dry 1 1.59 (Rerun)	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 n-Nitrosodiphenylamine A <1.59U ug/kg dry 1 1.59 (Rerun)	3.18	BGA3094	02/25/2023 09:37	KRB
SW-8270 Pentachlorophenol (Rerun) A <3.18U ug/kg dry 1 3.18	6.36	BGA3094	02/25/2023 09:37	KRB
SW-8270 Phenol, Total (Rerun) A <3.18U ug/kg dry 1 3.18	6.36	BGA3094	02/25/2023 09:37	KRB
SW-8270 Surrogate: 2-Fluorobiphenyl-surr (Rerun) 58.7% S 60-140			02/25/2023 09:37	
SW-8270 Surrogate: 2-Fluorophenol-surr (Rerun) 66.7% 60-140			02/25/2023 09:37	
SW-8270 Surrogate: 2,4,6-Tribromophenol-surr (Rerur. 63.8% 60-140			02/25/2023 09:37	
SW-8270 Surrogate: Nitrobenzene-d5-surr (Rerun) 56.1% S 60-140			02/25/2023 09:37	
SW-8270 Surrogate: Phenol-d5-surr (Rerun) 71.0% 60-140			02/25/2023 09:37	
SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 39.9% S 60-140			02/25/2023 09:37	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4A-S Sample Matrix: Sediment

Lab Sample ID: 23A1459-38RE2 Date Collected: 01/17/2023 14:12

Sample Alias: Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by	GCMS								
SW-8270	Anthracene (Rerun)	Α	276	ug/kg dry	10	15.9	31.8	BGA3094	02/28/2023 10:51	KRB
SW-8270	Fluoranthene (Rerun)	Α	78.9	ug/kg dry	3	4.77	9.55	BGA3094	02/27/2023 23:45	KRB
SW-8270	Phenanthrene (Rerun)	Α	129	ug/kg dry	3	4.77	9.55	BGA3094	02/27/2023 23:45	KRB
SW-8270	Pyrene (Rerun)	Α	59.1	ug/kg dry	3	4.77	9.55	BGA3094	02/27/2023 23:45	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl	surr (Rerun)	60.4%	60-140					02/27/2023 23:45	
SW-8270	Surrogate: 2-Fluorophenol-su	ırr (Rerun)	78.3%	60-140					02/27/2023 23:45	
SW-8270	Surrogate: 2,4,6-Tribromoph	enol-surr (Rerur.	74.9%	60-140					02/27/2023 23:45	
SW-8270	Surrogate: Nitrobenzene-d5-s	surr (Rerun)	66.2%	60-140					02/27/2023 23:45	
SW-8270	Surrogate: Phenol-d5-surr (R	erun)	81.4%	60-140					02/27/2023 23:45	
SW-8270	Surrogate: p-Terphenyl-d14-s	surr (Rerun)	52.0% S	60-140					02/27/2023 23:45	





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4B-S

23A1459-39

Lab Sample ID: Sample Alias:

Sample Matrix: Sediment

> Date Collected: 01/18/2023 9:25

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by (	GCMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/09/2023 06:29	KRB
SW-8270	Benzidine	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/09/2023 06:29	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	surr	73.7%	60-140					02/09/2023 06:29	
SW-8270	Surrogate: 2-Fluorophenol-su	rr	96.5%	60-140					02/09/2023 06:29	
SW-8270	Surrogate: 2,4,6-Tribromophe	enol-surr	102%	60-140					02/09/2023 06:29	
SW-8270	Surrogate: Nitrobenzene-d5-s	rurr	91.7%	60-140					02/09/2023 06:29	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		110%	60-140					02/09/2023 06:29	
SW-8270	Surrogate: p-Terphenyl-d14-s	curr	55.8% S	60-140					02/09/2023 06:29	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	4,4'-DDE	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	4,4'-DDT	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Aldrin	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Chlordane (tech.)	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	delta-BHC	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Dieldrin	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Endosulfan I	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Endosulfan II	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Endosulfan sulfate	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Endrin	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Endrin aldehyde	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Endrin ketone	A	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	gamma-Chlordane	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Heptachlor	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Heptachlor epoxide	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Methoxychlor	Α	<0.553U	ug/kg dry	10	0.553	1.84	BGA3044	02/02/2023 04:28	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<27.7U	ug/kg dry	10	27.7	27.7	BGA3044	02/02/2023 04:28	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-suri	73.7%	60-140					02/02/2023 04:28	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4B-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-39

Date Collected: 01/18/2023 9:25

Sample Alias:

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	110%	60-140					02/02/2023 04:28	
SW-8082	PCBs, Total	Α	<1.84C+, U	ug/kg dry	1	1.84	3.69	BGA3182	01/28/2023 23:28	CRO
SW-8082	Surrogate: 2,4,5,6 Tetraci	hloro-m-xylene-suri	222% S	60-140					01/28/2023 23:28	
SW-8082	Surrogate: Decachlorobip	henyl-surr	118%	60-140					01/28/2023 23:28	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0375U	mg/kg dry	1	0.0375	0.0752	BGA3226	01/30/2023 15:23	TBB
EPA 200.8	Arsenic	Α	3.96	mg/kg dry	1	0.00375	0.0375	BGA3226	01/30/2023 15:23	TBB
EPA 200.8	Beryllium	Α	0.521	mg/kg dry	1	0.000752	0.0150	BGA3226	02/01/2023 10:39	TBB
EPA 200.8	Cadmium	Α	0.133	mg/kg dry	1	0.00375	0.0752	BGA3226	01/31/2023 11:02	TBB
EPA 200.8	Chromium	Α	7.36	mg/kg dry	1	0.0113	0.225	BGA3226	01/31/2023 11:02	TBB
EPA 200.8	Copper	Α	5.90 V	mg/kg dry	1	0.0150	0.0752	BGA3226	01/31/2023 11:02	TBB
Calc	Chromium (III)		6.55	mg/kg (dry wt) dry	1	0.194	5.23	[CALC]	01/31/2023 17:06	EM
SW-7196	Chromium (VI)	Α	0.810J	mg/kg dry	1	0.183	5.00	BGA3845	01/31/2023 17:06	EM
SW-7471B	Mercury	Α	0.0296	mg/kg dry	1	0.0130	0.0259	BGA3912	01/31/2023 15:54	NAZ
EPA 200.8	Lead	Α	9.37	mg/kg dry	5	0.0187	0.187	BGA3226	01/30/2023 15:25	TBB
EPA 200.8	Nickel	Α	6.82	mg/kg dry	1	0.0752	0.0752	BGA3226	01/31/2023 16:26	TBB
EPA 200.8	Selenium	Α	1.41	mg/kg dry	1	0.0752	0.150	BGA3226	02/01/2023 10:39	TBB
EPA 200.8	Silver	Α	0.0394	mg/kg dry	1	0.00188	0.0375	BGA3226	01/30/2023 15:23	TBB
EPA 200.8	Thallium	Α	0.0790	mg/kg dry	1	0.00188	0.0375	BGA3226	01/31/2023 11:02	TBB
EPA 200.8	Zinc	Α	27.9	mg/kg dry	1	0.0752	0.150	BGA3226	01/30/2023 15:23	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0439U	mg/kg dry	1	0.0439	0.0878	BGA3582	01/27/2023 17:31	GJG
EPA 350.2	Ammonia as N	Α	261	mg/kg dry	1	9.17	18.3	BGB0685	02/07/2023 09:38	GIW
SW-9045C	рН	Α	8.43H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	54.2V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4B-S Lab Sample ID:

23A1459-39RE1

Sample Alias:

Sample Matrix: Sediment

> Date Collected: 01/18/2023 9:25

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GCI	мs								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<4.33U	ug/kg dry	1	4.33	8.66	BGA3094	02/25/2023 10:12	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<4.33U	ug/kg dry	1	4.33	8.66	BGA3094	02/25/2023 10:12	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<4.33U	ug/kg dry	1	4.33	8.66	BGA3094	02/25/2023 10:12	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.33U	ug/kg dry	1	4.33	8.66	BGA3094	02/25/2023 10:12	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<4.33U	ug/kg dry	1	4.33	8.66	BGA3094	02/25/2023 10:12	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<17.3U	ug/kg dry	1	17.3	34.6	BGA3094	02/25/2023 10:12	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<4.33U	ug/kg dry	1	4.33	8.66	BGA3094	02/25/2023 10:12	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<4.33U	ug/kg dry	1	4.33	8.66	BGA3094	02/25/2023 10:12	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Acenaphthene (Rerun)	Α	5.31	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Anthracene (Rerun)	Α	2.19J	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	2.17J	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	3.13J	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB





Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

TCEQ-TOX T104704202-22-17

11555 Clay Road Houston, TX 77043

Project Manager: Gregg Pawlak

04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4B-S (Continued)

23A1459-39RE1

Sample Matrix: Sediment

Lab Sample ID: Sample Alias: Date Collected: 01/18/2023 9:25

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	organic Compounds by G	CMS (Conti	nued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<2.16B, U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Chrysene (Rerun)	Α	2.30J	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	<2.16B, U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	4.12V, J	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Fluoranthene (Rerun)	Α	10.3	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Fluorene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Isophorone (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Naphthalene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<4.33U	ug/kg dry	1	4.33	8.66	BGA3094	02/25/2023 10:12	KRB
SW-8270	Phenanthrene (Rerun)	Α	<2.16U	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
SW-8270	Phenol, Total (Rerun)	Α	4.77J	ug/kg dry	1	4.33	8.66	BGA3094	02/25/2023 10:12	KRB
SW-8270	Pyrene (Rerun)	Α	9.39	ug/kg dry	1	2.16	4.33	BGA3094	02/25/2023 10:12	KRB
CW/ 0270	Currogator 2 Flyarabiahandan	rr (Dorum)	E0 604 C	60 140					02/25/2022 10:12	
SW-8270 SW-8270	Surrogate: 2-Fluorobiphenyl-sur Surrogate: 2-Fluorophenol-surr		50.6% S 66.3%	60-140 60-140					02/25/2023 10:12 02/25/2023 10:12	
SW-8270 SW-8270	Surrogate: 2,4,6-Tribromophen	. ,	59.5% S	60-140 60-140					02/25/2023 10:12	
SW-8270	Surrogate: Nitrobenzene-d5-sur	•	55.9% S	60-140 60-140					02/25/2023 10:12	
SW-8270	Surrogate: Phenol-d5-surr (Rero	. ,	69.3%	60-140					02/25/2023 10:12	
SW-8270	Surrogate: p-Terphenyl-d14-sur	•	42.0% S	60-140					02/25/2023 10:12	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4C-S

Lab Sample ID: 23A1459-40

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/16/2023 16:37

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by (	GCMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/09/2023 07:03	KRB
SW-8270	Benzidine	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/09/2023 07:03	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-s	surr	86.5%	60-140					02/09/2023 07:03	
SW-8270	Surrogate: 2-Fluorophenol-su	rr	124%	60-140					02/09/2023 07:03	
SW-8270	Surrogate: 2,4,6-Tribromophe	enol-surr	140%	60-140					02/09/2023 07:03	
SW-8270	Surrogate: Nitrobenzene-d5-s	rurr	131%	60-140					02/09/2023 07:03	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		132%	60-140					02/09/2023 07:03	
SW-8270	Surrogate: p-Terphenyl-d14-s	surr	43.0% S	60-140					02/09/2023 07:03	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	4,4'-DDE	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	4,4'-DDT	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Aldrin	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Chlordane (tech.)	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	delta-BHC	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Dieldrin	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Endosulfan I	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Endosulfan II	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Endosulfan sulfate	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Endrin	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Endrin aldehyde	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Endrin ketone	A	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	gamma-Chlordane	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Heptachlor	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Heptachlor epoxide	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Methoxychlor	Α	<0.398U	ug/kg dry	10	0.398	1.33	BGA3044	02/02/2023 04:54	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<19.9U	ug/kg dry	10	19.9	19.9	BGA3044	02/02/2023 04:54	ALA
 SW-8081	Surrogate: 2,4,5,6 Tetrachloro	o-m-xylene-sun	89.5%	60-140					02/02/2023 04:54	





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4C-S (Continued) Sample Matrix: Sediment

Lab Sample ID: 23A1459-40 Date Collected: 01/16/2023 16:37

Sample Alias: Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	114%	60-140					02/02/2023 04:54	
SW-8082	PCBs, Total	Α	<1.33C+, U	ug/kg dry	1	1.33	2.66	BGA3182	01/28/2023 23:55	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrac	chloro-m-xylene-suri	212% 5	60-140					01/28/2023 23:55	
SW-8082	Surrogate: Decachlorobip	henyl-surr	106%	60-140					01/28/2023 23:55	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0277U	mg/kg dry	1	0.0277	0.0554	BGA3226	01/30/2023 15:35	TBB
EPA 200.8	Arsenic	Α	2.13	mg/kg dry	1	0.00277	0.0277	BGA3226	01/30/2023 15:35	TBB
EPA 200.8	Beryllium	Α	0.105	mg/kg dry	1	0.000554	0.0111	BGA3226	02/01/2023 10:42	TBB
EPA 200.8	Cadmium	Α	0.00902J	mg/kg dry	1	0.00277	0.0554	BGA3226	01/31/2023 11:05	TBB
EPA 200.8	Chromium	Α	1.29	mg/kg dry	1	0.00830	0.166	BGA3226	01/31/2023 11:05	TBB
EPA 200.8	Copper	Α	1.11V	mg/kg dry	1	0.0111	0.0554	BGA3226	01/31/2023 11:05	TBB
Calc	Chromium (III)		1.08J	mg/kg (dry wt) dry	1	0.140	5.17	[CALC]	01/31/2023 17:07	EM
SW-7196	Chromium (VI)	Α	0.209J	mg/kg dry	1	0.131	5.00	BGA3845	01/31/2023 17:07	EM
SW-7471B	Mercury	Α	0.0158	mg/kg dry	1	0.00696	0.0139	BGA3912	01/31/2023 15:57	NAZ
EPA 200.8	Lead	Α	1.42	mg/kg dry	1	0.00277	0.0277	BGA3226	01/30/2023 15:35	TBB
EPA 200.8	Nickel	Α	1.26	mg/kg dry	1	0.0554	0.0554	BGA3226	01/31/2023 16:28	TBB
EPA 200.8	Selenium	Α	0.303	mg/kg dry	1	0.0554	0.111	BGA3226	02/01/2023 10:42	TBB
EPA 200.8	Silver	Α	0.00249J	mg/kg dry	1	0.00138	0.0277	BGA3226	01/30/2023 15:35	TBB
EPA 200.8	Thallium	Α	0.0128J	mg/kg dry	1	0.00138	0.0277	BGA3226	01/31/2023 11:05	TBB
EPA 200.8	Zinc	Α	3.27	mg/kg dry	1	0.0554	0.111	BGA3226	01/30/2023 15:35	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0319U	mg/kg dry	1	0.0319	0.0639	BGA3582	01/27/2023 17:32	GJG
EPA 350.2	Ammonia as N	Α	14.1	mg/kg dry	1	6.61	13.2	BGB0685	02/07/2023 09:38	GIW
SW-9045C	рН	Α	7.88H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	75.3V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4C-S

Lab Sample ID: 23A1459-40RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/16/2023 16:37

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.53C+, U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.06U	ug/kg dry	1	3.06	6.12	BGA3094	02/25/2023 11:22	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.06U	ug/kg dry	1	3.06	6.12	BGA3094	02/25/2023 11:22	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.06U	ug/kg dry	1	3.06	6.12	BGA3094	02/25/2023 11:22	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.06U	ug/kg dry	1	3.06	6.12	BGA3094	02/25/2023 11:22	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.06U	ug/kg dry	1	3.06	6.12	BGA3094	02/25/2023 11:22	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<12.2U	ug/kg dry	1	12.2	24.5	BGA3094	02/25/2023 11:22	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.06U	ug/kg dry	1	3.06	6.12	BGA3094	02/25/2023 11:22	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.06U	ug/kg dry	1	3.06	6.12	BGA3094	02/25/2023 11:22	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Anthracene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB





Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

11555 Clay Road Houston, TX 77043

Project Manager: Gregg Pawlak

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

#### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4C-S (Continued) Sample Matrix: Sediment

Lab Sample ID:

23A1459-40RE1 Date Collected: 01/16/2023 16:37 Sample Alias: Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	le Organic Compounds by GCI	MS (Conti	inued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	2.48V, J	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Chrysene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	<1.53B, U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	6.86V	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Fluorene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Isophorone (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.06U	ug/kg dry	1	3.06	6.12	BGA3094	02/25/2023 11:22	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Phenol, Total (Rerun)	Α	4.72J	ug/kg dry	1	3.06	6.12	BGA3094	02/25/2023 11:22	KRB
SW-8270	Pyrene (Rerun)	Α	<1.53U	ug/kg dry	1	1.53	3.06	BGA3094	02/25/2023 11:22	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr	(Rerun)	54.2% S	60-140					02/25/2023 11:22	
SW-8270	Surrogate: 2-Fluorophenol-surr (F	Rerun)	80.2%	60-140					02/25/2023 11:22	
SW-8270	Surrogate: 2,4,6-Tribromophenol-	-surr (Rerur	76.2%	60-140					02/25/2023 11:22	
SW-8270	Surrogate: Nitrobenzene-d5-surr	. ,	75.2%	60-140					02/25/2023 11:22	
SW-8270	Surrogate: Phenol-d5-surr (Rerun	•	87.2%	60-140					02/25/2023 11:22	
SW-8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	<i>30.6% S</i>	60-140					02/25/2023 11:22	





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

> Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4C-S

Sample Matrix: Sediment Date Collected: 01/16/2023 16:37 23A1459-40RE2

Lab Sample ID: Sample Alias: Collected by: Michael Madonna

Analyte Result Q SDL Method Units DF LRL Batch Analyzed Analyst **Semivolatile Organic Compounds by GCMS** SW-8270 ug/kg dry 02/27/2023 21:25 Hexachlorocyclopentadiene <1.53U 1.53 3.06 BGA3094 KRB (Rerun) SW-8270 Surrogate: 2-Fluorobiphenyl-surr (Rerun) 52.6% S 60-140 02/27/2023 21:25 Surrogate: 2-Fluorophenol-surr (Rerun) 82.5% 60-140 02/27/2023 21:25 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr (Rerur. 60-140 SW-8270 74.3% 02/27/2023 21:25 SW-8270 Surrogate: Nitrobenzene-d5-surr (Rerun) 76.1% 60-140 02/27/2023 21:25 SW-8270 Surrogate: Phenol-d5-surr (Rerun) 86.7% 60-140 02/27/2023 21:25 SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 31.0% S 60-140 02/27/2023 21:25





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-7-4D-S

Lab Sample ID: 23A1459-41 Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/17/2023 9:20

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by G	CMS								
SW-8270	3,3'-Dichlorobenzidine	А	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/09/2023 07:38	KRB
SW-8270	Benzidine	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/09/2023 07:38	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	69.8%	60-140					02/09/2023 07:38	
SW-8270	Surrogate: 2-Fluorophenol-sun	r	93.1%	60-140					02/09/2023 07:38	
SW-8270	Surrogate: 2,4,6-Tribromopher	nol-surr	112%	60-140					02/09/2023 07:38	
SW-8270	Surrogate: Nitrobenzene-d5-su	ırr	90.5%	60-140					02/09/2023 07:38	
SW-8270	Surrogate: Phenol-d5-surr		107%	60-140					02/09/2023 07:38	
SW-8270	Surrogate: p-Terphenyl-d14-su	ırr	71.5%	60-140					02/09/2023 07:38	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	4,4'-DDE	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	4,4'-DDT	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Aldrin	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Chlordane (tech.)	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	delta-BHC	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Dieldrin	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Endosulfan I	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Endosulfan II	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Endosulfan sulfate	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Endrin	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Endrin aldehyde	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Endrin ketone	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	gamma-Chlordane	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Heptachlor	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Heptachlor epoxide	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Methoxychlor	Α	<0.350U	ug/kg dry	10	0.350	1.17	BGA3044	02/02/2023 05:21	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<17.5U	ug/kg dry	10	17.5	17.5	BGA3044	02/02/2023 05:21	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xylene-suri	94.1%	60-140					02/02/2023 05:21	





 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4D-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-41

Date Collected: 01/17/2023 9:20

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	109%	60-140					02/02/2023 05:21	
SW-8082	PCBs, Total	Α	<1.20C+, U	ug/kg dry	1	1.20	2.40	BGA3182	01/29/2023 00:22	CRO
SW-8082	Surrogate: 2,4,5,6 Tetraci	hloro-m-xylene-suri	202% 5	60-140					01/29/2023 00:22	
SW-8082	Surrogate: Decachlorobip	henyl-surr	113%	60-140					01/29/2023 00:22	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0241U	mg/kg dry	1	0.0241	0.0483	BGA3226	01/30/2023 15:38	TBB
EPA 200.8	Arsenic	Α	0.657	mg/kg dry	1	0.00241	0.0241	BGA3226	01/30/2023 15:38	TBB
EPA 200.8	Beryllium	Α	0.191	mg/kg dry	1	0.000483	0.00964	BGA3226	02/01/2023 10:52	TBB
EPA 200.8	Cadmium	Α	0.0104J	mg/kg dry	1	0.00241	0.0483	BGA3226	01/31/2023 11:07	TBB
EPA 200.8	Chromium	Α	1.65	mg/kg dry	1	0.00724	0.145	BGA3226	01/31/2023 11:07	TBB
EPA 200.8	Copper	Α	1.11V	mg/kg dry	1	0.00964	0.0483	BGA3226	01/31/2023 11:07	TBB
Calc	Chromium (III)		1.42J	mg/kg (dry wt) dry	1	0.124	5.14	[CALC]	01/31/2023 17:08	EM
SW-7196	Chromium (VI)	Α	0.229J	mg/kg dry	1	0.117	5.00	BGA3845	01/31/2023 17:08	EM
SW-7471B	Mercury	Α	<0.00839U	mg/kg dry	1	0.00839	0.0168	BGA3912	01/31/2023 16:01	NAZ
EPA 200.8	Lead	Α	1.82	mg/kg dry	1	0.00241	0.0241	BGA3226	01/30/2023 15:38	TBB
EPA 200.8	Nickel	Α	1.19	mg/kg dry	1	0.0483	0.0483	BGA3226	01/31/2023 16:31	TBB
EPA 200.8	Selenium	Α	0.805	mg/kg dry	1	0.0483	0.0964	BGA3226	02/01/2023 10:52	TBB
EPA 200.8	Silver	Α	0.00463J	mg/kg dry	1	0.00121	0.0241	BGA3226	01/30/2023 15:38	TBB
EPA 200.8	Thallium	Α	0.0277	mg/kg dry	1	0.00121	0.0241	BGA3226	01/31/2023 11:07	TBB
EPA 200.8	Zinc	Α	4.27	mg/kg dry	1	0.0483	0.0964	BGA3226	01/30/2023 15:38	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0289U	mg/kg dry	1	0.0289	0.0578	BGA3582	01/27/2023 17:32	GJG
EPA 350.2	Ammonia as N	Α	50.3	mg/kg dry	1	5.98	12.0	BGB0685	02/07/2023 09:38	GIW
SW-9045C	pH	Α	8.54H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	83.2V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4D-S

23A1459-41RE1

Lab Sample ID: Sample Alias: Sample Matrix: Sediment

Date Collected: 01/17/2023 9:20

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
	e Organic Compounds by GC	MS						<u> </u>	,	,
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.48C+, U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<2.96U	ug/kg dry	1	2.96	5.92	BGA3094	02/25/2023 11:57	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<2.96U	ug/kg dry	1	2.96	5.92	BGA3094	02/25/2023 11:57	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<2.96U	ug/kg dry	1	2.96	5.92	BGA3094	02/25/2023 11:57	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<2.96U	ug/kg dry	1	2.96	5.92	BGA3094	02/25/2023 11:57	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<2.96U	ug/kg dry	1	2.96	5.92	BGA3094	02/25/2023 11:57	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<11.8U	ug/kg dry	1	11.8	23.7	BGA3094	02/25/2023 11:57	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<2.96U	ug/kg dry	1	2.96	5.92	BGA3094	02/25/2023 11:57	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<2.96U	ug/kg dry	1	2.96	5.92	BGA3094	02/25/2023 11:57	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Acenaphthylene (Rerun)	Α	1.86J	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Anthracene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	2.23J	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	2.85J	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	3.44	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	2.97	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	1.60J	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4D-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-41RE1

Date Collected: 01/17/2023 9:20 Collected by: Michael Madonna

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS (Conti	inued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<1.48B, U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Chrysene (Rerun)	Α	2.52J	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	<1.48B, U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	4.65V	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Fluoranthene (Rerun)	Α	6.37	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Fluorene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	2.22J	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Isophorone (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<2.96U	ug/kg dry	1	2.96	5.92	BGA3094	02/25/2023 11:57	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Phenol, Total (Rerun)	Α	3.39J	ug/kg dry	1	2.96	5.92	BGA3094	02/25/2023 11:57	KRB
SW-8270	Pyrene (Rerun)	Α	5.39	ug/kg dry	1	1.48	2.96	BGA3094	02/25/2023 11:57	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr	(Rerun)	46.0% S	60-140					02/25/2023 11:57	
SW-8270	Surrogate: 2-Fluorophenol-surr (	,	63.2%	60-140					02/25/2023 11:57	
SW-8270	Surrogate: 2,4,6-Tribromopheno	•	59.5% S	60-140					02/25/2023 11:57	
SW-8270	Surrogate: Nitrobenzene-d5-surr	. ,	54.6% S	60-140					02/25/2023 11:57	
SW-8270	Surrogate: Phenol-d5-surr (Rerui	•	66.9%	60-140					02/25/2023 11:57	
SW-8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	51.3% S	60-140					02/25/2023 11:57	



Sediment



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results (Continued)

Client Sample ID: HI-DMMU-7-4D-S Sample Matrix:

Lab Sample ID: 23A1459-41RE2 Date Collected: 01/17/2023 9:20

Sample Alias: Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	Hexachlorocyclopentadiene (Rerun)	А	<1.48U	ug/kg dry	1	1.48	2.96	BGA3094	02/27/2023 22:00	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr	(Rerun)	40.2% 5	60-140					02/27/2023 22:00	
SW-8270	Surrogate: 2-Fluorophenol-surr (	Rerun)	62.1%	60-140					02/27/2023 22:00	
SW-8270	Surrogate: 2,4,6-Tribromophenol	l-surr (Rerur	58.7% S	60-140					02/27/2023 22:00	
SW-8270	Surrogate: Nitrobenzene-d5-surr	(Rerun)	54.5% S	60-140					02/27/2023 22:00	
SW-8270	Surrogate: Phenol-d5-surr (Rerui	7)	68.6%	60-140					02/27/2023 22:00	
SW-8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	52.2% S	60-140					02/27/2023 22:00	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5A-S

Lab Sample ID: 23A1459-43

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/18/2023 14:10

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by G	CMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/09/2023 08:13	KRB
SW-8270	Benzidine	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/09/2023 08:13	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	85.4%	60-140					02/09/2023 08:13	
SW-8270	Surrogate: 2-Fluorophenol-surr		106%	60-140					02/09/2023 08:13	
SW-8270	Surrogate: 2,4,6-Tribromopher	nol-surr	133%	60-140					02/09/2023 08:13	
SW-8270	Surrogate: Nitrobenzene-d5-su	rr	108%	60-140					02/09/2023 08:13	
SW-8270	Surrogate: Phenol-d5-surr		117%	60-140					02/09/2023 08:13	
SW-8270	Surrogate: p-Terphenyl-d14-su	vrr	77.1%	60-140					02/09/2023 08:13	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	4,4'-DDE	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	4,4'-DDT	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Aldrin	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Chlordane (tech.)	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	delta-BHC	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Dieldrin	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Endosulfan I	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Endosulfan II	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Endosulfan sulfate	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Endrin	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Endrin aldehyde	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Endrin ketone	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	gamma-Chlordane	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Heptachlor	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Heptachlor epoxide	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Methoxychlor	Α	<0.345U	ug/kg dry	10	0.345	1.15	BGA3044	02/02/2023 05:47	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<17.3U	ug/kg dry	10	17.3	17.3	BGA3044	02/02/2023 05:47	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-	-m-xylene-suri	95.5%	60-140					02/02/2023 05:47	





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-8-5A-S (Continued) Sample Matrix: Sediment

Lab Sample ID: 23A1459-43 01/18/2023 14:10

Date Collected: Sample Alias: Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	112%	60-140					02/02/2023 05:47	
SW-8082	PCBs, Total	Α	<1.17U	ug/kg dry	1	1.17	2.34	BGA3182	01/29/2023 00:49	CRO
SW-8082	Surrogate: 2,4,5,6 Tetraca	hloro-m-xylene-suri	219% S	60-140					01/29/2023 00:49	
SW-8082	Surrogate: Decachlorobip	henyl-surr	107%	60-140					01/29/2023 00:49	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0242U	mg/kg dry	1	0.0242	0.0485	BGA3233	01/31/2023 16:48	TBB
EPA 200.8	Arsenic	Α	0.295	mg/kg dry	1	0.00242	0.0242	BGA3233	01/31/2023 16:48	TBB
EPA 200.8	Beryllium	Α	0.217	mg/kg dry	1	0.000485	0.00967	BGA3233	02/01/2023 11:04	TBB
EPA 200.8	Cadmium	Α	0.00315J	mg/kg dry	1	0.00242	0.0485	BGA3233	01/31/2023 16:48	TBB
EPA 200.8	Chromium	Α	2.32V	mg/kg dry	1	0.00726	0.145	BGA3233	01/31/2023 16:48	TBB
EPA 200.8	Copper	Α	0.962V	mg/kg dry	1	0.00967	0.0485	BGA3233	02/01/2023 13:42	TBB
Calc	Chromium (III)		2.13J	mg/kg (dry wt) dry	1	0.121	5.15	[CALC]	01/31/2023 17:08	EM
SW-7196	Chromium (VI)	Α	0.187J	mg/kg dry	1	0.114	5.00	BGA3845	01/31/2023 17:08	EM
SW-7471B	Mercury	Α	0.0141J	mg/kg dry	1	0.00994	0.0199	BGB0014	02/01/2023 15:40	AKR
EPA 200.8	Lead	Α	2.27	mg/kg dry	1	0.00242	0.0242	BGA3233	01/31/2023 16:48	TBB
EPA 200.8	Nickel	Α	1.64	mg/kg dry	1	0.0485	0.0485	BGA3233	01/31/2023 16:48	TBB
EPA 200.8	Selenium	Α	0.377	mg/kg dry	1	0.0485	0.0967	BGA3233	02/01/2023 11:04	TBB
EPA 200.8	Silver	Α	<0.00121U	mg/kg dry	1	0.00121	0.0242	BGA3233	01/31/2023 16:48	TBB
EPA 200.8	Thallium	Α	0.0223J	mg/kg dry	1	0.00121	0.0242	BGA3233	01/31/2023 16:48	TBB
EPA 200.8	Zinc	Α	3.41	mg/kg dry	1	0.0485	0.0967	BGA3233	02/01/2023 11:04	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0290U	mg/kg dry	1	0.0290	0.0579	BGA3582	01/27/2023 17:33	GJG
EPA 350.2	Ammonia as N	Α	6.531	mg/kg dry	1	5.83	11.7	BGB0685	02/07/2023 09:38	GIW
SW-9045C	рН	Α	8.19H	pH Units @ 25 °C	1		0.100	BGA2930	01/23/2023 14:09	AKA
SM 2540 G	% Solids	Α	85.5V	%	1	0.100	0.100	BGA2916	01/24/2023 10:55	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5A-S

Lab Sample ID: 23A1459-43RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/18/2023 14:10

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.46C+, U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<2.92U	ug/kg dry	1	2.92	5.84	BGA3094	02/25/2023 12:32	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<2.92U	ug/kg dry	1	2.92	5.84	BGA3094	02/25/2023 12:32	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<2.92U	ug/kg dry	1	2.92	5.84	BGA3094	02/25/2023 12:32	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<2.92U	ug/kg dry	1	2.92	5.84	BGA3094	02/25/2023 12:32	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<2.92U	ug/kg dry	1	2.92	5.84	BGA3094	02/25/2023 12:32	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<11.7U	ug/kg dry	1	11.7	23.4	BGA3094	02/25/2023 12:32	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<2.92U	ug/kg dry	1	2.92	5.84	BGA3094	02/25/2023 12:32	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<2.92U	ug/kg dry	1	2.92	5.84	BGA3094	02/25/2023 12:32	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Anthracene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5A-S (Continued)

Sample Matrix: Sediment

Collected by:

Lab Sample ID: 23A1459-43RE1

Date Collected: 01/18/2023 14:10

Michael Madonna

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by G	CMS (Conti	nued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	2.02V, J	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Chrysene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	<1.46B, U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	2.18V, J	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Fluorene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Isophorone (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<2.92U	ug/kg dry	1	2.92	5.84	BGA3094	02/25/2023 12:32	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Phenol, Total (Rerun)	Α	3.84J	ug/kg dry	1	2.92	5.84	BGA3094	02/25/2023 12:32	KRB
SW-8270	Pyrene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/25/2023 12:32	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sui	rr (Rerun)	53.6% S	60-140					02/25/2023 12:32	
SW-8270	Surrogate: 2-Fluorophenol-surr	(Rerun)	72.2%	60-140					02/25/2023 12:32	
SW-8270	Surrogate: 2,4,6-Tribromophene	ol-surr (Rerur	73.7%	60-140					02/25/2023 12:32	
SW-8270	Surrogate: Nitrobenzene-d5-sur	r (Rerun)	64.6%	60-140					02/25/2023 12:32	
SW-8270	Surrogate: Phenol-d5-surr (Reru	un)	76.5%	60-140					02/25/2023 12:32	
SW-8270	Surrogate: p-Terphenyl-d14-sur	rr (Rerun)	53.8% S	60-140					02/25/2023 12:32	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5A-S

23A1459-43RE2

Lab Sample ID: Sample Alias: 1MU-8-5A-S

Sample Matrix: Sediment

Date Collected: 01/18/2023 14:10

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	e Organic Compounds by GO	CMS								
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.46U	ug/kg dry	1	1.46	2.92	BGA3094	02/27/2023 22:35	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	r (Rerun)	48.6% S	60-140					02/27/2023 22:35	
SW-8270	Surrogate: 2-Fluorophenol-surr	(Rerun)	71.3%	60-140					02/27/2023 22:35	
SW-8270	Surrogate: 2,4,6-Tribromopheno	ol-surr (Rerur	74.4%	60-140					02/27/2023 22:35	
SW-8270	Surrogate: Nitrobenzene-d5-sur	r (Rerun)	64.6%	60-140					02/27/2023 22:35	
SW-8270	Surrogate: Phenol-d5-surr (Reru	ın)	73.7%	60-140					02/27/2023 22:35	
SW-8270	Surrogate: p-Terphenyl-d14-sur	r (Rerun)	55.8% S	60-140					02/27/2023 22:35	





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-8-5B-S

Sample Alias:

Lab Sample ID:

23A1459-44

Sample Matrix: Sediment

Date Collected: 01/19/2023 8:15

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by GC	MS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/14/2023 01:31	KRB
SW-8270	Benzidine	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/14/2023 01:31	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr		88.3%	60-140					02/14/2023 01:31	
SW-8270	Surrogate: 2-Fluorophenol-surr		125%	<i>60-140</i>					02/14/2023 01:31	
SW-8270	Surrogate: 2,4,6-Tribromopheno	l-surr	163% S	<i>60-140</i>					02/14/2023 01:31	
SW-8270	Surrogate: Nitrobenzene-d5-surr	-	133%	60-140					02/14/2023 01:31	
SW-8270	Surrogate: Phenol-d5-surr		162% S	60-140					02/14/2023 01:31	
SW-8270	Surrogate: p-Terphenyl-d14-surr	-	69.6%	60-140					02/14/2023 01:31	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	4,4'-DDE	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	4,4'-DDT	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Aldrin	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.348C+, U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Chlordane (tech.)	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	delta-BHC	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Dieldrin	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Endosulfan I	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Endosulfan II	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Endosulfan sulfate	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Endrin	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Endrin aldehyde	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Endrin ketone	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	gamma-Chlordane	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Heptachlor	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Heptachlor epoxide	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Methoxychlor	Α	<0.348U	ug/kg dry	10	0.348	1.16	BGA3603	02/04/2023 00:19	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<17.4C+, U	ug/kg dry	10	17.4	17.4	BGA3603	02/04/2023 00:19	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-n	n-xylene-suri	102%	60-140					02/04/2023 00:19	





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

> **Sample Results** (Continued)

Client Sample ID: HI-DMMU-8-5B-S (Continued) 23A1459-44

Lab Sample ID: Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/19/2023 8:15

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	108%	60-140					02/04/2023 00:19	
SW-8082	PCBs, Total	Α	<1.15U	ug/kg dry	1	1.15	2.30	BGA3651	02/11/2023 19:14	cdg
SW-8082	Surrogate: 2,4,5,6 Tetraci	hloro-m-xylene-suri	134%	60-140					02/11/2023 19:14	
SW-8082	Surrogate: Decachlorobipa	henyl-surr	95.5%	60-140					02/11/2023 19:14	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0246U	mg/kg dry	1	0.0246	0.0493	BGA3233	01/31/2023 16:55	TBB
EPA 200.8	Arsenic	Α	1.23	mg/kg dry	1	0.00246	0.0246	BGA3233	01/31/2023 16:55	TBB
EPA 200.8	Beryllium	Α	0.145	mg/kg dry	1	0.000493	0.00982	BGA3233	02/01/2023 11:11	TBB
EPA 200.8	Cadmium	Α	0.0214J	mg/kg dry	1	0.00246	0.0493	BGA3233	01/31/2023 16:55	TBB
EPA 200.8	Chromium	Α	2.24V	mg/kg dry	1	0.00738	0.148	BGA3233	01/31/2023 16:55	TBB
EPA 200.8	Copper	Α	1.28V	mg/kg dry	1	0.00982	0.0493	BGA3233	02/01/2023 13:50	TBB
Calc	Chromium (III)		1.86J	mg/kg (dry wt) dry	1	0.122	5.15	[CALC]	01/31/2023 17:09	EM
SW-7196	Chromium (VI)	Α	0.379J	mg/kg dry	1	0.115	5.00	BGA3845	01/31/2023 17:09	EM
SW-7471B	Mercury	Α	0.0139J	mg/kg dry	1	0.0100	0.0200	BGB0014	02/01/2023 15:50	AKR
EPA 200.8	Lead	Α	2.62	mg/kg dry	1	0.00246	0.0246	BGA3233	01/31/2023 16:55	TBB
EPA 200.8	Nickel	Α	2.22	mg/kg dry	1	0.0493	0.0493	BGA3233	01/31/2023 16:55	TBB
EPA 200.8	Selenium	Α	0.699	mg/kg dry	1	0.0493	0.0982	BGA3233	02/01/2023 11:11	TBB
EPA 200.8	Silver	Α	0.00403J	mg/kg dry	1	0.00123	0.0246	BGA3233	01/31/2023 16:55	TBB
EPA 200.8	Thallium	Α	0.0212J	mg/kg dry	1	0.00123	0.0246	BGA3233	01/31/2023 16:55	TBB
EPA 200.8	Zinc	Α	4.49	mg/kg dry	1	0.0493	0.0982	BGA3233	02/01/2023 11:11	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0294U	mg/kg dry	1	0.0294	0.0588	BGA3582	01/27/2023 17:34	GJG
EPA 350.2	Ammonia as N	Α	6.65J	mg/kg dry	1	5.93	11.9	BGB0953	02/08/2023 09:15	GIW
SW-9045C	рН	А	8.05H	pH Units @ 25 °C	1		0.100	BGA3071	01/24/2023 13:11	AKA
SM 2540 G	% Solids	Α	84.2V	%	1	0.100	0.100	BGA3093	01/25/2023 11:53	JRU





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5B-S

Lab Sample ID: 23A1459-44RE1

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/19/2023 8:15

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<2.78U	ug/kg dry	1	2.78	5.57	BGA3368	02/28/2023 02:35	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<2.78U	ug/kg dry	1	2.78	5.57	BGA3368	02/28/2023 02:35	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<2.78U	ug/kg dry	1	2.78	5.57	BGA3368	02/28/2023 02:35	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<2.78C+, U	ug/kg dry	1	2.78	5.57	BGA3368	02/28/2023 02:35	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.39C+, U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<2.78U	ug/kg dry	1	2.78	5.57	BGA3368	02/28/2023 02:35	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<11.1U	ug/kg dry	1	11.1	22.3	BGA3368	02/28/2023 02:35	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<2.78U	ug/kg dry	1	2.78	5.57	BGA3368	02/28/2023 02:35	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<2.78U	ug/kg dry	1	2.78	5.57	BGA3368	02/28/2023 02:35	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Anthracene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-8-5B-S (Continued) Sample Matrix: Sediment

Lab Sample ID: 23A1459-44RE1 01/19/2023 8:15

Sample Alias:

Date Collected: Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS (Conti	nued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	2.12V, J	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Chrysene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	1.95V, J	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	11.0V	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Fluorene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Isophorone (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<2.78U	ug/kg dry	1	2.78	5.57	BGA3368	02/28/2023 02:35	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Phenol, Total (Rerun)	Α	3.68J	ug/kg dry	1	2.78	5.57	BGA3368	02/28/2023 02:35	KRB
SW-8270	Pyrene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	02/28/2023 02:35	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr	(Rerun)	45.7% S	60-140					02/28/2023 02:35	
SW-8270	Surrogate: 2-Fluorophenol-surr (	(Rerun)	71.0%	60-140					02/28/2023 02:35	
SW-8270	Surrogate: 2,4,6-Tribromopheno	•	74.4%	60-140					02/28/2023 02:35	
SW-8270	Surrogate: Nitrobenzene-d5-surr	. ,	80.7%	60-140					02/28/2023 02:35	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr (Reru	-	61.3%	60-140					02/28/2023 02:35	
SW-8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	44.1% S	60-140					02/28/2023 02:35	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5B-S Sample Matrix: Sediment

Lab Sample ID: 23A1459-44RE2 Date Collected: 01/19/2023 8:15

Sample Alias: Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by G	CMS								
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.39U	ug/kg dry	1	1.39	2.78	BGA3368	03/07/2023 03:23	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sui	rr (Rerun)	54.6% S	60-140					03/07/2023 03:23	
SW-8270	Surrogate: 2-Fluorophenol-surr	(Rerun)	77.7%	60-140					03/07/2023 03:23	
SW-8270	Surrogate: 2,4,6-Tribromophene	ol-surr (Rerur	76.8%	60-140					03/07/2023 03:23	
SW-8270	Surrogate: Nitrobenzene-d5-sur	r (Rerun)	76.7%	60-140					03/07/2023 03:23	
SW-8270	Surrogate: Phenol-d5-surr (Reru	un)	71.0%	60-140					03/07/2023 03:23	
SW-8270	Surrogate: p-Terphenyl-d14-sur	r (Rerun)	52.5% S	60-140					03/07/2023 03:23	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5C-S

Lab Sample ID: 23A1459-45

Sample Alias: 23A1459-45

Sample Matrix: Sediment

Date Collected:

Collected by: Michael Madonna

01/20/2023 9:15

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by G	CMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/14/2023 02:06	KRB
SW-8270	Benzidine	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/14/2023 02:06	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	100%	60-140					02/14/2023 02:06	
<i>SW-8270</i>	Surrogate: 2-Fluorophenol-sur	r	126%	<i>60-140</i>					02/14/2023 02:06	
<i>SW-8270</i>	Surrogate: 2,4,6-Tribromopher	nol-surr	166% S	60-140					02/14/2023 02:06	
<i>SW-8270</i>	Surrogate: Nitrobenzene-d5-su	ırr	140%	60-140					02/14/2023 02:06	
<i>SW-8270</i>	Surrogate: Phenol-d5-surr		149% S	<i>60-140</i>					02/14/2023 02:06	
SW-8270	Surrogate: p-Terphenyl-d14-su	ırr	71.3%	60-140					02/14/2023 02:06	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	4,4'-DDE	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	4,4'-DDT	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Aldrin	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.377C+, U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	А	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Chlordane (tech.)	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	delta-BHC	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Dieldrin	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Endosulfan I	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Endosulfan II	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Endosulfan sulfate	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Endrin	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Endrin aldehyde	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Endrin ketone	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	А	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	gamma-Chlordane	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Heptachlor	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Heptachlor epoxide	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Methoxychlor	Α	<0.377U	ug/kg dry	10	0.377	1.26	BGA3603	02/04/2023 00:46	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	А	<18.9C+, U	ug/kg dry	10	18.9	18.9	BGA3603	02/04/2023 00:46	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xylene-suri	117%	60-140					02/04/2023 00:46	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5C-S (Continued)

Sample Matrix:

Lab Sample ID: 23A1459-45

Sample Matrix: Sediment

Date Collected: 01/20/2023 9:15

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	111%	60-140					02/04/2023 00:46	
SW-8082	PCBs, Total	Α	<1.26U	ug/kg dry	1	1.26	2.52	BGA3651	02/11/2023 19:41	cdg
SW-8082	Surrogate: 2,4,5,6 Tetraci	hloro-m-xylene-suri	129%	60-140					02/11/2023 19:41	
SW-8082	Surrogate: Decachlorobip	henyl-surr	103%	60-140					02/11/2023 19:41	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0279U	mg/kg dry	1	0.0279	0.0559	BGA3233	01/31/2023 16:57	TBB
EPA 200.8	Arsenic	Α	6.20	mg/kg dry	5	0.0139	0.139	BGA3233	02/01/2023 11:23	TBB
EPA 200.8	Beryllium	Α	0.130	mg/kg dry	1	0.000559	0.0111	BGA3233	02/01/2023 11:13	TBB
EPA 200.8	Cadmium	Α	0.0353J	mg/kg dry	1	0.00279	0.0559	BGA3233	01/31/2023 16:57	TBB
EPA 200.8	Chromium	Α	1.52V	mg/kg dry	1	0.00837	0.167	BGA3233	01/31/2023 16:57	TBB
EPA 200.8	Copper	Α	1.45V	mg/kg dry	1	0.0111	0.0559	BGA3233	02/01/2023 13:52	TBB
Calc	Chromium (III)		1.19J	mg/kg (dry wt) dry	1	0.138	5.17	[CALC]	01/31/2023 17:11	EM
SW-7196	Chromium (VI)	Α	0.326J	mg/kg dry	1	0.130	5.00	BGA3845	01/31/2023 17:11	EM
SW-7471B	Mercury	Α	<0.00995U	mg/kg dry	1	0.00995	0.0199	BGB0014	02/01/2023 15:54	AKR
EPA 200.8	Lead	Α	2.33	mg/kg dry	1	0.00279	0.0279	BGA3233	01/31/2023 16:57	TBB
EPA 200.8	Nickel	Α	1.74	mg/kg dry	1	0.0559	0.0559	BGA3233	01/31/2023 16:57	TBB
EPA 200.8	Selenium	Α	0.449	mg/kg dry	1	0.0559	0.111	BGA3233	02/01/2023 11:13	TBB
EPA 200.8	Silver	Α	<0.00140U	mg/kg dry	1	0.00140	0.0279	BGA3233	01/31/2023 16:57	TBB
EPA 200.8	Thallium	Α	0.0240J	mg/kg dry	1	0.00140	0.0279	BGA3233	01/31/2023 16:57	TBB
EPA 200.8	Zinc	Α	4.83	mg/kg dry	1	0.0559	0.111	BGA3233	02/01/2023 11:13	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0331U	mg/kg dry	1	0.0331	0.0661	BGA3582	01/27/2023 17:36	GJG
EPA 350.2	Ammonia as N	Α	<6.71U	mg/kg dry	1	6.71	13.4	BGB0953	02/08/2023 09:15	GIW
SW-9045C	рН	Α	8.91H	pH Units @ 25 °C	1		0.100	BGA3071	01/24/2023 13:11	AKA
SM 2540 G	% Solids	Α	74.1V	%	1	0.100	0.100	BGA3093	01/25/2023 11:53	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

HI-DMMU-8-5C-S Client Sample ID:

Lab Sample ID: Sample Alias:

23A1459-45RE1

Sediment Sample Matrix:

Collected by:

Date Collected: 01/20/2023 9:15

Michael Madonna

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS SW-8270 1,2,4-Trichlorobenzene 3.25 BGA3368 02/28/2023 03:10 KRB Α <1.62U 1 1.62 ug/kg dry (Rerun) SW-8270 <1.62U 3.25 BGA3368 02/28/2023 03:10 KRB 1,2-Dichlorobenzene Α ua/ka drv 1 1.62 (o-Dichlorobenzene) (Rerun) SW-8270 1,2-Diphenylhydrazine Α <1.62U ua/ka drv 1 1.62 3.25 BGA3368 02/28/2023 03:10 KRB (Rerun) SW-8270 1,3-Dichlorobenzene Α <1.62U ug/kg dry 1 1.62 3.25 BGA3368 02/28/2023 03:10 KRB (m-Dichlorobenzene) (Rerun) 02/28/2023 03:10 SW-8270 1,4-Dichlorobenzene Α <1.62U ug/kg dry 1 1.62 3.25 BGA3368 KRB (p-Dichlorobenzene) (Rerun) SW-8270 BGA3368 02/28/2023 03:10 2,2'-Oxybis(1-chloropropane), Α <1.62U ug/kg dry 1 1.62 3.25 KRB bis(2-Chloro-1-methy (Rerun) SW-8270 <3.25U BGA3368 02/28/2023 03:10 KRB 2,4,6-Trichlorophenol (Rerun) Α ug/kg dry 1 3.25 6.49 02/28/2023 03:10 SW-8270 2,4-Dichlorophenol (Rerun) <3.25U 3.25 6.49 BGA3368 KRB Α ug/kg dry 1 SW-8270 2,4-Dimethylphenol (Rerun) 02/28/2023 03:10 Α <3.25U ug/kg dry 3.25 6.49 BGA3368 **KRB** SW-8270 2,4-Dinitrophenol (Rerun) Α <3.25C+, U ug/kg dry 1 3.25 6.49 BGA3368 02/28/2023 03:10 KRB SW-8270 2,4-Dinitrotoluene (2,4-DNT) Α <1.62C+, U ug/kg dry 1 1.62 3.25 BGA3368 02/28/2023 03:10 KRB (Rerun) SW-8270 02/28/2023 03:10 2,6-Dinitrotoluene (2,6-DNT) Α 1.66J ug/kg dry 1 1.62 3.25 BGA3368 **KRB** (Rerun) SW-8270 <1.62U 3.25 BGA3368 02/28/2023 03:10 KRB 2-Chloronaphthalene (Rerun) Α ug/kg dry 1 1.62 SW-8270 <3.25U BGA3368 02/28/2023 03:10 2-Chlorophenol (Rerun) 3.25 6.49 KRB Α ug/kg dry 1 SW-8270 2-Methyl-4,6-dinitrophenol <13.0U 13.0 26.0 BGA3368 02/28/2023 03:10 KRB Α ug/kg dry 1 (4,6-Dinitro-2-methylph (Rerun) SW-8270 <3.25U 3.25 6.49 BGA3368 02/28/2023 03:10 KRB 2-Nitrophenol (Rerun) Α ug/kg dry 1 SW-8270 BGA3368 02/28/2023 03:10 4-Bromophenyl phenyl ether <1.62U ug/kg dry 1.62 3.25 **KRB** (BDE-3) (Rerun) SW-8270 <3.25U 3.25 BGA3368 02/28/2023 03:10 KRB 4-Chloro-3-methylphenol ug/kg dry 1 6.49 (Rerun) SW-8270 4-Chlorophenyl phenylether Α <1.62U ug/kg dry 1 1.62 3.25 BGA3368 02/28/2023 03:10 KRB (Rerun) SW-8270 4-Nitrophenol (Rerun) Α <1.62U ug/kg dry 1 1.62 3.25 BGA3368 02/28/2023 03:10 KRB Acenaphthene (Rerun) SW-8270 2.24] 3.25 BGA3368 02/28/2023 03:10 KRB Α ug/kg dry 1 1.62 SW-8270 Acenaphthylene (Rerun) Α <1.62U ug/kg dry 1 1.62 3.25 BGA3368 02/28/2023 03:10 KRB SW-8270 Anthracene (Rerun) Α <1.62U 1 3.25 BGA3368 02/28/2023 03:10 KRB ug/kg dry 1.62 SW-8270 Benzo(a)anthracene (Rerun) Α <1.62U ug/kg dry 1.62 3.25 BGA3368 02/28/2023 03:10 KRB 1 Benzo(a)pyrene (Rerun) SW-8270 <1.62U 3.25 02/28/2023 03:10 Α ug/kg dry 1.62 BGA3368 **KRB** 1 SW-8270 benzo(b&k)fluoranthene <1.62U 3.25 BGA3368 02/28/2023 03:10 KRB Α ug/kg dry 1 1.62 (Rerun) SW-8270 Benzo(g,h,i)perylene (Rerun) Α <1.62U ug/kg dry 1 1.62 3.25 BGA3368 02/28/2023 03:10 **KRB** bis(2-Chloroethoxy)methane SW-8270 Α <1.62U 1 1.62 3.25 BGA3368 02/28/2023 03:10 KRB ug/kg dry (Rerun)





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5C-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-45RE1

Date Collected: 01/20/2023 9:15 Collected by: Michael Madonna

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS (Conti	nued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	3.37V	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	A	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Chrysene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	A	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	2.43V, J	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	13.1V	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Fluorene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Isophorone (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Naphthalene (Rerun)	Α	5.83	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.25U	ug/kg dry	1	3.25	6.49	BGA3368	02/28/2023 03:10	KRB
SW-8270	Phenanthrene (Rerun)	Α	3.79	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Phenol, Total (Rerun)	Α	<3.25U	ug/kg dry	1	3.25	6.49	BGA3368	02/28/2023 03:10	KRB
SW-8270	Pyrene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	02/28/2023 03:10	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	r (Rerun)	55.6% S	60-140					02/28/2023 03:10	
SW-8270	Surrogate: 2-Fluorophenol-surr		79.8%	60-140					02/28/2023 03:10	
SW-8270	Surrogate: 2,4,6-Tribromopheno	ol-surr (Rerur	77.9%	60-140					02/28/2023 03:10	
SW-8270	Surrogate: Nitrobenzene-d5-sur	r (Rerun)	76.4%	60-140					02/28/2023 03:10	
SW-8270	Surrogate: Phenol-d5-surr (Reru	n)	63.6%	60-140					02/28/2023 03:10	
SW-8270	Surrogate: p-Terphenyl-d14-sur	r (Rerun)	45.0% S	60-140					02/28/2023 03:10	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5C-S Sample Matrix: Sediment

Lab Sample ID: 23A1459-45RE2 Date Collected: 01/20/2023 9:15

Sample Alias: Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by G	CMS								
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.62U	ug/kg dry	1	1.62	3.25	BGA3368	03/07/2023 03:58	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sui	rr (Rerun)	65.9%	60-140					03/07/2023 03:58	
SW-8270	Surrogate: 2-Fluorophenol-surr	(Rerun)	86.4%	60-140					03/07/2023 03:58	
SW-8270	Surrogate: 2,4,6-Tribromophen	ol-surr (Rerur	87.2%	60-140					03/07/2023 03:58	
SW-8270	Surrogate: Nitrobenzene-d5-sur	rr (Rerun)	84.1%	60-140					03/07/2023 03:58	
SW-8270	Surrogate: Phenol-d5-surr (Ren	un)	89.6%	60-140					03/07/2023 03:58	
SW-8270	Surrogate: p-Terphenyl-d14-sur	rr (Rerun)	51.8% S	60-140					03/07/2023 03:58	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5D-S

221110055

23A1459-46

Lab Sample ID: Sample Alias: Sample Matrix: Sediment

Date Collected: 01/27/2023 14:05

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by GC	CMS								
SW-8270	3,3'-Dichlorobenzidine	А	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/09/2023 21:13	KRB
SW-8270	Benzidine	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/09/2023 21:13	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sun	r	46.4% S	60-140					02/09/2023 21:13	
SW-8270	Surrogate: 2-Fluorophenol-surr		63.5%	60-140					02/09/2023 21:13	
SW-8270	Surrogate: 2,4,6-Tribromopheno	ol-surr	74.3%	<i>60-140</i>					02/09/2023 21:13	
SW-8270	Surrogate: Nitrobenzene-d5-surr	r	62.8%	60-140					02/09/2023 21:13	
SW-8270	Surrogate: Phenol-d5-surr		67.9%	60-140					02/09/2023 21:13	
SW-8270	Surrogate: p-Terphenyl-d14-sur	r	40.6% 5	60-140					02/09/2023 21:13	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	4,4'-DDE	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	4,4'-DDT	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Aldrin	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Chlordane (tech.)	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	delta-BHC	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Dieldrin	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Endosulfan I	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Endosulfan II	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Endosulfan sulfate	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Endrin	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Endrin aldehyde	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Endrin ketone	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	gamma-Chlordane	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Heptachlor	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Heptachlor epoxide	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Methoxychlor	Α	<0.418U	ug/kg dry	10	0.418	1.39	BGB0044	02/08/2023 02:09	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<20.9C+, U	ug/kg dry	10	20.9	20.9	BGB0044	02/08/2023 02:09	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-r	m-xylene-suri	85.1%	60-140					02/08/2023 02:09	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5D-S (Continued)

Sample Matrix: Sediment

Lab Sample ID: 23A1459-46

Date Collected: 01/27/2023 14:05

Sample Alias: Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	104%	60-140					02/08/2023 02:09	
SW-8082	PCBs, Total	Α	<1.39C+, U	ug/kg dry	1	1.39	2.79	BGB1177	02/25/2023 03:29	KRB
SW-8082	Surrogate: 2,4,5,6 Tetraci	hloro-m-xylene-suri	114%	60-140					02/25/2023 03:29	
SW-8082	Surrogate: Decachlorobip	henyl-surr	143% S	60-140					02/25/2023 03:29	
Metals, Tota	l									
EPA 200.8	Antimony	Α	<0.0286U	mg/kg dry	1	0.0286	0.0572	BGB0820	02/07/2023 13:50	JLK
EPA 200.8	Arsenic	Α	1.71	mg/kg dry	1	0.00286	0.0286	BGB0820	02/27/2023 10:23	TBB
EPA 200.8	Beryllium	Α	0.224	mg/kg dry	5	0.00286	0.0571	BGB0820	02/27/2023 15:45	TBB
EPA 200.8	Cadmium	Α	0.0336J	mg/kg dry	1	0.00286	0.0572	BGB0820	02/07/2023 13:50	JLK
EPA 200.8	Chromium	Α	4.16	mg/kg dry	1	0.00857	0.171	BGB0820	02/07/2023 13:50	JLK
EPA 200.8	Copper	Α	4.44V	mg/kg dry	1	0.0114	0.0572	BGB0820	02/08/2023 10:49	TBB
Calc	Chromium (III)		4.16J	mg/kg (dry wt) dry	1	0.147	5.17	[CALC]	02/24/2023 14:38	GJG
SW-7196	Chromium (VI)	Α	<0.138U	mg/kg dry	1	0.138	5.00	BGB3245	02/24/2023 14:38	GJG
SW-7471B	Mercury	Α	<0.00987U	mg/kg dry	1	0.00987	0.0197	BGB1025	02/08/2023 16:24	AKR
EPA 200.8	Lead	Α	2.94	mg/kg dry	1	0.00286	0.0286	BGB0820	02/07/2023 13:50	JLK
EPA 200.8	Nickel	Α	5.00	mg/kg dry	1	0.0572	0.0572	BGB0820	02/07/2023 13:50	JLK
EPA 200.8	Selenium	Α	0.626	mg/kg dry	1	0.0572	0.114	BGB0820	02/08/2023 10:49	TBB
EPA 200.8	Silver	Α	0.00800J	mg/kg dry	1	0.00143	0.0286	BGB0820	02/07/2023 13:50	JLK
EPA 200.8	Thallium	Α	0.0397	mg/kg dry	1	0.00143	0.0286	BGB0820	02/07/2023 13:50	JLK
EPA 200.8	Zinc	Α	10.2	mg/kg dry	1	0.0572	0.114	BGB0820	02/07/2023 13:50	JLK
<b>General Che</b>	mistry									
SW-9014	Total Cyanide	Α	<0.0349U	mg/kg dry	1	0.0349	0.0697	BGB0157	02/02/2023 17:53	GJG
EPA 350.2	Ammonia as N	Α	15.9	mg/kg dry	1	6.93	13.9	BGB0953	02/08/2023 09:15	GIW
SW-9045C	рН	Α	8.75H	pH Units @ 25 °C	1		0.100	BGA3958	01/31/2023 12:52	AKA
SM 2540 G	% Solids	Α	71.7H, V	%	1	0.100	0.100	BGA3978	02/01/2023 12:06	JRU





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: HI-DMMU-8-5D-S

23A1459-46RE1

Lab Sample ID: Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/27/2023 14:05

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.49U	ug/kg dry	1	3.49	6.97	BGB0288	02/27/2023 19:05	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.49U	ug/kg dry	1	3.49	6.97	BGB0288	02/27/2023 19:05	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.49U	ug/kg dry	1	3.49	6.97	BGB0288	02/27/2023 19:05	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.49U	ug/kg dry	1	3.49	6.97	BGB0288	02/27/2023 19:05	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.49U	ug/kg dry	1	3.49	6.97	BGB0288	02/27/2023 19:05	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<13.9U	ug/kg dry	1	13.9	27.9	BGB0288	02/27/2023 19:05	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.49U	ug/kg dry	1	3.49	6.97	BGB0288	02/27/2023 19:05	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.49U	ug/kg dry	1	3.49	6.97	BGB0288	02/27/2023 19:05	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Anthracene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DMMU-8-5D-S (Continued)

Sample Matrix: Sediment

Collected by:

Lab Sample ID: 23A1459-46RE1

Date Collected: 01/27/2023 14:05

Michael Madonna

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS (Conti	inued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Chrysene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	<1.74B, U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Fluoranthene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Fluorene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Isophorone (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.74C+, U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.49U	ug/kg dry	1	3.49	6.97	BGB0288	02/27/2023 19:05	KRB
SW-8270	Phenanthrene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Phenol, Total (Rerun)	Α	<3.49U	ug/kg dry	1	3.49	6.97	BGB0288	02/27/2023 19:05	KRB
SW-8270	Pyrene (Rerun)	Α	<1.74U	ug/kg dry	1	1.74	3.49	BGB0288	02/27/2023 19:05	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr	(Rerun)	30.0% S	60-140					02/27/2023 19:05	
SW-8270	Surrogate: 2-Fluorophenol-surr (	(Rerun)	43.3% S	60-140					02/27/2023 19:05	
SW-8270	Surrogate: 2,4,6-Tribromopheno	l-surr (Rerur	36.5% S	60-140					02/27/2023 19:05	
SW-8270	Surrogate: Nitrobenzene-d5-surr	(Rerun)	<i>39.6% S</i>	60-140					02/27/2023 19:05	
SW-8270	Surrogate: Phenol-d5-surr (Reru	n)	46.0% S	60-140					02/27/2023 19:05	
SW-8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	26.0% S	60-140					02/27/2023 19:05	





Terracon Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

**REF-S** Client Sample ID:

23A1459-47 Lab Sample ID:

Sample Alias:

Sediment Sample Matrix:

> Date Collected: 01/27/2023 9:20 Collected by: Michael Madonna

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS SW-8270 3,3'-Dichlorobenzidine <1.81U 1.81 BGB0288 02/09/2023 21:48 KRB Α 1 3.62 ug/kg dry KRB SW-8270 Benzidine Α <1.81U ug/kg dry 1 1.81 3.62 BGB0288 02/09/2023 21:48 02/09/2023 21:48 SW-8270 Surrogate: 2-Fluorobiphenvl-surr 74.4% 60-140 SW-8270 Surrogate: 2-Fluorophenol-surr 79.5% 60-140 02/09/2023 21:48 60-140 02/09/2023 21:48 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr 110% 85.4% 60-140 02/09/2023 21:48 SW-8270 Surrogate: Nitrobenzene-d5-surr SW-8270 Surrogate: Phenol-d5-surr 92.2% 60-140 02/09/2023 21:48 SW-8270 Surrogate: p-Terphenyl-d14-surr 51.2% S 60-140 02/09/2023 21:48 Organics by GC SW-8081 4,4'-DDD Α < 0.434 U ua/ka dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 AI A SW-8081 4,4'-DDE Α < 0.43411 ug/kg dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 ALA SW-8081 4,4'-DDT Α < 0.434 U ug/kg dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 ALA SW-8081 Aldrin Α < 0.434 U ug/kg dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 ALA 02/08/2023 01:42 SW-8081 alpha-BHC < 0.434 U ug/kg dry 10 0.434 1.45 BGB0044 ALA (alpha-Hexachlorocyclohexan e) SW-8081 beta-BHC Α < 0.43411 ug/kg dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 AI A (beta-Hexachlorocyclohexane SW-8081 <0.434U BGB0044 02/08/2023 01:42 Chlordane (tech.) Α ua/ka drv 10 0.434 1.45 ALA SW-8081 cis-Chlordane Α < 0.434 U ug/kg dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 ALA (alpha-Chlordane) ALA SW-8081 delta-BHC Α < 0.434 U ug/kg dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 Dieldrin BGB0044 02/08/2023 01:42 SW-8081 Α < 0.434 U ua/ka drv 10 0.434 1.45 ALA SW-8081 Endosulfan I Α <0.434U ug/kg dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 ALA SW-8081 Endosulfan II < 0.434 U 10 0.434 1.45 BGB0044 02/08/2023 01:42 Α ug/kg dry ALA SW-8081 Endosulfan sulfate Α < 0.434 U ug/kg dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 ALA SW-8081 Endrin <0.434U 10 0.434 1.45 BGB0044 02/08/2023 01:42 Α ALA ug/kg dry ALA SW-8081 Endrin aldehyde Α < 0.434 U 10 0.434 1.45 BGB0044 02/08/2023 01:42 ug/kg dry SW-8081 Endrin ketone <0.434U 10 0.434 1.45 BGB0044 02/08/2023 01:42 Α ug/kg dry ALA SW-8081 gamma-BHC (Lindane, Α <0.434U ug/kg dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 ALA gamma-Hexachlorocyclohexa nE) gamma-Chlordane < 0.434 U 02/08/2023 01:42 SW-8081 Α 10 0.434 1.45 BGB0044 ug/kg dry ALA SW-8081 Heptachlor Α < 0.434 U ug/kg dry 10 0.434 1.45 BGB0044 02/08/2023 01:42 ALA <0.434U BGB0044 02/08/2023 01:42 SW-8081 Heptachlor epoxide 10 0.434 ALA Α ua/ka drv 1.45 SW-8081 Methoxychlor <0.434U 10 0.434 1.45 BGB0044 02/08/2023 01:42 ug/kg dry ALA SW-8081 Toxaphene (Chlorinated <21.7C+, U 21.7 BGB0044 02/08/2023 01:42 Α ug/kg dry 10 21.7 ALA Camphene) Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 02/08/2023 01:42 SW-8081 78.5% 60-140





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: REF-S (Continued)

23A1459-47

Lab Sample ID: Sample Alias: Sample Matrix: Sediment

Date Collected: 01/27/2023 9:20 Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	108%	60-140					02/08/2023 01:42	
SW-8082	PCBs, Total	Α	<1.45C+, U	ug/kg dry	1	1.45	2.90	BGB1177	02/25/2023 03:54	KRB
SW-8082	Surrogate: 2,4,5,6 Tetrac	hloro-m-xylene-suri	146% S	60-140					02/25/2023 03:54	
SW-8082	Surrogate: Decachlorobip	henyl-surr	130%	60-140					02/25/2023 03:54	
Metals, Tota	ıl									
EPA 200.8	Antimony	Α	<0.0297U	mg/kg dry	1	0.0297	0.0596	BGB0820	02/07/2023 14:00	JLK
EPA 200.8	Arsenic	Α	1.71	mg/kg dry	1	0.00297	0.0297	BGB0820	02/27/2023 10:30	TBB
EPA 200.8	Beryllium	Α	0.176	mg/kg dry	5	0.00298	0.0594	BGB0820	02/27/2023 15:52	TBB
EPA 200.8	Cadmium	Α	0.0152J	mg/kg dry	1	0.00297	0.0596	BGB0820	02/07/2023 14:00	JLK
EPA 200.8	Chromium	Α	2.91	mg/kg dry	1	0.00893	0.179	BGB0820	02/07/2023 14:00	JLK
EPA 200.8	Copper	Α	1.68V	mg/kg dry	1	0.0119	0.0596	BGB0820	02/08/2023 11:03	TBB
Calc	Chromium (III)		2.32J	mg/kg (dry wt) dry	1	0.153	5.18	[CALC]	02/24/2023 14:39	GJG
SW-7196	Chromium (VI)	Α	0.587J	mg/kg dry	1	0.144	5.00	BGB3245	02/24/2023 14:39	GJG
SW-7471B	Mercury	Α	0.0121J	mg/kg dry	1	0.00991	0.0198	BGB1025	02/08/2023 16:28	AKR
EPA 200.8	Lead	Α	2.73	mg/kg dry	1	0.00297	0.0297	BGB0820	02/07/2023 14:00	JLK
EPA 200.8	Nickel	Α	3.03	mg/kg dry	1	0.0596	0.0596	BGB0820	02/07/2023 14:00	JLK
EPA 200.8	Selenium	Α	0.458	mg/kg dry	1	0.0596	0.119	BGB0820	02/08/2023 11:03	TBB
EPA 200.8	Silver	Α	0.00851J	mg/kg dry	1	0.00149	0.0297	BGB0820	02/07/2023 14:00	JLK
EPA 200.8	Thallium	Α	0.0295J	mg/kg dry	1	0.00149	0.0297	BGB0820	02/07/2023 14:00	JLK
EPA 200.8	Zinc	Α	11.3	mg/kg dry	1	0.0596	0.119	BGB0820	02/07/2023 14:00	JLK
General Che	mistry									
SW-9014	Total Cyanide	Α	<0.0362U	mg/kg dry	1	0.0362	0.0724	BGB0157	02/02/2023 17:57	GJG
EPA 350.2	Ammonia as N	Α	13.4J	mg/kg dry	1	7.23	14.5	BGB0953	02/08/2023 09:15	GIW
SW-9045C	рН	Α	8.53H	pH Units @ 25 °C	1		0.100	BGA3958	01/31/2023 12:52	AKA
SM 2540 G	% Solids	Α	69.0H, V	%	1	0.100	0.100	BGA3978	02/01/2023 12:06	JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: REF-S

Sample Matrix: Sediment

Collected by:

Lab Sample ID: 23A1459-47RE1

Date Collected: 01/27/2023 9:20

Michael Madonna

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.62U	ug/kg dry	1	3.62	7.24	BGB0288	02/27/2023 19:40	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.62U	ug/kg dry	1	3.62	7.24	BGB0288	02/27/2023 19:40	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.62U	ug/kg dry	1	3.62	7.24	BGB0288	02/27/2023 19:40	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.62U	ug/kg dry	1	3.62	7.24	BGB0288	02/27/2023 19:40	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.62U	ug/kg dry	1	3.62	7.24	BGB0288	02/27/2023 19:40	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<14.5U	ug/kg dry	1	14.5	29.0	BGB0288	02/27/2023 19:40	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.62U	ug/kg dry	1	3.62	7.24	BGB0288	02/27/2023 19:40	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.62U	ug/kg dry	1	3.62	7.24	BGB0288	02/27/2023 19:40	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	Acenaphthene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	Anthracene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.81U	ug/kg dry	1	1.81	3.62	BGB0288	02/27/2023 19:40	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### Sample Results (Continued)

Client Sample ID: REF-S (Continued) Sample Matrix: Sediment

Lab Sample ID: 23A1459-47RE1 Date Collected: 01/27/2023 9:20
Sample Alias: Collected by: Michael Madonna

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS (Continued) SW-8270 bis(2-Chloroethyl) ether <1.81U 3.62 BGB0288 02/27/2023 19:40 KRB Α 1 1.81 ug/kg dry (Rerun) SW-8270 Bis(2-ethylhexyl)phthalate <1.81U 1.81 3.62 BGB0288 02/27/2023 19:40 KRB Α ua/ka drv 1 (Rerun) SW-8270 Butyl benzyl phthalate Α <1.81U ug/kg dry 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB (Rerun) SW-8270 BGB0288 02/27/2023 19:40 Chrysene (Rerun) Α <1.81U ug/kg dry 1 1.81 3.62 KRB SW-8270 Dibenzo(a,h)anthracene Α <1.81U ug/kg dry 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB (Rerun) BGB0288 02/27/2023 19:40 SW-8270 Diethyl phthalate (Rerun) Α <1.81U ug/kg dry 1 1.81 3.62 **KRB** Dimethyl phthalate (Rerun) <1.81U 02/27/2023 19:40 SW-8270 ug/kg dry 1 1.81 3.62 BGB0288 KRB BGB0288 SW-8270 Di-n-butyl phthalate (Rerun) Α 3.54V. J ug/kg dry 1 1 81 3.62 02/27/2023 19:40 KRB SW-8270 Di-n-octyl phthalate (Rerun) Α <1.81U ug/kg dry 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB SW-8270 Fluoranthene (Rerun) Α <1.81U ug/kg dry 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB SW-8270 Fluorene (Rerun) Α <1.81U ug/kg dry 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB SW-8270 Hexachlorobenzene (Rerun) Α <1.81U 1.81 3.62 BGB0288 02/27/2023 19:40 ug/kg dry 1 KRB Hexachlorobutadiene (Rerun) BGB0288 SW-8270 Α <1.81U ug/kg dry 1 1.81 3.62 02/27/2023 19:40 KRB Hexachlorocyclopentadiene <1.81U BGB0288 02/27/2023 19:40 SW-8270 Δ ug/kg dry 1 1.81 3.62 KRR (Rerun) SW-8270 Hexachloroethane (Rerun) Α <1.81U ug/kg dry 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB SW-8270 Indeno(1,2,3-cd) pyrene Α <1.81U ug/kg dry 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB (Rerun) SW-8270 Isophorone (Rerun) Α <1.81U ug/kg dry 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB SW-8270 Naphthalene (Rerun) Α <1.81U ua/ka dry 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB SW-8270 Nitrobenzene (Rerun) <1.81U 1.81 3.62 BGB0288 02/27/2023 19:40 KRB Α ug/kg dry 1 SW-8270 n-Nitrosodimethylamine <1.81U 1.81 3.62 BGB0288 02/27/2023 19:40 KRB Α ug/kg dry 1 (Rerun) SW-8270 n-Nitrosodi-n-propylamine Α <1.81U ua/ka drv 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB (Rerun) BGB0288 SW-8270 n-Nitrosodiphenylamine Α <1.81C+, U ua/ka drv 1 1.81 3.62 02/27/2023 19:40 KRB (Rerun) SW-8270 Pentachlorophenol (Rerun) <3.62U 3.62 BGB0288 02/27/2023 19:40 KRB Α ug/kg dry 7.24 1 SW-8270 Phenanthrene (Rerun) Α <1.81U ug/kg dry 1 1.81 3.62 BGB0288 02/27/2023 19:40 KRB SW-8270 Phenol, Total (Rerun) Α <3.62U 1 3.62 7.24 BGB0288 02/27/2023 19:40 KRB ua/ka drv SW-8270 Pyrene (Rerun) <1.81U ug/kg dry 1.81 3.62 BGB0288 02/27/2023 19:40 KRB SW-8270 43.8% S 60-140 02/27/2023 19:40 Surrogate: 2-Fluorobiphenvl-surr (Rerun) 55.9% S 60-140 SW-8270 Surrogate: 2-Fluorophenol-surr (Rerun) 02/27/2023 19:40 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr (Rerur. 50.2% 5 60-140 02/27/2023 19:40 50.8% S 60-140 SW-8270 Surrogate: Nitrobenzene-d5-surr (Rerun) 02/27/2023 19:40 58.4% S 60-140 SW-8270 Surrogate: Phenol-d5-surr (Rerun) 02/27/2023 19:40

60-140

29.2% 5

Surrogate: p-Terphenyl-d14-surr (Rerun)

SW-8270

02/27/2023 19:40





Terracon Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Sample Results (Continued)

HI-DUP-S Client Sample ID:

Lab Sample ID:

Sample Alias:

23A1459-48

Sample Matrix: Sediment

Date Collected: 01/19/2023 14:00 Collected by: Gregg Pawlak

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS SW-8270 3,3'-Dichlorobenzidine <1.56CQ, U 1.56 BGA3368 02/14/2023 02:41 KRB Α 1 3.12 ug/kg dry SW-8270 Benzidine Α <1.56CQ, U ug/kg dry 1 1.56 3.12 BGA3368 02/14/2023 02:41 KRB 161% CQ, S 60-140 02/14/2023 02:41 SW-8270 Surrogate: 2-Fluorobiphenvl-surr 60-140 SW-8270 Surrogate: 2-Fluorophenol-surr 138% CQ 02/14/2023 02:41 200% CQ, S 60-140 02/14/2023 02:41 SW-8270 Surrogate: 2,4,6-Tribromophenol-surr 206% CQ, S 60-140 02/14/2023 02:41 SW-8270 Surrogate: Nitrobenzene-d5-surr SW-8270 Surrogate: Phenol-d5-surr 192% CQ, S 60-140 02/14/2023 02:41 SW-8270 Surrogate: p-Terphenyl-d14-surr 115% CQ 60-140 02/14/2023 02:41 Organics by GC SW-8081 4,4'-DDD Α < 0.395 U ua/ka dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 AI A SW-8081 4,4'-DDE Α < 0.39511 ug/kg dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 ALA SW-8081 4,4'-DDT Α < 0.395 U ug/kg dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 ALA SW-8081 Aldrin Α < 0.395 U ug/kg dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 ALA 02/04/2023 01:13 SW-8081 alpha-BHC <0.395C+, U ug/kg dry 10 0.395 1.32 BGA3603 ALA (alpha-Hexachlorocyclohexan e) SW-8081 beta-BHC Α < 0.39511 ug/kg dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 AI A (beta-Hexachlorocyclohexane SW-8081 <0.395U 0.395 1.32 BGA3603 02/04/2023 01:13 Chlordane (tech.) Α ua/ka drv 10 ALA SW-8081 cis-Chlordane Α < 0.395 U ug/kg dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 ALA (alpha-Chlordane) SW-8081 delta-BHC Α < 0.395 U ug/kg dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 ALA Dieldrin 02/04/2023 01:13 SW-8081 Α < 0.395 U ua/ka drv 10 0.395 1.32 BGA3603 ALA SW-8081 Endosulfan I Α < 0.395 U ug/kg dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 ALA SW-8081 Endosulfan II < 0.395 U 10 0.395 1.32 BGA3603 02/04/2023 01:13 Α ug/kg dry ALA SW-8081 Endosulfan sulfate Α < 0.395 U ug/kg dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 ALA SW-8081 Endrin <0.395U 10 0.395 1.32 BGA3603 02/04/2023 01:13 Α ALA ug/kg dry ALA SW-8081 Endrin aldehyde Α < 0.395 U 10 0.395 1.32 BGA3603 02/04/2023 01:13 ug/kg dry SW-8081 Endrin ketone <0.395U 10 0.395 1.32 BGA3603 02/04/2023 01:13 Α ug/kg dry ALA SW-8081 gamma-BHC (Lindane, Α <0.395U ug/kg dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 ALA gamma-Hexachlorocyclohexa nE) gamma-Chlordane < 0.395 U 02/04/2023 01:13 SW-8081 Α 10 0.395 1.32 BGA3603 ug/kg dry ALA SW-8081 Heptachlor Α < 0.395 U ug/kg dry 10 0.395 1.32 BGA3603 02/04/2023 01:13 ALA <0.395U BGA3603 02/04/2023 01:13 SW-8081 Heptachlor epoxide 10 0.395 1.32 ALA Α ua/ka drv SW-8081 Methoxychlor <0.395U 10 0.395 1.32 BGA3603 02/04/2023 01:13 ug/kg dry ALA SW-8081 Toxaphene (Chlorinated <19.8C+. U 19.8 BGA3603 02/04/2023 01:13 Α ug/kg dry 10 19.8 ALA Camphene) Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 02/04/2023 01:13 SW-8081 80.7% 60-140





 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DUP-S (Continued)

Sample Matrix: Sediment

Collected by:

Lab Sample ID: 23A1459-48

Date Collected: 01/19/2023 14:00

Gregg Pawlak

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	101%	60-140					02/04/2023 01:13	
SW-8082	PCBs, Total	Α	<1.25U	ug/kg dry	1	1.25	2.50	BGA3651	02/11/2023 20:07	cdg
SW-8082	Surrogate: 2,4,5,6 Tetrac	chloro-m-xylene-suri	121%	60-140					02/11/2023 20:07	
SW-8082	Surrogate: Decachlorobip	henyl-surr	97.3%	60-140					02/11/2023 20:07	
Metals, Tota	al									
EPA 200.8	Antimony	Α	<0.0279U	mg/kg dry	1	0.0279	0.0560	BGA3233	01/31/2023 17:00	TBB
EPA 200.8	Arsenic	Α	0.269	mg/kg dry	1	0.00279	0.0279	BGA3233	01/31/2023 17:00	TBB
EPA 200.8	Beryllium	Α	0.0189	mg/kg dry	1	0.000560	0.0112	BGA3233	02/01/2023 11:26	TBB
EPA 200.8	Cadmium	Α	0.0108J	mg/kg dry	1	0.00279	0.0560	BGA3233	01/31/2023 17:00	TBB
EPA 200.8	Chromium	Α	0.402V	mg/kg dry	1	0.00838	0.168	BGA3233	01/31/2023 17:00	TBB
EPA 200.8	Copper	Α	0.326V	mg/kg dry	1	0.0112	0.0560	BGA3233	02/01/2023 13:54	TBB
Calc	Chromium (III)		0.402J	mg/kg (dry wt) dry	1	0.140	5.17	[CALC]	01/31/2023 17:19	EM
SW-7196	Chromium (VI)	Α	<0.132U	mg/kg dry	1	0.132	5.00	BGA3845	01/31/2023 17:19	EM
SW-7471B	Mercury	Α	<0.00994U	mg/kg dry	1	0.00994	0.0199	BGB0014	02/01/2023 15:57	AKR
EPA 200.8	Lead	Α	0.438	mg/kg dry	1	0.00279	0.0279	BGA3233	01/31/2023 17:00	TBB
EPA 200.8	Nickel	Α	0.418	mg/kg dry	1	0.0560	0.0560	BGA3233	01/31/2023 17:00	TBB
EPA 200.8	Selenium	Α	0.0829J	mg/kg dry	1	0.0560	0.112	BGA3233	02/01/2023 11:26	TBB
EPA 200.8	Silver	Α	0.00229J	mg/kg dry	1	0.00140	0.0279	BGA3233	01/31/2023 17:00	TBB
EPA 200.8	Thallium	Α	0.00916J	mg/kg dry	1	0.00140	0.0279	BGA3233	01/31/2023 17:00	TBB
EPA 200.8	Zinc	Α	0.955	mg/kg dry	1	0.0560	0.112	BGA3233	02/01/2023 11:26	TBB
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0330U	mg/kg dry	1	0.0330	0.0660	BGA3582	01/27/2023 17:36	GJG
EPA 350.2	Ammonia as N	Α	<6.71U	mg/kg dry	1	6.71	13.4	BGB0953	02/08/2023 09:15	GIW
SW-9045C	рН	Α	8.83H	pH Units @ 25 °C	1		0.100	BGA3071	01/24/2023 13:11	AKA
SM 2540 G	% Solids	Α	74.3V	%	1	0.100	0.100	BGA3093	01/25/2023 11:53	JRU





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DUP-S

Sample Matrix: Sediment

Collected by:

Lab Sample ID: 23A1459-48RE1

Date Collected: 01/19/2023 14:00

Gregg Pawlak

Sample Alias:

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3368	02/28/2023 03:45	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	8.75	ug/kg dry	1	3.12	6.24	BGA3368	02/28/2023 03:45	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3368	02/28/2023 03:45	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.12C+, U	ug/kg dry	1	3.12	6.24	BGA3368	02/28/2023 03:45	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.56C+, U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	18.5	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3368	02/28/2023 03:45	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<12.5U	ug/kg dry	1	12.5	25.0	BGA3368	02/28/2023 03:45	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3368	02/28/2023 03:45	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3368	02/28/2023 03:45	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Acenaphthene (Rerun)	Α	3.71	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Acenaphthylene (Rerun)	Α	5.87	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Anthracene (Rerun)	Α	3.65	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

HI-DUP-S (Continued) Client Sample ID:

23A1459-48RE1

Lab Sample ID: Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/19/2023 14:00

Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS (Conti	inued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	2.15V, J	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Chrysene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	2.86V, J	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	13.6V	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Fluoranthene (Rerun)	Α	2.52J	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Fluorene (Rerun)	Α	11.1	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Isophorone (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Naphthalene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<3.12U	ug/kg dry	1	3.12	6.24	BGA3368	02/28/2023 03:45	KRB
SW-8270	Phenanthrene (Rerun)	Α	4.39	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Phenol, Total (Rerun)	Α	4.50J	ug/kg dry	1	3.12	6.24	BGA3368	02/28/2023 03:45	KRB
SW-8270	Pyrene (Rerun)	Α	3.22	ug/kg dry	1	1.56	3.12	BGA3368	02/28/2023 03:45	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr	(Rerun)	78.2%	60-140					02/28/2023 03:45	
SW-8270	Surrogate: 2-Fluorophenol-surr (	Rerun)	83.2%	60-140					02/28/2023 03:45	
SW-8270	Surrogate: 2,4,6-Tribromophenoi	l-surr (Rerur.	66.5%	60-140					02/28/2023 03:45	
SW-8270	Surrogate: Nitrobenzene-d5-surr	(Rerun)	126%	60-140					02/28/2023 03:45	
SW-8270	Surrogate: Phenol-d5-surr (Rerui	n)	85.1%	60-140					02/28/2023 03:45	
SW-8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	70.1%	60-140					02/28/2023 03:45	





Client Sample ID:

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

HI-DUP-S

Sample Matrix: Sediment

Lab Sample ID: 23A1459-48RE2 Date Collected: 01/19/2023 14:00

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GC	MS								
SW-8270	Hexachlorocyclopentadiene (Rerun)	А	<1.56U	ug/kg dry	1	1.56	3.12	BGA3368	03/07/2023 04:33	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-suri	r (Rerun)	84.5%	60-140					03/07/2023 04:33	
SW-8270	Surrogate: 2-Fluorophenol-surr (	(Rerun)	118%	60-140					03/07/2023 04:33	
SW-8270	Surrogate: 2,4,6-Tribromopheno	ol-surr (Rerur	97.0%	60-140					03/07/2023 04:33	
SW-8270	Surrogate: Nitrobenzene-d5-surr	(Rerun)	91.8%	60-140					03/07/2023 04:33	
SW-8270	Surrogate: Phenol-d5-surr (Reru	n)	99.3%	60-140					03/07/2023 04:33	
SW-8270	Surrogate: p-Terphenyl-d14-surr	r (Rerun)	101%	60-140					03/07/2023 04:33	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: ODMDS-W

Lab Sample ID:

Sample Alias:

23A1459-62

Sample Matrix: Marine Water

> Date Collected: 01/27/2023 13:10

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by GC	CMS								
SW-8270	3,3'-Dichlorobenzidine	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/08/2023 02:42	KRB
SW-8270	Benzidine	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/08/2023 02:42	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	r	99.1%	54.6-148					02/08/2023 02:42	
SW-8270	Surrogate: 2-Fluorophenol-surr		117%	<i>55-152</i>					02/08/2023 02:42	
SW-8270	Surrogate: 2,4,6-Tribromopheno	ol-surr	151% S	<i>52.4-136</i>					02/08/2023 02:42	
SW-8270	Surrogate: Nitrobenzene-d5-sur	r	122%	<i>52-162</i>					02/08/2023 02:42	
SW-8270	Surrogate: Phenol-d5-surr		117%	<i>58.7-152</i>					02/08/2023 02:42	
SW-8270	Surrogate: p-Terphenyl-d14-sur	r	83.4%	51.9-147					02/08/2023 02:42	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	4,4'-DDE	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	4,4'-DDT	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Aldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	Α	<0.00600 C+, U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Chlordane (tech.)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	delta-BHC	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Dieldrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Endosulfan I	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Endosulfan II	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Endosulfan sulfate	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Endrin	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Endrin aldehyde	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Endrin ketone	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	gamma-Chlordane	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Heptachlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Heptachlor epoxide	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Methoxychlor	Α	<0.00600U	ug/L	1	0.00600	0.00600	BGA3839	02/07/2023 00:03	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.300U	ug/L	1	0.300	0.300	BGA3839	02/07/2023 00:03	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-r	m-xylene-su	ırı 113%	60-140					02/07/2023 00:03	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Results** (Continued)

Client Sample ID: ODMDS-W (Continued)

23A1459-62

Lab Sample ID:

Sample Alias:

Sample Matrix: Marine Water

> Date Collected: 01/27/2023 13:10

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl-	surr	75.9%	60-140					02/07/2023 00:03	
SW-8082	PCBs, Total	Α	<0.00600U	ug/L	1	0.00600	0.120	BGB0277	02/11/2023 09:57	cdg
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-ı	n-xylene-sui	7 102%	60-140					02/11/2023 09:57	
SW-8082	Surrogate: Decachlorobiphenyl-	surr	56.4% S	60-140					02/11/2023 09:57	
Metals, Tota	ıl									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGA3813	01/30/2023 15:36	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB1605	02/22/2023 15:27	TBB
Metals, Diss	olved									
EPA 200.8	Antimony	Α	<1.00U	ug/L	5	1.00	5.00	BGB0721	02/22/2023 11:46	ТВВ
EPA 200.8	Arsenic	Α	1.56J	ug/L	5	0.500	2.50	BGB0721	02/22/2023 11:46	TBB
EPA 200.8	Beryllium	Α	<0.0500U	ug/L	5	0.0500	1.00	BGB0721	02/28/2023 15:59	TBB
EPA 200.8	Cadmium	Α	<0.250U	ug/L	5	0.250	5.00	BGB0721	02/22/2023 11:46	TBB
EPA 200.8	Chromium	Α	<0.400U	ug/L	5	0.400	15.0	BGB0721	02/14/2023 17:31	TBB
EPA 200.8	Copper	Α	<1.00U	ug/L	5	1.00	5.00	BGB0721	02/14/2023 17:31	TBB
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/15/2023 14:49	SAB
SM 3500-Cr B	Chromium (VI)	Α	9.69	ug/L	1	1.50	3.00	BGB2104	02/15/2023 14:49	SAB
EPA 200.8	Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0721	02/08/2023 16:44	JLK
EPA 200.8	Nickel	Α	<0.250U	ug/L	5	0.250	5.00	BGB0721	02/14/2023 17:31	TBB
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	03/01/2023 10:08	TBB
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 16:44	JLK
EPA 200.8	Zinc	Α	1.11J	ug/L	5	1.00	10.0	BGB0721	02/14/2023 17:31	TBB
<b>General Che</b>	mistry									
EPA 350.1	Ammonia as N	Α	0.621	mg/L	1	0.0200	0.0500	BGB0480	02/03/2023 13:13	DLK
SM 2520 B	Salinity	N	30.4	Salinity units	1	1.00	1.00	BGB1516	02/10/2023 13:10	AKA
SM 2540 D	Residue-nonfilterable (TSS)	Α	6.95	mg/L	1	1.00	1.00	BGA3833	01/31/2023 12:49	BP / JRU





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### Sample Results (Continued)

Client Sample ID: ODMDS-W

Lab Sample ID: 23A1459-62RE1

Sample Alias:

Sample Matrix: Marine Water

Date Collected: 01/27/2023 13:10
Collected by: Michael Madonna

Method Analyte Result Q Units DF SDL LRL Batch Analyzed Analyst Semivolatile Organic Compounds by GCMS SW-8270 <0.277U ug/L 0.277 0.554 BGA3953 02/13/2023 23:11 KRB 1,2,4-Trichlorobenzene Α 1 (Rerun) SW-8270 <0.277U 0.277 0.554 BGA3953 02/13/2023 23:11 KRB 1,2-Dichlorobenzene Α ua/L 1 (o-Dichlorobenzene) (Rerun) SW-8270 1,2-Diphenylhydrazine Α <0.277U ug/L 1 0.277 0.554 BGA3953 02/13/2023 23:11 KRB SW-8270 1,3-Dichlorobenzene Α <0.277U ug/L 1 0.277 0.554 BGA3953 02/13/2023 23:11 KRB (m-Dichlorobenzene) (Rerun) SW-8270 1,4-Dichlorobenzene Α <0.277U ug/L 1 0.277 0.554 BGA3953 02/13/2023 23:11 KRB (p-Dichlorobenzene) (Rerun) SW-8270 BGA3953 02/13/2023 23:11 2,2'-Oxybis(1-chloropropane), Α <0.277U ug/L 1 0.277 0.554 KRB bis(2-Chloro-1-methy (Rerun) SW-8270 BGA3953 02/13/2023 23:11 KRB 2,4,5 & 2,4,6 Ν <1.10U ug/L 1 1.10 2.22 -Trichlorophenol (Rerun) SW-8270 <0.552U 0.552 BGA3953 02/13/2023 23:11 KRB 2,4-Dichlorophenol (Rerun) Α ug/L 1 1.11 SW-8270 2,4-Dimethylphenol (Rerun) < 0.55211 0.552 1.11 BGA3953 02/13/2023 23:11 KRB Α ug/L 1 SW-8270 2,4-Dinitrophenol (Rerun) <4.44C+, U BGA3953 02/13/2023 23:11 KRB Α ug/L 4.44 4.44 02/13/2023 23:11 <0.277U SW-8270 2,4-Dinitrotoluene (2,4-DNT) 0.277 0.554 BGA3953 KRB Α ug/L 1 (Rerun) SW-8270 2,6-Dinitrotoluene (2,6-DNT) Α <0.277U 1 0.277 0.554 BGA3953 02/13/2023 23:11 KRB ug/L (Rerun) <0.277U SW-8270 0.277 0.554 BGA3953 02/13/2023 23:11 KRB 2-Chloronaphthalene (Rerun) Α ug/L 1 SW-8270 2-Chlorophenol (Rerun) <0.552U 0.552 BGA3953 02/13/2023 23:11 KRB Α ug/L 1 1.11 SW-8270 2-Methyl-4,6-dinitrophenol <0.552C+, U 0.552 BGA3953 02/13/2023 23:11 KRB Α ug/L 1 1.11 (4,6-Dinitro-2-methylph (Rerun) SW-8270 2-Nitrophenol (Rerun) Α <0.552U ug/L 1 0.552 1.11 BGA3953 02/13/2023 23:11 KRB 0.554 BGA3953 02/13/2023 23:11 SW-8270 4-Bromophenyl phenyl ether < 0.27711 0.277 KRB Α ug/L 1 (BDE-3) (Rerun) SW-8270 4-Chloro-3-methylphenol < 0.55211 BGA3953 02/13/2023 23:11 KRB Α ug/L 1 0.552 1.11 (Rerun) BGA3953 02/13/2023 23:11 SW-8270 4-Chlorophenyl phenylether <0.277U 1 0.277 0.554 KRB Α ug/L (Rerun) SW-8270 <4.44U BGA3953 02/13/2023 23:11 KRB 4-Nitrophenol (Rerun) 1 4.44 4.44 Α ug/L SW-8270 Acenaphthene (Rerun) Α <0.277U ug/L 1 0.277 0.554 BGA3953 02/13/2023 23:11 **KRB** SW-8270 Acenaphthylene (Rerun) <0.277U 0.277 0.554 BGA3953 02/13/2023 23:11 KRB Α ug/L 1 SW-8270 Α <0.277U 0.277 0.554 BGA3953 02/13/2023 23:11 KRB Anthracene (Rerun) ug/L 1 SW-8270 <0.277U 0.277 0.554 BGA3953 02/13/2023 23:11 KRB Benzo(a)anthracene (Rerun) Α ug/L 1 SW-8270 Benzo(a)pyrene (Rerun) Α <0.277U ug/L 1 0.277 0.554 BGA3953 02/13/2023 23:11 KRB SW-8270 benzo(b&k)fluoranthene Α <0.277U 1 0.277 1.11 BGA3953 02/13/2023 23:11 KRB ug/L (Rerun) SW-8270 Α <0.277U ug/L 1 0.277 0.554 BGA3953 02/13/2023 23:11 KRB Benzo(g,h,i)perylene (Rerun)



Reported:



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Pawlak 04/03/2023 14:08

Houston, TX 77043

Project Manager: Gregg Pawlak

# Sample Results (Continued)

Client Sample ID: ODMDS-W (Continued)

23A1459-62RE1

Marine Water

Lab Sample ID: Sample Alias:

11555 Clay Road

N (Continued)

Date Collected: 01/27/2023 13:10

Collected by:

Sample Matrix:

Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by G	CMS (Conti	nued)							-
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Chrysene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	0.770V	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.277B, U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	1.12V	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Fluorene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	Α	<0.277C+, U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Isophorone (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Naphthalene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<0.277U	ug/L	1	0.277	2.22	BGA3953	02/13/2023 23:11	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.552U	ug/L	1	0.552	1.11	BGA3953	02/13/2023 23:11	KRB
SW-8270	Phenanthrene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Phenol, Total (Rerun)	Α	0.872J	ug/L	1	0.552	1.11	BGA3953	02/13/2023 23:11	KRB
SW-8270	Pyrene (Rerun)	Α	<0.277U	ug/L	1	0.277	0.554	BGA3953	02/13/2023 23:11	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	rr (Rerun)	96.5%	54.6-148					02/13/2023 23:11	
SW-8270	Surrogate: 2-Fluorophenol-surr		121%	<i>55-152</i>					02/13/2023 23:11	
SW-8270	Surrogate: 2,4,6-Tribromophen	ol-surr (Rerur.	90.3%	<i>52.4-136</i>					02/13/2023 23:11	
SW-8270	Surrogate: Nitrobenzene-d5-sur	rr (Rerun)	89.2%	<i>52-162</i>					02/13/2023 23:11	
SW-8270	Surrogate: Phenol-d5-surr (Ren	un)	126%	<i>58.7-152</i>					02/13/2023 23:11	



Lab Sample ID:

130 S. Trade Center Parkway, Conroe TX 77385 Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-38

Marine Water

TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043

Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Matrix:

Sample Results (Continued)

Client Sample ID: ODMDS-W (Continued)

Date Collected: 01/27/2023 13:10

Sample Alias: Collected by: Michael Madonna

Method Analyte Result Q Units DF SDL LRL Analyzed Analyst Batch

Semivolatile Organic Compounds by GCMS (Continued)

23A1459-62RE1

SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 76.6% 51.9-147 02/13/2023 23:11





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DUP-E

Sample Matrix: Elutriate

Collected by:

Lab Sample ID: 23A1459-64

Date Collected: 01/19/2023 14:00

Gregg Pawlak

Sample Alias:

 Method
 Analyte
 * Result Q
 Units
 DF
 SDL
 LRL
 Batch
 Analyzed
 Analyst

 Elutriate Semivolatile Organic Compounds by GCMS

 SW-8270
 3,3'-Dichlorobenzidine
 A
 <0.279U</td>
 ug/L
 1
 0.279
 0.559
 BGB0925
 02/11/2023
 06:13
 KRB

 SW-8270
 Benzidine
 A
 <0.279U</td>
 ug/L
 1
 0.279
 0.559
 BGB0925
 02/11/2023
 06:13
 KRB

Liutilate Se	annvoiathe Organic Comp	bullus by c	JCPIS							
SW-8270	3,3'-Dichlorobenzidine	А	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/11/2023 06:13	KRB
SW-8270	Benzidine	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/11/2023 06:13	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-	-surr	89.4%	54.6-148					02/11/2023 06:13	
SW-8270	Surrogate: 2-Fluorophenol-s	urr	80.1%	<i>55-152</i>					02/11/2023 06:13	
SW-8270	Surrogate: 2,4,6-Tribromoph	nenol-surr	110%	52.4-136					02/11/2023 06:13	
SW-8270	Surrogate: Nitrobenzene-d5-	surr	98.9%	<i>52-162</i>					02/11/2023 06:13	
SW-8270	Surrogate: Phenol-d5-surr		89.6%	<i>58.7-152</i>					02/11/2023 06:13	
SW-8270	Surrogate: p-Terphenyl-d14-	-surr	86.9%	<i>51.9-147</i>					02/11/2023 06:13	
Elutriate Or	ganics by GC									
SW-8081	4,4'-DDD	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	4,4'-DDE	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	4,4'-DDT	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Aldrin	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	alpha-BHC	Α	<0.00599C+, U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA

	•			- 31					. , ,	
SW-8081	4,4'-DDT	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Aldrin	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	A	<0.00599C+, U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Chlordane (tech.)	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	delta-BHC	Δ	<0.00599B2_II	ua/I	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ΔΙΔ

	,									
SW-8081	Chlordane (tech.)	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	cis-Chlordane	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
	(alpha-Chlordane)									
SW-8081	delta-BHC	Α	<0.00599B2, U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Dieldrin	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Endosulfan I	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Endosulfan II	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Endosulfan sulfate	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Endrin	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Endrin aldehyde	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Endrin ketone	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	gamma-BHC (Lindane,	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
	gamma-Hexachlorocyclohexa									
	nE)									
SW-8081	gamma-Chlordane	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Heptachlor	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Heptachlor epoxide	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA
SW-8081	Methoxychlor	Α	<0.00599U	ug/L	1	0.00599	0.00599	BGB0543	02/09/2023 04:33	ALA

<0.300U

ug/L

0.300

0.300

BGB0543

02/09/2023 04:33

Toxaphene (Chlorinated

Camphene)

SW-8081

ALA





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DUP-E (Continued)

ontinued) Sample Matrix: Elutriate

Lab Sample ID: 23A1459-64 Date Collected: 01/19/2023 14:00

Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
riculou	Analyte	•	ivesuit A	Ullits	ы	JUL	LNL	Datcii	Analyzeu	AriarySt
Elutriate Org	anics by GC (Continued)									
SW-8081	Surrogate: Decachlorobiphenyl	surr	79.0%	60-140					02/09/2023 04:33	
SW-8082	PCBs, Total	Α	<0.00599U	ug/L	1	0.00599	0.120	BGB1127	02/17/2023 11:26	cro
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-ı	m-xylene-suri	141% S	60-140					02/17/2023 11:26	
SW-8082	Surrogate: Decachlorobiphenyl	surr	72.9%	60-140					02/17/2023 11:26	
Elutriate Met	tals, Dissolved									
EPA 200.8	Antimony	Α	<1.00 U	ug/L	5	1.00	5.00	BGB0721	02/14/2023 17:34	TBB
EPA 200.8	Arsenic	Α	5.18	ug/L	5	0.500	2.50	BGB0721	02/22/2023 11:49	TBB
EPA 200.8	Beryllium	Α	<0.0500B2, U	ug/L	5	0.0500	1.00	BGB0721	02/28/2023 16:01	TBB
EPA 200.8	Cadmium	Α	<0.250U	ug/L	5	0.250	5.00	BGB0721	02/14/2023 17:34	TBB
EPA 200.8	Chromium	Α	<0.400B2, U	ug/L	5	0.400	15.0	BGB0721	02/14/2023 17:34	TBB
EPA 200.8	Copper	Α	<1.00B, B2, U	ug/L	5	1.00	5.00	BGB0721	02/14/2023 17:34	TBB
Calc	Chromium (III)		<1.90U	ug/L	5	1.90	18.0	[CALC]	02/15/2023 15:02	SAB
SM 3500-Cr B	Chromium (VI)	Α	0.0126V2	mg/L	1	0.00150	0.00300	BGB2104	02/15/2023 15:02	SAB
EPA 200.8	Lead	Α	<0.500U	ug/L	5	0.500	2.50	BGB0721	02/08/2023 16:46	JLK
EPA 200.8	Nickel	Α	0.849V2, J	ug/L	5	0.250	5.00	BGB0721	02/14/2023 17:34	TBB
EPA 200.8	Silver	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/14/2023 17:34	TBB
EPA 200.8	Thallium	Α	<0.150U	ug/L	5	0.150	2.50	BGB0721	02/08/2023 16:46	JLK
EPA 200.8	Zinc	Α	3.20V2, J	ug/L	5	1.00	10.0	BGB0721	02/14/2023 17:34	TBB
Elutriate Met	tals, Total									
EPA 245.1	Mercury	Α	<0.150U	ug/L	1	0.150	0.200	BGB0678	02/06/2023 17:07	NAZ
EPA 200.8	Selenium	Α	<1.65U	ug/L	5	1.65	10.0	BGB1605	02/22/2023 15:29	TBB
Elutriate Ger	neral Chemistry									
SM 2540 D	Residue-nonfilterable (TSS)	Α	6.60V2	mg/L	1	1.00	1.00	BGB0805	02/07/2023 13:44	BP





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DUP-E

Sample Matrix: Elutriate

Lab Sample ID: 23A1459-64RE1

Date Collected: 01/19/2023 14:00

Sample Alias:

Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compour	ds by G	CMS							
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol (Rerun)	N	<1.11U	ug/L	1	1.11	2.24	BGB0925	02/15/2023 05:41	KRB
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<0.557U	ug/L	1	0.557	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<0.557U	ug/L	1	0.557	1.12	BGB0925	02/15/2023 05:41	KRB
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<4.47U	ug/L	1	4.47	4.47	BGB0925	02/15/2023 05:41	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	2-Chloronaphthalene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	2-Chlorophenol (Rerun)	Α	<0.557U	ug/L	1	0.557	1.12	BGB0925	02/15/2023 05:41	KRB
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<0.557U	ug/L	1	0.557	1.12	BGB0925	02/15/2023 05:41	KRB
SW-8270	2-Nitrophenol (Rerun)	Α	<0.557U	ug/L	1	0.557	1.12	BGB0925	02/15/2023 05:41	KRB
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<0.557U	ug/L	1	0.557	1.12	BGB0925	02/15/2023 05:41	KRB
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	4-Nitrophenol (Rerun)	Α	<4.47U	ug/L	1	4.47	4.47	BGB0925	02/15/2023 05:41	KRB
SW-8270	Acenaphthene (Rerun)	Α	0.744	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Acenaphthylene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Anthracene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Benzo(a)anthracene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Benzo(a)pyrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	benzo(b&k)fluoranthene (Rerun)	Α	<0.559U	ug/L	1	0.559	1.12	BGB0925	02/15/2023 05:41	KRB
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: HI-DUP-E (Continued)

UP-E (Continued) Sample Matrix: Elutriate

Lab Sample ID: 23A1459-64RE1 Date Collected: 01/19/2023 14:00 Sample Alias: Collected by: Gregg Pawlak

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Elutriate Se	emivolatile Organic Compou	nds by GCM	IS (Continued)							
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Chrysene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Diethyl phthalate (Rerun)	Α	1.08V, V2	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Dimethyl phthalate (Rerun)	Α	<0.279B, B2, U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Di-n-butyl phthalate (Rerun)	Α	1.68V, V2	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Fluoranthene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Fluorene (Rerun)	Α	2.06	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Hexachlorobenzene (Rerun)	Α	<0.279C+, U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Hexachlorobutadiene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Hexachlorocyclopentadiene (Rerun)	A	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Hexachloroethane (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Isophorone (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Naphthalene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Nitrobenzene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	n-Nitrosodimethylamine (Rerun)	A	<0.279U	ug/L	1	0.279	2.24	BGB0925	02/15/2023 05:41	KRB
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<0.279C+, U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Pentachlorophenol (Rerun)	Α	<0.557C+, U	ug/L	1	0.557	1.12	BGB0925	02/15/2023 05:41	KRB
SW-8270	Phenanthrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Phenol, Total (Rerun)	Α	1.01V2	ug/L	1	0.557	1.12	BGB0925	02/15/2023 05:41	KRB
SW-8270	Pyrene (Rerun)	Α	<0.279U	ug/L	1	0.279	0.559	BGB0925	02/15/2023 05:41	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-sur	r (Rerun)	93.2%	54.6-148					02/15/2023 05:41	
SW-8270	Surrogate: 2-Fluorophenol-surr	. ,	108%	55-152					02/15/2023 05:41	
SW-8270	Surrogate: 2,4,6-Tribromopheno		93.1%	52.4-136					02/15/2023 05:41	
SW-8270	Surrogate: Nitrobenzene-d5-surr	•	77.5%	52-162					02/15/2023 05:41	
SW-8270	Surrogate: Phenol-d5-surr (Reru	ın)	126%	<i>58.7-152</i>					02/15/2023 05:41	



130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-38

TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results

(Continued)

Sample Matrix: Elutriate

23A1459-64RE1 Date Collected: 01/19/2023 14:00

Sample Alias: Collected by: Gregg Pawlak

Method Analyte * Result Q Units DF SDL LRL Batch Analyzed Analyst

**Elutriate Semivolatile Organic Compounds by GCMS (Continued)** 

HI-DUP-E (Continued)

SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 84.0% 51.9-147 02/15/2023 05:41

**Elutriate General Chemistry** 

Client Sample ID:

Lab Sample ID:

EPA 350.1 Ammonia as N (Rerun) A 0.586 mg/L 5 0.100 0.250 BGB0807 02/07/2023 10:13 DLK





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: ODMDS-S

021123 3

Lab Sample ID: 23A1459-66 Sample Alias: Sample Matrix: Sediment

Date Collected: 01/27/2023 12:30

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatile	Organic Compounds by G	CMS								
SW-8270	3,3'-Dichlorobenzidine	А	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/08/2023 07:19	KRB
SW-8270	Benzidine	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/08/2023 07:19	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-su	ırr	78.2%	60-140					02/08/2023 07:19	
SW-8270	Surrogate: 2-Fluorophenol-surr	-	90.1%	60-140					02/08/2023 07:19	
SW-8270	Surrogate: 2,4,6-Tribromopher	nol-surr	136%	<i>60-140</i>					02/08/2023 07:19	
SW-8270	Surrogate: Nitrobenzene-d5-su	ırr	98.5%	60-140					02/08/2023 07:19	
SW-8270	Surrogate: Phenol-d5-surr		97.1%	60-140					02/08/2023 07:19	
SW-8270	Surrogate: p-Terphenyl-d14-su	ırr	80.0%	60-140					02/08/2023 07:19	
Organics by	GC									
SW-8081	4,4'-DDD	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	4,4'-DDE	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	4,4'-DDT	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Aldrin	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	alpha-BHC (alpha-Hexachlorocyclohexan e)	А	<0.395C+, U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	beta-BHC (beta-Hexachlorocyclohexane )	А	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Chlordane (tech.)	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	cis-Chlordane (alpha-Chlordane)	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	delta-BHC	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Dieldrin	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Endosulfan I	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Endosulfan II	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Endosulfan sulfate	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Endrin	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Endrin aldehyde	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Endrin ketone	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	gamma-Chlordane	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Heptachlor	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Heptachlor epoxide	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Methoxychlor	Α	<0.395U	ug/kg dry	10	0.395	1.32	BGB0477	02/10/2023 10:45	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<19.7U	ug/kg dry	10	19.7	19.7	BGB0477	02/10/2023 10:45	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro	-m-xylene-suri	81.0%	60-140					02/10/2023 10:45	





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results (Continued)

Client Sample ID: ODMDS-S (Continued)

Lab Sample ID: 23A1459-66

Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/27/2023 12:30

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC (Continued)									
SW-8081	Surrogate: Decachlorobip	henyl-surr	97.2%	60-140					02/10/2023 10:45	
SW-8082	PCBs, Total	Α	<1.31C+, U	ug/kg dry	1	1.31	2.62	BGB1177	02/25/2023 05:32	KRB
SW-8082	Surrogate: 2,4,5,6 Tetraci	hloro-m-xylene-suri	126%	60-140					02/25/2023 05:32	
SW-8082	Surrogate: Decachlorobipa	henyl-surr	128%	60-140					02/25/2023 05:32	
Metals, Tota	al .									
EPA 200.8	Antimony	Α	<0.0270U	mg/kg dry	1	0.0270	0.0542	BGB0820	02/07/2023 14:28	JLK
EPA 200.8	Arsenic	Α	1.39	mg/kg dry	5	0.0135	0.135	BGB0820	02/27/2023 10:48	TBB
EPA 200.8	Beryllium	Α	0.0655	mg/kg dry	5	0.00271	0.0541	BGB0820	02/27/2023 16:07	TBB
EPA 200.8	Cadmium	Α	0.00909J	mg/kg dry	1	0.00270	0.0542	BGB0820	02/07/2023 14:28	JLK
EPA 200.8	Chromium	Α	1.27	mg/kg dry	1	0.00812	0.162	BGB0820	02/07/2023 14:28	JLK
EPA 200.8	Copper	Α	0.435V	mg/kg dry	1	0.0108	0.0542	BGB0820	02/08/2023 11:31	TBB
Calc	Chromium (III)		1.13J	mg/kg (dry wt) dry	1	0.137	5.16	[CALC]	02/24/2023 14:20	GJG
SW-7196	Chromium (VI)	Α	0.144J	mg/kg dry	1	0.129	5.00	BGB3245	02/24/2023 14:20	GJG
SW-7471B	Mercury	Α	<0.00999U	mg/kg dry	1	0.00999	0.0200	BGB1025	02/08/2023 16:21	AKR
EPA 200.8	Lead	Α	1.70	mg/kg dry	1	0.00270	0.0270	BGB0820	02/07/2023 14:28	JLK
EPA 200.8	Nickel	Α	1.17	mg/kg dry	1	0.0542	0.0542	BGB0820	02/07/2023 14:28	JLK
EPA 200.8	Selenium	Α	0.363	mg/kg dry	1	0.0542	0.108	BGB0820	02/08/2023 11:31	TBB
EPA 200.8	Silver	Α	0.00411J	mg/kg dry	1	0.00135	0.0270	BGB0820	02/07/2023 14:28	JLK
EPA 200.8	Thallium	Α	0.0218J	mg/kg dry	1	0.00135	0.0270	BGB0820	02/07/2023 14:28	JLK
EPA 200.8	Zinc	Α	5.47	mg/kg dry	1	0.0542	0.108	BGB0820	02/07/2023 14:28	JLK
General Che	emistry									
SW-9014	Total Cyanide	Α	<0.0331U	mg/kg dry	1	0.0331	0.0662	BGB0157	02/02/2023 18:01	GJG
EPA 350.2	Ammonia as N	Α	<6.60U	mg/kg dry	1	6.60	13.2	BGB1156	02/09/2023 09:45	GIW
SW-9045C	рН	Α	8.41H	pH Units @ 25 °C	1		0.100	BGB0847	02/07/2023 10:02	AKA
SM 2540 G	% Solids	Α	75.6H, V	%	1	0.100	0.100	BGB0296	02/03/2023 12:46	JRU





11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Sample Results (Continued)

Client Sample ID: ODMDS-S

DS-S

23A1459-66RE1

Lab Sample ID: Sample Alias: Sample Matrix: Sediment

Date Collected: 01/27/2023 12:30

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GCI	мs								
SW-8270	1,2,4-Trichlorobenzene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	1,2-Dichlorobenzene (o-Dichlorobenzene) (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	1,2-Diphenylhydrazine (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	1,3-Dichlorobenzene (m-Dichlorobenzene) (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	1,4-Dichlorobenzene (p-Dichlorobenzene) (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	2,4,6-Trichlorophenol (Rerun)	Α	<3.11U	ug/kg dry	1	3.11	6.22	BGB0424	02/17/2023 19:59	krb
SW-8270	2,4-Dichlorophenol (Rerun)	Α	<3.11U	ug/kg dry	1	3.11	6.22	BGB0424	02/17/2023 19:59	krb
SW-8270	2,4-Dimethylphenol (Rerun)	Α	<3.11U	ug/kg dry	1	3.11	6.22	BGB0424	02/17/2023 19:59	krb
SW-8270	2,4-Dinitrophenol (Rerun)	Α	<3.11U	ug/kg dry	1	3.11	6.22	BGB0424	02/17/2023 19:59	krb
SW-8270	2,4-Dinitrotoluene (2,4-DNT) (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	2,6-Dinitrotoluene (2,6-DNT) (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	2-Chloronaphthalene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	2-Chlorophenol (Rerun)	Α	<3.11U	ug/kg dry	1	3.11	6.22	BGB0424	02/17/2023 19:59	krb
SW-8270	2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph (Rerun)	Α	<12.4U	ug/kg dry	1	12.4	24.9	BGB0424	02/17/2023 19:59	krb
SW-8270	2-Nitrophenol (Rerun)	Α	<3.11U	ug/kg dry	1	3.11	6.22	BGB0424	02/17/2023 19:59	krb
SW-8270	4-Bromophenyl phenyl ether (BDE-3) (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	4-Chloro-3-methylphenol (Rerun)	Α	<3.11U	ug/kg dry	1	3.11	6.22	BGB0424	02/17/2023 19:59	krb
SW-8270	4-Chlorophenyl phenylether (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	4-Nitrophenol (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Acenaphthene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Acenaphthylene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Anthracene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Benzo(a)anthracene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Benzo(a)pyrene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Benzo(b)fluoranthene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Benzo(g,h,i)perylene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Benzo(k)fluoranthene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	bis(2-Chloroethoxy)methane (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb





11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Sample Results** (Continued)

ODMDS-S (Continued) Client Sample ID:

23A1459-66RE1

Lab Sample ID: Sample Alias:

Sample Matrix: Sediment

Date Collected: 01/27/2023 12:30

Collected by: Michael Madonna

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Semivolatil	e Organic Compounds by GCI	MS (Conti	nued)							
SW-8270	bis(2-Chloroethyl) ether (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Bis(2-ethylhexyl )phthalate (Rerun)	Α	<1.55B, U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Butyl benzyl phthalate (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Chrysene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Dibenzo(a,h)anthracene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Diethyl phthalate (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Dimethyl phthalate (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Di-n-butyl phthalate (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Di-n-octyl phthalate (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Fluoranthene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Fluorene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Hexachlorobenzene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Hexachlorobutadiene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Hexachloroethane (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Indeno(1,2,3-cd) pyrene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Isophorone (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Naphthalene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Nitrobenzene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	n-Nitrosodimethylamine (Rerun)	Α	<1.55C+, U	ug/kg dry	1	1.55	31.1	BGB0424	02/17/2023 19:59	krb
SW-8270	n-Nitrosodi-n-propylamine (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	n-Nitrosodiphenylamine (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Pentachlorophenol (Rerun)	Α	<3.11U	ug/kg dry	1	3.11	6.22	BGB0424	02/17/2023 19:59	krb
SW-8270	Phenanthrene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Phenol, Total (Rerun)	Α	11.3V	ug/kg dry	1	3.11	6.22	BGB0424	02/17/2023 19:59	krb
SW-8270	Pyrene (Rerun)	Α	<1.55U	ug/kg dry	1	1.55	3.11	BGB0424	02/17/2023 19:59	krb
SW-8270	Surrogate: 2-Fluorobiphenyl-surr	(Rerun)	62.1%	60-140					02/17/2023 19:59	
SW-8270	Surrogate: 2-Fluorophenol-surr (F	Rerun)	68.9%	60-140					02/17/2023 19:59	
SW-8270	Surrogate: 2,4,6-Tribromophenol-	surr (Rerur	60.0%	60-140					02/17/2023 19:59	
SW-8270	Surrogate: Nitrobenzene-d5-surr	(Rerun)	78.6%	60-140					02/17/2023 19:59	
SW-8270	Surrogate: Phenol-d5-surr (Rerun	)	71.2%	60-140					02/17/2023 19:59	
SW-8270	Surrogate: p-Terphenyl-d14-surr	(Rerun)	50.1% S	60-140					02/17/2023 19:59	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Sample Results
(Continued)

Sample Matrix:

Sediment

Client Sample ID: ODMDS-S

Lab Sample ID: 23A1459-66RE2 Date Collected: 01/27/2023 12:30

Sample Alias: Collected by: Michael Madonna

Method Analyte Result Q SDL Units DF LRL Batch Analyzed Analyst **Semivolatile Organic Compounds by GCMS** SW-8270 ug/kg dry 02/27/2023 17:51 Hexachlorocyclopentadiene <1.55U 1 1.55 3.11 BGB0424 KRB (Rerun) 58.9% S SW-8270 Surrogate: 2-Fluorobiphenyl-surr (Rerun) 60-140 02/27/2023 17:51 Surrogate: 2-Fluorophenol-surr (Rerun) 60-140 SW-8270 71.3% 02/27/2023 17:51 Surrogate: 2,4,6-Tribromophenol-surr (Rerur. 60-140 SW-8270 72.6% 02/27/2023 17:51 SW-8270 Surrogate: Nitrobenzene-d5-surr (Rerun) 75.6% 60-140 02/27/2023 17:51 SW-8270 Surrogate: Phenol-d5-surr (Rerun) 62.8% 60-140 02/27/2023 17:51 SW-8270 Surrogate: p-Terphenyl-d14-surr (Rerun) 64.8% 60-140 02/27/2023 17:51



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Quality Control**

#### **Semivolatile Organic Compounds by GCMS**

### Security of Company of the Company of Co	
Prepared: 1/24/2023 Analyzed: 2/8/2023     3,3*Dichlorobenzidine   <2.45   U   2.45   U   U   U   U   U   U   U   U   U	
3,3 - Dichlorobenzidine	
Benzidine	
14.0 ug/kg wet 19.6   71.3   60-140	
Surrogate: 2-Fluorophenol-surr   39,0 ug/kg wet   39,2   99,6   60-140	
33.8 ug/kg wet   39.2   112   60-140	
19.5   Ug/kg wet   19.6   99.5   60-140	
Surrogate: Phenol-d5-surr   40.9   ug/kg wet   39.2   105   60-140	
Surrogate: p-Terphenyl-d14-surr	
Prepared: 1/24/2023 Analyzed: 2/24/2023     1,2,4-Trichlorobenzene	
1,2,4-Trichlorobenzene       <2.45	
1,2-Dichlorobenzene	
(o-Dichlorobenzene) 1,2-Diphenylhydrazine	
1,2-Diphenylhydrazine	
1,3-Dichlorobenzene	
(m-Dichlorobenzene) 1,4-Dichlorobenzene (p-Dichlorobenzene) 2,2'-Oxybis(1-chloropropane),	
1,4-Dichlorobenzene       <2.45	
(p-Dichlorobenzene) 2,2'-Oxybis(1-chloropropane),	
2,2'-Oxybis(1-chloropropane),       <2.45	
bis(2-Chloro-1-methy         2,4,6-Trichlorophenol       <4.90	
2,4,6-Trichlorophenol       <4.90	
2,4-Dichlorophenol       <4.90 U	
2,4-Dimethylphenol       <4.90	
2,4-Dinitrophenol       <4.90	
2,4-Dinitrotoluene (2,4-DNT)       <2.45	
2,6-Dinitrotoluene (2,6-DNT)       <2.45	
2-Chloronaphthalene       <2.45	
2-Chlorophenol       <4.90 U	
2-Methyl-4,6-dinitrophenol       <19.6	
(4,6-Dinitro-2-methylph 2-Nitrophenol <4.90 U 4.90 ug/kg wet	
2-Nitrophenol <4.90 U 4.90 ug/kg wet	
i bromophicity pricity cutch (bbc 3) <2.45 U 2.73 ug/ng wet	
4-Chloro-3-methylphenol <4.90 U 4.90 ug/kg wet	
Acenaphthylene <2.45 U 2.45 ug/kg wet  Anthracene <2.45 II 2.45 ug/kg wet	
Benzo(a)anthracene <2.45 U 2.45 ug/kg wet	
Benzo(a)pyrene <2.45 U 2.45 ug/kg wet	
Benzo(b)fluoranthene <2.45 U 2.45 ug/kg wet	
Benzo(g,h,i)perylene <2.45 U 2.45 ug/kg wet	
Benzo(k)fluoranthene <2.45 U 2.45 ug/kg wet	
bis(2-Chloroethoxy)methane <2.45 U 2.45 ug/kg wet	
bis(2-Chloroethyl) ether <2.45 U 2.45 ug/kg wet	
Bis(2-ethylhexyl )phthalate 1.33 J 2.45 ug/kg wet	

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

		Reporting		эріке	Source		70KEC		KPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3094 - SW-3570 (Co	ontinued)								
Blank (BGA3094-BLK2)	,		Pre	pared: 1/24	/2023 Analyze	ed: 2/24/202	3		
Butyl benzyl phthalate	<2.45 U	2.45	ug/kg wet						
Chrysene	<2.45 U	2.45	ug/kg wet						
Dibenzo(a,h)anthracene	<2.45 U	2.45	ug/kg wet						
Diethyl phthalate	1.52 J	2.45	ug/kg wet						
Dimethyl phthalate	<2.45 U	2.45	ug/kg wet						
Di-n-butyl phthalate	2.03 J	2.45	ug/kg wet						
Di-n-octyl phthalate	<2.45 U	2.45	ug/kg wet						
Fluoranthene	<2.45 U	2.45	ug/kg wet						
Fluorene	<2.45 U	2.45	ug/kg wet						
Hexachlorobenzene	<2.45 U	2.45	ug/kg wet						
Hexachlorobutadiene	<2.45 U	2.45	ug/kg wet						
Hexachlorocyclopentadiene	<2.45 U	2.45	ug/kg wet						
Hexachloroethane	<2.45 U	2.45	ug/kg wet						
Indeno(1,2,3-cd) pyrene	<2.45 U	2.45	ug/kg wet						
Isophorone	<2.45 U	2.45	ug/kg wet						
Naphthalene	<2.45 U	2.45	ug/kg wet						
Nitrobenzene	<2.45 U	2.45	ug/kg wet						
n-Nitrosodimethylamine	<2.45 U	2.45	ug/kg wet						
n-Nitrosodi-n-propylamine	<2.45 U	2.45	ug/kg wet						
n-Nitrosodiphenylamine	<2.45 U	2.45	ug/kg wet						
Pentachlorophenol	<4.90 U	4.90	ug/kg wet						
Phenanthrene	<2.45 U	2.45	ug/kg wet						
Phenol, Total	<4.90 U	4.90	ug/kg wet						
Pyrene	<2.45 U	2.45	ug/kg wet						
Surrogate: 2-Fluorobiphenyl-surr		13.2	ug/kg wet	19.6		67.5	60-140		
Surrogate: 2-Fluorophenol-surr		30.4	ug/kg wet	39.2		77.6	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		30.8	ug/kg wet	39.2		78.7	60-140		
Surrogate: Nitrobenzene-d5-surr		14.4	ug/kg wet	19.6		73.4	60-140		
Surrogate: Phenol-d5-surr		30.0	ug/kg wet	39.2		76.5	60-140		
Surrogate: p-Terphenyl-d14-surr		15.4	ug/kg wet	19.6		78.4	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

nalyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
rch: BGA3094 - SW-3570 (C	Continued)			_					
BENZ (BGA3094-BS1)			Pre	epared: 1/2	4/2023 Analyzed	l: 2/8/2023			
'-Dichlorobenzidine	11.1 J1	2.37	ug/kg wet	19.0	•	58.4	60-140		
nzidine	3.80 J1	2.37	ug/kg wet	19.0		20.0	60-140		
rrogate: 2-Fluorobiphenyl-surr		16.3	ug/kg wet	19.0		<i>85.8</i>	60-140		
rrogate: 2-Fluorophenol-surr		40.6	ug/kg wet	38.0		107	60-140		
rrogate: 2,4,6-Tribromophenol-surr		39.4	ug/kg wet	38.0		104	60-140		
rrogate: Nitrobenzene-d5-surr		19.6	ug/kg wet	19.0		103	60-140		
rrogate: Phenol-d5-surr		35.9	ug/kg wet	38.0		94.5	60-140		
rrogate: p-Terphenyl-d14-surr		19.3		19.0		102	60-140		
SV (BGA3094-BS2)			Pre	pared: 1/24	/2023 Analyzed	: 2/25/2023	3		
,4-Trichlorobenzene	13.0	2.33	ug/kg wet	18.6	-	70.0	60-140		
-Dichlorobenzene	12.2	2.33	ug/kg wet	18.6		65.7	60-140		
Dichlorobenzene)									
l-Diphenylhydrazine	16.5	2.33	ug/kg wet	18.6		88.4	60-140		
3-Dichlorobenzene	11.6	2.33	ug/kg wet	18.6		62.2	60-140		
-Dichlorobenzene)									
-Dichlorobenzene	12.0	2.33	ug/kg wet	18.6		64.4	60-140		
Dichlorobenzene)		2.22		10.6		70.0	CO 140		
'-Oxybis(1-chloropropane), (2-Chloro-1-methy	14.9	2.33	ug/kg wet	18.6		79.9	60-140		
(2-Chioro-1-metriy I-,6-Trichlorophenol	33.1	4.66	ug/kg wet	37.3		88.7	60-140		
-Dichlorophenol	34.2	4.66	ug/kg wet	37.3		91.7	60-140		
-Dimethylphenol	33.7	4.66	ug/kg wet	37.3		90.5	60-140		
-Dinitrophenol	16.8	4.66	ug/kg wet	93.2		18.1	10-50.4		
-Dinitrotoluene (2,4-DNT)	16.0	2.33	ug/kg wet	18.6		85.9	60-140		
i-Dinitrotoluene (2,6-DNT)	17.0	2.33	ug/kg wet	18.6		91.0	60-140		
Chloronaphthalene	15.9	2.33	ug/kg wet	18.6		85.4	60-140		
Chlorophenol	31.7	4.66	ug/kg wet	37.3		85.0	60-140		
1ethyl-4,6-dinitrophenol	21.8 J1	18.6	ug/kg wet	37.3		58.5	60-140		
6-Dinitro-2-methylph									
litrophenol	33.4	4.66	ug/kg wet	37.3		89.5	60-140		
Bromophenyl phenyl ether (BDE-3)	16.6	2.33	ug/kg wet	18.6		89.2	60-140		
Chloro-3-methylphenol	33.5	4.66	ug/kg wet	37.3		89.9	60-140		
Chlorophenyl phenylether	16.6	2.33	ug/kg wet	18.6		88.9	60-140		
litrophenol	83.5	2.33	ug/kg wet	93.2		89.6	60-140		
enaphthene	16.0	2.33	ug/kg wet	18.6		85.6	60-140		
enaphthylene 	19.4	2.33	ug/kg wet	18.6		104	60-140		
thracene	17.4	2.33	ug/kg wet	18.6		93.2	60-140		
nzo(a)anthracene	16.0	2.33	ug/kg wet	18.6		85.9	60-140		
nzo(a)pyrene	16.3	2.33	ug/kg wet	18.6		87.5	60-140		
nzo(b)fluoranthene	15.2	2.33	ug/kg wet	18.6		81.8	60-140		
nzo(g,h,i)perylene	16.0	2.33	ug/kg wet	18.6		85.7	60-140		
nzo(k)fluoranthene	16.1	2.33	ug/kg wet	18.6		86.3	60-140		
(2-Chloroethoxy)methane	16.5	2.33	ug/kg wet	18.6		88.3	60-140		
(2-Chloroethyl) ether	16.5	2.33	ug/kg wet	18.6		88.7	60-140		
(2-ethylhexyl )phthalate tyl benzyl phthalate	17.0 16.3	2.33 2.33	ug/kg wet ug/kg wet	18.6 18.6		91.2 87.4	60-140 60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyce	Nesuit Qual	LITTIL	UIIIG	LEVEI	NCSUIL	/UNLC	LIIIIG	NΓD	LIIIIL
Batch: BGA3094 - SW-3570 (C	ontinued)								
BS SV (BGA3094-BS2)			Pre	pared: 1/24	/2023 Analyzed:	2/25/2023	3		
Chrysene	15.7	2.33	ug/kg wet	18.6		84.2	60-140		
Dibenzo(a,h)anthracene	15.5	2.33	ug/kg wet	18.6		83.1	60-140		
Diethyl phthalate	18.3	2.33	ug/kg wet	18.6		98.4	60-140		
Dimethyl phthalate	17.5	2.33	ug/kg wet	18.6		93.7	60-140		
Di-n-butyl phthalate	18.9	2.33	ug/kg wet	18.6		101	60-140		
Di-n-octyl phthalate	17.0	2.33	ug/kg wet	18.6		91.2	60-140		
Fluoranthene	16.2	2.33	ug/kg wet	18.6		87.0	60-140		
Fluorene	16.5	2.33	ug/kg wet	18.6		88.4	60-140		
Hexachlorobenzene	16.2	2.33	ug/kg wet	18.6		86.7	60-140		
Hexachlorobutadiene	9.97 J1	2.33	ug/kg wet	18.6		53.5	60-140		
Hexachlorocyclopentadiene	11.8	2.33	ug/kg wet	18.6		63.4	60-140		
Hexachloroethane	10.6 J1	2.33	ug/kg wet	18.6		56.6	60-140		
Indeno(1,2,3-cd) pyrene	15.7	2.33	ug/kg wet	18.6		84.1	60-140		
Isophorone	13.7	2.33	ug/kg wet	18.6		73.7	60-140		
Naphthalene	14.6	2.33	ug/kg wet	18.6		78.6	60-140		
Nitrobenzene	17.2	2.33	ug/kg wet	18.6		92.5	60-140		
n-Nitrosodimethylamine	77.1	2.33	ug/kg wet	93.2		82.7	60-140		
n-Nitrosodi-n-propylamine	16.3	2.33	ug/kg wet	18.6		87.6	60-140		
n-Nitrosodiphenylamine	13.4	2.33	ug/kg wet	18.6		71.6	60-140		
Pentachlorophenol	31.9	4.66	ug/kg wet	37.3		85.6	60-140		
Phenanthrene	16.9	2.33	ug/kg wet	18.6		90.9	60-140		
Phenol, Total	32.4	4.66	ug/kg wet	37.3		86.9	60-140		
Pyrene	16.0	2.33	ug/kg wet	18.6		85.7	60-140		
Surrogate: 2-Fluorobiphenyl-surr		14.2	ug/kg wet	18.6		76.4	60-140		
Surrogate: 2-Fluorophenol-surr		34.9	ug/kg wet	<i>37.3</i>		93.6	<i>60-140</i>		
Surrogate: 2,4,6-Tribromophenol-surr		35.6	ug/kg wet	<i>37.3</i>		95.5	60-140		
Surrogate: Nitrobenzene-d5-surr		17.2	ug/kg wet	18.6		92.4	60-140		
Surrogate: Phenol-d5-surr		34.6	ug/kg wet	<i>37.3</i>		92.8	60-140		
Surrogate: p-Terphenyl-d14-surr		16.7	ug/kg wet	18.6		89.7	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3094 - SW-3570 (Co	ontinued)								
BSD BENZ (BGA3094-BSD1)	-		Pre	epared: 1/24	4/2023 Analyze	ed: 2/8/2023	;		
3,3'-Dichlorobenzidine	11.1 J1	2.38	ug/kg wet	19.0		58.1	60-140	0.224	40
Benzidine	3.54 J1	2.38	ug/kg wet	19.0		18.6	60-140	7.25	40
Surrogate: 2-Fluorobiphenyl-surr		17.5	ug/kg wet	19.0		92.0	60-140		
Surrogate: 2-Fluorophenol-surr		44.4	ug/kg wet	38.1		117	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		47.0	ug/kg wet	38.1		124	60-140		
Surrogate: Nitrobenzene-d5-surr		23.2	ug/kg wet	19.0		122	60-140		
Surrogate: Phenol-d5-surr		45.3	ug/kg wet	38.1		119	60-140		
Surrogate: p-Terphenyl-d14-surr		20.7	ug/kg wet	19.0		109	60-140		
BSD SV (BGA3094-BSD2)			Pre	pared: 1/24	/2023 Analyze	d: 2/25/2023	3		
1,2,4-Trichlorobenzene	13.9	2.30	ug/kg wet	18.4	•	75.6	60-140	6.61	40
1,2-Dichlorobenzene	12.6	2.30	ug/kg wet	18.4		68.3	60-140	2.85	40
(o-Dichlorobenzene)	-								
1,2-Diphenylhydrazine	17.6	2.30	ug/kg wet	18.4		95.5	60-140	6.55	40
1,3-Dichlorobenzene	12.0	2.30	ug/kg wet	18.4		65.0	60-140	3.23	40
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	12.2	2.30	ug/kg wet	18.4		66.3	60-140	1.85	40
(p-Dichlorobenzene)			,,						
2,2'-Oxybis(1-chloropropane),	16.1	2.30	ug/kg wet	18.4		87.5	60-140	7.96	40
bis(2-Chloro-1-methy	25.2	4.61	ua/ka wot	26.0		05.5	60 140	6 22	40
2,4,6-Trichlorophenol	35.2	4.61	ug/kg wet ug/kg wet	36.9 36.9		95.5	60-140 60-140	6.22 3.86	40 40
2,4-Dichlorophenol 2,4-Dimethylphenol	35.5	4.61 4.61	ug/kg wet ug/kg wet	36.9 36.9		96.3 100	60-140	9.35	40 40
2,4-Dinitrophenol	37.0	4.61	ug/kg wet	92.2		25.5	10-50.4	32.9	40
2,4-Dinitrotoluene (2,4-DNT)	23.5	2.30	ug/kg wet	18.4		93.3	60-140	7.22	40
2,6-Dinitrotoluene (2,6-DNT)	17.2 18.2	2.30	ug/kg wet	18.4		98.7	60-140	6.99	40
2-Chloronaphthalene	16.4	2.30	ug/kg wet	18.4		89.0	60-140	3.07	40
2-Chlorophenol	34.6	4.61	ug/kg wet	36.9		93.9	60-140	8.92	40
2-Methyl-4,6-dinitrophenol	26.5	18.4	ug/kg wet	36.9		72.0	60-140	19.6	40
(4,6-Dinitro-2-methylph	20.5	20	ug/.tg 110t	50.5		, 2.0	00 1.0	15.0	
2-Nitrophenol	34.7	4.61	ug/kg wet	36.9		94.0	60-140	3.86	40
4-Bromophenyl phenyl ether (BDE-3)	17.5	2.30	ug/kg wet	18.4		95.0	60-140	5.19	40
4-Chloro-3-methylphenol	35.2	4.61	ug/kg wet	36.9		95.6	60-140	4.98	40
4-Chlorophenyl phenylether	17.3	2.30	ug/kg wet	18.4		94.0	60-140	4.40	40
4-Nitrophenol	95.1	2.30	ug/kg wet	92.2		103	60-140	13.0	40
Acenaphthene	16.6	2.30	ug/kg wet	18.4		90.2	60-140	4.13	40
Acenaphthylene	20.1	2.30	ug/kg wet	18.4		109	60-140	3.41	40
Anthracene	18.1	2.30	ug/kg wet	18.4		98.1	60-140	4.08	40
Benzo(a)anthracene	17.4	2.30	ug/kg wet	18.4		94.4	60-140	8.33	40
Benzo(a)pyrene	17.6	2.30	ug/kg wet	18.4		95.7	60-140	7.78	40
Benzo(b)fluoranthene	15.7	2.30	ug/kg wet	18.4		85.4	60-140	3.19	40
Benzo(g,h,i)perylene	17.6	2.30	ug/kg wet	18.4		95.4	60-140	9.60	40
Benzo(k)fluoranthene	16.8	2.30	ug/kg wet	18.4		91.1	60-140	4.31	40
bis(2-Chloroethoxy)methane	17.3	2.30	ug/kg wet	18.4		93.7	60-140	4.79	40
bis(2-Chloroethyl) ether	17.4	2.30	ug/kg wet	18.4		94.6	60-140	5.40	40
Bis(2-ethylhexyl )phthalate	18.9	2.30	ug/kg wet	18.4		103	60-140	10.7	40
Butyl benzyl phthalate	17.4	2.30	ug/kg wet	18.4		94.4	60-140	6.62	40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3094 - SW-3570 (C	ontinued)								
BSD SV (BGA3094-BSD2)	-		Pre	pared: 1/24	/2023 Analyze	d: 2/25/202	3		
Chrysene	16.6	2.30	ug/kg wet	18.4		90.2	60-140	5.80	40
Dibenzo(a,h)anthracene	17.2	2.30	ug/kg wet	18.4		93.6	60-140	10.8	40
Diethyl phthalate	18.6	2.30	ug/kg wet	18.4		101	60-140	1.34	40
Dimethyl phthalate	18.3	2.30	ug/kg wet	18.4		99.3	60-140	4.77	40
Di-n-butyl phthalate	20.1	2.30	ug/kg wet	18.4		109	60-140	6.07	40
Di-n-octyl phthalate	17.9	2.30	ug/kg wet	18.4		97.2	60-140	5.27	40
Fluoranthene	17.2	2.30	ug/kg wet	18.4		93.4	60-140	6.02	40
Fluorene	17.1	2.30	ug/kg wet	18.4		93.0	60-140	3.89	40
Hexachlorobenzene	16.9	2.30	ug/kg wet	18.4		91.7	60-140	4.45	40
Hexachlorobutadiene	10.6 J1	2.30	ug/kg wet	18.4		57.4	60-140	5.90	40
Hexachlorocyclopentadiene	14.3	2.30	ug/kg wet	18.4		77.3	60-140	18.7	40
Hexachloroethane	10.8 J1	2.30	ug/kg wet	18.4		58.5	60-140	2.13	40
Indeno(1,2,3-cd) pyrene	17.4	2.30	ug/kg wet	18.4		94.6	60-140	10.6	40
Isophorone	14.6	2.30	ug/kg wet	18.4		79.2	60-140	5.98	40
Naphthalene	15.3	2.30	ug/kg wet	18.4		82.9	60-140	4.32	40
Nitrobenzene	17.8	2.30	ug/kg wet	18.4		96.8	60-140	3.41	40
n-Nitrosodimethylamine	74.1	2.30	ug/kg wet	92.2		80.4	60-140	3.85	40
n-Nitrosodi-n-propylamine	17.1	2.30	ug/kg wet	18.4		92.6	60-140	4.37	40
n-Nitrosodiphenylamine	12.4	2.30	ug/kg wet	18.4		67.2	60-140	7.44	40
Pentachlorophenol	35.2	4.61	ug/kg wet	36.9		95.5	60-140	9.80	40
Phenanthrene	17.8	2.30	ug/kg wet	18.4		96.6	60-140	4.89	40
Phenol, Total	35.4	4.61	ug/kg wet	36.9		96.1	60-140	8.87	40
Pyrene	16.9	2.30	ug/kg wet	18.4		91.9	60-140	5.86	40
Surrogate: 2-Fluorobiphenyl-surr		14.6	ug/kg wet	18.4		79.4	60-140		
Surrogate: 2-Fluorophenol-surr		37.4	ug/kg wet	36.9		101	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		37.8	ug/kg wet	36.9		103	60-140		
Surrogate: Nitrobenzene-d5-surr		17.8	ug/kg wet	18.4		96.4	60-140		
Surrogate: Phenol-d5-surr		36.9	ug/kg wet	36.9		100	60-140		
Surrogate: p-Terphenyl-d14-surr		17.7	ug/kg wet	18.4		96.0	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Quality Control** (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch: BGA3094 - SW-3570 (Co.	ntinued)								
MDL BENZ (BGA3094-MRL1)	-		Pre	epared: 1/24	1/2023 Analyze	d: 2/8/2023			
3,3'-Dichlorobenzidine	<2.31 U	2.31	ug/kg wet	1.85	•				
Benzidine	<2.31 U		ug/kg wet	1.85					
Surrogate: 2-Fluorobiphenyl-surr		14.4	ug/kg wet	18.5		77.7	60-140		
Surrogate: 2-Fluorophenol-surr		34.5		16.5 37.0		93.2			
Surrogate: 2-Fluorophenor-surr Surrogate: 2,4,6-Tribromophenol-surr		34.3 38.2	ug/kg wet ug/kg wet	<i>37.0</i> <i>37.0</i>		93.2 103	60-140 60-140		
, , ,			ug/kg wet ug/kg wet				60-140 60-140		
Surrogate: Nitrobenzene-d5-surr Surrogate: Phenol-d5-surr		17.7	ug/kg wet ug/kg wet	18.5 37.0		95.8 106	60-140 60-140		
_		39.1				106			
Surrogate: p-Terphenyl-d14-surr		19.5	ug/kg wet	18.5		106	60-140		
MDL SV (BGA3094-MRL2)			Pre	pared: 1/24	/2023 Analyzed	d: 2/24/2023	3		
1,2,4-Trichlorobenzene	1.51 J	2.48	ug/kg wet	1.98		76.2			
1,2-Dichlorobenzene	1.30 J	2.48	ug/kg wet	1.98		65.8			
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	2.11 J	2.48	ug/kg wet	1.98		106			
1,3-Dichlorobenzene	<2.48 U	2.48	ug/kg wet	1.98					
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	1.26 J	2.48	ug/kg wet	1.98		63.4			
(p-Dichlorobenzene)		2.40		1.00		00.4			
2,2'-Oxybis(1-chloropropane),	1.77 J	2.48	ug/kg wet	1.98		89.4			
bis(2-Chloro-1-methy	4.07. ]	4.96	ug/kg wet	3.96		103			
2,4,6-Trichlorophenol	4.07 J					98.1			
2,4-Dichlorophenol	3.89 J	4.96	ug/kg wet	3.96					
2,4-Dimethylphenol	3.80 J	4.96	ug/kg wet	3.96		95.9	FO 1FO		
2,4-Dinitrophenol	6.79	4.96	ug/kg wet	9.91		68.5	50-150		
2,4-Dinitrotoluene (2,4-DNT)	1.82 J	2.48	ug/kg wet	1.98		91.9			
2,6-Dinitrotoluene (2,6-DNT)	1.95 J	2.48	ug/kg wet	1.98		98.4			
2-Chloronaphthalene	1.70 J	2.48	ug/kg wet	1.98		85.7			
2-Chlorophenol	3.55 J	4.96	ug/kg wet	3.96		89.4			
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph	<19.8 U	19.8	ug/kg wet	3.96					
2-Nitrophenol	3.93 J	4.96	ug/kg wet	3.96		99.2			
4-Bromophenyl phenyl ether (BDE-3)	3.93 J 1.81 J	2.48	ug/kg wet	1.98		91.1			
4-Chloro-3-methylphenol	3.86 J	4.96	ug/kg wet	3.96		97.4			
4-Chlorophenyl phenylether		2.48	ug/kg wet	1.98		87.3			
4-Nitrophenol	1.73 J	2.48	ug/kg wet	9.91		107	50-150		
Acenaphthene	10.6	2.48	ug/kg wet ug/kg wet	1.98		85.3	20-130		
Acenaphthene Acenaphthylene	1.69 J	2.48	ug/kg wet ug/kg wet	1.98		108			
• •	2.13 J		J. J			90.4			
Anthracene	1.79 J	2.48	ug/kg wet	1.98		90. <del>4</del> 85.0			
Benzo(a)anthracene	1.69 J	2.48	ug/kg wet	1.98		85.0 89.2			
Benzo(a)pyrene	1.77 J	2.48	ug/kg wet	1.98					
Benzo(b)fluoranthene	1.81 J	2.48	ug/kg wet	1.98		91.1			
Benzo(g,h,i)perylene	1.72 J	2.48	ug/kg wet	1.98		86.6			
Benzo(k)fluoranthene	1.78 J	2.48	ug/kg wet	1.98		89.8			
bis(2-Chloroethoxy)methane	1.72 J	2.48	ug/kg wet	1.98		86.6			
bis(2-Chloroethyl) ether	1.76 J	2.48	ug/kg wet	1.98		89.0			



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3094 - SW-3570 (Co	ontinued)								
MDL SV (BGA3094-MRL2)	ontinaca y		Pre	pared: 1/24	/2023 Analyze	d: 2/24/202	3		
Butyl benzyl phthalate	1.78 J	2.48	ug/kg wet	1.98	, 2023 / tilaly20	89.9	-		
Chrysene	1.78 J	2.48	ug/kg wet	1.98		89.7			
Dibenzo(a,h)anthracene	1.61 J	2.48	ug/kg wet	1.98		81.4			
Diethyl phthalate	3.59	2.48	ug/kg wet	1.98		181			
Dimethyl phthalate	2.07 J	2.48	ug/kg wet	1.98		104			
Di-n-butyl phthalate	4.75	2.48	ug/kg wet	1.98		240			
Di-n-octyl phthalate	1.74 J	2.48	ug/kg wet	1.98		87.8			
Fluoranthene	1.73 J	2.48	ug/kg wet	1.98		87.1			
Fluorene	1.89 J	2.48	ug/kg wet	1.98		95.2			
Hexachlorobenzene	1.70 J	2.48	ug/kg wet	1.98		86.0			
Hexachlorobutadiene	<2.48 U	2.48	ug/kg wet	1.98					
Hexachlorocyclopentadiene	<2.48 J1, U	2.48	ug/kg wet	1.98					
Hexachloroethane	<2.48 U	2.48	ug/kg wet	1.98					
Indeno(1,2,3-cd) pyrene	1.61 J	2.48	ug/kg wet	1.98		81.0			
Isophorone	1.70 J	2.48	ug/kg wet	1.98		85.6			
Naphthalene	1.61 J	2.48	ug/kg wet	1.98		81.3			
Nitrobenzene	1.79 J	2.48	ug/kg wet	1.98		90.4			
n-Nitrosodimethylamine	7.72	2.48	ug/kg wet	9.91		77.9	50-150		
n-Nitrosodi-n-propylamine	1.93 J	2.48	ug/kg wet	1.98		97.4			
n-Nitrosodiphenylamine	1.84 J	2.48	ug/kg wet	1.98		92.9			
Pentachlorophenol	3.18 J	4.96	ug/kg wet	3.96		80.2			
Phenanthrene	1.78 J	2.48	ug/kg wet	1.98		89.7			
Phenol, Total	5.11	4.96	ug/kg wet	3.96		129			
Pyrene	1.72 J	2.48	ug/kg wet	1.98		86.8			
Surrogate: 2-Fluorobiphenyl-surr		15.0	ug/kg wet	19.8		<i>75.4</i>	60-140		
Surrogate: 2-Fluorophenol-surr		36.6	ug/kg wet	39.6		92.3	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		38.4	ug/kg wet	39.6		97.0	60-140		
Surrogate: Nitrobenzene-d5-surr		16.9	ug/kg wet	19.8		85.5	60-140		
Surrogate: Phenol-d5-surr		36.4	ug/kg wet	39.6		91.9	60-140		
Surrogate: p-Terphenyl-d14-surr		18.7	ug/kg wet	19.8		94.6	60-140		

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3094 - SW-3570 (C	Continued)									
23A1459-16 MS (BGA3094-MS1)	<i></i> /	Source: 23	A1459-16RE	<b>1</b> Pre	epared: 1/24	/2023 Analyze	d: 2/25/202	3		
1,2,4-Trichlorobenzene	22.3		3.16	ug/kg dry	25.3	<3.16	88.3	60-140		
1,2-Dichlorobenzene	18.2		3.16	ug/kg dry	25.3	<3.16	72.1	60-140		
(o-Dichlorobenzene)	10.2			3, 3 . 7						
1,2-Diphenylhydrazine	25.3		3.16	ug/kg dry	25.3	<3.16	100	60-140		
1,3-Dichlorobenzene	17.8		3.16	ug/kg dry	25.3	<3.16	70.6	60-140		
(m-Dichlorobenzene)										
1,4-Dichlorobenzene	18.0		3.16	ug/kg dry	25.3	<3.16	71.3	60-140		
(p-Dichlorobenzene)										
2,2'-Oxybis(1-chloropropane),	21.7		3.16	ug/kg dry	25.3	<3.16	85.8	60-140		
bis(2-Chloro-1-methy										
2,4,6-Trichlorophenol	51.3		6.32	ug/kg dry	50.6	<6.32	102	60-140		
2,4-Dichlorophenol	53.0		6.32	ug/kg dry	50.6	<6.32	105	60-140		
2,4-Dimethylphenol	50.3		6.32	ug/kg dry	50.6	<6.32	99.5	60-140		
2,4-Dinitrophenol	18.8		6.32	ug/kg dry	126	<6.32	14.9	10-51.3		
2,4-Dinitrotoluene (2,4-DNT)	23.7		3.16	ug/kg dry	25.3	<3.16	93.7	60-140		
2,6-Dinitrotoluene (2,6-DNT)	26.5		3.16	ug/kg dry	25.3	<3.16	105	60-140		
2-Chloronaphthalene	25.8		3.16	ug/kg dry	25.3	<3.16	102	60-140		
2-Chlorophenol	48.9		6.32	ug/kg dry	50.6	<6.32	96.7	60-140		
2-Methyl-4,6-dinitrophenol	26.3	J1	25.3	ug/kg dry	50.6	<25.3	52.0	60-140		
(4,6-Dinitro-2-methylph										
2-Nitrophenol	43.6		6.32	ug/kg dry	50.6	<6.32	86.3	60-140		
4-Bromophenyl phenyl ether (BDE-3)	25.2		3.16	ug/kg dry	25.3	<3.16	99.8	60-140		
4-Chloro-3-methylphenol	51.6		6.32	ug/kg dry	50.6	<6.32	102	60-140		
4-Chlorophenyl phenylether	25.6		3.16	ug/kg dry	25.3	<3.16	101	60-140		
4-Nitrophenol	130		3.16	ug/kg dry	126	<3.16	103	60-140		
Acenaphthene	25.6		3.16	ug/kg dry	25.3	<3.16	101	60-140		
Acenaphthylene	31.2		3.16	ug/kg dry	25.3	<3.16	124	60-140		
Anthracene	26.2		3.16	ug/kg dry	25.3	<3.16	104	60-140		
Benzo(a)anthracene	27.4		3.16	ug/kg dry	25.3	<3.16	108	60-140		
Benzo(a)pyrene	24.6		3.16	ug/kg dry	25.3	<3.16	97.3	60-140		
Benzo(b)fluoranthene	25.9		3.16	ug/kg dry	25.3	<3.16	103	60-140		
Benzo(g,h,i)perylene	23.0		3.16	ug/kg dry	25.3	<3.16	91.0	60-140		
Benzo(k)fluoranthene	24.8		3.16	ug/kg dry	25.3	<3.16	98.1	60-140		
bis(2-Chloroethoxy)methane	22.8		3.16	ug/kg dry	25.3	<3.16	90.2	60-140		
bis(2-Chloroethyl) ether	22.7		3.16	ug/kg dry	25.3	<3.16	89.7	60-140		
Bis(2-ethylhexyl )phthalate	23.2		3.16	ug/kg dry	25.3	2.32	82.4	60-140		
Butyl benzyl phthalate			3.16	ug/kg dry	25.3	<3.16	87.8	60-140		
Chrysene	22.2		3.16	ug/kg dry	25.3	<3.16	105	60-140		
Dibenzo(a,h)anthracene	26.5		3.16		25.3	<3.16	87.4	60-140		
	22.1			ug/kg dry						
Diethyl phthalate	26.9		3.16	ug/kg dry	25.3	2.75	95.7 103	60-140 60-140		
Dimethyl phthalate	26.0		3.16	ug/kg dry	25.3	<3.16	103	60-140		
Di-n-butyl phthalate	28.6		3.16	ug/kg dry	25.3	5.75	90.6	60-140		
Di-n-octyl phthalate	22.1		3.16	ug/kg dry	25.3	<3.16	87.2	60-140		
Fluoranthene	28.2		3.16	ug/kg dry	25.3	5.04	91.8	60-140		
Fluorene	24.8		3.16	ug/kg dry	25.3	<3.16	98.0	60-140		
Hexachlorobenzene	23.8		3.16	ug/kg dry	25.3	<3.16	94.1	60-140		
Hexachlorobutadiene	17.8		3.16	ug/kg dry	25.3	<3.16	70.3	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result	•	orting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3094 - SW-3570 (Co.	ntinued)									
23A1459-16 MS (BGA3094-MS1)	-	Source: 23A1459-	16RE	<b>1</b> Pro	epared: 1/24	/2023 Analyze	d: 2/25/2023	3		
Hexachlorocyclopentadiene	6.48		3.16	ug/kg dry	25.3	<3.16	25.7	60-140		
Hexachloroethane	16.7	-	3.16	ug/kg dry	25.3	<3.16	66.0	60-140		
Indeno(1,2,3-cd) pyrene	22.8		3.16	ug/kg dry	25.3	<3.16	90.2	60-140		
Isophorone	21.1		3.16	ug/kg dry	25.3	<3.16	83.4	60-140		
Naphthalene	20.4		3.16	ug/kg dry	25.3	<3.16	80.7	60-140		
Nitrobenzene	21.8		3.16	ug/kg dry	25.3	<3.16	86.4	60-140		
n-Nitrosodimethylamine	43.8	11	3.16	ug/kg dry	126	<3.16	34.7	60-140		
n-Nitrosodi-n-propylamine	24.2	51	3.16	ug/kg dry	25.3	<3.16	95.6	60-140		
n-Nitrosodiphenylamine	18.4		3.16	ug/kg dry	25.3	<3.16	72.8	60-140		
Pentachlorophenol	47.9		6.32	ug/kg dry	50.6	<6.32	94.7	60-140		
Phenanthrene	24.9		3.16	ug/kg dry	25.3	<3.16	98.3	60-140		
Phenol, Total	45.9		6.32	ug/kg dry	50.6	<6.32	90.7	60-140		
Pyrene	28.0		3.16	ug/kg dry	25.3	3.75	95.8	60-140		
	20.0									
Surrogate: 2-Fluorobiphenyl-surr			23.8	ug/kg dry	25.3		94.2	60-140		
Surrogate: 2-Fluorophenol-surr			45.9	ug/kg dry	50.6		90.8	60-140		
Surrogate: 2,4,6-Tribromophenol-surr			<i>52.7</i>	ug/kg dry	50.6		104	60-140		
Surrogate: Nitrobenzene-d5-surr			21.6	ug/kg dry	25.3		85.6	60-140		
Surrogate: Phenol-d5-surr			47.7	ug/kg dry	50.6		94.4	60-140		
Surrogate: p-Terphenyl-d14-surr			22.1	ug/kg dry	25.3		87.3	60-140		
23A1459-16 MSD (BGA3094-MSD1)		Source: 23A1459-	16RE	<b>1</b> Pro	epared: 1/24	/2023 Analyze	d: 2/25/2023	3		
1,2,4-Trichlorobenzene	24.2		3.22	ug/kg dry	25.8	<3.22	93.8	60-140	7.98	40
1,2-Dichlorobenzene	20.3		3.22	ug/kg dry	25.8	<3.22	78.9	60-140	10.8	40
(o-Dichlorobenzene)	20.0			5, 5 ,						
1,2-Diphenylhydrazine	28.6		3.22	ug/kg dry	25.8	<3.22	111	60-140	12.0	40
1,3-Dichlorobenzene	20.1		3.22	ug/kg dry	25.8	<3.22	78.1	60-140	12.0	40
(m-Dichlorobenzene)										
1,4-Dichlorobenzene	20.0		3.22	ug/kg dry	25.8	<3.22	77.8	60-140	10.5	40
(p-Dichlorobenzene)										
2,2'-Oxybis(1-chloropropane),	23.5		3.22	ug/kg dry	25.8	<3.22	91.2	60-140	7.99	40
bis(2-Chloro-1-methy										
2,4,6-Trichlorophenol	58.3		6.44	ug/kg dry	51.5	<6.44	113	60-140	12.7	40
2,4-Dichlorophenol	59.1		6.44	ug/kg dry	51.5	<6.44	115	60-140	10.9	40
2,4-Dimethylphenol	53.0		6.44	ug/kg dry	51.5	<6.44	103	60-140	5.32	40
2,4-Dinitrophenol	20.2		6.44	ug/kg dry	129	<6.44	15.7	10-51.3	7.13	40
2,4-Dinitrotoluene (2,4-DNT)	26.5		3.22	ug/kg dry	25.8	<3.22	103	60-140	11.2	40
2,6-Dinitrotoluene (2,6-DNT)	29.5		3.22	ug/kg dry	25.8	<3.22	115	60-140	10.7	40
2-Chloronaphthalene	28.7		3.22	ug/kg dry	25.8	<3.22	111	60-140	10.5	40
2-Chlorophenol	51.7		6.44	ug/kg dry	51.5	<6.44	100	60-140	5.52	40
2-Methyl-4,6-dinitrophenol	29.3	J1	25.8	ug/kg dry	51.5	<25.8	56.9	60-140	11.0	40
(4,6-Dinitro-2-methylph			_		_	_				_
2-Nitrophenol	48.9		6.44	ug/kg dry	51.5	<6.44	94.9	60-140	11.4	40
4-Bromophenyl phenyl ether (BDE-3)	27.9		3.22	ug/kg dry	25.8	<3.22	108	60-140	10.0	40
4-Chloro-3-methylphenol	57.0		6.44	ug/kg dry	51.5	<6.44	111	60-140	9.84	40
4-Chlorophenyl phenylether	28.4		3.22	ug/kg dry	25.8	<3.22	110	60-140	10.3	40
4-Nitrophenol	145		3.22	ug/kg dry	129	<3.22	113	60-140	11.3	40
Acenaphthene	28.1		3.22	ug/kg dry	25.8	<3.22	109	60-140	9.23	40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3094 - SW-3570 (Cont	tinued)								
23A1459-16 MSD (BGA3094-MSD1)	•	e: 23A1459-16RE	<b>1</b> Pro	epared: 1/24	/2023 Analyze	d: 2/25/202	3		
Acenaphthylene	33.2	3.22	ug/kg dry	25.8	<3.22	129	60-140	6.28	40
Anthracene	28.6	3.22	ug/kg dry	25.8	<3.22	111	60-140	8.81	40
Benzo(a)anthracene	25.1	3.22	ug/kg dry	25.8	<3.22	97.4	60-140	8.67	40
Benzo(a)pyrene	23.8	3.22	ug/kg dry	25.8	<3.22	92.4	60-140	3.28	40
Benzo(b)fluoranthene	21.2	3.22	ug/kg dry	25.8	<3.22	82.2	60-140	20.2	40
Benzo(g,h,i)perylene	23.5	3.22	ug/kg dry	25.8	<3.22	91.2	60-140	2.10	40
Benzo(k)fluoranthene	23.0	3.22	ug/kg dry	25.8	<3.22	89.3	60-140	7.59	40
bis(2-Chloroethoxy)methane	24.5	3.22	ug/kg dry	25.8	<3.22	95.2	60-140	7.30	40
bis(2-Chloroethyl) ether	24.2	3.22	ug/kg dry	25.8	<3.22	94.1	60-140	6.67	40
Bis(2-ethylhexyl )phthalate	25.2	3.22	ug/kg dry	25.8	2.32	88.6	60-140	8.27	40
Butyl benzyl phthalate	24.7	3.22	ug/kg dry	25.8	<3.22	96.0	60-140	10.8	40
Chrysene	23.4	3.22	ug/kg dry	25.8	<3.22	90.8	60-140	12.5	40
Dibenzo(a,h)anthracene	23.7	3.22	ug/kg dry	25.8	<3.22	92.0	60-140	7.07	40
Diethyl phthalate	30.7	3.22	ug/kg dry	25.8	2.75	108	60-140	12.9	40
Dimethyl phthalate	28.5	3.22	ug/kg dry	25.8	<3.22	111	60-140	9.14	40
Di-n-butyl phthalate	31.4	3.22	ug/kg dry	25.8	5.75	99.6	60-140	9.24	40
Di-n-octyl phthalate	23.9	3.22	ug/kg dry	25.8	<3.22	92.9	60-140	8.22	40
Fluoranthene	28.4	3.22	ug/kg dry	25.8	5.04	90.6	60-140	0.448	40
Fluorene	27.4	3.22	ug/kg dry	25.8	<3.22	107	60-140	10.2	40
Hexachlorobenzene	26.4	3.22	ug/kg dry	25.8	<3.22	102	60-140	10.4	40
Hexachlorobutadiene	20.5	3.22	ug/kg dry	25.8	<3.22	79.7	60-140	14.4	40
Hexachlorocyclopentadiene	10.5 J1	3.22	ug/kg dry	25.8	<3.22	40.9	60-140	47.7	40
Hexachloroethane	19.8	3.22	ug/kg dry	25.8	<3.22	76.9	60-140	17.1	40
Indeno(1,2,3-cd) pyrene	23.6	3.22	ug/kg dry	25.8	<3.22	91.8	60-140	3.58	40
Isophorone	22.7	3.22	ug/kg dry	25.8	<3.22	88.1	60-140	7.32	40
Naphthalene	22.4	3.22	ug/kg dry	25.8	<3.22	87.0	60-140	9.40	40
Nitrobenzene	23.8	3.22	ug/kg dry	25.8	<3.22	92.3	60-140	8.50	40
n-Nitrosodimethylamine	56.2 J1	3.22	ug/kg dry	129	<3.22	43.6	60-140	24.7	40
n-Nitrosodi-n-propylamine	25.8	3.22	ug/kg dry	25.8	<3.22	100	60-140	6.35	40
n-Nitrosodiphenylamine	17.1	3.22	ug/kg dry	25.8	<3.22	66.3	60-140	7.45	40
Pentachlorophenol	53.9	6.44	ug/kg dry	51.5	<6.44	105	60-140	11.8	40
Phenanthrene	27.6	3.22	ug/kg dry	25.8	<3.22	107	60-140	10.3	40
Phenol, Total	50.1	6.44	ug/kg dry	51.5	<6.44	97.3	60-140	8.85	40
Pyrene	26.7	3.22	ug/kg dry	25.8	3.75	88.9	60-140	4.79	40
Surrogate: 2-Fluorobiphenyl-surr		28.2	ug/kg dry	25.8		109	60-140		
Surrogate: 2-Fluorophenol-surr		52.3	ug/kg dry	51.5		101	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		59.0	ug/kg dry	51.5		114	60-140		
Surrogate: Nitrobenzene-d5-surr		23.9	ug/kg dry	25.8		92.8	60-140		
Surrogate: Phenol-d5-surr		51.7	ug/kg dry	51.5		100	60-140		
Surrogate: p-Terphenyl-d14-surr		24.5	ug/kg dry	25.8		95.1	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3368 - SW-3570									
Blank (BGA3368-BLK1)			Pre	pared: 1/26	/2023 Analyze	ed: 2/13/202	3		
3,3'-Dichlorobenzidine	<2.42 U	2.42			•				
Benzidine	<2.42 U		ug/kg wet						
Surrogate: 2-Fluorobiphenyl-surr		20.1	ug/kg wet	19.4		<i>104</i>	60-140		
Surrogate: 2-Fluorophenol-surr		41.8	ug/kg wet	38.8		104	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		35.2	ug/kg wet	<i>38.8</i>		90.7	60-140		
Surrogate: Nitrobenzene-d5-surr		21.8	ug/kg wet	<i>19.4</i>		112	60-140		
Surrogate: Phenol-d5-surr		39.8	ug/kg wet	38.8		112 103	60-140		
Surrogate: p-Terphenyl-d14-surr		21.1		<i>19.4</i>		103 109	60-140		
Surrogate. p-respirativi-u14-suri		21.1	ug/kg wet	13.4		109	00-140		
Blank (BGA3368-BLK2)				pared: 1/26	/2023 Analyze	ed: 2/27/202	3		
1,2,4-Trichlorobenzene	<2.42 U	2.42							
1,2-Dichlorobenzene	<2.42 U	2.42	ug/kg wet						
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	<2.42 U	2.42							
1,3-Dichlorobenzene	<2.42 U	2.42	ug/kg wet						
(m-Dichlorobenzene)		2.42	,, ,						
1,4-Dichlorobenzene	<2.42 U	2.42	ug/kg wet						
(p-Dichlorobenzene)	2.42.11	2.42	uallea wat						
2,2'-Oxybis(1-chloropropane),	<2.42 U	2.42	ug/kg wet						
bis(2-Chloro-1-methy 2,4,6-Trichlorophenol	<4.85 U	4.85	ug/kg wet						
2,4-Dichlorophenol	<4.85 U	4.85	ug/kg wet						
2,4-Dimethylphenol	<4.85 U	4.85	ug/kg wet						
2,4-Dinitrophenol	<4.85 U	4.85	ug/kg wet						
2,4-Dinitrotoluene (2,4-DNT)	<2.42 U	2.42	ug/kg wet						
2,6-Dinitrotoluene (2,6-DNT)	<2.42 U	2.42	ug/kg wet						
2-Chloronaphthalene	<2.42 U	2.42	ug/kg wet						
2-Chlorophenol		4.85	ug/kg wet						
2-Methyl-4,6-dinitrophenol	<4.85 U	19.4	ug/kg wet						
(4,6-Dinitro-2-methylph	<19.4 U	13.4	ug/ kg WCL						
2-Nitrophenol	<4.85 U	4.85	ug/kg wet						
4-Bromophenyl phenyl ether (BDE-3)	<2.42 U	2.42	ug/kg wet						
4-Chloro-3-methylphenol	<4.85 U	4.85	ug/kg wet						
4-Chlorophenyl phenylether	<2.42 U	2.42	ug/kg wet						
4-Nitrophenol	<2.42 U	2.42	ug/kg wet						
Acenaphthene	<2.42 U	2.42	ug/kg wet						
Acenaphthylene	<2.42 U	2.42							
Anthracene	<2.42 U <2.42 U		ug/kg wet						
Benzo(a)anthracene	<2.42 U <2.42 U		ug/kg wet						
Benzo(a)pyrene	<2.42 U		ug/kg wet						
benzo(b&k)fluoranthene	<2.42 U	2.42							
Benzo(g,h,i)perylene			ug/kg wet						
bis(2-Chloroethoxy)methane	<2.42 U		ug/kg wet ug/kg wet						
bis(2-Chloroethyl) ether	<2.42 U								
Bis(2-ethylhexyl )phthalate	<2.42 U	2.42 2.42							
	1.56 J	7.47	UU/KU WEI						

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

		Reporting		Эріке	Source		70KLC		KFD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3368 - SW-3570 (Cd	ontinued)								
Blank (BGA3368-BLK2)	,		Pre	pared: 1/26	/2023 Analyze	ed: 2/27/202	3		
Chrysene	<2.42 U	2.42	ug/kg wet						
Dibenzo(a,h)anthracene	<2.42 U	2.42	ug/kg wet						
Diethyl phthalate	2.53	2.42	ug/kg wet						
Dimethyl phthalate	<2.42 U	2.42	ug/kg wet						
Di-n-butyl phthalate	12.0	2.42	ug/kg wet						
Di-n-octyl phthalate	<2.42 U	2.42	ug/kg wet						
Fluoranthene	<2.42 U	2.42	ug/kg wet						
Fluorene	<2.42 U	2.42	ug/kg wet						
Hexachlorobenzene	<2.42 U	2.42	ug/kg wet						
Hexachlorobutadiene	<2.42 U	2.42	ug/kg wet						
Hexachlorocyclopentadiene	<2.42 U	2.42	ug/kg wet						
Hexachloroethane	<2.42 U	2.42	ug/kg wet						
Indeno(1,2,3-cd) pyrene	<2.42 U	2.42	ug/kg wet						
Isophorone	<2.42 U	2.42	ug/kg wet						
Naphthalene	<2.42 U	2.42	ug/kg wet						
Nitrobenzene	<2.42 U	2.42	ug/kg wet						
n-Nitrosodimethylamine	<2.42 U	2.42	ug/kg wet						
n-Nitrosodi-n-propylamine	<2.42 U	2.42	ug/kg wet						
n-Nitrosodiphenylamine	<2.42 U	2.42	ug/kg wet						
Pentachlorophenol	<4.85 U	4.85	ug/kg wet						
Phenanthrene	<2.42 U	2.42	ug/kg wet						
Phenol, Total	<4.85 U	4.85	ug/kg wet						
Pyrene	<2.42 U	2.42	ug/kg wet						
Surrogate: 2-Fluorobiphenyl-surr		11.9	ug/kg wet	19.4		61.4	60-140		
Surrogate: 2-Fluorophenol-surr		26.4	ug/kg wet	38.8		68.2	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		31.6	ug/kg wet	38.8		81.5	60-140		
Surrogate: Nitrobenzene-d5-surr		14.7	ug/kg wet	19.4		76.0	60-140		
Surrogate: Phenol-d5-surr		27.0	ug/kg wet	38.8		69.7	60-140		
Surrogate: p-Terphenyl-d14-surr		14.3	ug/kg wet	19.4		73.8	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3368 - SW-3570 (Contin									
BS BENZ (BGA3368-BS1)	•		Pre	pared: 1/26	/2023 Analyzed:	2/13/2023	3		
3,3'-Dichlorobenzidine	16.4	2.46	ug/kg wet	19.7	-	83.5	60-140		
Benzidine	2.58 J1	2.46	ug/kg wet	19.7		13.1	60-140		
Surrogate: 2-Fluorobiphenyl-surr		23.2	ug/kg wet	19.7		118	60-140		
Surrogate: 2-Fluorophenol-surr		47.1	ug/kg wet	39.4		120	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		55.0	ug/kg wet	39.4		140	60-140		
Surrogate: Nitrobenzene-d5-surr		23.4	ug/kg wet	<i>19.7</i>		119	60-140		
Surrogate: Phenol-d5-surr		37.3	ug/kg wet	39.4		94.8	60-140		
Surrogate: p-Terphenyl-d14-surr		23.5		19.7		119	60-140		
BS SV (BGA3368-BS2)			Pre	pared: 1/26	/2023 Analyzed	: 2/27/2023	3		
1,2,4-Trichlorobenzene	14.0	2.46	ug/kg wet	19.7	,	71.0	60-140		
1,2-Dichlorobenzene	12.8	2.46	ug/kg wet	19.7		65.1	60-140		
(o-Dichlorobenzene)			J. J						
1,2-Diphenylhydrazine	17.8	2.46	ug/kg wet	19.7		90.2	60-140		
1,3-Dichlorobenzene	12.9	2.46	ug/kg wet	19.7		65.4	60-140		
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	14.1	2.46	ug/kg wet	19.7		71.5	60-140		
(p-Dichlorobenzene)			,,	40 =		07.0	60 110		
2,2'-Oxybis(1-chloropropane),	17.3	2.46	ug/kg wet	19.7		87.9	60-140		
bis(2-Chloro-1-methy	24.0	4.92	ug/kg wet	39.4		86.5	60-140		
2,4,6-Trichlorophenol 2,4-Dichlorophenol	34.0 34.1	4.92	ug/kg wet ug/kg wet	39.4 39.4		86.6	60-140		
2,4-Dimethylphenol	34.1 34.6	4.92	ug/kg wet	39.4		87.9	60-140		
2,4-Dinitrophenol	16.3	4.92	ug/kg wet	98.4		16.5	10-50.4		
2,4-Dinitrotoluene (2,4-DNT)	15.5	2.46	ug/kg wet	19.7		78.5	60-140		
2,6-Dinitrotoluene (2,6-DNT)	17.6	2.46	ug/kg wet	19.7		89.2	60-140		
2-Chloronaphthalene	16.3	2.46	ug/kg wet	19.7		82.8	60-140		
2-Chlorophenol	35.8	4.92	ug/kg wet	39.4		91.0	60-140		
2-Methyl-4,6-dinitrophenol	17.7 J1, J	19.7	ug/kg wet	39.4		44.9	60-140		
(4,6-Dinitro-2-methylph	··· 32/3		J. J						
2-Nitrophenol	31.8	4.92	ug/kg wet	39.4		80.7	60-140		
4-Bromophenyl phenyl ether (BDE-3)	17.3	2.46	ug/kg wet	19.7		87.8	60-140		
4-Chloro-3-methylphenol	35.6	4.92	ug/kg wet	39.4		90.4	60-140		
4-Chlorophenyl phenylether	16.4	2.46	ug/kg wet	19.7		83.2	60-140		
4-Nitrophenol	86.1	2.46	ug/kg wet	98.4		87.5	60-140		
Acenaphthene	16.1	2.46	ug/kg wet	19.7		82.0	60-140		
Acenaphthylene	18.4	2.46	ug/kg wet	19.7		93.7	60-140		
Anthracene	16.6	2.46	ug/kg wet	19.7		84.6	60-140		
Benzo(a)anthracene	16.8	2.46	ug/kg wet	19.7		85.4	60-140		
Benzo(a)pyrene	17.4	2.46	ug/kg wet	19.7		88.4	60-140		
benzo(b&k)fluoranthene	34.4	2.46	ug/kg wet	39.4		87.3	60-140		
Benzo(g,h,i)perylene	16.2	2.46	ug/kg wet	19.7		82.2	60-140		
bis(2-Chloroethoxy)methane	16.3	2.46	ug/kg wet	19.7		82.7	60-140		
bis(2-Chloroethyl) ether	18.0	2.46	ug/kg wet	19.7		91.5	60-140		
Bis(2-ethylhexyl )phthalate	20.2	2.46	ug/kg wet	19.7		103	60-140		
Butyl benzyl phthalate	17.9	2.46	ug/kg wet	19.7		90.7	60-140		
Chrysene	16.4	2.46	ug/kg wet	19.7		83.4	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3368 - SW-3570 (C	ontinued)								
BS SV (BGA3368-BS2)	-		Pre	pared: 1/26	/2023 Analyze	d: 2/27/2023	3		
Dibenzo(a,h)anthracene	17.2	2.46	ug/kg wet	19.7	•	87.4	60-140		
Diethyl phthalate	20.6	2.46	ug/kg wet	19.7		105	60-140		
Dimethyl phthalate	17.6	2.46	ug/kg wet	19.7		89.3	60-140		
Di-n-butyl phthalate	30.2 J1	2.46	ug/kg wet	19.7		153	60-140		
Di-n-octyl phthalate	15.2	2.46	ug/kg wet	19.7		77.2	60-140		
Fluoranthene	16.2	2.46	ug/kg wet	19.7		82.4	60-140		
Fluorene	16.7	2.46	ug/kg wet	19.7		84.7	60-140		
Hexachlorobenzene	18.9	2.46	ug/kg wet	19.7		96.1	60-140		
Hexachlorobutadiene	12.6	2.46	ug/kg wet	19.7		63.8	60-140		
Hexachlorocyclopentadiene	12.7	2.46	ug/kg wet	19.7		64.4	60-140		
Hexachloroethane	9.98 J1	2.46	ug/kg wet	19.7		50.7	60-140		
Indeno(1,2,3-cd) pyrene	16.4	2.46	ug/kg wet	19.7		83.2	60-140		
Isophorone	15.5	2.46	ug/kg wet	19.7		78.7	60-140		
Naphthalene	15.8	2.46	ug/kg wet	19.7		80.5	60-140		
Nitrobenzene	17.4	2.46	ug/kg wet	19.7		88.4	60-140		
n-Nitrosodimethylamine	74.2	2.46	ug/kg wet	98.4		75.4	60-140		
n-Nitrosodi-n-propylamine	18.8	2.46	ug/kg wet	19.7		95.3	60-140		
n-Nitrosodiphenylamine	16.3	2.46	ug/kg wet	19.7		82.9	60-140		
Pentachlorophenol	33.4	4.92	ug/kg wet	39.4		84.7	60-140		
Phenanthrene	16.8	2.46	ug/kg wet	19.7		85.5	60-140		
Phenol, Total	36.1	4.92	ug/kg wet	39.4		91.8	60-140		
Pyrene	15.5	2.46	ug/kg wet	19.7		78.7	60-140		
Surrogate: 2-Fluorobiphenyl-surr		13.8	ug/kg wet	19.7		70.1	60-140		
Surrogate: 2-Fluorophenol-surr		36.9	ug/kg wet	39.4		93.7	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		33.5	ug/kg wet	39.4		85.1	60-140		
Surrogate: Nitrobenzene-d5-surr		18.1	ug/kg wet	19.7		91.9	60-140		
Surrogate: Phenol-d5-surr		38.0	ug/kg wet	39.4		96.5	60-140		
Surrogate: p-Terphenyl-d14-surr		15.2	ug/kg wet	19.7		77.3	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Batch: BGA3368 - SW-3570 (Continued)   BSD BENZ (BGA3368-BSD1)			Reporting		Spike	Source		%REC		RPD
Prepared: 1/26/2023 Analyzed: 2/13/2023		Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Prepared: 1/26/2023 Analyzed: 2/13/2023   3,3'-Dichlorobenzidine   18.1   2.48   ug/kg wet   19.8   91.2   60-140   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   46   9.59   9.59   46   9.59   9.59   46   9.59   9.59   46   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59   9.59	BGA3368 - SW-3570 (Cont	rinued)			· · ·					
Benzidine 3.02 J1 2.48 ug/kg wet 19.8 15.2 60-140 15.7 44  Surrogate: 2-Fluorobiphenyl-surr 21.1 ug/kg wet 19.8 106 60-140  Surrogate: 2-Fluorophenol-surr 33.4 ug/kg wet 39.7 84.2 60-140  Surrogate: 2,4,6-Tribromophenol-surr 54.4 ug/kg wet 39.7 137 60-140  Surrogate: Nitrobenzene-d5-surr 20.2 ug/kg wet 19.8 102 60-140  Surrogate: Phenol-d5-surr 32.8 ug/kg wet 39.7 82.8 60-140  Surrogate: p-Terphenyl-d14-surr 23.3 ug/kg wet 19.8 118 60-140  BSD SV (BGA3368-BSD2) Prepared: 1/26/2023 Analyzed: 2/27/2023  1,2,4-Trichlorobenzene 13.3 2.34 ug/kg wet 18.7 70.8 60-140 5.12 44  1,2-Dichlorobenzene 11.1 J1 2.34 ug/kg wet 18.7 59.3 60-140 14.1 44  (o-Dichlorobenzene) 17.8 2.34 ug/kg wet 18.7 94.9 60-140 0.165 44  1,3-Dichlorobenzene 11.2 J1 2.34 ug/kg wet 18.7 59.8 60-140 13.8 44  (m-Dichlorobenzene) 11.4 2.34 ug/kg wet 18.7 59.8 60-140 20.7 46  (p-Dichlorobenzene) 11.4 2.34 ug/kg wet 18.7 61.0 60-140 20.7 46  (p-Dichlorobenzene) 15.3 2.34 ug/kg wet 18.7 81.4 60-140 12.6 46  2,2'-Oxybis(1-chloropopane), 15.3 2.34 ug/kg wet 18.7 81.4 60-140 12.6 46	•	•		Pre	pared: 1/26	5/2023 Analyze	d: 2/13/2023	3		
Benzidine   3.02 J1   2.48 ug/kg wet   19.8   15.2   60-140   15.7   44   15.8   15.2   60-140   15.7   44   15.8   15.2   60-140   15.7   44   15.8   15.2   60-140   15.7   15.7   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   15.8   1	orobenzidine	18.1	2.48	ug/kg wet	19.8	•	91.2	60-140	9.59	40
Surrogate: 2-Fluorophenol-surr       33.4 ug/kg wet       39.7       84.2 60-140         Surrogate: 2,4,6-Tribromophenol-surr       54.4 ug/kg wet       39.7       137 60-140         Surrogate: Nitrobenzene-d5-surr       20.2 ug/kg wet       19.8       102 60-140         Surrogate: Phenol-d5-surr       32.8 ug/kg wet       39.7       82.8 60-140         Surrogate: p-Terphenyl-d14-surr       23.3 ug/kg wet       19.8       118 60-140         BSD SV (BGA3368-BSD2)         Prepared: 1/26/2023 Analyzed: 2/27/2023         1,2,4-Trichlorobenzene       13.3       2.34 ug/kg wet       18.7       70.8 60-140       5.12 44         1,2-Dichlorobenzene       11.1 J1       2.34 ug/kg wet       18.7       59.3 60-140       14.1 44         (o-Dichlorobenzene)       17.8       2.34 ug/kg wet       18.7       59.8 60-140       0.165 40         1,3-Dichlorobenzene       11.2 J1       2.34 ug/kg wet       18.7       59.8 60-140       0.165 40         1,4-Dichlorobenzene       11.4       2.34 ug/kg wet       18.7       61.0 60-140       20.7 40         (p-Dichlorobenzene       12.2 Ug/kg wet       18.7       61.0 60-140       20.7 40         1,2-Dichlorobenzene       12.2 Ug/kg wet       18.7       61.0 60-140			2.48	ug/kg wet	19.8		15.2	60-140	15.7	40
Surrogate: 2-Fluorophenol-surr       33.4 ug/kg wet 39.7       84.2 60-140         Surrogate: 2,4,6-Tribromophenol-surr       54.4 ug/kg wet 39.7       137 60-140         Surrogate: Nitrobenzene-d5-surr       20.2 ug/kg wet 19.8       102 60-140         Surrogate: Phenol-d5-surr       32.8 ug/kg wet 39.7       82.8 60-140         Surrogate: p-Terphenyl-d14-surr       23.3 ug/kg wet 19.8       118 60-140         Prepared: 1/26/2023 Analyzed: 2/27/2023         1,2,4-Trichlorobenzene       13.3       2.34 ug/kg wet 18.7       70.8 60-140       5.12 44         1,2-Dichlorobenzene       11.1 J1       2.34 ug/kg wet 18.7       59.3 60-140       14.1 40         (o-Dichlorobenzene)       1,2-Diphenylhydrazine       17.8       2.34 ug/kg wet 18.7       94.9 60-140       0.165 40         1,3-Dichlorobenzene       11.2 J1       2.34 ug/kg wet 18.7       59.8 60-140       13.8 40         (m-Dichlorobenzene       11.4       2.34 ug/kg wet 18.7       59.8 60-140       20.7 40         (p-Dichlorobenzene       11.4       2.34 ug/kg wet 18.7       61.0 60-140       20.7 40         (p-Dichlorobenzene)       2.2'-Oxybis(1-chloropropane),       15.3       2.34 ug/kg wet 18.7       81.4 60-140       12.6 40	e: 2-Fluorohinhenvl-surr		21.1	ua/ka wet	19.8		106	60-140		
Surrogate: 2,4,6-Tribromophenol-surr       54.4 ug/kg wet       39.7       137 60-140         Surrogate: Nitrobenzene-d5-surr       20.2 ug/kg wet       19.8       102 60-140         Surrogate: Phenol-d5-surr       32.8 ug/kg wet       39.7       82.8 60-140         Surrogate: p-Terphenyl-d14-surr       23.3 ug/kg wet       19.8       118 60-140         BSD SV (BGA3368-BSD2)         1,2,4-Trichlorobenzene       13.3       2.34 ug/kg wet       18.7       70.8 60-140 5.12 44         1,2-Dichlorobenzene       11.1 J1       2.34 ug/kg wet       18.7       59.3 60-140 14.1 44         (o-Dichlorobenzene)       17.8       2.34 ug/kg wet       18.7       94.9 60-140 0.165 40         1,3-Dichlorobenzene       11.2 J1 2.34 ug/kg wet       18.7       59.8 60-140 13.8 40         (m-Dichlorobenzene)       1.4-Dichlorobenzene       11.4       2.34 ug/kg wet       18.7       61.0 60-140 20.7 44         (p-Dichlorobenzene)       1.2-Dichlorobenzene       11.4       2.34 ug/kg wet       18.7       81.4 60-140 12.6 40	' '									
Surrogate: Nitrobenzene-d5-surr         Surrogate: Phenol-d5-surr       32.8 ug/kg wet       39.7       82.8 60-140         Surrogate: p-Terphenyl-d14-surr       23.3 ug/kg wet       19.8       118 60-140         BSD SV (BGA3368-BSD2)         Prepared: 1/26/2023 Analyzed: 2/27/2023         1,2,4-Trichlorobenzene       13.3       2.34 ug/kg wet       18.7       70.8 60-140 5.12 40       40         1,2-Dichlorobenzene       11.1 J1       2.34 ug/kg wet       18.7       59.3 60-140 14.1 40       40         (o-Dichlorobenzene)       17.8       2.34 ug/kg wet       18.7       94.9 60-140 0.165 40       40         1,3-Dichlorobenzene       11.2 J1       2.34 ug/kg wet       18.7       59.8 60-140 13.8 40       40         (m-Dichlorobenzene)       11.4       2.34 ug/kg wet       18.7       61.0 60-140 20.7 40       40         (p-Dichlorobenzene)       12.4       2.34 ug/kg wet       18.7       61.0 60-140 20.7 40       40         (p-Dichlorobenzene)       2.2'-Oxybis(1-chloropropane)       15.3       2.34 ug/kg wet       18.7       81.4 60-140 12.6 40	•									
Surrogate: Phenol-d5-surr Surrogate: p-Terphenyl-d14-surr   Prepared: 1/26/2023 Analyzed: 2/27/2023  1,2,4-Trichlorobenzene 13.3 2.34 ug/kg wet 18.7 70.8 60-140 5.12 40 1,2-Dichlorobenzene 11.1 J1 2.34 ug/kg wet 18.7 59.3 60-140 14.1 40 (o-Dichlorobenzene) 1,2-Diphenylhydrazine 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 11.2 J1 2.34 ug/kg wet 18.7 59.8 60-140 0.165 40 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropenzene 1,4-Dichlorobenzene 1,4-Dichloropenzene 1,4-Dichloropenz	' '			5, 5						
Surrogate: p-Terphenyl-d14-surr         23.3 ug/kg wet 19.8         118 60-140           BSD SV (BGA3368-BSD2)           Prepared: 1/26/2023 Analyzed: 2/27/2023           1,2,4-Trichlorobenzene         13.3         2.34 ug/kg wet 18.7         70.8 60-140 5.12 40         40.14 40           1,2-Dichlorobenzene         11.1 J1         2.34 ug/kg wet 18.7         59.3 60-140 14.1 40         14.1 40           (o-Dichlorobenzene)         1         2.34 ug/kg wet 18.7         94.9 60-140 0.165 40         40.165 40           1,3-Dichlorobenzene (m-Dichlorobenzene)         11.2 J1         2.34 ug/kg wet 18.7         59.8 60-140 13.8 40         40.16 10.16 60-140 20.7 40           (p-Dichlorobenzene (p-Dichlorobenzene)         11.4         2.34 ug/kg wet 18.7         61.0 60-140 20.7 40         40.16 10.16 60-140 12.6 40           2,2'-Oxybis(1-chloropropane),         15.3         2.34 ug/kg wet 18.7         81.4 60-140 12.6 40										
1,2,4-Trichlorobenzene       13.3       2.34 ug/kg wet       18.7       70.8       60-140       5.12       44         1,2-Dichlorobenzene       11.1 J1       2.34 ug/kg wet       18.7       59.3       60-140       14.1       40         (o-Dichlorobenzene)       1,2-Diphenylhydrazine       17.8       2.34 ug/kg wet       18.7       94.9       60-140       0.165       40         1,3-Dichlorobenzene       11.2 J1       2.34 ug/kg wet       18.7       59.8       60-140       13.8       40         (m-Dichlorobenzene)       1.4-Dichlorobenzene       11.4       2.34 ug/kg wet       18.7       61.0       60-140       20.7       40         (p-Dichlorobenzene)       2.2'-Oxybis(1-chloropropane),       15.3       2.34 ug/kg wet       18.7       81.4       60-140       12.6       40										
1,2,4-Trichlorobenzene       13.3       2.34 ug/kg wet       18.7       70.8       60-140       5.12       44         1,2-Dichlorobenzene       11.1 J1       2.34 ug/kg wet       18.7       59.3       60-140       14.1       40         (o-Dichlorobenzene)       1,2-Diphenylhydrazine       17.8       2.34 ug/kg wet       18.7       94.9       60-140       0.165       40         1,3-Dichlorobenzene       11.2 J1       2.34 ug/kg wet       18.7       59.8       60-140       13.8       40         (m-Dichlorobenzene)       1.4-Dichlorobenzene       11.4       2.34 ug/kg wet       18.7       61.0       60-140       20.7       40         (p-Dichlorobenzene)       2.2'-Oxybis(1-chloropropane),       15.3       2.34 ug/kg wet       18.7       81.4       60-140       12.6       40	(BGA3368-BSD2)			Pre	pared: 1/26	i/2023 Analyze	d: 2/27/2023	3		
1,2-Dichlorobenzene 11.1 J1 2.34 ug/kg wet 18.7 59.3 60-140 14.1 40 (o-Dichlorobenzene) 1,2-Diphenylhydrazine 17.8 2.34 ug/kg wet 18.7 94.9 60-140 0.165 40 1,3-Dichlorobenzene 11.2 J1 2.34 ug/kg wet 18.7 59.8 60-140 13.8 40 (m-Dichlorobenzene) 1.4-Dichlorobenzene 11.4 2.34 ug/kg wet 18.7 61.0 60-140 20.7 40 (p-Dichlorobenzene) 2,2'-Oxybis(1-chloropropane), 15.3 2.34 ug/kg wet 18.7 81.4 60-140 12.6 40	•	13.3	2.34		•	,==.			5.12	40
(o-Dichlorobenzene)  1,2-Diphenylhydrazine 17.8 2.34 ug/kg wet 18.7 94.9 60-140 0.165 4( 1,3-Dichlorobenzene 11.2 J1 2.34 ug/kg wet 18.7 59.8 60-140 13.8 4( (m-Dichlorobenzene) 1,4-Dichlorobenzene 1,4-Dichlorobenzene (p-Dichlorobenzene) 2,2'-Oxybis(1-chloropropane), 15.3 2.34 ug/kg wet 18.7 81.4 60-140 12.6 4(										40
1,2-Diphenylhydrazine 17.8 2.34 ug/kg wet 18.7 94.9 60-140 0.165 40 1,3-Dichlorobenzene 11.2 J1 2.34 ug/kg wet 18.7 59.8 60-140 13.8 40 (m-Dichlorobenzene) 1.4-Dichlorobenzene 11.4 2.34 ug/kg wet 18.7 61.0 60-140 20.7 40 (p-Dichlorobenzene) 2,2'-Oxybis(1-chloropropane), 15.3 2.34 ug/kg wet 18.7 81.4 60-140 12.6 40				5. 5				-		-
(m-Dichlorobenzene) 1,4-Dichlorobenzene 1,14-Dichlorobenzene 11.4 2.34 ug/kg wet 18.7 61.0 60-140 20.7 40 (p-Dichlorobenzene) 2,2'-Oxybis(1-chloropropane), 15.3 2.34 ug/kg wet 18.7 81.4 60-140 12.6 40	enylhydrazine	17.8	2.34	ug/kg wet	18.7		94.9	60-140	0.165	40
1,4-Dichlorobenzene     11.4     2.34 ug/kg wet     18.7     61.0     60-140     20.7     40       (p-Dichlorobenzene)       2,2'-Oxybis(1-chloropropane),     15.3     2.34 ug/kg wet     18.7     81.4     60-140     12.6     40	probenzene		2.34	ug/kg wet	18.7		59.8	60-140	13.8	40
(p-Dichlorobenzene)         2,2'-Oxybis(1-chloropropane),       15.3       2.34 ug/kg wet       18.7       81.4 60-140 12.6 40	robenzene)									
2,2'-Oxybis(1-chloropropane), 15.3 2.34 ug/kg wet 18.7 81.4 60-140 12.6 40		11.4	2.34	ug/kg wet	18.7		61.0	60-140	20.7	40
	,									
bis(2-Chloro-1-methy		15.3	2.34	ug/kg wet	18.7		81.4	60-140	12.6	40
	•									
	-									40
3.3										40
3.3	, ·									40
, , ,	•									40
	* '									40
										40
1	•									40
										40
2-Methyl-4,6-dinitrophenol 22.5 18.7 ug/kg wet 37.5 60.1 60-140 24.2 40 (4,6-Dinitro-2-methylph	· ·	22.5	18.7	ug/kg wet	37.5		60.1	60-140	24.2	40
		29.3	4.69	ug/kg wet	37.5		78.1	60-140	8.22	40
4-Bromophenyl phenyl ether (BDE-3) 14.7 2.34 ug/kg wet 18.7 78.2 60-140 16.5 40	henyl phenyl ether (BDE-3)	14.7	2.34	ug/kg wet	18.7		78.2	60-140	16.5	40
4-Chloro-3-methylphenol 33.3 4.69 ug/kg wet 37.5 88.8 60-140 6.68 40	3-methylphenol	33.3	4.69	ug/kg wet	37.5		88.8	60-140	6.68	40
4-Chlorophenyl phenylether 15.4 2.34 ug/kg wet 18.7 82.1 60-140 6.25 40	henyl phenylether	15.4	2.34	ug/kg wet	18.7		82.1	60-140	6.25	40
4-Nitrophenol 78.8 2.34 ug/kg wet 93.7 84.1 60-140 8.79 40	enol	78.8	2.34	ug/kg wet	93.7		84.1	60-140	8.79	40
Acenaphthene 15.1 2.34 ug/kg wet 18.7 80.4 60-140 6.86 40	hene	15.1	2.34	ug/kg wet	18.7		80.4	60-140	6.86	40
7 7 37 37 37 37 37 37 37 37 37 37 37 37	•	17.4	2.34	ug/kg wet	18.7					40
3, 3		15.5								40
		15.9								40
		16.5								40
- · · · · · · · · · · · · · · · · · · ·										40
										40
	• •									40
										40
										40
										40
Chrysene 15.4 2.34 ug/kg wet 18.7 82.2 60-140 6.32 40		15.4	2.34	ug/kg wet	18.7		82.2	60-140	6.32	40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting	• 6	Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3368 - SW-3570 (C	ontinued)								
BSD SV (BGA3368-BSD2)	•		Pre	pared: 1/26	/2023 Analyze	d: 2/27/202	3		
Dibenzo(a,h)anthracene	15.7	2.34	ug/kg wet	18.7		83.7	60-140	9.26	40
Diethyl phthalate	20.3	2.34	ug/kg wet	18.7		108	60-140	1.72	40
Dimethyl phthalate	17.0	2.34	ug/kg wet	18.7		90.5	60-140	3.47	40
Di-n-butyl phthalate	29.6 J1	2.34	ug/kg wet	18.7		158	60-140	1.98	40
Di-n-octyl phthalate	15.6	2.34	ug/kg wet	18.7		83.2	60-140	2.61	40
Fluoranthene	14.0	2.34	ug/kg wet	18.7		74.8	60-140	14.6	40
Fluorene	15.7	2.34	ug/kg wet	18.7		83.6	60-140	6.18	40
Hexachlorobenzene	15.8	2.34	ug/kg wet	18.7		84.5	60-140	17.7	40
Hexachlorobutadiene	10.3 J1	2.34	ug/kg wet	18.7		54.7	60-140	20.2	40
Hexachlorocyclopentadiene	10.5 J1	2.34	ug/kg wet	18.7		56.2	60-140	18.4	40
Hexachloroethane	9.28 J1	2.34	ug/kg wet	18.7		49.5	60-140	7.25	40
Indeno(1,2,3-cd) pyrene	14.5	2.34	ug/kg wet	18.7		77.2	60-140	12.4	40
Isophorone	13.6	2.34	ug/kg wet	18.7		72.5	60-140	13.1	40
Naphthalene	13.7	2.34	ug/kg wet	18.7		73.1	60-140	14.5	40
Nitrobenzene	15.6	2.34	ug/kg wet	18.7		83.1	60-140	11.0	40
n-Nitrosodimethylamine	60.8	2.34	ug/kg wet	93.7		64.9	60-140	19.8	40
n-Nitrosodi-n-propylamine	15.9	2.34	ug/kg wet	18.7		84.7	60-140	16.6	40
n-Nitrosodiphenylamine	16.6	2.34	ug/kg wet	18.7		88.7	60-140	1.84	40
Pentachlorophenol	27.4	4.69	ug/kg wet	37.5		73.1	60-140	19.6	40
Phenanthrene	15.7	2.34	ug/kg wet	18.7		83.9	60-140	6.78	40
Phenol, Total	34.5	4.69	ug/kg wet	37.5		92.0	60-140	4.70	40
Pyrene	13.7	2.34	ug/kg wet	18.7		73.2	60-140	12.2	40
Surrogate: 2-Fluorobiphenyl-surr		12.3	ug/kg wet	18.7		65.6	60-140		
Surrogate: 2-Fluorophenol-surr		29.0	ug/kg wet	37.5		77.3	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		28.3	ug/kg wet	37.5		75.5	60-140		
Surrogate: Nitrobenzene-d5-surr		16.9	ug/kg wet	18.7		90.0	60-140		
Surrogate: Phenol-d5-surr		32.9	ug/kg wet	37.5		87.9	60-140		
Surrogate: p-Terphenyl-d14-surr		12.6	ug/kg wet	18.7		67.1	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Quality Control** (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3368 - SW-3570 (Cd	ontinued)								
MDL BENZ (BGA3368-MRL1)	-		Pre	pared: 1/26	/2023 Analyzed	d: 2/13/2023	3		
3,3'-Dichlorobenzidine	<2.38 U	2.38	ug/kg wet	1.90					
Benzidine	<2.38 U	2.38	ug/kg wet	1.90					
Surrogate: 2-Fluorobiphenyl-surr		21.3	ug/kg wet	19.0		112	60-140		
Surrogate: 2-Fluorophenol-surr		42.8	ug/kg wet ug/kg wet	<i>38.0</i>		112 113			
Surrogate: 2,4,6-Tribromophenol-surr		42.0 47.1	ug/kg wet ug/kg wet	38.0		113 124	60-140 60-140		
, , ,			ug/kg wet ug/kg wet			124 119	60-140 60-140		
Surrogate: Nitrobenzene-d5-surr		22.5		19.0					
Surrogate: Phenol-d5-surr		39.4	ug/kg wet	38.0		104	60-140		
Surrogate: p-Terphenyl-d14-surr		21.8	ug/kg wet	19.0		114	60-140		
MDL SV (BGA3368-MRL2)			Pre	pared: 1/26	/2023 Analyzed	d: 2/27/2023	3		
1,2,4-Trichlorobenzene	1.56 J	2.36	ug/kg wet	1.89		82.6			
1,2-Dichlorobenzene	<2.36 U	2.36	ug/kg wet	1.89					
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	2.17 J	2.36	ug/kg wet	1.89		115			
1,3-Dichlorobenzene	1.19 J	2.36	ug/kg wet	1.89		62.9			
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	1.42 J	2.36	ug/kg wet	1.89		75.3			
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	1.85 J	2.36	ug/kg wet	1.89		97.9			
bis(2-Chloro-1-methy						445			
2,4,6-Trichlorophenol	4.28 J	4.71	ug/kg wet	3.77		113			
2,4-Dichlorophenol	3.70 J	4.71	ug/kg wet	3.77		98.1			
2,4-Dimethylphenol	3.35 J	4.71	ug/kg wet	3.77		88.9			
2,4-Dinitrophenol	7.00	4.71	ug/kg wet	9.43		74.3	50-150		
2,4-Dinitrotoluene (2,4-DNT)	1.51 J	2.36	ug/kg wet	1.89		79.9			
2,6-Dinitrotoluene (2,6-DNT)	2.19 J	2.36	ug/kg wet	1.89		116			
2-Chloronaphthalene	1.59 J	2.36	ug/kg wet	1.89		84.1			
2-Chlorophenol	3.75 J	4.71	ug/kg wet	3.77		99.6			
2-Methyl-4,6-dinitrophenol	<18.9 U	18.9	ug/kg wet	3.77					
(4,6-Dinitro-2-methylph									
2-Nitrophenol	3.64 J	4.71	ug/kg wet	3.77		96.5			
4-Bromophenyl phenyl ether (BDE-3)	1.60 J	2.36	ug/kg wet	1.89		84.7			
4-Chloro-3-methylphenol	4.61 J	4.71	ug/kg wet	3.77		122			
4-Chlorophenyl phenylether	1.62 J	2.36	ug/kg wet	1.89		85.8			
4-Nitrophenol	10.4	2.36	ug/kg wet	9.43		110	50-150		
Acenaphthene	1.73 J	2.36	ug/kg wet	1.89		92.0			
Acenaphthylene	2.06 J	2.36	ug/kg wet	1.89		109			
Anthracene	1.70 J		ug/kg wet	1.89		90.4			
Benzo(a)anthracene	1.68 J	2.36		1.89		88.9			
Benzo(a)pyrene	1.65 J	2.36	ug/kg wet	1.89		87.5			
benzo(b&k)fluoranthene	2.63	2.36	ug/kg wet	3.77		69.8	50-150		
Benzo(g,h,i)perylene	1.50 J	2.36	ug/kg wet	1.89		79.8			
bis(2-Chloroethoxy)methane	1.86 J	2.36	ug/kg wet	1.89		98.5			
bis(2-Chloroethyl) ether	1.36 J	2.36	ug/kg wet	1.89		72.3			
Bis(2-ethylhexyl )phthalate		2.36	ug/kg wet	1.89		177			
Butyl benzyl phthalate	3.33 1.51 J	2.36		1.89		80.1			



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3368 - SW-3570 (C	ontinued)								
MDL SV (BGA3368-MRL2)	-		Pre	pared: 1/26	/2023 Analyze	d: 2/27/2023	3		
Chrysene	1.63 J	2.36	ug/kg wet	1.89		86.3			
Dibenzo(a,h)anthracene	1.46 J	2.36	ug/kg wet	1.89		77.3			
Diethyl phthalate	4.23	2.36	ug/kg wet	1.89		225			
Dimethyl phthalate	1.82 J	2.36	ug/kg wet	1.89		96.5			
Di-n-butyl phthalate	12.5	2.36	ug/kg wet	1.89		666			
Di-n-octyl phthalate	1.55 J	2.36	ug/kg wet	1.89		82.2			
Fluoranthene	1.71 J	2.36	ug/kg wet	1.89		90.8			
Fluorene	1.56 J	2.36	ug/kg wet	1.89		82.6			
Hexachlorobenzene	1.84 J	2.36	ug/kg wet	1.89		97.4			
Hexachlorobutadiene	<2.36 U	2.36	ug/kg wet	1.89					
Hexachlorocyclopentadiene	<2.36 J1, U	2.36	ug/kg wet	1.89					
Hexachloroethane	<2.36 U	2.36	ug/kg wet	1.89					
Indeno(1,2,3-cd) pyrene	1.65 J	2.36	ug/kg wet	1.89		87.3			
Isophorone	1.67 J	2.36	ug/kg wet	1.89		88.8			
Naphthalene	1.58 J	2.36	ug/kg wet	1.89		83.9			
Nitrobenzene	1.67 J	2.36	ug/kg wet	1.89		88.7			
n-Nitrosodimethylamine	<2.36 J1, U	2.36	ug/kg wet	9.43			50-150		
n-Nitrosodi-n-propylamine	2.79	2.36	ug/kg wet	1.89		148			
n-Nitrosodiphenylamine	1.48 J	2.36	ug/kg wet	1.89		78.6			
Pentachlorophenol	2.65 J	4.71	ug/kg wet	3.77		70.2			
Phenanthrene	1.60 J	2.36	ug/kg wet	1.89		84.7			
Phenol, Total	8.91	4.71	ug/kg wet	3.77		236			
Pyrene	1.32 J	2.36	ug/kg wet	1.89		70.2			
Surrogate: 2-Fluorobiphenyl-surr		14.7	ug/kg wet	18.9		78.1	60-140		
Surrogate: 2-Fluorophenol-surr		30.0	ug/kg wet	37.7		<i>79.6</i>	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		34.1	ug/kg wet	37.7		90.6	60-140		
Surrogate: Nitrobenzene-d5-surr		15.4	ug/kg wet	18.9		81.8	60-140		
Surrogate: Phenol-d5-surr		35.6	ug/kg wet	37.7		94.3	60-140		
Surrogate: p-Terphenyl-d14-surr		15.1		18.9		80.0	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

Batch: BGA3368 - SW-3570 (Co.	ntinued)						
23A1459-24 MS (BGA3368-MS1)	Source: 23/	A1459-24RE1	Prepa	ared: 1/26	/2023 Analyzed	: 2/27/202	3
1,2,4-Trichlorobenzene	<33.9 J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
1,2-Dichlorobenzene	17.0 J	33.9 ug	g/kg dry	27.1	<33.9	62.7	60-140
(o-Dichlorobenzene)							
1,2-Diphenylhydrazine	<33.9 CQ, J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
1,3-Dichlorobenzene	19.9 J	33.9 ug	g/kg dry	27.1	<33.9	73.6	60-140
(m-Dichlorobenzene)							
1,4-Dichlorobenzene	21.9 J	33.9 ug	g/kg dry	27.1	<33.9	80.8	60-140
(p-Dichlorobenzene)							
2,2'-Oxybis(1-chloropropane),	<33.9 J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
bis(2-Chloro-1-methy							
2,4,6-Trichlorophenol	<67.8 J1, U	-	g/kg dry	54.2	<67.8		60-140
2,4-Dichlorophenol	<67.8 J1, U	_	g/kg dry	54.2	<67.8		60-140
2,4-Dimethylphenol	<67.8 J1, U	_	g/kg dry	54.2	<67.8		60-140
2,4-Dinitrophenol	<67.8 J1, U	67.8 ug	g/kg dry	136	<67.8		10-51.3
2,4-Dinitrotoluene (2,4-DNT)	<33.9 J1, U	-	g/kg dry	27.1	<33.9		60-140
2,6-Dinitrotoluene (2,6-DNT)	<33.9 J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
2-Chloronaphthalene	<33.9 J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
2-Chlorophenol	35.2 J	67.8 ug	g/kg dry	54.2	<67.8	65.0	60-140
2-Methyl-4,6-dinitrophenol	<271 J1, U	271 ug	g/kg dry	54.2	<271		60-140
(4,6-Dinitro-2-methylph							
2-Nitrophenol	<67.8 J1, U	67.8 ug	g/kg dry	54.2	<67.8		60-140
4-Bromophenyl phenyl ether (BDE-3)	<33.9 CQ, J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
4-Chloro-3-methylphenol	<67.8 J1, U	67.8 ug	g/kg dry	54.2	<67.8		60-140
4-Chlorophenyl phenylether	<33.9 CQ, J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
4-Nitrophenol	<33.9 CQ, J1, U	33.9 ug	g/kg dry	136	<33.9		60-140
Acenaphthene	421 J1	33.9 ug	g/kg dry	27.1	355	246	60-140
Acenaphthylene	370	33.9 ug	g/kg dry	27.1	333	134	60-140
Anthracene	<33.9 CQ, J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
Benzo(a)anthracene	91.0 CQ	33.9 ug	g/kg dry	27.1	52.9	140	60-140
Benzo(a)pyrene	52.6 CQ, J1	33.9 ug	g/kg dry	27.1	<33.9	194	60-140
benzo(b&k)fluoranthene	<33.9 CQ, J1, U	33.9 ug	g/kg dry	54.2	<33.9		60-140
Benzo(g,h,i)perylene	113 J1, CQ	33.9 ug	g/kg dry	27.1	65.2	175	60-140
bis(2-Chloroethoxy)methane	<33.9 J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
bis(2-Chloroethyl) ether	<33.9 J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
Bis(2-ethylhexyl )phthalate	76.0 CQ, J1	33.9 ug	g/kg dry	27.1	21.3	202	60-140
Butyl benzyl phthalate	55.1 CQ, J1	33.9 ug	g/kg dry	27.1	<33.9	203	60-140
Chrysene	85.5 CQ, J1	33.9 ug	g/kg dry	27.1	71.5	51.7	60-140
Dibenzo(a,h)anthracene	52.8 CQ, J1	33.9 ug	g/kg dry	27.1	<33.9	195	60-140
Diethyl phthalate	<33.9 J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
Dimethyl phthalate	<33.9 J1, U	33.9 ug	g/kg dry	27.1	<33.9		60-140
Di-n-butyl phthalate	311 CQ	33.9 ug	g/kg dry	27.1	293	66.7	60-140
Di-n-octyl phthalate	39.0 CQ, J1	33.9 ug	g/kg dry	27.1	<33.9	144	60-140
Fluoranthene	187 CQ, J1	33.9 ug	g/kg dry	27.1	181	21.2	60-140
Fluorene	1750 CQ, J1, L	33.9 ug	g/kg dry	27.1	1840	NR	60-140
Hexachlorobenzene	18.8 CQ, J	33.9 ug	g/kg dry	27.1	<33.9	69.3	60-140
Hexachlorobutadiene	18.1 J	33.9 ug	g/kg dry	27.1	<33.9	66.8	60-140



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
atch: BGA3368 - SW-3570 (Cont	tinued)								
23A1459-24 MS (BGA3368-MS1)	Source: 23	3A1459-24RE	<b>1</b> Pre	pared: 1/26	/2023 Analyze	d: 2/27/2023	3		
Hexachlorocyclopentadiene	16.9 CQ, J1, J	33.9	ug/kg dry	27.1	<33.9		60-140		
Hexachloroethane	26.9 J	33.9	ug/kg dry	27.1	<33.9	99.4	60-140		
Indeno(1,2,3-cd) pyrene	80.2 CQ	33.9	ug/kg dry	27.1	44.3	132	60-140		
Isophorone	<33.9 J1, U	33.9	ug/kg dry	27.1	<33.9		60-140		
Naphthalene	<33.9 J1, U	33.9	ug/kg dry	27.1	<33.9		60-140		
Nitrobenzene	<33.9 J1, U	33.9	ug/kg dry	27.1	<33.9		60-140		
n-Nitrosodimethylamine	<33.9 J1, U	33.9	ug/kg dry	136	<33.9		60-140		
n-Nitrosodi-n-propylamine	<33,9 J1, U	33.9	ug/kg dry	27.1	<33.9		60-140		
n-Nitrosodiphenylamine	<33.9 J1, U	33.9	ug/kg dry	27.1	<33.9		60-140		
Pentachlorophenol	52.7 CQ, J	67.8	ug/kg dry	54.2	<67.8	97.1	60-140		
Phenanthrene	1320 CQ, J1	33.9	ug/kg dry	27.1	1380	NR	60-140		
Phenol, Total	183 J1	67.8	ug/kg dry	54.2	<67.8	337	60-140		
Pyrene	256 CQ	33.9	ug/kg dry	27.1	232	89.9	60-140		
Surrogate: 2-Fluorobiphenyl-surr	5	164	ug/kg dry	27.1		603	60-140		
Surrogate: 2-Fluorophenol-surr	5	32.0	ug/kg dry	54.2		<i>59.1</i>	60-140		
Surrogate: 2,4,6-Tribromophenol-surr	CQ	34.6	ug/kg dry	54.2		63.8	60-140		
Surrogate: Nitrobenzene-d5-surr	5	324	ug/kg dry	27.1		NR	60-140		
Surrogate: Phenol-d5-surr	S	80.8	ug/kg dry	<i>54.2</i>		149	60-140		
Surrogate: p-Terphenyl-d14-surr	CQ	25.0	ug/kg dry	27.1		92.2	60-140		
Matrix Spike (BGA3368-MS2)	Source: 23	BA1459-24RE	<b>3</b> Pre	pared: 1/26	/2023 Analyze	d: 3/16/202	3		
Fluorene	1420 J1	84.7	ug/kg dry	27.1	1470	NR	60-140		
Surrogate: 2-Fluorobiphenyl-surr	S	42.9	ug/kg dry	27.1		158	60-140		
Surrogate: Nitrobenzene-d5-surr	S	255	ug/kg dry	27.1		940	60-140		
Surrogate: p-Terphenyl-d14-surr		19.7	ug/kg dry	27.1		72.8	60-140		
23A1459-24 MSD (BGA3368-MSD1)	Source: 2	3A1459-24RE	1 Pre	pared: 1/26	/2023 Analyze	d: 2/27/202	3		
1,2,4-Trichlorobenzene	<33.2 J1, U	33.2	ug/kg dry	26.5	<33.2	, ,	60-140		40
1,2-Dichlorobenzene	18.4 J	33.2	ug/kg dry	26.5	<33.2	69.4	60-140	7.90	40
(o-Dichlorobenzene)	10.1 J	55.2	~51 ·· 5 · 4· 1	_5.5	-5512	55.1	00 110		.0
1,2-Diphenylhydrazine	<33.2 CQ, J1, U	33.2	ug/kg dry	26.5	<33.2		60-140		40
1,3-Dichlorobenzene	23.7 J	33.2	ug/kg dry	26.5	<33.2	89.5	60-140	17.4	40
(m-Dichlorobenzene)	23., 3	55.2	, G						.5
1,4-Dichlorobenzene	24.0 J	33.2	ug/kg dry	26.5	<33.2	90.4	60-140	9.14	40
(p-Dichlorobenzene)	- <del>-</del>		J. J ,						
2,2'-Oxybis(1-chloropropane),	<33.2 J1, U	33.2	ug/kg dry	26.5	<33.2		60-140		40
bis(2-Chloro-1-methy	•								
2,4,6-Trichlorophenol	<66.3 J1, U	66.3	ug/kg dry	53.1	<66.3		60-140		40
2,4-Dichlorophenol	<66.3 J1, U	66.3	ug/kg dry	53.1	<66.3		60-140		40
2,4-Dimethylphenol	<66.3 J1, U	66.3	ug/kg dry	53.1	<66.3		60-140		40
2,4-Dinitrophenol	<66.3 J1, U	66.3	ug/kg dry	133	<66.3		10-51.3		40
			ug/kg dry	26.5	<33.2		60-140		40
•	<33.2 J1, U	33.2	ug/kg ury						
2,4-Dinitrotoluene (2,4-DNT)	<33.2 J1, U <33.2 J1, U	33.2 33.2	ug/kg dry				60-140		40
•	<33.2 J1, U <33.2 J1, U <33.2 J1, U	33.2 33.2 33.2		26.5 26.5	<33.2 <33.2		60-140 60-140		40 40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3368 - SW-3570 (Con	ntinued)									
23A1459-24 MSD (BGA3368-MSD1)	<b></b> /	Source: 23	A1459-24RE	<b>1</b> Pre	pared: 1/26	/2023 Analyze	ed: 2/27/2023	3		
2-Methyl-4,6-dinitrophenol	<265	J1. U	265	ug/kg dry	53.1	<265		60-140		40
(4,6-Dinitro-2-methylph	1200	, -		5. 5 ,						
2-Nitrophenol	<66.3	J1, U	66.3	ug/kg dry	53.1	<66.3		60-140		40
4-Bromophenyl phenyl ether (BDE-3)	<33.2	CQ, J1, U	33.2	ug/kg dry	26.5	<33.2		60-140		40
4-Chloro-3-methylphenol	<66.3	J1, U	66.3	ug/kg dry	53.1	<66.3		60-140		40
4-Chlorophenyl phenylether	<33.2	CQ, J1, U	33.2	ug/kg dry	26.5	<33.2		60-140		40
4-Nitrophenol	<33.2	CQ, J1, U	33.2	ug/kg dry	133	<33.2		60-140		40
Acenaphthene	386		33.2	ug/kg dry	26.5	355	117	60-140	8.84	40
Acenaphthylene	348	J1	33.2	ug/kg dry	26.5	333	56.2	60-140	6.00	40
Anthracene	<33.2	CQ, J1, U	33.2	ug/kg dry	26.5	<33.2		60-140		40
Benzo(a)anthracene	97.0	CQ, J1	33.2	ug/kg dry	26.5	52.9	166	60-140	6.42	40
Benzo(a)pyrene		CQ, J1	33.2	ug/kg dry	26.5	<33.2	202	60-140	2.18	40
benzo(b&k)fluoranthene		CQ, J1, U	33.2	ug/kg dry	53.1	<33.2		60-140		40
Benzo(g,h,i)perylene	114	CQ, J1	33.2	ug/kg dry	26.5	65.2	185	60-140	1.36	40
bis(2-Chloroethoxy)methane	<33.2	J1, U	33.2	ug/kg dry	26.5	<33.2		60-140		40
bis(2-Chloroethyl) ether	<33.2	J1, U	33.2	ug/kg dry	26.5	<33.2		60-140		40
Bis(2-ethylhexyl )phthalate	64.8	CQ, J1	33.2	ug/kg dry	26.5	21.3	164	60-140	16.0	40
Butyl benzyl phthalate		CQ, J1	33.2	ug/kg dry	26.5	<33.2	155	60-140	29.3	40
Chrysene	96.6		33.2	ug/kg dry	26.5	71.5	94.5	60-140	12.2	40
Dibenzo(a,h)anthracene		CQ, J1	33.2	ug/kg dry	26.5	<33.2	233	60-140	15.5	40
Diethyl phthalate	<33.2		33.2	ug/kg dry	26.5	<33.2		60-140		40
Dimethyl phthalate	<33.2	· -	33.2	ug/kg dry	26.5	<33.2		60-140		40
Di-n-butyl phthalate	321	· -	33.2	ug/kg dry	26.5	293	105	60-140	3.09	40
Di-n-octyl phthalate		CQ, J1	33.2	ug/kg dry	26.5	<33.2	149	60-140	1.71	40
Fluoranthene	207		33.2	ug/kg dry	26.5	181	96.1	60-140	10.0	40
Fluorene		CQ, J1, L	33.2	ug/kg dry	26.5	1840	NR	60-140	2.33	40
Hexachlorobenzene		CQ, J1, U	33.2	ug/kg dry	26.5	<33.2		60-140	200	40
Hexachlorobutadiene	20.3		33.2	ug/kg dry	26.5	<33.2	76.4	60-140	11.3	40
Hexachlorocyclopentadiene		CQ, J1, J	33.2	ug/kg dry	26.5	<33.2	121	60-140	62.0	40
Hexachloroethane	26.1		33.2	ug/kg dry	26.5	<33.2	98.2	60-140	3.38	40
Indeno(1,2,3-cd) pyrene	73.4		33.2	ug/kg dry	26.5	44.3	110	60-140	8.79	40
Isophorone	<33.2	-	33.2	ug/kg dry	26.5	<33.2		60-140		40
Naphthalene	<33.2	-	33.2	ug/kg dry	26.5	<33.2		60-140		40
Nitrobenzene	<33.2		33.2	ug/kg dry	26.5	<33.2		60-140		40
n-Nitrosodimethylamine	<33.2	-	33.2	ug/kg dry	133	<33.2		60-140		40
n-Nitrosodi-n-propylamine	<33.2		33.2	ug/kg dry	26.5	<33.2		60-140		40
n-Nitrosodiphenylamine	<33.2	-	33.2	ug/kg dry	26.5	<33.2		60-140		40
Pentachlorophenol		CQ, J	66.3	ug/kg dry	53.1	<66.3	87.0	60-140	13.1	40
Phenanthrene		J1, CQ	33.2	ug/kg dry	26.5	1380	NR	60-140	0.637	40
Phenol, Total	129		66.3	ug/kg dry	53.1	<66.3	243	60-140	34.6	40
Pyrene	264		33.2	ug/kg dry	26.5	232	124	60-140	3.26	40
Surrogate: 2-Fluorobiphenyl-surr		5	142	ug/kg dry	26.5		535	60-140		
Surrogate: 2-Fluorophenol-surr	•	-	44.9	ug/kg dry	<i>53.1</i>		84.5	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		CQ, S	27.4	ug/kg dry	<i>53.1</i>		<i>51.6</i>	60-140		
Surrogate: Nitrobenzene-d5-surr		s S	338	ug/kg dry	26.5		NR.	<i>60-140</i>		
Surrogate: Phenol-d5-surr	•	-	67.1	ug/kg dry	<i>53.1</i>		126	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

### **Quality Control**

(Continued)

#### **Semivolatile Organic Compounds by GCMS (Continued)**

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

Batch: BGA3368 - SW-3570 (Continu	ıed)
23A1459-24 MSD (BGA3368-MSD1)	

23A1459-24 MSD (BGA3368-MSD1)	Source: 23/	<b>Source: 23A1459-24RE1</b> Prepared: 1/26/2023 Analyzed: 2/27/2023							
Surrogate: p-Terphenyl-d14-surr	CQ	30.0	ug/kg dry	26.5		113	60-140		
Matrix Spike Dup (BGA3368-MSD2)	Source: 23	A1459-24RE	3 Pre	pared: 1/26,	/2023 Analyzed	: 3/16/2023			
Fluorene	1220 J1	82.9	ug/kg dry	26.5	1470	NR	60-140	15.1	40
Surrogate: 2-Fluorobiphenyl-surr		32.8	ug/kg dry	26.5		124	60-140		
Surrogate: Nitrobenzene-d5-surr	S	211	ug/kg dry	26.5		<i>796</i>	60-140		
Surrogate: p-Terphenyl-d14-surr		16.0	ug/kg dry	26.5		60.4	60-140		

#### Batch: BGA3953 - SW-3511

Blank (BGA3953-BLK1)				Prepared: 1/31/2023 Analyzed: 2/7/2023
3,3'-Dichlorobenzidine	<0.560 U	0.560	ug/L	

Benzidine	<0.560 U	0.560	ug/L			
Surrogate: 2-Fluorobiphenyl-surr		9.40	ug/L	9.95	94.4	54.6-148
Surrogate: 2-Fluorophenol-surr		20.8	ug/L	19.9	105	<i>55-152</i>
Surrogate: 2,4,6-Tribromophenol-surr		<i>25.7</i>	ug/L	19.9	129	<i>52.4-136</i>
Surrogate: Nitrobenzene-d5-surr		10.8	ug/L	9.95	108	<i>52-162</i>
Surrogate: Phenol-d5-surr		21.6	ug/L	19.9	109	<i>58.7-152</i>
Surrogate: p-Terphenyl-d14-surr		9.36	ug/L	9.95	94.0	51.9-147

Blank (BGA3953-BLK2)	Prepared: 1/31/2023 Analyzed: 2/13/2023

1,2,4-Trichlorobenzene	<0.560 U	0.560	ug/L
1,2-Dichlorobenzene	<0.560 U	0.560	ug/L
(o-Dichlorobenzene)			
1,2-Diphenylhydrazine	<0.560 U	0.560	ug/L
1,3-Dichlorobenzene	<0.560 U	0.560	ug/L
(m-Dichlorobenzene)			
1,4-Dichlorobenzene	<0.560 U	0.560	ug/L
(p-Dichlorobenzene)			
2,2'-Oxybis(1-chloropropane),	<0.560 U	0.560	ug/L
bis(2-Chloro-1-methy			
2,4-Dichlorophenol	<0.560 U	0.560	ug/L
2,4-Dimethylphenol	<1.12 U	1.12	ug/L
2,4-Dinitrophenol	<4.48 U	4.48	ug/L
2,4-Dinitrotoluene (2,4-DNT)	<0.560 U	0.560	ug/L
2,6-Dinitrotoluene (2,6-DNT)	<0.560 U	0.560	ug/L
2-Chloronaphthalene	<0.560 U	0.560	ug/L
2-Chlorophenol	<1.12 U	1.12	ug/L
2-Methyl-4,6-dinitrophenol	<1.12 U	1.12	ug/L
(4,6-Dinitro-2-methylph			
2-Nitrophenol	<1.12 U	1.12	ug/L
4-Bromophenyl phenyl ether (BDE-3)	<0.560 U	0.560	ug/L
4-Chloro-3-methylphenol	<1.12 U	1.12	ug/L
4-Chlorophenyl phenylether	<0.560 U	0.560	ug/L
4-Nitrophenol	<4.48 U	4.48	ug/L
Acenaphthene	<0.560 U	0.560	ug/L
•			-



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

	<del></del>	Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch, BC420F2 CW 2511 (5	'antines - 1)								
-	Batch: BGA3953 - SW-3511 (Continued)								
Blank (BGA3953-BLK2)				repared: 1/31/	/2023 Analyzed:	2/13/202	3		
Acenaphthylene	<0.560 U	0.560	ug/L						
Anthracene	<0.560 U	0.560	ug/L						
Benzo(a)anthracene	<0.560 U	0.560	ug/L						
Benzo(a)pyrene	<0.560 U	0.560	ug/L						
benzo(b&k)fluoranthene	<0.560 U	0.560	ug/L						
Benzo(g,h,i)perylene	<0.560 U	0.560	ug/L						
bis(2-Chloroethoxy)methane	<0.560 U	0.560	ug/L						
bis(2-Chloroethyl) ether	<0.560 U	0.560	ug/L						
Bis(2-ethylhexyl )phthalate	<0.560 U	0.560	ug/L						
Butyl benzyl phthalate	<0.560 U	0.560	ug/L						
Chrysene	<0.560 U	0.560	ug/L						
Dibenzo(a,h)anthracene	<0.560 U	0.560	ug/L						
Diethyl phthalate	0.617	0.560	ug/L						
Dimethyl phthalate	1.20	0.560	ug/L						
Di-n-butyl phthalate	7.07	0.560	ug/L						
Di-n-octyl phthalate	<0.560 U	0.560	ug/L						
Fluoranthene	<0.560 U	0.560	ug/L						
Fluorene	<0.560 U	0.560	ug/L						
Hexachlorobenzene	<0.560 U	0.560	ug/L						
Hexachlorobutadiene	<0.560 U	0.560	ug/L						
Hexachlorocyclopentadiene	<0.560 U	0.560	ug/L						
Hexachloroethane	<0.560 U	0.560	ug/L						
Indeno(1,2,3-cd) pyrene	<0.560 U	0.560	ug/L						
Isophorone	<0.560 U	0.560	ug/L						
Naphthalene	<0.560 U	0.560	ug/L						
Nitrobenzene	<0.560 U	0.560	ug/L						
n-Nitrosodimethylamine	<2.24 U	2.24	ug/L						
n-Nitrosodi-n-propylamine	<0.560 U	0.560	ug/L						
n-Nitrosodiphenylamine	<0.560 U	0.560	ug/L						
Pentachlorophenol	<1.12 U	1.12	ug/L						
Phenanthrene	<0.560 U	0.560	ug/L						
Phenol, Total	<1.12 U	1.12	ug/L						
Pyrene	<0.560 U	0.560	ug/L						
Surrogate: 2-Fluorobiphenyl-surr		9.68	ug/L	9.95		97.2	54.6-148		
Surrogate: 2-Fluorophenol-surr		22.7	ug/L	19.9		114	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		19.4	ug/L	19.9		97.7	52.4-136		
Surrogate: Nitrobenzene-d5-surr		8.62	ug/L	9.95		86.7	52-162		
Surrogate: Phenol-d5-surr		21.0	ug/L	19.9		106	58.7-152		
Surrogate: p-Terphenyl-d14-surr		8.26	ug/L	9.95		83.0	51.9-147		
<u> </u>									



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3953 - SW-3511 (Co	ontinued)								
BS BENZ (BGA3953-BS1)			Р	repared: 1/3	L/2023 Analyze	d: 2/7/2023	3		
3,3'-Dichlorobenzidine	5.75	0.561	ug/L	9.98		57.6	22.3-156		
Benzidine	0.563 J1	0.561	ug/L	9.98		5.64	9.32-162		
Surrogate: 2-Fluorobiphenyl-surr		8.20	ug/L	9.98		82.1	54.6-148		
Surrogate: 2-Fluorophenol-surr		22.6	ug/L	20.0		113	55-152		
Surrogate: 2,4,6-Tribromophenol-surr		24.2	ug/L	20.0		121	<i>52.4-136</i>		
Surrogate: Nitrobenzene-d5-surr		10.6	ug/L	9.98		106	<i>52-162</i>		
Surrogate: Phenol-d5-surr		20.5	ug/L	20.0		103	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		8.89	ug/L	9.98		89.0	51.9-147		
BS SV (BGA3953-BS2)			Pi	repared: 1/31	/2023 Analyzed	l: 2/13/202	3		
1,2,4-Trichlorobenzene	11.5	0.556	ug/L	9.88		117	60-140		
1,2-Dichlorobenzene	10.5	0.556	ug/L	9.88		106	60-140		
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	12.1	0.556	ug/L	9.88		122	60-140		
1,3-Dichlorobenzene	9.21	0.556	ug/L	9.88		93.1	60-140		
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	10.3	0.556	ug/L	9.88		104	60-140		
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	11.6	0.556	ug/L	9.88		117	60-140		
bis(2-Chloro-1-methy		0.556	4	40.0			60.440		
2,4-Dichlorophenol	22.4	0.556	ug/L	19.8		114	60-140		
2,4-Dimethylphenol	25.2	1.11	ug/L	19.8		128	35.9-153		
2,4-Dinitrophenol	64.8	4.45	ug/L	49.4		131	60-140		
2,4-Dinitrotoluene (2,4-DNT)	12.7	0.556	ug/L	9.88		129	60-140		
2,6-Dinitrotoluene (2,6-DNT)	13.0	0.556 0.556	ug/L	9.88 9.88		132 117	60-140 60-140		
2-Chloronaphthalene 2-Chlorophenol	11.5	1.11	ug/L ug/L	19.8		64.1	60-140		
2-Methyl-4,6-dinitrophenol	12.7	1.11	-	19.8		133	60-140		
(4,6-Dinitro-2-methylph	26.3	1.11	ug/L	19.0		133	00-140		
2-Nitrophenol	21.8	1.11	ug/L	19.8		110	60-140		
4-Bromophenyl phenyl ether (BDE-3)	11.0	0.556	ug/L	9.88		112	60-140		
4-Chloro-3-methylphenol	24.0	1.11	ug/L	19.8		121	60-140		
4-Chlorophenyl phenylether	10.4	0.556	ug/L	9.88		106	60-140		
4-Nitrophenol	59.0	4.45	ug/L	49.4		119	60-140		
Acenaphthene	11.7	0.556	ug/L	9.88		118	60-140		
Acenaphthylene	13.5	0.556	ug/L	9.88		137	60-140		
Anthracene	11.9	0.556	ug/L	9.88		120	60-140		
Benzo(a)anthracene	12.3	0.556	ug/L	9.88		124	60-140		
Benzo(a)pyrene	12.0	0.556	ug/L	9.88		121	60-140		
benzo(b&k)fluoranthene	24.3	0.556	ug/L	19.8		123	60-140		
Benzo(g,h,i)perylene	11.1	0.556	ug/L	9.88		112	60-140		
bis(2-Chloroethoxy)methane	12.0	0.556	ug/L	9.88		121	60-140		
bis(2-Chloroethyl) ether	8.62	0.556	ug/L	9.88		87.3	60-140		
Bis(2-ethylhexyl )phthalate	11.4	0.556	ug/L	9.88		116	60-140		
Butyl benzyl phthalate	11.5	0.556	ug/L	9.88		116	60-140		
Chrysene	10.8	0.556	ug/L	9.88		109	60-140		
Dibenzo(a,h)anthracene	11.3	0.556	ug/L	9.88		114	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3953 - SW-3511 (C	Continued)								
BS SV (BGA3953-BS2)	-		Pi	repared: 1/31	/2023 Analyzed: 2	2/13/202	3		
Diethyl phthalate	12.0	0.556	ug/L	9.88		122	60-140		
Dimethyl phthalate	13.5	0.556	ug/L	9.88		137	60-140		
Di-n-butyl phthalate	<0.556 J1, L, U	0.556	ug/L	9.88			60-140		
Di-n-octyl phthalate	13.4	0.556	ug/L	9.88		135	60-140		
Fluoranthene	11.6	0.556	ug/L	9.88		117	60-140		
Fluorene	11.6	0.556	ug/L	9.88		118	60-140		
Hexachlorobenzene	10.7	0.556	ug/L	9.88		109	60-140		
Hexachlorobutadiene	6.91	0.556	ug/L	9.88		69.9	60-140		
Hexachlorocyclopentadiene	9.30	0.556	ug/L	9.88		94.1	60-140		
Hexachloroethane	8.37	0.556	ug/L	9.88		84.7	60-140		
Indeno(1,2,3-cd) pyrene	10.9	0.556	ug/L	9.88		111	60-140		
Isophorone	10.7	0.556	ug/L	9.88		108	60-140		
Naphthalene	11.7	0.556	ug/L	9.88		118	60-140		
Nitrobenzene	12.7	0.556	ug/L	9.88		128	60-140		
n-Nitrosodimethylamine	4.57	2.22	ug/L	49.4		9.25	2.5-65.7		
n-Nitrosodi-n-propylamine	11.6	0.556	ug/L	9.88		118	60-140		
n-Nitrosodiphenylamine	9.55	0.556	ug/L	9.88		96.6	60-140		
Pentachlorophenol	24.0	1.11	ug/L	19.8		121	36.8-149		
Phenanthrene	11.6	0.556	ug/L	9.88		117	60-140		
Phenol, Total	21.2	1.11	ug/L	19.8		107	60-140		
Pyrene	9.70	0.556	ug/L	9.88		98.1	60-140		
Surrogate: 2-Fluorobiphenyl-surr		10.8	ug/L	9.88		110	54.6-148		
Surrogate: 2-Fluorophenol-surr		26.2	ug/L	19.8		133	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		19.4	ug/L	19.8		98.0	52.4-136		
Surrogate: Nitrobenzene-d5-surr		10.1	ug/L	9.88		102	52-162		
Surrogate: Phenol-d5-surr		26.2	ug/L	19.8		132	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		9.07	ug/L	9.88		91.8	51.9-147		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Quality Control** (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3953 - SW-3511 (C	Continued)								
BSD BENZ (BGA3953-BSD1)			P	repared: 1/31	L/2023 Analyze	ed: 2/7/2023	3		
3,3'-Dichlorobenzidine	6.24	0.550	ug/L	9.78		63.8	22.3-156	8.11	40
Benzidine	0.941 J1	0.550	ug/L	9.78		9.63	9.32-162	50.2	40
Surrogate: 2-Fluorobiphenyl-surr		9.15	ug/L	9.78		93.6	54.6-148		
Surrogate: 2-Fluorophenol-surr		23.3	ug/L	19.6		119	55-152		
Surrogate: 2,4,6-Tribromophenol-surr		25.9	ug/L	19.6		133	<i>52.4-136</i>		
Surrogate: Nitrobenzene-d5-surr		11.4	ug/L	9.78		117	52-162		
Surrogate: Phenol-d5-surr		22.5	ug/L	19.6		115	58.7-152		
Surrogate: p-Terphenyl-d14-surr		9.26	ug/L	9.78		94.7	51.9-147		
BSD SV (BGA3953-BSD2)			Pi	repared: 1/31	/2023 Analyze	ed: 2/13/202	3		
1,2,4-Trichlorobenzene	9.53	0.562	ug/L	10.0		95.3	60-140	18.9	40
1,2-Dichlorobenzene	9.17	0.562	ug/L	10.0		91.8	60-140	13.1	40
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	11.1	0.562	ug/L	10.0		111	60-140	8.45	40
1,3-Dichlorobenzene	8.07	0.562	ug/L	10.0		80.8	60-140	13.1	40
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	8.96	0.562	ug/L	10.0		89.6	60-140	13.7	40
(p-Dichlorobenzene)	10.1	0.563	ug/l	10.0		101	60-140	13.5	40
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methy	10.1	0.562	ug/L	10.0		101	00-140	13.5	40
2,4-Dichlorophenol	19.7	0.562	ug/L	20.0		98.7	60-140	12.8	40
2,4-Dimethylphenol	22.7	1.12	ug/L	20.0		113	35.9-153	10.6	40
2,4-Dinitrophenol	62.4	4.50	ug/L	50.0		125	60-140	3.76	40
2,4-Dinitrotoluene (2,4-DNT)	11.3	0.562	ug/L	10.0		113	60-140	11.5	40
2,6-Dinitrotoluene (2,6-DNT)	11.0	0.562	ug/L	10.0		111	60-140	16.3	40
2-Chloronaphthalene	10.1	0.562	ug/L	10.0		101	60-140	13.2	40
2-Chlorophenol	11.0 J1	1.12	ug/L	20.0		55.0	60-140	14.2	40
2-Methyl-4,6-dinitrophenol	24.2	1.12	ug/L	20.0		121	60-140	8.62	40
(4,6-Dinitro-2-methylph									
2-Nitrophenol	21.4	1.12	ug/L	20.0		107	60-140	1.70	40
4-Bromophenyl phenyl ether (BDE-3)	9.43	0.562	ug/L	10.0		94.4	60-140	15.7	40
4-Chloro-3-methylphenol	21.2	1.12	ug/L	20.0		106	60-140	12.4	40
4-Chlorophenyl phenylether	7.34	0.562	ug/L	10.0		73.4	60-140	34.9	40
4-Nitrophenol	55.7	4.50	ug/L	50.0		111	60-140	5.84	40
Acenaphthene	10.2	0.562	ug/L	10.0		102	60-140	13.5	40
Acenaphthylene	12.0	0.562	ug/L	10.0		120	60-140	11.9	40
Anthracene	10.3	0.562	ug/L	10.0		104	60-140	13.6	40
Benzo(a)anthracene	11.5	0.562	ug/L	10.0		115	60-140	6.82	40
Benzo(a)pyrene	10.7	0.562	ug/L	10.0		107	60-140	11.2	40
benzo(b&k)fluoranthene	18.8	0.562	ug/L	20.0		94.0	60-140	25.5	40
Benzo(g,h,i)perylene	9.30	0.562	ug/L	10.0		93.1	60-140	17.2	40
bis(2-Chloroethoxy)methane	10.4	0.562	ug/L	10.0		104	60-140	14.1	40
bis(2-Chloroethyl) ether	9.61	0.562	ug/L	10.0		96.1	60-140	10.8	40
Bis(2-ethylhexyl )phthalate	10.1	0.562	ug/L	10.0		101	60-140	12.2	40
Butyl benzyl phthalate	10.5	0.562	ug/L	10.0		105	60-140	8.71	40
Chrysene	9.66	0.562	ug/L	10.0		96.7	60-140	10.7	40
Dibenzo(a,h)anthracene	10.3	0.562	ug/L	10.0		104	60-140	8.75	40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3953 - SW-3511 (Co	ontinued)								
BSD SV (BGA3953-BSD2)	•		Pr	epared: 1/31	/2023 Analyze	ed: 2/13/202	3		
Diethyl phthalate	10.5	0.562	ug/L	10.0		105	60-140	13.3	40
Dimethyl phthalate	11.3	0.562	ug/L	10.0		113	60-140	18.4	40
Di-n-butyl phthalate	18.4 J1, L	0.562	ug/L	10.0		184	60-140	200	40
Di-n-octyl phthalate	11.6	0.562	ug/L	10.0		117	60-140	13.8	40
Fluoranthene	10.1	0.562	ug/L	10.0		101	60-140	13.9	40
Fluorene	9.56	0.562	ug/L	10.0		95.7	60-140	19.6	40
Hexachlorobenzene	8.38	0.562	ug/L	10.0		83.8	60-140	24.6	40
Hexachlorobutadiene	5.86 J1	0.562	ug/L	10.0		58.7	60-140	16.4	40
Hexachlorocyclopentadiene	9.45	0.562	ug/L	10.0		94.6	60-140	1.67	40
Hexachloroethane	7.33	0.562	ug/L	10.0		73.3	60-140	13.3	40
Indeno(1,2,3-cd) pyrene	10.2	0.562	ug/L	10.0		102	60-140	7.38	40
Isophorone	9.05	0.562	ug/L	10.0		90.5	60-140	16.4	40
Naphthalene	9.90	0.562	ug/L	10.0		99.1	60-140	16.4	40
Nitrobenzene	11.3	0.562	ug/L	10.0		113	60-140	11.3	40
n-Nitrosodimethylamine	4.02	2.25	ug/L	50.0		8.05	2.5-65.7	12.7	40
n-Nitrosodi-n-propylamine	10.3	0.562	ug/L	10.0		104	60-140	11.8	40
n-Nitrosodiphenylamine	7.85	0.562	ug/L	10.0		78.6	60-140	19.5	40
Pentachlorophenol	21.0	1.12	ug/L	20.0		105	36.8-149	13.2	40
Phenanthrene	10.2	0.562	ug/L	10.0		102	60-140	12.9	40
Phenol, Total	19.7	1.12	ug/L	20.0		98.5	60-140	7.39	40
Pyrene	7.07	0.562	ug/L	10.0		70.7	60-140	31.3	40
Surrogate: 2-Fluorobiphenyl-surr		9.87	ug/L	10.0		98.8	54.6-148		
Surrogate: 2-Fluorophenol-surr		23.3	ug/L	20.0		116	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		17.2	ug/L	20.0		85.8	52.4-136		
Surrogate: Nitrobenzene-d5-surr		9.88	ug/L	10.0		98.8	52-162		
Surrogate: Phenol-d5-surr		25.4	ug/L	20.0		127	58.7-152		
Surrogate: p-Terphenyl-d14-surr		7.98	ug/L	10.0		79.8	51.9-147		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3953 - SW-3511 (Co.	ntinued)								
MDL BENZ (BGA3953-MRL1)	<del>-</del>		Р	repared: 1/31	./2023 Analyze	d: 2/7/2023	;		
3,3'-Dichlorobenzidine	<0.560 U	0.560	ug/L	0.498	. ,				
Benzidine	<0.560 J1, U	0.560	ug/L	0.498					
Surrogate: 2-Fluorobiphenyl-surr		9.32		9.96		93.6	<i>54.6-148</i>		
• , ,		9.32 23.2	ug/L ug/l	9.96 19.9			54.6-148 55-152		
Surrogate: 2-Fluorophenol-surr		23.2 25.8	ug/L ug/l			117 130			
Surrogate: 2,4,6-Tribromophenol-surr			ug/L	19.9 0.06			52.4-136 52-162		
Surrogate: Nitrobenzene-d5-surr		11.1	ug/L	9.96 10.0		112 113	52-162 59 7 ₋ 152		
Surrogate: Phenol-d5-surr		22.4 0.08	ug/L	19.9 0.06		113	58.7-152 51.0-147		
Surrogate: p-Terphenyl-d14-surr		9.08	ug/L	9.96		91.2	51.9-147		
MDL SV (BGA3953-MRL2)					/2023 Analyzed		3		
1,2,4-Trichlorobenzene	0.533 J	0.558	ug/L	0.496		107			
1,2-Dichlorobenzene	0.573	0.558	ug/L	0.496		115			
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	0.727	0.558	ug/L	0.496		146			
1,3-Dichlorobenzene	0.459 J	0.558	ug/L	0.496		92.4			
(m-Dichlorobenzene)						_			
1,4-Dichlorobenzene	0.485 J	0.558	ug/L	0.496		97.6			
(p-Dichlorobenzene)						J = -			
2,2'-Oxybis(1-chloropropane),	0.662	0.558	ug/L	0.496		133			
bis(2-Chloro-1-methy		2 ===	0	0.000		***	FO 150		
2,4-Dichlorophenol	1.17	0.558	ug/L	0.993		118	50-150		
2,4-Dimethylphenol	1.17	1.12	ug/L	0.993		118			
2,4-Dinitrophenol	<4.47 U	4.47	ug/L	2.48					
2,4-Dinitrotoluene (2,4-DNT)	0.389 J	0.558	ug/L	0.496		78.4			
2,6-Dinitrotoluene (2,6-DNT)	0.953	0.558	ug/L	0.496		192			
2-Chloronaphthalene	0.556 J	0.558	ug/L	0.496		112			
2-Chlorophenol	0.644 J	1.12	ug/L	0.993		64.9			
2-Methyl-4,6-dinitrophenol	0.922 J	1.12	ug/L	0.993		92.9			
(4,6-Dinitro-2-methylph			-						
2-Nitrophenol	1.35	1.12	ug/L	0.993		136			
4-Bromophenyl phenyl ether (BDE-3)	0.350 J	0.558	ug/L	0.496		70.5			
4-Chloro-3-methylphenol	1.30	1.12	ug/L	0.993		130			
4-Chlorophenyl phenylether	0.398 J	0.558	ug/L	0.496		80.2			
4-Nitrophenol	<4.47 U	4.47	ug/L	2.48					
Acenaphthene	0.542 J	0.558	ug/L	0.496		109			
Acenaphthylene	0.727	0.558	ug/L	0.496		147			
Anthracene	0.381 J	0.558	ug/L	0.496		76.8			
Benzo(a)anthracene	0.610	0.558	ug/L	0.496		123			
Benzo(a)pyrene	0.581	0.558	ug/L	0.496		117			
benzo(b&k)fluoranthene	1.11	0.558	ug/L	0.993		111	50-150		
Benzo(g,h,i)perylene	0.469 J	0.558	ug/L	0.496		94.5			
bis(2-Chloroethoxy)methane	0.696	0.558	ug/L	0.496		140			
bis(2-Chloroethyl) ether	0.600	0.558	ug/L	0.496		121			
Bis(2-ethylhexyl )phthalate	0.507 J	0.558	ug/L	0.496		102			
Butyl benzyl phthalate	0.502 J	0.558	ug/L ug/L	0.496		101			
Chrysene	0.382 J	0.558	ug/L ug/L	0.496		77.0			





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3953 - SW-3511 (Co	ontinued)								
MDL SV (BGA3953-MRL2)	÷		Pr	epared: 1/31,	/2023 Analyzed:	2/13/2023	3		
Dibenzo(a,h)anthracene	0.409 J	0.558	ug/L	0.496	-	82.4			
Diethyl phthalate	1.26	0.558	ug/L	0.496		254			
Dimethyl phthalate	1.82	0.558	ug/L	0.496		367			
Di-n-butyl phthalate	7.40	0.558	ug/L	0.496		NR			
Di-n-octyl phthalate	0.562	0.558	ug/L	0.496		113			
Fluoranthene	0.298 J	0.558	ug/L	0.496		60.0			
Fluorene	0.641	0.558	ug/L	0.496		129			
Hexachlorobenzene	0.350 J	0.558	ug/L	0.496		70.6			
Hexachlorobutadiene	0.302 J	0.558	ug/L	0.496		60.8			
Hexachlorocyclopentadiene	0.796	0.558	ug/L	0.496		160			
Hexachloroethane	0.376 J	0.558	ug/L	0.496		75.7			
Indeno(1,2,3-cd) pyrene	0.460 J	0.558	ug/L	0.496		92.7			
Isophorone	0.480 J	0.558	ug/L	0.496		96.6			
Naphthalene	0.533 J	0.558	ug/L	0.496		107			
Nitrobenzene	0.677	0.558	ug/L	0.496		136			
n-Nitrosodimethylamine	0.539 J1, J	2.23	ug/L	2.48		21.7	50-150		
n-Nitrosodi-n-propylamine	0.789	0.558	ug/L	0.496		159			
n-Nitrosodiphenylamine	0.501 J	0.558	ug/L	0.496		101			
Pentachlorophenol	0.590 J	1.12	ug/L	0.993		59.5			
Phenanthrene	0.483 J	0.558	ug/L	0.496		97.3			
Phenol, Total	1.36	1.12	ug/L	0.993		137			
Pyrene	0.352 J	0.558	ug/L	0.496		70.9			
Surrogate: 2-Fluorobiphenyl-surr		9.61	ug/L	9.93		96.8	54.6-148		
Surrogate: 2-Fluorophenol-surr		22.8	ug/L	19.9		115	55-152		
Surrogate: 2,4,6-Tribromophenol-surr		19.0	ug/L	19.9		95.9	52.4-136		
Surrogate: Nitrobenzene-d5-surr		9.03	ug/L	9.93		90.9	52-162		
Surrogate: Phenol-d5-surr		22.4	ug/L	19.9		113	58.7-152		
Surrogate: p-Terphenyl-d14-surr		9.10	ug/L	9.93		91.7	51.9-147		

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

		Reporting	,	Spike	Source		%REC		KP
Analyte	Result			Level	Result	%REC	Limits	RPD	Lim
Batch: BGA3953 - SW-3511 (Cor	ntinued)								
23A1459-02 MS (BGA3953-MS1)	=	Source: 23A1459-02R	<b>E1</b> F	repared: 1/31	/2023 Analyze	d: 2/13/202	3		
1,2,4-Trichlorobenzene	10.6	0.556		9.89	<0.556	108	35.3-142		
1,2-Dichlorobenzene	9.70	0.556	-	9.89	< 0.556	98.1	31.4-142		
(o-Dichlorobenzene)	5.70	0.550	, ug/ =	5.05	10.550	50.1	31.11.2		
1,2-Diphenylhydrazine	11.7	0.556	i ug/L	9.89	< 0.556	119	48.9-156		
1,3-Dichlorobenzene	8.72	0.556	-	9.89	< 0.556	88.2	30.5-135		
(m-Dichlorobenzene)	0.72		3/-						
1,4-Dichlorobenzene	9.85	0.556	s ug/L	9.89	< 0.556	99.6	37.2-133		
(p-Dichlorobenzene)			5,						
2,2'-Oxybis(1-chloropropane),	11.0	0.556	i ug/L	9.89	< 0.556	112	41.7-151		
bis(2-Chloro-1-methy			-						
2,4-Dichlorophenol	21.2	0.556	ug/L	19.8	< 0.556	107	42.7-158		
2,4-Dimethylphenol	24.1	1.11	•	19.8	<1.11	122	38.4-170		
2,4-Dinitrophenol	61.7	4.45	-	49.4	<4.45	125	60-140		
2,4-Dinitrotoluene (2,4-DNT)	12.1	0.556	-	9.89	< 0.556	122	50.3-144		
2,6-Dinitrotoluene (2,6-DNT)	12.4	0.556	•	9.89	< 0.556	125	43.7-157		
2-Chloronaphthalene	10.9	0.556	-	9.89	< 0.556	110	27.4-158		
2-Chlorophenol	10.9	1.11	-	19.8	<1.11	62.8	49.2-150		
2-Methyl-4,6-dinitrophenol	24.1	1.11		19.8	<1.11	122	41.9-153		
(4,6-Dinitro-2-methylph	24.1	1.11	. ug/L	15.0	<b>\1.11</b>	122	71.9-133		
2-Nitrophenol	23.1	1.11	. ug/L	19.8	<1.11	117	51.9-150		
4-Bromophenyl phenyl ether (BDE-3)	10.2	0.556		9.89	< 0.556	103	45.2-146		
4-Chloro-3-methylphenol	23.1	1.11	-	19.8	<1.11	117	46.9-147		
4-Chlorophenyl phenylether	8.64	0.556	-	9.89	< 0.556	87.4	44.5-143		
4-Nitrophenol	60.1	4.45	-	49.4	<4.45	122	2-173		
Acenaphthene	10.8	0.556	•	9.89	< 0.556	110	47.3-149		
Acenaphthylene	10.8	0.556	-	9.89	< 0.556	131	56.5-173		
Anthracene	12.9	0.556	-	9.89	< 0.556	112	49.7-160		
		0.556	-	9.89	< 0.556	108	41.7-151		
Benzo(a)anthracene	10.7	0.556	•	9.89	<0.556	93.5	45.4-133		
Benzo(a)pyrene	9.25		-						
benzo(b&k)fluoranthene	19.6	0.556	-	19.8	< 0.556	99.3	55.3-137		
Benzo(g,h,i)perylene	8.01	0.556	•	9.89	< 0.556	81.0	37.9-152		
bis(2-Chloroethoxy)methane	11.3	0.556	-	9.89	< 0.556	114	40.1-151		
bis(2-Chloroethyl) ether	8.68	0.556	-	9.89	< 0.556	87.7	45.9-163		
Bis(2-ethylhexyl )phthalate	6.87	0.556	-	9.89	< 0.556	69.5	38.3-135		
Butyl benzyl phthalate	9.87	0.556	-	9.89	< 0.556	99.8	41.1-148		
Chrysene	9.03	0.556	-	9.89	< 0.556	91.3	51-147		
Dibenzo(a,h)anthracene	7.39	0.556	-	9.89	<0.556	74.8	27.5-156		
Diethyl phthalate	11.5	0.556	-	9.89	0.522	111	53.4-146		
Dimethyl phthalate	11.7	0.556		9.89	<0.556	118	53-151		
Di-n-butyl phthalate	11.0	0.556		9.89	1.19	98.8	25.4-168		
Di-n-octyl phthalate	7.53	0.556	-	9.89	< 0.556	76.2	39.2-123		
Fluoranthene	10.6	0.556	ug/L	9.89	<0.556	108	45.3-156		
Fluorene	11.0	0.556	ug/L	9.89	< 0.556	111	56.3-145		
Hexachlorobenzene	8.95	0.556	ug/L	9.89	< 0.556	90.5	56.1-137		
Hexachlorobutadiene	6.55	0.556	i ug/L	9.89	< 0.556	66.3	33.1-110		
Hexachlorocyclopentadiene	9.34	0.556	ug/L	9.89	< 0.556	94.5	2-179		
Hexachloroethane	7.58	0.556		9.89	< 0.556	76.7	36.2-106		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3953 - SW-3511 (Con	tinued)									
23A1459-02 MS (BGA3953-MS1)		Source: 2	3A1459-02RE1		Prepared: 1/31,	/2023 Analyze	d: 2/13/202	3		
Indeno(1,2,3-cd) pyrene	7.69		0.556	ug/L	9.89	<0.556	77.7	33.4-153		
Isophorone	9.43		0.556	ug/L	9.89	< 0.556	95.4	43.3-154		
Naphthalene	11.2		0.556	ug/L	9.89	< 0.556	113	45.1-153		
Nitrobenzene	13.2		0.556	ug/L	9.89	< 0.556	134	54.9-156		
n-Nitrosodimethylamine	4.91		2.22	ug/L	49.4	<2.22	9.93	2-56.4		
n-Nitrosodi-n-propylamine	10.9		0.556	ug/L	9.89	< 0.556	110	38.3-160		
n-Nitrosodiphenylamine	7.41		0.556	ug/L	9.89	< 0.556	75.0	38.1-163		
Pentachlorophenol	22.5		1.11	ug/L	19.8	<1.11	114	42.2-151		
Phenanthrene	10.9		0.556	ug/L	9.89	< 0.556	110	45.3-165		
Phenol, Total	21.4		1.11	ug/L	19.8	0.803	104	39.8-164		
Pyrene	8.86		0.556	ug/L	9.89	< 0.556	89.6	46.3-149		
	0.00									
Surrogate: 2-Fluorobiphenyl-surr			10.3	ug/L	9.89		105	<i>54.6-148</i>		
Surrogate: 2-Fluorophenol-surr			<i>25.1</i>	ug/L	19.8		127	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr			18.5	ug/L	19.8		93.4	<i>52.4-136</i>		
Surrogate: Nitrobenzene-d5-surr			9.94	ug/L	9.89		101	<i>52-162</i>		
Surrogate: Phenol-d5-surr			26.1	ug/L	19.8		132	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr			6.91	ug/L	9.89		69.9	51.9-147		
23A1459-02 MSD (BGA3953-MSD1)		Source: 2	3A1459-02RE1		Prepared: 1/31,	/2023 Analyze	d: 2/13/202	3		
1,2,4-Trichlorobenzene	9.43		0.559	ug/L	9.94	< 0.559	94.9	35.3-142	12.0	40
1,2-Dichlorobenzene	9.66		0.559	ug/L	9.94	< 0.559	97.2	31.4-142	0.363	40
(o-Dichlorobenzene)										
1,2-Diphenylhydrazine	10.9		0.559	ug/L	9.94	< 0.559	109	48.9-156	7.56	40
1,3-Dichlorobenzene	7.96		0.559	ug/L	9.94	< 0.559	80.1	30.5-135	9.15	40
(m-Dichlorobenzene)										
1,4-Dichlorobenzene	9.34		0.559	ug/L	9.94	< 0.559	93.9	37.2-133	5.38	40
(p-Dichlorobenzene)										
2,2'-Oxybis(1-chloropropane),	11.1		0.559	ug/L	9.94	< 0.559	111	41.7-151	0.358	40
bis(2-Chloro-1-methy										
2,4-Dichlorophenol	21.3		0.559	ug/L	19.9	<0.559	107	42.7-158	0.638	40
2,4-Dimethylphenol	22.9		1.12	ug/L	19.9	<1.12	115	38.4-170	5.12	40
2,4-Dinitrophenol	65.1		4.47	ug/L	49.7	<4.47	131	60-140	5.44	40
2,4-Dinitrotoluene (2,4-DNT)	11.8		0.559	ug/L	9.94	< 0.559	119	50.3-144	2.30	40
2,6-Dinitrotoluene (2,6-DNT)	11.8		0.559	ug/L	9.94	< 0.559	119	43.7-157	4.70	40
2-Chloronaphthalene	9.93		0.559	ug/L	9.94	< 0.559	99.9	27.4-158	8.90	40
2-Chlorophenol	11.8		1.12	ug/L	19.9	<1.12	59.4	49.2-150	5.17	40
2-Methyl-4,6-dinitrophenol	24.6		1.12	ug/L	19.9	<1.12	124	41.9-153	2.07	40
(4,6-Dinitro-2-methylph										
2-Nitrophenol	20.8		1.12	ug/L	19.9	<1.12	105	51.9-150	10.4	40
4-Bromophenyl phenyl ether (BDE-3)	9.04		0.559	ug/L	9.94	< 0.559	91.0	45.2-146	11.9	40
4-Chloro-3-methylphenol	21.6		1.12	ug/L	19.9	<1.12	108	46.9-147	6.68	40
4-Chlorophenyl phenylether	7.66		0.559	ug/L	9.94	< 0.559	77.1	44.5-143	12.0	40
4-Nitrophenol	57.3		4.47	ug/L	49.7	<4.47	115	2-173	4.81	40
Acenaphthene	9.98		0.559	ug/L	9.94	< 0.559	100	47.3-149	8.28	40
Acenaphthylene	11.8		0.559	ug/L	9.94	< 0.559	119	56.5-173	8.91	40
Anthracene	10.0		0.559	ug/L	9.94	< 0.559	101	49.7-160	10.1	40
Benzo(a)anthracene	10.2		0.559	ug/L	9.94	< 0.559	103	41.7-151	4.68	40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qua	al Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3953 - SW-3511 (Con	tinued)								
23A1459-02 MSD (BGA3953-MSD1)	Sou	ırce: 23A1459-02RE1		Prepared: 1/31	/2023 Analyze	d: 2/13/202	3		
Benzo(a)pyrene	8.59	0.559	ug/L	9.94	< 0.559	86.4	45.4-133	7.36	40
benzo(b&k)fluoranthene	18.8	0.559	ug/L	19.9	< 0.559	94.7	55.3-137	4.20	40
Benzo(g,h,i)perylene	7.48	0.559	ug/L	9.94	< 0.559	75.3	37.9-152	6.80	40
bis(2-Chloroethoxy)methane	11.0	0.559	ug/L	9.94	< 0.559	110	40.1-151	2.53	40
bis(2-Chloroethyl) ether	9.19	0.559	ug/L	9.94	< 0.559	92.5	45.9-163	5.79	40
Bis(2-ethylhexyl )phthalate	6.32	0.559	ug/L	9.94	< 0.559	63.6	38.3-135	8.30	40
Butyl benzyl phthalate	9.22	0.559	ug/L	9.94	< 0.559	92.8	41.1-148	6.79	40
Chrysene	8.28	0.559	ug/L	9.94	< 0.559	83.3	51-147	8.66	40
Dibenzo(a,h)anthracene	7.05	0.559	ug/L	9.94	< 0.559	70.9	27.5-156	4.77	40
Diethyl phthalate	10.3	0.559	ug/L	9.94	0.522	98.4	53.4-146	10.5	40
Dimethyl phthalate	10.7	0.559	ug/L	9.94	< 0.559	108	53-151	8.93	40
Di-n-butyl phthalate	9.80	0.559	ug/L	9.94	1.19	86.6	25.4-168	11.2	40
Di-n-octyl phthalate	6.94	0.559	ug/L	9.94	< 0.559	69.9	39.2-123	8.13	40
Fluoranthene	9.84	0.559	ug/L	9.94	< 0.559	99.0	45.3-156	7.69	40
Fluorene	9.84	0.559	ug/L	9.94	< 0.559	99.0	56.3-145	10.8	40
Hexachlorobenzene	7.97	0.559	ug/L	9.94	< 0.559	80.2	56.1-137	11.6	40
Hexachlorobutadiene	6.16	0.559	ug/L	9.94	< 0.559	62.0	33.1-110	6.11	40
Hexachlorocyclopentadiene	9.74	0.559	ug/L	9.94	< 0.559	98.0	2-179	4.18	40
Hexachloroethane	7.69	0.559	ug/L	9.94	< 0.559	77.3	36.2-106	1.37	40
Indeno(1,2,3-cd) pyrene	7.30	0.559	ug/L	9.94	< 0.559	73.5	33.4-153	5.15	40
Isophorone	9.70	0.559	ug/L	9.94	< 0.559	97.6	43.3-154	2.79	40
Naphthalene	10.4	0.559	ug/L	9.94	< 0.559	105	45.1-153	7.58	40
Nitrobenzene	12.3	0.559	ug/L	9.94	< 0.559	124	54.9-156	7.44	40
n-Nitrosodimethylamine	4.78	2.24	ug/L	49.7	<2.24	9.61	2-56.4	2.74	40
n-Nitrosodi-n-propylamine	11.1	0.559	ug/L	9.94	< 0.559	112	38.3-160	1.68	40
n-Nitrosodiphenylamine	5.14	0.559	ug/L	9.94	< 0.559	51.7	38.1-163	36.3	40
Pentachlorophenol	21.3	1.12	ug/L	19.9	<1.12	107	42.2-151	5.81	40
Phenanthrene	10.3	0.559	ug/L	9.94	< 0.559	104	45.3-165	5.16	40
Phenol, Total	20.1	1.12	ug/L	19.9	0.803	97.2	39.8-164	5.87	40
Pyrene	8.36	0.559	ug/L	9.94	<0.559	84.1	46.3-149	5.84	40
Surrogate: 2-Fluorobiphenyl-surr		9.18	ug/L	9.94		92.4	54.6-148		
Surrogate: 2-Fluorophenol-surr		23.2	ug/L	19.9		117	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		17.3	ug/L	19.9		87.1	52.4-136		
Surrogate: Nitrobenzene-d5-surr		9.06	ug/L	9.94		91.1	<i>52-162</i>		
Surrogate: Phenol-d5-surr		24.8	ug/L	19.9		125	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		6.92	ug/L	9.94		69.7	51.9-147		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0288 - SW-3570									
Blank (BGB0288-BLK1)			Pr	epared: 2/2	/2023 Analyze	ed: 2/9/2023			
3,3'-Dichlorobenzidine	<2.50 U	2.50	ug/kg wet		, , .	, , , , , ,			
Benzidine	<2.50 U	2.50	ug/kg wet						
Surrogate: 2-Fluorobiphenyl-surr				20.0		70.9	60 140		
		14.2	ug/kg wet	20.0 40.0			60-140 60-140		
Surrogate: 2-Fluorophenol-surr		36.8	ug/kg wet ug/kg wet	40.0 40.0		92.1 105	60-140 60-140		
Surrogate: 2,4,6-Tribromophenol-surr Surrogate: Nitrobenzene-d5-surr		<i>42.2</i> <i>20.0</i>	ug/kg wet ug/kg wet	20.0		103 100	60-140 60-140		
Surrogate: Phenol-d5-surr		40.0	ug/kg wet	40.0		100	60-140		
Surrogate: p-Terphenyl-d14-surr		15.6		20.0		78.0	60-140		
Sarrogate. p Telphenyl al 1 Sair		15.0	ug/kg Wet	20.0		70.0	00 170		
Blank (BGB0288-BLK2)				epared: 2/2/	2023 Analyze	d: 2/27/2023	1		
1,2,4-Trichlorobenzene	<2.50 U	2.50	ug/kg wet						
1,2-Dichlorobenzene	<2.50 U	2.50	ug/kg wet						
(o-Dichlorobenzene)	-2 FO 11	2 50	ua/ka wot						
1,2-Diphenylhydrazine	<2.50 U	2.50	ug/kg wet						
1,3-Dichlorobenzene (m-Dichlorobenzene)	<2.50 U	2.50	ug/kg wet						
1,4-Dichlorobenzene	<2 E0 11	2.50	ug/kg wet						
(p-Dichlorobenzene)	<2.50 U	2.50	ug/kg wet						
2,2'-Oxybis(1-chloropropane),	<2.50 U	2.50	ug/kg wet						
bis(2-Chloro-1-methy	<b>\2.30</b> 0	2.50	ug/.tg 110t						
2,4,6-Trichlorophenol	<5.00 U	5.00	ug/kg wet						
2,4-Dichlorophenol	<5.00 U	5.00	ug/kg wet						
2,4-Dimethylphenol	<5.00 U	5.00	ug/kg wet						
2,4-Dinitrophenol	<5.00 U	5.00	ug/kg wet						
2,4-Dinitrotoluene (2,4-DNT)	<2.50 U	2.50	ug/kg wet						
2,6-Dinitrotoluene (2,6-DNT)	<2.50 U	2.50	ug/kg wet						
2-Chloronaphthalene	<2.50 U	2.50	ug/kg wet						
2-Chlorophenol	<5.00 U	5.00	ug/kg wet						
2-Methyl-4,6-dinitrophenol	<20.0 U	20.0	ug/kg wet						
(4,6-Dinitro-2-methylph	-								
2-Nitrophenol	<5.00 U	5.00	ug/kg wet						
4-Bromophenyl phenyl ether (BDE-3)	<2.50 U	2.50	ug/kg wet						
4-Chloro-3-methylphenol	<5.00 U	5.00	ug/kg wet						
4-Chlorophenyl phenylether	<2.50 U	2.50	ug/kg wet						
4-Nitrophenol	<2.50 U	2.50	ug/kg wet						
Acenaphthene	<2.50 U	2.50	ug/kg wet						
Acenaphthylene	<2.50 U	2.50	ug/kg wet						
Anthracene	<2.50 U	2.50	ug/kg wet						
Benzo(a)anthracene	<2.50 U	2.50	ug/kg wet						
Benzo(a)pyrene	<2.50 U	2.50	ug/kg wet						
Benzo(b)fluoranthene	<2.50 U	2.50	ug/kg wet						
Benzo(g,h,i)perylene	<2.50 U	2.50	ug/kg wet						
Benzo(k)fluoranthene	<2.50 U	2.50	ug/kg wet						
bis(2-Chloroethoxy)methane	<2.50 U	2.50	ug/kg wet						
bis(2-Chloroethyl) ether	<2.50 U	2.50	ug/kg wet						
Bis(2-ethylhexyl )phthalate	<2.50 U	2.50	ug/kg wet						

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0288 - SW-3570 (Cd	ontinued)								
Blank (BGB0288-BLK2)			Pre	epared: 2/2/	2023 Analyze	d: 2/27/2023			
Butyl benzyl phthalate	<2.50 U	2.50	ug/kg wet						
Chrysene	<2.50 U	2.50	ug/kg wet						
Dibenzo(a,h)anthracene	<2.50 U	2.50	ug/kg wet						
Diethyl phthalate	<2.50 U	2.50	ug/kg wet						
Dimethyl phthalate	<2.50 U	2.50	ug/kg wet						
Di-n-butyl phthalate	1.58 J	2.50	ug/kg wet						
Di-n-octyl phthalate	<2.50 U	2.50	ug/kg wet						
Fluoranthene	<2.50 U	2.50	ug/kg wet						
Fluorene	<2.50 U	2.50	ug/kg wet						
Hexachlorobenzene	<2.50 U	2.50	ug/kg wet						
Hexachlorobutadiene	<2.50 U	2.50	ug/kg wet						
Hexachlorocyclopentadiene	<2.50 U	2.50	ug/kg wet						
Hexachloroethane	<2.50 U	2.50	ug/kg wet						
Indeno(1,2,3-cd) pyrene	<2.50 U	2.50	ug/kg wet						
Isophorone	<2.50 U	2.50	ug/kg wet						
Naphthalene	<2.50 U	2.50	ug/kg wet						
Nitrobenzene	<2.50 U	2.50	ug/kg wet						
n-Nitrosodimethylamine	<2.50 U	2.50	ug/kg wet						
n-Nitrosodi-n-propylamine	<2.50 U	2.50	ug/kg wet						
n-Nitrosodiphenylamine	<2.50 U	2.50	ug/kg wet						
Pentachlorophenol	<5.00 U	5.00	ug/kg wet						
Phenanthrene	<2.50 U	2.50	ug/kg wet						
Phenol, Total	<5.00 U	5.00	ug/kg wet						
Pyrene	<2.50 U	2.50	ug/kg wet						
Surrogate: 2-Fluorobiphenyl-surr	S	11.0	ug/kg wet	20.0		55.1	60-140		
Surrogate: 2-Fluorophenol-surr	S	23.5	ug/kg wet	40.0		58.8	60-140		
Surrogate: 2,4,6-Tribromophenol-surr	5	23.5	ug/kg wet	40.0		58.8	60-140		
Surrogate: Nitrobenzene-d5-surr	5	10.1	ug/kg wet	20.0		50.5	60-140		
Surrogate: Phenol-d5-surr	S	21.9	ug/kg wet	40.0		<i>54.7</i>	60-140		
Surrogate: p-Terphenyl-d14-surr	5	11.2	ug/kg wet	20.0		56.0	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0288 - SW-3570 (Cd	ontinued)								
BS BENZ (BGB0288-BS1)			Pr	epared: 2/2	/2023 Analyzed	1: 2/9/2023			
3,3'-Dichlorobenzidine	3.39 J1	2.50	ug/kg wet	20.0	-	16.9	60-140		
Benzidine	<2.50 J1, U	2.50	ug/kg wet	20.0			60-140		
Surrogate: 2-Fluorobiphenyl-surr		13.9	ug/kg wet	20.0		69.6	60-140		
Surrogate: 2-Fluorophenol-surr		36.4	ug/kg wet	40.0		91.0	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		40.5	ug/kg wet	40.0		101	60-140		
Surrogate: Nitrobenzene-d5-surr		19.9	ug/kg wet	20.0		99.3	60-140		
Surrogate: Phenol-d5-surr		39.3	ug/kg wet	40.0		98.2	60-140		
Surrogate: p-Terphenyl-d14-surr		15.4	ug/kg wet	20.0		77.1	60-140		
BS SV (BGB0288-BS2)			Pre	epared: 2/2/	2023 Analyzed	: 2/27/2023	1		
1,2,4-Trichlorobenzene	14.0	2.50	ug/kg wet	20.0	,	70.1	60-140		
1,2-Dichlorobenzene	12.5	2.50	ug/kg wet	20.0		62.5	60-140		
(o-Dichlorobenzene)	12.7	50	J. J						
1,2-Diphenylhydrazine	16.7	2.50	ug/kg wet	20.0		83.6	60-140		
1,3-Dichlorobenzene	11.6 J1	2.50	ug/kg wet	20.0		58.1	60-140		
(m-Dichlorobenzene)	•								
1,4-Dichlorobenzene	12.3	2.50	ug/kg wet	20.0		61.6	60-140		
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	16.4	2.50	ug/kg wet	20.0		81.8	60-140		
bis(2-Chloro-1-methy									
2,4,6-Trichlorophenol	32.5	5.00	ug/kg wet	40.0		81.4	60-140		
2,4-Dichlorophenol	33.6	5.00	ug/kg wet	40.0		84.0	60-140		
2,4-Dimethylphenol	39.6	5.00	ug/kg wet	40.0		99.1	60-140		
2,4-Dinitrophenol	24.8	5.00	ug/kg wet	100		24.8	10-50.4		
2,4-Dinitrotoluene (2,4-DNT)	15.7	2.50	ug/kg wet	20.0		78.4	60-140		
2,6-Dinitrotoluene (2,6-DNT)	16.8	2.50	ug/kg wet	20.0		84.1	60-140		
2-Chloronaphthalene	14.7	2.50	ug/kg wet	20.0		73.3	60-140		
2-Chlorophenol	36.9	5.00	ug/kg wet	40.0		92.3	60-140		
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylph	23.9 J1	20.0	ug/kg wet	40.0		59.8	60-140		
2-Nitrophenol	33.6	5.00	ug/kg wet	40.0		83.9	60-140		
4-Bromophenyl phenyl ether (BDE-3)	16.5	2.50	ug/kg wet	20.0		82.6	60-140		
4-Chloro-3-methylphenol	33.9	5.00	ug/kg wet	40.0		84.7	60-140		
4-Chlorophenyl phenylether	16.4	2.50	ug/kg wet	20.0		81.8	60-140		
4-Nitrophenol	88.4	2.50	ug/kg wet	100		88.4	60-140		
Acenaphthene	15.3	2.50	ug/kg wet	20.0		76.7	60-140		
Acenaphthylene	18.3	2.50	ug/kg wet	20.0		91.3	60-140		
Anthracene	17.1	2.50	ug/kg wet	20.0		85.4	60-140		
Benzo(a)anthracene	16.4	2.50	ug/kg wet	20.0		82.2	60-140		
Benzo(a)pyrene	17.2	2.50	ug/kg wet	20.0		85.8	60-140		
Benzo(b)fluoranthene	16.2	2.50	ug/kg wet	20.0		81.0	60-140		
Benzo(g,h,i)perylene	16.3	2.50	ug/kg wet	20.0		81.7	60-140		
Benzo(k)fluoranthene	16.5	2.50	ug/kg wet	20.0		82.5	60-140		
bis(2-Chloroethoxy)methane	17.7	2.50	ug/kg wet	20.0		88.7	60-140		
bis(2-Chloroethyl) ether	17.1	2.50	ug/kg wet	20.0		85.3	60-140		
Bis(2-ethylhexyl )phthalate	17.6	2.50	ug/kg wet	20.0		88.0	60-140		
Butyl benzyl phthalate	17.7	2.50	ug/kg wet	20.0		88.3	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
rudiye	result Qual	Lillic	Onico	LCVCI	Nesuit	,uille	LIIIIG	Nib	LIIIIC
Batch: BGB0288 - SW-3570 (Cd	ontinued)								
BS SV (BGB0288-BS2)			Pro	epared: 2/2,	/2023 Analyzed:	2/27/2023			
Chrysene	16.2	2.50	ug/kg wet	20.0		81.2	60-140		
Dibenzo(a,h)anthracene	16.0	2.50	ug/kg wet	20.0		79.9	60-140		
Diethyl phthalate	18.2	2.50	ug/kg wet	20.0		91.1	60-140		
Dimethyl phthalate	17.1	2.50	ug/kg wet	20.0		85.3	60-140		
Di-n-butyl phthalate	19.3	2.50	ug/kg wet	20.0		96.6	60-140		
Di-n-octyl phthalate	17.5	2.50	ug/kg wet	20.0		87.4	60-140		
Fluoranthene	16.7	2.50	ug/kg wet	20.0		83.4	60-140		
Fluorene	16.4	2.50	ug/kg wet	20.0		82.0	60-140		
Hexachlorobenzene	16.2	2.50	ug/kg wet	20.0		81.0	60-140		
Hexachlorobutadiene	9.92 J1	2.50	ug/kg wet	20.0		49.6	60-140		
Hexachlorocyclopentadiene	15.3	2.50	ug/kg wet	20.0		76.3	60-140		
Hexachloroethane	10.3 J1	2.50	ug/kg wet	20.0		51.3	60-140		
Indeno(1,2,3-cd) pyrene	16.0	2.50	ug/kg wet	20.0		80.2	60-140		
Isophorone	15.0	2.50	ug/kg wet	20.0		74.9	60-140		
Naphthalene	15.2	2.50	ug/kg wet	20.0		76.0	60-140		
Nitrobenzene	16.8	2.50	ug/kg wet	20.0		84.0	60-140		
n-Nitrosodimethylamine	42.3 J1	2.50	ug/kg wet	100		42.3	60-140		
n-Nitrosodi-n-propylamine	18.3	2.50	ug/kg wet	20.0		91.3	60-140		
n-Nitrosodiphenylamine	15.8	2.50	ug/kg wet	20.0		78.8	60-140		
Pentachlorophenol	34.1	5.00	ug/kg wet	40.0		85.3	60-140		
Phenanthrene	16.9	2.50	ug/kg wet	20.0		84.4	60-140		
Phenol, Total	38.0	5.00	ug/kg wet	40.0		94.9	60-140		
Pyrene	16.6	2.50	ug/kg wet	20.0		83.2	60-140		
Surrogate: 2-Fluorobiphenyl-surr		12.0	ug/kg wet	20.0		60.0	60-140		
Surrogate: 2-Fluorophenol-surr		34.7	ug/kg wet	40.0		86.7	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		33.5	ug/kg wet	40.0		83.7	60-140		
Surrogate: Nitrobenzene-d5-surr		16.2	ug/kg wet	20.0		80.9	60-140		
Surrogate: Phenol-d5-surr		36.5	ug/kg wet	40.0		91.2	60-140		
Surrogate: p-Terphenyl-d14-surr		16.1	ug/kg wet	20.0		80.3	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0288 - SW-3570 (Cd	ontinued)								
BSD BENZ (BGB0288-BSD1)	<del>-</del>		Pr	epared: 2/2	/2023 Analyze	d: 2/9/2023			
3,3'-Dichlorobenzidine	1.84 J1, J	2.50	ug/kg wet	20.0		9.19	60-140	59.2	40
Benzidine	<2.50 J1, U	2.50	ug/kg wet	20.0			60-140		40
Surrogate: 2-Fluorobiphenyl-surr		12.8	ug/kg wet	20.0		63.8	60-140		
Surrogate: 2-Fluorophenol-surr		35.2	ug/kg wet	40.0		88.1	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		42.2	ug/kg wet	40.0		105	60-140		
Surrogate: Nitrobenzene-d5-surr		19.4	ug/kg wet	20.0		96.8	60-140		
Surrogate: Phenol-d5-surr		38.5	ug/kg wet	40.0		96.3	60-140		
Surrogate: p-Terphenyl-d14-surr		15.1	ug/kg wet	20.0		75.4	60-140		
BSD SV (BGB0288-BSD2)			Pre	epared: 2/2/	2023 Analyzeo	d: 2/27/2023	<b>;</b>		
1,2,4-Trichlorobenzene	14.4	2.50	ug/kg wet	20.0		72.1	60-140	2.77	40
1,2-Dichlorobenzene	13.1	2.50	ug/kg wet	20.0		65.5	60-140	4.65	40
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	17.1	2.50	ug/kg wet	20.0		85.6	60-140	2.35	40
1,3-Dichlorobenzene	12.2	2.50	ug/kg wet	20.0		61.0	60-140	4.79	40
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	12.9	2.50	ug/kg wet	20.0		64.4	60-140	4.40	40
(p-Dichlorobenzene) 2,2'-Oxybis(1-chloropropane),	467	2.50	ug/kg wet	20.0		83.7	60-140	2.28	40
bis(2-Chloro-1-methy	16.7	2.50	ug/kg wet	20.0		03.7	00-140	2.20	40
2,4,6-Trichlorophenol	33.5	5.00	ug/kg wet	40.0		83.7	60-140	2.77	40
2,4-Dichlorophenol	35.4	5.00	ug/kg wet	40.0		88.4	60-140	5.07	40
2,4-Dimethylphenol	40.4	5.00	ug/kg wet	40.0		101	60-140	2.00	40
2,4-Dinitrophenol	23.7	5.00	ug/kg wet	100		23.7	10-50.4	4.67	40
2,4-Dinitrotoluene (2,4-DNT)	16.5	2.50	ug/kg wet	20.0		82.4	60-140	5.06	40
2,6-Dinitrotoluene (2,6-DNT)	17.6	2.50	ug/kg wet	20.0		88.2	60-140	4.79	40
2-Chloronaphthalene	15.1	2.50	ug/kg wet	20.0		75.4	60-140	2.83	40
2-Chlorophenol	36.8	5.00	ug/kg wet	40.0		92.1	60-140	0.164	40
2-Methyl-4,6-dinitrophenol	24.0 J1	20.0	ug/kg wet	40.0		59.9	60-140	0.261	40
(4,6-Dinitro-2-methylph									
2-Nitrophenol	35.8	5.00	ug/kg wet	40.0		89.4	60-140	6.29	40
4-Bromophenyl phenyl ether (BDE-3)	17.0	2.50	ug/kg wet	20.0		85.2	60-140	3.08	40
4-Chloro-3-methylphenol	35.1	5.00	ug/kg wet	40.0		87.7	60-140	3.59	40
4-Chlorophenyl phenylether	16.8	2.50	ug/kg wet	20.0		84.1	60-140	2.77	40
4-Nitrophenol	96.7	2.50	ug/kg wet	100		96.7	60-140	8.95	40
Acenaphthene	15.7	2.50	ug/kg wet	20.0		78.6	60-140	2.48	40
Acenaphthylene	19.0	2.50	ug/kg wet	20.0		95.1	60-140	4.04	40
Anthracene	17.7	2.50	ug/kg wet	20.0		88.7	60-140	3.84	40
Benzo(a)anthracene	17.6	2.50	ug/kg wet	20.0		88.2	60-140 60-140	7.02 6.79	40 40
Benzo(a)pyrene	18.4	2.50	ug/kg wet	20.0		91.8 87.2	60-140 60-140	6.78 7.29	40 40
Benzo(a h i)perviene	17.4	2.50 2.50	ug/kg wet ug/kg wet	20.0		87.2 89.8	60-140 60-140	7.29 9.35	40 40
Benzo(g,h,i)perylene Benzo(k)fluoranthene	18.0	2.50	ug/kg wet ug/kg wet	20.0 20.0		89.8 88.1	60-140	9.35 6.49	40 40
bis(2-Chloroethoxy)methane	17.6	2.50	ug/kg wet ug/kg wet	20.0		93.0	60-140	4.79	40 40
bis(2-Chloroethyl) ether	18.6	2.50	ug/kg wet	20.0		91.1	60-140	6.58	40
Bis(2-ethylhexyl )phthalate	18.2 18.4	2.50	ug/kg wet	20.0		92.1	60-140	4.57	40
Butyl benzyl phthalate	18.0	2.50	ug/kg wet	20.0		90.2	60-140	2.17	40
bacy, benzyi phanalate	10.0	2.30	ug/ kg WCL	20.0		30.2	00-170	2.1/	TU



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	nesuit Quai	Limit	OHILS	FEAGI	ivesuit	/UNLC	LIIIICS	יערט	LIIIIL
Batch: BGB0288 - SW-3570 (Cd	ontinued)								
BSD SV (BGB0288-BSD2)			Pre	epared: 2/2/	/2023 Analyzed:	2/27/2023			
Chrysene	17.1	2.50	ug/kg wet	20.0		85.5	60-140	5.19	40
Dibenzo(a,h)anthracene	17.6	2.50	ug/kg wet	20.0		87.8	60-140	9.39	40
Diethyl phthalate	18.4	2.50	ug/kg wet	20.0		92.0	60-140	0.932	40
Dimethyl phthalate	17.5	2.50	ug/kg wet	20.0		87.5	60-140	2.59	40
Di-n-butyl phthalate	30.0 J1	2.50	ug/kg wet	20.0		150	60-140	43.5	40
Di-n-octyl phthalate	18.1	2.50	ug/kg wet	20.0		90.7	60-140	3.73	40
Fluoranthene	16.9	2.50	ug/kg wet	20.0		84.4	60-140	1.14	40
Fluorene	16.8	2.50	ug/kg wet	20.0		84.0	60-140	2.42	40
Hexachlorobenzene	16.5	2.50	ug/kg wet	20.0		82.5	60-140	1.85	40
Hexachlorobutadiene	10.6 J1	2.50	ug/kg wet	20.0		53.2	60-140	7.11	40
Hexachlorocyclopentadiene	18.0	2.50	ug/kg wet	20.0		89.9	60-140	16.3	40
Hexachloroethane	11.0 J1	2.50	ug/kg wet	20.0		55.2	60-140	7.27	40
Indeno(1,2,3-cd) pyrene	17.6	2.50	ug/kg wet	20.0		88.2	60-140	9.56	40
Isophorone	15.7	2.50	ug/kg wet	20.0		78.7	60-140	4.99	40
Naphthalene	15.9	2.50	ug/kg wet	20.0		79.4	60-140	4.44	40
Nitrobenzene	18.0	2.50	ug/kg wet	20.0		89.9	60-140	6.80	40
n-Nitrosodimethylamine	47.7 J1	2.50	ug/kg wet	100		47.7	60-140	11.8	40
n-Nitrosodi-n-propylamine	18.1	2.50	ug/kg wet	20.0		90.5	60-140	0.879	40
n-Nitrosodiphenylamine	15.3	2.50	ug/kg wet	20.0		76.7	60-140	2.65	40
Pentachlorophenol	35.3	5.00	ug/kg wet	40.0		88.2	60-140	3.27	40
Phenanthrene	17.5	2.50	ug/kg wet	20.0		87.3	60-140	3.37	40
Phenol, Total	38.7	5.00	ug/kg wet	40.0		96.8	60-140	1.98	40
Pyrene	17.0	2.50	ug/kg wet	20.0		84.8	60-140	1.92	40
Surrogate: 2-Fluorobiphenyl-surr		12.4	ug/kg wet	20.0		62.1	60-140		
Surrogate: 2-Fluorophenol-surr		36.2	ug/kg wet	40.0		90.5	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		33.9	ug/kg wet	40.0		84.7	60-140		
Surrogate: Nitrobenzene-d5-surr		17.2	ug/kg wet	20.0		85.9	60-140		
Surrogate: Phenol-d5-surr		38.0	ug/kg wet	40.0		95.0	60-140		
Surrogate: p-Terphenyl-d14-surr		16.5	ug/kg wet	20.0		82.7	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0288 - SW-3570 (Co	ontinued)								
MDL BENZ (BGB0288-MRL1)			Pr	epared: 2/2	2/2023 Analyzed	: 2/9/2023			
3,3'-Dichlorobenzidine	<2.50 U	2.50	ug/kg wet	2.00	•				
Benzidine	<2.50 J1, U	2.50	ug/kg wet	2.00					
Surrogate: 2-Fluorobiphenyl-surr	<del></del>	12.1	ug/kg wet	20.0		60.5	60-140		
Surrogate: 2-Fluorophenol-surr		34.3	ug/kg wet ug/kg wet	<i>40.0</i>		85.8	60-140 60-140		
Surrogate: 2,4,6-Tribromophenol-surr		38.2	ug/kg wet	40.0		95.5	60-140		
Surrogate: Nitrobenzene-d5-surr		18.4	ug/kg wet	20.0		93.3 91.9	60-1 <del>4</del> 0		
Surrogate: Phenol-d5-surr		37.7	ug/kg wet	40.0		91.9 94.2	60-140		
Surrogate: p-Terphenyl-d14-surr		14.1		20.0		70.4	60-140		
Surrogate. p-respirativi-u14-surr		17.1	ug/kg wet	20.0		70.4	00-140		
MDL SV (BGB0288-MRL2)					/2023 Analyzed:				
1,2,4-Trichlorobenzene	1.54 J	2.50	ug/kg wet	2.00		77.2			
1,2-Dichlorobenzene	1.33 J	2.50	ug/kg wet	2.00		66.3			
(o-Dichlorobenzene)			,,	2.00		40.			
1,2-Diphenylhydrazine	2.08 J	2.50	ug/kg wet	2.00		104			
1,3-Dichlorobenzene	<2.50 U	2.50	ug/kg wet	2.00					
(m-Dichlorobenzene)	4.07.3	2.50	um/len uunh	2.00		C2 F			
1,4-Dichlorobenzene	1.27 J	2.50	ug/kg wet	2.00		63.5			
(p-Dichlorobenzene) 2,2'-Oxybis(1-chloropropane),	2.00 1	2.50	ug/kg wet	2.00		104			
bis(2-Chloro-1-methy	2.09 J	2.50	ug/kg wet	2.00		104			
2,4,6-Trichlorophenol	4.01 J	5.00	ug/kg wet	4.00		100			
2,4-Dichlorophenol	3.97 J	5.00	ug/kg wet	4.00		99.3			
2,4-Dimethylphenol	3.91 J	5.00	ug/kg wet	4.00		97.7			
2,4-Dinitrophenol	6.11	5.00	ug/kg wet	10.0		61.1	50-150		
2,4-Dinitrotoluene (2,4-DNT)	1.71 J	2.50	ug/kg wet	2.00		85.3			
2,6-Dinitrotoluene (2,6-DNT)	1.88 J	2.50	ug/kg wet	2.00		94.1			
2-Chloronaphthalene	1.66 J	2.50	ug/kg wet	2.00		83.2			
2-Chlorophenol	3.70 J	5.00	ug/kg wet	4.00		92.6			
2-Methyl-4,6-dinitrophenol	<20.0 U	20.0	ug/kg wet	4.00					
(4,6-Dinitro-2-methylph	120.0 0	20.0	-515						
2-Nitrophenol	3.82 J	5.00	ug/kg wet	4.00		95.5			
4-Bromophenyl phenyl ether (BDE-3)	1.80 J	2.50	ug/kg wet	2.00		89.8			
4-Chloro-3-methylphenol	4.02 J	5.00	ug/kg wet	4.00		101			
4-Chlorophenyl phenylether	1.73 J	2.50	ug/kg wet	2.00		86.6			
4-Nitrophenol	10.1	2.50	ug/kg wet	10.0		101	50-150		
Acenaphthene	1.79 J	2.50	ug/kg wet	2.00		89.6			
Acenaphthylene	1.98 J	2.50	ug/kg wet	2.00		98.9			
Anthracene	1.78 J	2.50	J. J	2.00		89.0			
Benzo(a)anthracene	1.60 J	2.50	ug/kg wet	2.00		80.2			
Benzo(a)pyrene	1.70 J	2.50	ug/kg wet	2.00		84.9			
Benzo(b)fluoranthene	1.69 J	2.50	ug/kg wet	2.00		84.7			
Benzo(g,h,i)perylene	1.59 J	2.50	ug/kg wet	2.00		79.3			
Benzo(k)fluoranthene	1.87 J	2.50	ug/kg wet	2.00		93.5			
bis(2-Chloroethoxy)methane	1.78 J	2.50	ug/kg wet	2.00		89.0			
bis(2-Chloroethyl) ether	1.74 J	2.50	ug/kg wet	2.00		86.8			
Bis(2-ethylhexyl )phthalate	3.02	2.50		2.00		151			



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0288 - SW-3570 (C	ontinued)								
MDL SV (BGB0288-MRL2)			Pre	enared: 2/2/	2023 Analyzed	1: 2/27/2023			
Butyl benzyl phthalate	1.88 J	2.50	ug/kg wet	2.00	LOLD Analyzed	94.1			
Chrysene	1.88 J 1.78 J	2.50	ug/kg wet	2.00		89.1			
Dibenzo(a,h)anthracene	1.76 J	2.50	ug/kg wet	2.00		80.7			
Diethyl phthalate	2.93	2.50	ug/kg wet	2.00		146			
Dimethyl phthalate	1.93 J	2.50	ug/kg wet	2.00		96.3			
Di-n-butyl phthalate	4.57	2.50	ug/kg wet	2.00		229			
Di-n-octyl phthalate	1.61 J	2.50	ug/kg wet	2.00		80.7			
Fluoranthene	1.73 J	2.50	ug/kg wet	2.00		86.7			
Fluorene	1.88 J	2.50	ug/kg wet	2.00		94.2			
Hexachlorobenzene	1.72 J	2.50	ug/kg wet	2.00		85.8			
Hexachlorobutadiene	<2.50 U	2.50	ug/kg wet	2.00					
Hexachlorocyclopentadiene	<2.50 J1, U	2.50	ug/kg wet	2.00					
Hexachloroethane	<2.50 U	2.50	ug/kg wet	2.00					
Indeno(1,2,3-cd) pyrene	1.59 J	2.50	ug/kg wet	2.00		79.3			
Isophorone	1.79 J	2.50	ug/kg wet	2.00		89.7			
Naphthalene	1.60 J	2.50	ug/kg wet	2.00		79.8			
Nitrobenzene	1.66 J	2.50	ug/kg wet	2.00		83.0			
n-Nitrosodimethylamine	<2.50 J1, U	2.50	ug/kg wet	10.0			50-150		
n-Nitrosodi-n-propylamine	2.08 J	2.50	ug/kg wet	2.00		104			
n-Nitrosodiphenylamine	1.65 J	2.50	ug/kg wet	2.00		82.4			
Pentachlorophenol	3.33 J	5.00	ug/kg wet	4.00		83.2			
Phenanthrene	1.74 J	2.50	ug/kg wet	2.00		86.9			
Phenol, Total	6.41	5.00	ug/kg wet	4.00		160			
Pyrene	1.69 J	2.50	ug/kg wet	2.00		84.7			
Surrogate: 2-Fluorobiphenyl-surr		13.9	ug/kg wet	20.0		69.3	60-140		
Surrogate: 2-Fluorophenol-surr		36.2	ug/kg wet	40.0		90.6	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		35.0	ug/kg wet	40.0		87.5	60-140		
Surrogate: Nitrobenzene-d5-surr		16.6	ug/kg wet	20.0		83.0	60-140		
Surrogate: Phenol-d5-surr		36.7	ug/kg wet	40.0		91.8	60-140		
Surrogate: p-Terphenyl-d14-surr		17.2	ug/kg wet	20.0		86.2	60-140		

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Reporting

### **Quality Control** (Continued)

Spike

Source

15.3 13.2 17.7 12.6 13.1 18.3	<b>Source: 23</b> J1 J1	Limit  8A1459-54RE 3.12 3.12 3.12 3.12	ug/kg dry ug/kg dry ug/kg dry	Level epared: 2/2/ 24.9 24.9	2023 Analyzec <3.12 <3.12	%REC d: 2/27/2023 61.2 52.9	Limits 60-140	RPD	Lim
15.3 13.2 17.7 12.6 13.1	J1 J1	3.12 3.12 3.12	ug/kg dry ug/kg dry ug/kg dry	24.9	<3.12	61.2			
15.3 13.2 17.7 12.6 13.1	J1 J1	3.12 3.12 3.12	ug/kg dry ug/kg dry ug/kg dry	24.9	<3.12	61.2			
13.2 17.7 12.6 13.1	J1 J1	3.12 3.12 3.12	ug/kg dry ug/kg dry ug/kg dry	24.9	<3.12	61.2			
13.2 17.7 12.6 13.1	J1	3.12 3.12	ug/kg dry						
17.7 12.6 13.1	J1	3.12	ug/kg dry			32.3	60-140		
12.6 13.1									
12.6 13.1				24.9	<3.12	71.0	60-140		
13.1			ug/kg dry	24.9	<3.12	50.6	60-140		
	J1		,						
		3.12	ug/kg dry	24.9	<3.12	52.4	60-140		
18.3									
		3.12	ug/kg dry	24.9	<3.12	73.5	60-140		
38.6		6.23	ug/kg dry	49.8	<6.23	77.4	60-140		
39.9		6.23	ug/kg dry	49.8	<6.23	80.1	60-140		
42.9		6.23	ug/kg dry	49.8	<6.23	86.1	60-140		
110	J1	6.23	ug/kg dry	125	<6.23	88.2	10-51.3		
18.9		3.12	ug/kg dry	24.9	<3.12	75.9	60-140		
20.1		3.12	ug/kg dry	24.9	<3.12	80.7	60-140		
16.3		3.12	ug/kg dry	24.9	<3.12	65.4	60-140		
		6.23	ug/kg dry	49.8	<6.23	83.8	60-140		
		24.9		49.8	<24.9	82.0	60-140		
			5. 5 - 7						
41.0		6.23	ug/kg dry	49.8	<6.23	82.2	60-140		
		3.12	ug/kg dry	24.9	<3.12	72.9	60-140		
		6.23	ug/kg dry	49.8	<6.23	77.8	60-140		
		3.12	ug/kg dry	24.9	<3.12	72.3	60-140		
		3.12	ug/kg dry	125	<3.12	87.3	60-140		
		3.12	ug/kg dry	24.9	<3.12	70.0	60-140		
		3.12		24.9	<3.12	83.8	60-140		
		3.12 3.12	ug/kg dry ug/kg dry	24.9	<3.12				
	20.1 16.3 41.8 40.9 41.0 18.2 38.8 18.0 109 17.5 20.9 18.8 19.0 21.1 20.6 20.7 18.3 17.8 18.6 20.3 19.2 17.9 20.5 18.1	20.1 16.3 41.8 40.9 41.0 18.2 38.8 18.0 109 17.5 20.9 18.8 18.9 19.9 18.9 18.9 18.8 19.0 21.1 20.6 20.7 18.3 17.8 18.6 20.3 19.2 17.9 20.5 18.1 17.8 18.1	20.1       3.12         16.3       3.12         41.8       6.23         40.9       24.9         41.0       6.23         18.2       3.12         38.8       6.23         18.0       3.12         109       3.12         17.5       3.12         20.9       3.12         18.8       3.12         19.9       3.12         18.8       3.12         19.0       3.12         21.1       3.12         20.6       3.12         20.7       3.12         17.8       3.12         17.8       3.12         17.9       3.12         17.9       3.12         17.8       3.12         17.8       3.12         17.8       3.12	20.1 3.12 ug/kg dry 16.3 3.12 ug/kg dry 16.3 3.12 ug/kg dry 41.8 6.23 ug/kg dry 40.9 24.9 ug/kg dry 41.0 6.23 ug/kg dry 18.2 3.12 ug/kg dry 18.2 3.12 ug/kg dry 18.0 3.12 ug/kg dry 19.9 3.12 ug/kg dry 17.5 3.12 ug/kg dry 18.8 3.12 ug/kg dry 18.9 3.12 ug/kg dry 19.9 3.12 ug/kg dry 18.9 3.12 ug/kg dry 18.8 3.12 ug/kg dry 19.0 3.12 ug/kg dry 19.0 3.12 ug/kg dry 19.0 3.12 ug/kg dry 19.1 3.12 ug/kg dry 20.6 3.12 ug/kg dry 20.7 3.12 ug/kg dry 17.8 3.12 ug/kg dry 18.3 3.12 ug/kg dry 17.8 3.12 ug/kg dry 19.2 3.12 ug/kg dry 17.9 3.12 ug/kg dry 20.5 3.12 ug/kg dry 17.8 3.12 ug/kg dry 17.9 3.12 ug/kg dry 17.9 3.12 ug/kg dry 17.9 3.12 ug/kg dry 17.8 3.12 ug/kg dry 17.9 3.12 ug/kg dry 17.9 3.12 ug/kg dry 17.8 3.12 ug/kg dry 17.8 3.12 ug/kg dry 17.8 3.12 ug/kg dry 17.8 3.12 ug/kg dry	20.1       3.12       ug/kg dry       24.9         16.3       3.12       ug/kg dry       24.9         41.8       6.23       ug/kg dry       49.8         40.9       24.9       ug/kg dry       49.8         41.0       6.23       ug/kg dry       49.8         18.2       3.12       ug/kg dry       24.9         38.8       6.23       ug/kg dry       24.9         18.0       3.12       ug/kg dry       24.9         109       3.12       ug/kg dry       24.9         18.8       3.12       ug/kg dry       24.9         18.9       3.12       ug/kg dry       24.9         18.9       3.12       ug/kg dry       24.9         18.9       3.12       ug/kg dry       24.9         18.8       3.12       ug/kg dry       24.9         19.0       3.12       ug/kg dry       24.9         21.1       3.12       ug/kg dry       24.9         20.6       3.12       ug/	20.1       3.12       ug/kg dry       24.9       <3.12	20.1       3.12       ug/kg dry       24.9       <3.12	20.1 3.12 ug/kg dry 24.9	20.1  3.12 ug/kg dry  24.9  3.12 65.4  60-140  41.8  6.23 ug/kg dry  49.8  6.23  83.8  60-140  41.0  6.23 ug/kg dry  49.8  49.8  40.9  24.9  24.9  3.12  65.4  60-140  40.9  24.9  24.9  24.9  82.0  60-140  41.0  6.23 ug/kg dry  49.8  6.23  82.2  60-140  41.0  6.23 ug/kg dry  49.8  6.23  82.2  60-140  18.2  3.12 ug/kg dry  24.9  3.12  72.9  60-140  18.0  3.12 ug/kg dry  24.9  3.12  72.9  60-140  18.0  3.12 ug/kg dry  24.9  3.12  72.3  60-140  199  3.12 ug/kg dry  24.9  3.12  70.0  60-140  17.5  3.12 ug/kg dry  24.9  3.12  70.0  60-140  18.8  3.12 ug/kg dry  24.9  3.12  75.4  60-140  18.9  3.12 ug/kg dry  24.9  3.12  75.8  60-140  18.9  3.12 ug/kg dry  24.9  3.12  75.8  60-140  18.9  3.12 ug/kg dry  24.9  3.12  75.8  60-140  18.9  3.12 ug/kg dry  24.9  3.12  75.6  60-140  18.8  3.12 ug/kg dry  24.9  3.12  75.6  60-140  18.8  3.12 ug/kg dry  24.9  3.12  75.6  60-140  20.1  18.8  3.12 ug/kg dry  24.9  3.12  75.6  60-140  20.1  18.8  3.12 ug/kg dry  24.9  3.12  75.6  60-140  20.1  18.8  3.12 ug/kg dry  24.9  3.12  75.6  60-140  20.1  18.8  3.12 ug/kg dry  24.9  3.12  75.6  60-140  20.7  3.12 ug/kg dry  24.9  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.12  3.



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result (	Reporting Qual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0288 - SW-3570 (Con	ntinued)								
23A1459-54 MS (BGB0288-MS1)	-	Source: 23A1459-54RE	1 1	Prepared: 2/2,	/2023 Analyzed	d: 2/27/2023	;		
Hexachlorocyclopentadiene	13.5	3.12	ug/kg dry	24.9	<3.12	54.3	60-140		
Hexachloroethane	12.8		ug/kg dry	24.9	<3.12	51.5	60-140		
Indeno(1,2,3-cd) pyrene	18.7	3.12	ug/kg dry	24.9	<3.12	75.2	60-140		
Isophorone	17.5	3.12	ug/kg dry	24.9	<3.12	70.2	60-140		
Naphthalene	16.3	3.12	ug/kg dry	24.9	<3.12	65.2	60-140		
Nitrobenzene	19.4	3.12	ug/kg dry	24.9	<3.12	77.9	60-140		
n-Nitrosodimethylamine	52.5	3.12	ug/kg dry	125	<3.12	42.2	60-140		
n-Nitrosodi-n-propylamine	20.9	3.12	ug/kg dry	24.9	<3.12	83.8	60-140		
n-Nitrosodiphenylamine	15.4	3.12	ug/kg dry	24.9	<3.12	61.7	60-140		
Pentachlorophenol	38.0	6.23	ug/kg dry	49.8	<6.23	76.2	60-140		
Phenanthrene	18.8	3.12	ug/kg dry	24.9	<3.12	75.5	60-140		
Phenol, Total	42.6	6.23	ug/kg dry	49.8	<6.23	85.5	60-140		
Pyrene	18.1	3.12	ug/kg dry	24.9	<3.12	72.5	60-140		
Surrogate: 2-Fluorobiphenyl-surr	5		ug/kg dry			51.1	60-140		
Surrogate: 2-Fluorophenol-surr		40.1	ug/kg dry			80.4	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		37.4	ug/kg dry			75.0	60-140		
Surrogate: Nitrobenzene-d5-surr		17.9	ug/kg dry			71.6	60-140		
Surrogate: Phenol-d5-surr Surrogate: p-Terphenyl-d14-surr		42.0 17.4	ug/kg dry ug/kg dry			84.3 69.9	60-140 60-140		
					/2023 Analyzeo				
<b>23A1459-54 MSD (BGB0288-MSD1)</b> 1,2,4-Trichlorobenzene	16.3	Source: 23A1459-54RE 3.12	ug/kg dry	24.9	<3.12	65.5	60-140	6.86	40
1,2-Dichlorobenzene	14.1		ug/kg dry	24.9	<3.12	56.6	60-140	6.81	40
(o-Dichlorobenzene)	14.1	)] 5.12	ug/kg ury	24.9	<b>\</b> 3.12	30.0	00-140	0.01	70
1,2-Diphenylhydrazine	19.5	3.12	ug/kg dry	24.9	<3.12	78.3	60-140	9.83	40
1,3-Dichlorobenzene	13.7		ug/kg dry		<3.12	54.9	60-140	8.13	40
(m-Dichlorobenzene)	13.,	·•	3, 3 ,						
1,4-Dichlorobenzene	13.9	3.12	ug/kg dry	24.9	<3.12	55.7	60-140	6.16	40
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	18.8	3.12	ug/kg dry	24.9	<3.12	75.3	60-140	2.37	40
bis(2-Chloro-1-methy									
2,4,6-Trichlorophenol	40.2	6.23	ug/kg dry	49.8	<6.23	80.6	60-140	4.07	40
2,4-Dichlorophenol	41.5	6.23	ug/kg dry	49.8	<6.23	83.3	60-140	3.83	40
2,4-Dimethylphenol	46.7	6.23	ug/kg dry	49.8	<6.23	93.6	60-140	8.28	40
2,4-Dinitrophenol	120	11 6.23	ug/kg dry	125	<6.23	96.2	10-51.3	8.70	40
2,4-Dinitrotoluene (2,4-DNT)	20.2	3.12	ug/kg dry	24.9	<3.12	81.1	60-140	6.58	40
2,6-Dinitrotoluene (2,6-DNT)	21.0	3.12	ug/kg dry	24.9	<3.12	84.2	60-140	4.19	40
2-Chloronaphthalene	17.3	3.12	ug/kg dry	24.9	<3.12	69.3	60-140	5.79	40
2-Chlorophenol	44.2	6.23	ug/kg dry	49.8	<6.23	88.6	60-140	5.59	40
2-Methyl-4,6-dinitrophenol	43.4	24.9	ug/kg dry	49.8	<24.9	87.0	60-140	5.93	40
(4,6-Dinitro-2-methylph									
2-Nitrophenol	43.5	6.23	ug/kg dry	49.8	<6.23	87.2	60-140	5.83	40
4-Bromophenyl phenyl ether (BDE-3)	19.6	3.12	ug/kg dry	24.9	<3.12	78.7	60-140	7.70	40
4-Chloro-3-methylphenol	40.8	6.23	ug/kg dry	49.8	<6.23	81.9	60-140	5.15	40
4-Chlorophenyl phenylether	19.1	3.12	ug/kg dry	24.9	<3.12	76.6	60-140	5.80	40
4-Nitrophenol	115	3.12	ug/kg dry	125	<3.12	92.3	60-140	5.57	40
Acenaphthene	18.4	3.12	ug/kg dry	24.9	<3.12	73.6	60-140	5.04	40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0288 - SW-3570 (Con	ntinued)								
23A1459-54 MSD (BGB0288-MSD1)	-	23A1459-54RE	<b>1</b> Pr	epared: 2/2/	2023 Analyzed	d: 2/27/2023			
Acenaphthylene	22.0	3.12	ug/kg dry	24.9	<3.12	88.4	60-140	5.34	40
Anthracene	20.5	3.12	ug/kg dry	24.9	<3.12	82.2	60-140	8.66	40
Benzo(a)anthracene	20.4	3.12	ug/kg dry	24.9	<3.12	81.9	60-140	7.73	40
Benzo(a)pyrene	21.3	3.12	ug/kg dry	24.9	<3.12	85.4	60-140	6.56	40
Benzo(b)fluoranthene	20.1	3.12	ug/kg dry	24.9	<3.12	80.6	60-140	6.24	40
Benzo(g,h,i)perylene	20.3	3.12	ug/kg dry	24.9	<3.12	81.6	60-140	7.62	40
Benzo(k)fluoranthene	20.4	3.12	ug/kg dry	24.9	<3.12	81.8	60-140	7.17	40
bis(2-Chloroethoxy)methane	22.5	3.12	ug/kg dry	24.9	<3.12	90.2	60-140	6.39	40
bis(2-Chloroethyl) ether	21.4	3.12	ug/kg dry	24.9	<3.12	85.9	60-140	3.71	40
Bis(2-ethylhexyl )phthalate	22.2	3.12	ug/kg dry	24.9	<3.12	89.2	60-140	7.19	40
Butyl benzyl phthalate	20.0	3.12	ug/kg dry	24.9	<3.12	80.3	60-140	9.11	40
Chrysene	19.2	3.12	ug/kg dry	24.9	<3.12	76.8	60-140	7.27	40
Dibenzo(a,h)anthracene	20.1	3.12	ug/kg dry	24.9	<3.12	80.7	60-140	7.59	40
Diethyl phthalate	20.4	3.12	ug/kg dry	24.9	<3.12	81.7	60-140	0.349	40
Dimethyl phthalate	20.3	3.12	ug/kg dry	24.9	<3.12	81.5	60-140	5.57	40
Di-n-butyl phthalate	29.5 J1	3.12	ug/kg dry	24.9	<3.12	118	60-140	48.8	40
Di-n-octyl phthalate	21.8	3.12	ug/kg dry	24.9	<3.12	87.6	60-140	6.33	40
Fluoranthene	19.3	3.12	ug/kg dry	24.9	<3.12	77.3	60-140	6.20	40
Fluorene	19.1	3.12	ug/kg dry	24.9	<3.12	76.7	60-140	6.81	40
Hexachlorobenzene	19.3	3.12	ug/kg dry	24.9	<3.12	77.2	60-140	6.04	40
Hexachlorobutadiene	13.7 J1	3.12	ug/kg dry	24.9	<3.12	55.0	60-140	5.19	40
Hexachlorocyclopentadiene	20.6 J1	3.12	ug/kg dry	24.9	<3.12	82.8	60-140	41.7	40
Hexachloroethane	13.7 J1	3.12	ug/kg dry	24.9	<3.12	55.1	60-140	6.75	40
Indeno(1,2,3-cd) pyrene	20.1	3.12	ug/kg dry	24.9	<3.12	80.8	60-140	7.20	40
Isophorone	18.4	3.12	ug/kg dry	24.9	<3.12	74.0	60-140	5.29	40
Naphthalene	17.2	3.12	ug/kg dry	24.9	<3.12	69.0	60-140	5.62	40
Nitrobenzene	20.8	3.12	ug/kg dry	24.9	<3.12	83.3	60-140	6.71	40
n-Nitrosodimethylamine	63.2 J1	3.12	ug/kg dry	125	<3.12	50.7	60-140	18.4	40
n-Nitrosodi-n-propylamine	22.4	3.12	ug/kg dry	24.9	<3.12	89.8	60-140	6.89	40
n-Nitrosodiphenylamine	15.7	3.12	ug/kg dry	24.9	<3.12	62.9	60-140	1.98	40
Pentachlorophenol	40.1	6.23	ug/kg dry	49.8	<6.23	80.4	60-140	5.41	40
Phenanthrene	20.1	3.12	ug/kg dry	24.9	<3.12	80.8	60-140	6.73	40
Phenol, Total	46.0	6.23	ug/kg dry	49.8	<6.23	92.3	60-140	7.58	40
Pyrene	19.3	3.12	ug/kg dry	24.9	<3.12	77.6	60-140	6.73	40
Surrogate: 2-Fluorobiphenyl-surr	<i>S</i>	13.3	ug/kg dry	24.9		53.2	60-140		
Surrogate: 2-Fluorophenol-surr		42.7	ug/kg dry	49.8		<i>85.7</i>	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		39.3	ug/kg dry	49.8		78.8	60-140		
Surrogate: Nitrobenzene-d5-surr		18.8	ug/kg dry	24.9		75.6	60-140		
Surrogate: Phenol-d5-surr		45.6	ug/kg dry	49.8		91.4	60-140		
Surrogate: p-Terphenyl-d14-surr		18.3	ug/kg dry	24.9		73.4	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0424 - SW-3570									
Blank (BGB0424-BLK1)			Pr	epared: 2/3	/2023 Analyze	ed: 2/8/2023			
3,3'-Dichlorobenzidine	<2.50 U	2.50	ug/kg wet	. , .	,				
Benzidine	<2.50 U	2.50	ug/kg wet						
				20.0		77.8	60-140		
Surrogate: 2-Fluorobiphenyl-surr		15.6							
Surrogate: 2-Fluorophenol-surr		37.1	ug/kg wet ug/kg wet	40.0		<i>92.7</i>	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		46.8	5, 5	40.0		117	60-140		
Surrogate: Nitrobenzene-d5-surr		18.7	ug/kg wet	20.0		93.6	60-140		
Surrogate: Phenol-d5-surr		<i>36.5</i>	ug/kg wet	40.0		91.4	60-140		
Surrogate: p-Terphenyl-d14-surr		17.2	ug/kg wet	20.0		86.0	60-140		
Blank (BGB0424-BLK2)				epared: 2/3/	2023 Analyze	d: 2/17/2023	;		
1,2,4-Trichlorobenzene	<2.50 U	2.50	ug/kg wet						
1,2-Dichlorobenzene	<2.50 U	2.50	ug/kg wet						
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	<2.50 U	2.50	ug/kg wet						
1,3-Dichlorobenzene	<2.50 U	2.50	ug/kg wet						
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	<2.50 U	2.50	ug/kg wet						
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	<2.50 U	2.50	ug/kg wet						
bis(2-Chloro-1-methy		F 00	,, ,						
2,4,6-Trichlorophenol	<5.00 U	5.00	ug/kg wet						
2,4-Dichlorophenol	<5.00 U	5.00	ug/kg wet						
2,4-Dimethylphenol	<5.00 U	5.00	ug/kg wet						
2,4-Dinitrophenol	<5.00 U	5.00	ug/kg wet						
2,4-Dinitrotoluene (2,4-DNT)	<2.50 U	2.50	ug/kg wet						
2,6-Dinitrotoluene (2,6-DNT)	<2.50 U	2.50	ug/kg wet						
2-Chloronaphthalene	<2.50 U	2.50	ug/kg wet						
2-Chlorophenol	<5.00 U	5.00	ug/kg wet						
2-Methyl-4,6-dinitrophenol	<20.0 U	20.0	ug/kg wet						
(4,6-Dinitro-2-methylph									
2-Nitrophenol	<5.00 U	5.00	ug/kg wet						
4-Bromophenyl phenyl ether (BDE-3)	<2.50 U	2.50	ug/kg wet						
4-Chloro-3-methylphenol	<5.00 U	5.00	ug/kg wet						
4-Chlorophenyl phenylether	<2.50 U	2.50	ug/kg wet						
4-Nitrophenol	<2.50 U	2.50	ug/kg wet						
Acenaphthene	<2.50 U	2.50	ug/kg wet						
Acenaphthylene	<2.50 U	2.50	ug/kg wet						
Anthracene	<2.50 U	2.50	ug/kg wet						
Benzo(a)anthracene	<2.50 U	2.50	ug/kg wet						
Benzo(a)pyrene	<2.50 U	2.50	ug/kg wet						
Benzo(b)fluoranthene	<2.50 U	2.50	ug/kg wet						
Benzo(g,h,i)perylene	<2.50 U	2.50	ug/kg wet						
Benzo(k)fluoranthene	<2.50 U	2.50	ug/kg wet						
bis(2-Chloroethoxy)methane	<2.50 U	2.50	ug/kg wet						
bis(2-Chloroethyl) ether	<2.50 U	2.50	ug/kg wet						
Bis(2-ethylhexyl )phthalate	8.75	2.50							

%REC

TCEQ-TOX T104704202-22-17



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

A	B	Reporting	11.9	Spike	50urce	0/ DEC	70KLC	DDD	KFD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0424 - SW-3570 (Cd	ontinued)								
Blank (BGB0424-BLK2)	-		Pre	epared: 2/3/	/2023 Analyzed	1: 2/17/2023	;		
Butyl benzyl phthalate	<2.50 U	2.50	ug/kg wet						
Chrysene	<2.50 U	2.50	ug/kg wet						
Dibenzo(a,h)anthracene	<2.50 U	2.50	ug/kg wet						
Diethyl phthalate	<2.50 U	2.50	ug/kg wet						
Dimethyl phthalate	<2.50 U	2.50	ug/kg wet						
Di-n-butyl phthalate	<2.50 U	2.50	ug/kg wet						
Di-n-octyl phthalate	<2.50 U	2.50	ug/kg wet						
Fluoranthene	<2.50 U	2.50	ug/kg wet						
Fluorene	<2.50 U	2.50	ug/kg wet						
Hexachlorobenzene	<2.50 U	2.50	ug/kg wet						
Hexachlorobutadiene	<2.50 U	2.50	ug/kg wet						
Hexachloroethane	<2.50 U	2.50	ug/kg wet						
Indeno(1,2,3-cd) pyrene	<2.50 U	2.50	ug/kg wet						
Isophorone	<2.50 U	2.50	ug/kg wet						
Naphthalene	<2.50 U	2.50	ug/kg wet						
Nitrobenzene	<2.50 U	2.50	ug/kg wet						
n-Nitrosodimethylamine	<2.50 U	2.50	ug/kg wet						
n-Nitrosodi-n-propylamine	<2.50 U	2.50	ug/kg wet						
n-Nitrosodiphenylamine	<2.50 U	2.50	ug/kg wet						
Pentachlorophenol	<5.00 U	5.00	ug/kg wet						
Phenanthrene	<2.50 U	2.50	ug/kg wet						
Phenol, Total	3.93 J	5.00	ug/kg wet						
Pyrene	<2.50 U	2.50	ug/kg wet						
Surrogate: 2-Fluorobiphenyl-surr		13.6	ug/kg wet	20.0		68.1	60-140		
Surrogate: 2-Fluorophenol-surr		27.5	ug/kg wet	40.0		68.8	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		24.2	ug/kg wet	40.0		60.4	60-140		
Surrogate: Nitrobenzene-d5-surr		14.4	ug/kg wet	20.0		72.0	60-140		
Surrogate: Phenol-d5-surr		28.2	ug/kg wet	40.0		70.4	60-140		
Surrogate: p-Terphenyl-d14-surr	S	10.9	ug/kg wet	20.0		54.6	60-140		

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

		Reporting		Spike	Source		%REC		RPL
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Lim
Batch: BGB0424 - SW-3570 (Cd	ontinued)								
Blank (BGB0424-BLK3)	<u>-</u>		Pre	epared: 2/3,	/2023 Analyzed	d: 2/27/2023	}		
Hexachlorocyclopentadiene	<2.50 U	2.50	ug/kg wet		,				
	12.50			20.0		61 1	60 140		
Surrogate: 2-Fluorobiphenyl-surr		12.2		20.0		61.1	60-140		
Surrogate: 2-Fluorophenol-surr		27.1	ug/kg wet	40.0		67.8	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		29.5	ug/kg wet	40.0		73.8	60-140		
Surrogate: Nitrobenzene-d5-surr		12.5	ug/kg wet	20.0		62.6	60-140		
Surrogate: Phenol-d5-surr	6	25.2	ug/kg wet	40.0		<i>63.1</i>	60-140		
Surrogate: p-Terphenyl-d14-surr	5	10.7	ug/kg wet	20.0		53.6	60-140		
BS BENZ (BGB0424-BS1)			Pr	epared: 2/3	/2023 Analyze	ed: 2/8/2023			
3,3'-Dichlorobenzidine	6.26 J1	2.50	ug/kg wet	20.0		31.3	60-140		
Benzidine	<2.50 J1, U	2.50	ug/kg wet	20.0			60-140		
Surrogate: 2-Fluorobiphenyl-surr		14.9	ug/kg wet	20.0		74.5	60-140		
Surrogate: 2-Fluorophenol-surr		34.9	ug/kg wet	40.0		87.4	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		46.5	ug/kg wet	40.0		116	60-140		
Surrogate: Nitrobenzene-d5-surr		19.0	ug/kg wet	20.0		<i>95.2</i>	60-140		
Surrogate: Phenol-d5-surr		39.0	ug/kg wet	40.0		97.7	60-140		
Surrogate: p-Terphenyl-d14-surr		16.7		20.0		83.6	60-140		
Surregues p respiresly us 1 Surr			ug/ng wet	20.0					
BS SV (BGB0424-BS2)			Pre	epared: 2/3	/2023 Analyzed	d: 2/17/2023	;		
1,2,4-Trichlorobenzene	14.4	2.48	ug/kg wet	19.8		72.6	60-140		
1,2-Dichlorobenzene	11.8 J1	2.48	ug/kg wet	19.8		59.3	60-140		
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	16.8	2.48	ug/kg wet	19.8		84.8	60-140		
1,3-Dichlorobenzene	11.5 J1	2.48	ug/kg wet	19.8		58.0	60-140		
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	11.6 J1	2.48	ug/kg wet	19.8		58.6	60-140		
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	15.0	2.48	ug/kg wet	19.8		75.5	60-140		
bis(2-Chloro-1-methy		4.00		20.7		00.7	CO 140		
2,4,6-Trichlorophenol	36.0	4.96	ug/kg wet	39.7		90.7	60-140		
2,4-Dichlorophenol	35.8	4.96	ug/kg wet	39.7		90.2	60-140		
2,4-Dimethylphenol	35.1	4.96	ug/kg wet	39.7		88.4	60-140		
2,4-Dinitrophenol	15.7	4.96	ug/kg wet	99.2		15.8	10-50.4		
2,4-Dinitrotoluene (2,4-DNT)	15.3	2.48	ug/kg wet	19.8		76.9	60-140		
2,6-Dinitrotoluene (2,6-DNT)	16.4	2.48	ug/kg wet	19.8		82.6	60-140		
2-Chloronaphthalene	17.2	2.48	ug/kg wet	19.8		86.9	60-140		
2-Chlorophenol	35.6	4.96	ug/kg wet	39.7		89.7	60-140		
2-Methyl-4,6-dinitrophenol	18.9 J1, J	19.8	ug/kg wet	39.7		47.6	60-140		
(4,6-Dinitro-2-methylph									
2-Nitrophenol	38.1	4.96	ug/kg wet	39.7		95.9	60-140		
4-Bromophenyl phenyl ether (BDE-3)	15.5	2.48	ug/kg wet	19.8		78.2	60-140		
4-Chloro-3-methylphenol	35.4	4.96	ug/kg wet	39.7		89.2	60-140		
4-Chlorophenyl phenylether	16.3	2.48	ug/kg wet	19.8		82.0	60-140		
4-Nitrophenol	68.1	2.48	ug/kg wet	99.2		68.6	60-140		
Acenaphthene	15.4	2.48	ug/kg wet	19.8		77.5	60-140		
Acenaphthylene	17.8	2.48	ug/kg wet	19.8		89.6	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0424 - SW-3570 (Cd	ontinued)								
BS SV (BGB0424-BS2)	= <del></del> /		Pre	epared: 2/3/	/2023 Analyzed:	2/17/2023			
Anthracene	15.8	2.48	ug/kg wet	19.8	•	79.5	60-140		
Benzo(a)anthracene	16.1	2.48	ug/kg wet	19.8		81.3	60-140		
Benzo(a)pyrene	16.4	2.48	ug/kg wet	19.8		82.7	60-140		
Benzo(b)fluoranthene	9.79 J1	2.48	ug/kg wet	19.8		49.4	60-140		
Benzo(g,h,i)perylene	14.6	2.48	ug/kg wet	19.8		73.4	60-140		
Benzo(k)fluoranthene	14.5	2.48	ug/kg wet	19.8		73.0	60-140		
bis(2-Chloroethoxy)methane	17.8	2.48	ug/kg wet	19.8		89.9	60-140		
bis(2-Chloroethyl) ether	16.3	2.48	ug/kg wet	19.8		82.1	60-140		
Bis(2-ethylhexyl )phthalate	16.1	2.48	ug/kg wet	19.8		81.1	60-140		
Butyl benzyl phthalate	13.3	2.48	ug/kg wet	19.8		67.0	60-140		
Chrysene	15.6	2.48	ug/kg wet	19.8		78.8	60-140		
Dibenzo(a,h)anthracene	14.5	2.48	ug/kg wet	19.8		72.8	60-140		
Diethyl phthalate	16.9	2.48	ug/kg wet	19.8		84.9	60-140		
Dimethyl phthalate	17.8	2.48	ug/kg wet	19.8		89.9	60-140		
Di-n-butyl phthalate	15.6	2.48	ug/kg wet	19.8		78.8	60-140		
Di-n-octyl phthalate	14.3	2.48	ug/kg wet	19.8		72.0	60-140		
Fluoranthene	13.8	2.48	ug/kg wet	19.8		69.4	60-140		
Fluorene	16.2	2.48	ug/kg wet	19.8		81.8	60-140		
Hexachlorobenzene	14.7	2.48	ug/kg wet	19.8		73.9	60-140		
Hexachlorobutadiene	10.2 J1	2.48	ug/kg wet	19.8		51.6	60-140		
Hexachloroethane	10.5 J1	2.48	ug/kg wet	19.8		52.8	60-140		
Indeno(1,2,3-cd) pyrene	14.5	2.48	ug/kg wet	19.8		72.8	60-140		
Isophorone	14.4	2.48	ug/kg wet	19.8		72.5	60-140		
Naphthalene	14.4	2.48	ug/kg wet	19.8		72.4	60-140		
Nitrobenzene	18.1	2.48	ug/kg wet	19.8		91.4	60-140		
n-Nitrosodimethylamine	75.9	2.48	ug/kg wet	99.2		76.5	60-140		
n-Nitrosodi-n-propylamine	16.4	2.48	ug/kg wet	19.8		82.5	60-140		
n-Nitrosodiphenylamine	9.19 J1	2.48	ug/kg wet	19.8		46.3	60-140		
Pentachlorophenol	27.7	4.96	ug/kg wet	39.7		69.9	60-140		
Phenanthrene	15.5	2.48	ug/kg wet	19.8		77.9	60-140		
Phenol, Total	38.6	4.96	ug/kg wet	39.7		97.2	60-140		
Pyrene	13.0	2.48	ug/kg wet	19.8		65.3	60-140		
Surrogate: 2-Fluorobiphenyl-surr		14.0	ug/kg wet	19.8		70.6	60-140		
Surrogate: 2-Fluorophenol-surr		32.4	ug/kg wet	39.7		81.6	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		30.3	ug/kg wet	39.7		76.3	60-140		
Surrogate: Nitrobenzene-d5-surr		18.0	ug/kg wet	19.8		90.6	60-140		
Surrogate: Phenol-d5-surr		34.0	ug/kg wet	39.7		85.6	60-140		
Surrogate: p-Terphenyl-d14-surr		12.9	ug/kg wet	19.8		64.9	60-140		

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Reporting

# Quality Control (Continued)

Spike

Source

Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0424 - SW-3570 (Cd	ontinued)								
LCS (BGB0424-BS3)			Pre	epared: 2/3/	/2023 Analyzed	d: 2/27/2023	}		
Hexachlorocyclopentadiene	10.1 J1	2.48	ug/kg wet	19.8		50.7	60-140		
Surrogate: 2-Fluorobiphenyl-surr		13.7	ug/kg wet	19.8		69.3	60-140		
Surrogate: 2-Fluorophenol-surr		33.4	ug/kg wet	<i>39.7</i>		84.2	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		<i>33.7</i>		<i>39.7</i>		84.8	60-140		
Surrogate: Nitrobenzene-d5-surr		16.6	ug/kg wet	19.8		83.7	60-140		
Surrogate: Phenol-d5-surr		36.9	ug/kg wet	<i>39.7</i>		93.1	60-140		
Surrogate: p-Terphenyl-d14-surr		15.7		19.8		79.2	60-140		
BSD BENZ (BGB0424-BSD1)			Dr	enared: 2/3	3/2023 Analyze	d· 2/8/2023			
3,3'-Dichlorobenzidine	F 02 11	2.47	ug/kg wet	19.8	72025 Analyze	29.9	60-140	5.52	40
Benzidine	5.92 J1		ug/kg wet ug/kg wet	19.8		12.5	60-140	82.5	40
Deliziulie	2.48 J1	2.47	ug/kg wet	19.0		12.5	00-140	02.3	
Surrogate: 2-Fluorobiphenyl-surr		13.2	ug/kg wet	19.8		66.9	60-140		
Surrogate: 2-Fluorophenol-surr		<i>35.1</i>	ug/kg wet	39.6		88.6	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		42.3	ug/kg wet	39.6		107	<i>60-140</i>		
Surrogate: Nitrobenzene-d5-surr		18.1	ug/kg wet	19.8		91.3	60-140		
Surrogate: Phenol-d5-surr		36.0	ug/kg wet	39.6		90.9	60-140		
Surrogate: p-Terphenyl-d14-surr		16.9	ug/kg wet	19.8		85.2	60-140		
BSD SV (BGB0424-BSD2)			Pre	epared: 2/3/	/2023 Analyzed	d: 2/17/2023	<b>;</b>		
1,2,4-Trichlorobenzene	15.3	2.46	ug/kg wet	19.7		77.5	60-140	5.81	40
1,2-Dichlorobenzene	12.2	2.46	ug/kg wet	19.7		62.2	60-140	4.04	40
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	17.7	2.46	ug/kg wet	19.7		90.0	60-140	5.23	40
1,3-Dichlorobenzene	11.8 J1	2.46	ug/kg wet	19.7		59.9	60-140	2.53	40
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	11.9	2.46	ug/kg wet	19.7		60.6	60-140	2.62	40
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	15.7	2.46	ug/kg wet	19.7		79.4	60-140	4.40	40
bis(2-Chloro-1-methy									
2,4,6-Trichlorophenol	38.0	4.93	ug/kg wet	39.4		96.4	60-140	5.31	40
2,4-Dichlorophenol	38.1	4.93	ug/kg wet	39.4		96.8	60-140	6.34	40
2,4-Dimethylphenol	37.9	4.93	ug/kg wet	39.4		96.1	60-140	7.75	40
2,4-Dinitrophenol	27.8 J1	4.93	ug/kg wet	98.5		28.2	10-50.4	55.8	40
2,4-Dinitrotoluene (2,4-DNT)	16.3	2.46	ug/kg wet	19.7		82.9	60-140	6.88	40
2,6-Dinitrotoluene (2,6-DNT)	17.2	2.46	ug/kg wet	19.7		87.2	60-140	4.75	40
2-Chloronaphthalene	18.6	2.46	ug/kg wet	19.7		94.1	60-140	7.36	40
2-Chlorophenol	37.8	4.93	ug/kg wet	39.4		95.9	60-140	5.96	40
2-Methyl-4,6-dinitrophenol	24.3	19.7	ug/kg wet	39.4		61.7	60-140	25.2	40
(4,6-Dinitro-2-methylph									
2-Nitrophenol	40.3	4.93	ug/kg wet	39.4		102	60-140	5.68	40
4-Bromophenyl phenyl ether (BDE-3)	16.7	2.46	ug/kg wet	19.7		84.7	60-140	7.31	40
4-Chloro-3-methylphenol	37.7	4.93	ug/kg wet	39.4		95.6	60-140	6.26	40
4-Chlorophenyl phenylether	15.8	2.46	ug/kg wet	19.7		80.2	60-140	2.90	40
4-Nitrophenol	71.6	2.46	ug/kg wet	98.5		72.6	60-140	4.97	40
Acenaphthene	16.4	2.46	ug/kg wet	19.7		83.1	60-140	6.30	40
Acenaphthylene	18.9	2.46	ug/kg wet	19.7		95.9	60-140	6.03	40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0424 - SW-3570 (Cd	ontinued)								
BSD SV (BGB0424-BSD2)			Pre	epared: 2/3/	2023 Analyze	d: 2/17/2023	3		
Anthracene	16.6	2.46	ug/kg wet	19.7	•	84.4	60-140	5.31	40
Benzo(a)anthracene	16.9	2.46	ug/kg wet	19.7		85.9	60-140	4.88	40
Benzo(a)pyrene	17.7	2.46	ug/kg wet	19.7		90.1	60-140	7.82	40
Benzo(b)fluoranthene	9.80 J1	2.46	ug/kg wet	19.7		49.8	60-140	0.100	40
Benzo(g,h,i)perylene	16.1	2.46	ug/kg wet	19.7		81.8	60-140	10.1	40
Benzo(k)fluoranthene	14.6	2.46	ug/kg wet	19.7		74.3	60-140	1.14	40
bis(2-Chloroethoxy)methane	19.7	2.46	ug/kg wet	19.7		100	60-140	9.90	40
bis(2-Chloroethyl) ether	17.3	2.46	ug/kg wet	19.7		87.6	60-140	5.79	40
Bis(2-ethylhexyl )phthalate	17.2	2.46	ug/kg wet	19.7		87.4	60-140	6.77	40
Butyl benzyl phthalate	14.0	2.46	ug/kg wet	19.7		70.9	60-140	4.95	40
Chrysene	16.5	2.46	ug/kg wet	19.7		83.7	60-140	5.34	40
Dibenzo(a,h)anthracene	15.6	2.46	ug/kg wet	19.7		79.4	60-140	7.93	40
Diethyl phthalate	18.3	2.46	ug/kg wet	19.7		93.0	60-140	8.37	40
Dimethyl phthalate	17.5	2.46	ug/kg wet	19.7		88.7	60-140	1.99	40
Di-n-butyl phthalate	16.3	2.46	ug/kg wet	19.7		82.9	60-140	4.45	40
Di-n-octyl phthalate	14.9	2.46	ug/kg wet	19.7		75.8	60-140	4.51	40
Fluoranthene	14.2	2.46	ug/kg wet	19.7		72.2	60-140	3.22	40
Fluorene	15.8	2.46	ug/kg wet	19.7		80.0	60-140	2.94	40
Hexachlorobenzene	15.9	2.46	ug/kg wet	19.7		80.6	60-140	7.89	40
Hexachlorobutadiene	10.7 J1	2.46	ug/kg wet	19.7		54.1	60-140	4.00	40
Hexachloroethane	10.8 J1	2.46	ug/kg wet	19.7		54.9	60-140	3.21	40
Indeno(1,2,3-cd) pyrene	15.7	2.46	ug/kg wet	19.7		79.5	60-140	8.11	40
Isophorone	15.4	2.46	ug/kg wet	19.7		78.1	60-140	6.78	40
Naphthalene	14.9	2.46	ug/kg wet	19.7		75.8	60-140	3.86	40
Nitrobenzene	19.4	2.46	ug/kg wet	19.7		98.3	60-140	6.56	40
n-Nitrosodimethylamine	77.5	2.46	ug/kg wet	98.5		78.6	60-140	2.06	40
n-Nitrosodi-n-propylamine	17.1	2.46	ug/kg wet	19.7		87.0	60-140	4.52	40
n-Nitrosodiphenylamine	8.58 J1	2.46	ug/kg wet	19.7		43.6	60-140	6.87	40
Pentachlorophenol	28.9	4.93	ug/kg wet	39.4		73.3	60-140	4.08	40
Phenanthrene	16.3	2.46	ug/kg wet	19.7		82.8	60-140	5.35	40
Phenol, Total	41.5	4.93	ug/kg wet	39.4		105	60-140	7.26	40
Pyrene	12.5	2.46	ug/kg wet	19.7		63.6	60-140	3.35	40
Surrogate: 2-Fluorobiphenyl-surr		15.3	ug/kg wet	19.7		77.8	60-140		
Surrogate: 2-Fluorophenol-surr		34.1	ug/kg wet	39.4		86.6	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		32.1	ug/kg wet	39.4		81.5	60-140		
Surrogate: Nitrobenzene-d5-surr		19.3	ug/kg wet	19.7		98.1	60-140		
Surrogate: Phenol-d5-surr		36.6	ug/kg wet	39.4		92.9	60-140		
Surrogate: p-Terphenyl-d14-surr		13.3		19.7		67.6	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Quality Control (Continued)

		Reporting		Spike	Source	04	%REC	<b>D</b> F-	RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
Batch: BGB0424 - SW-3570 (Co	ontinued)								
LCS Dup (BGB0424-BSD3)	-		Pre	epared: 2/3/	2023 Analyze	d: 2/27/2023	3		
Hexachlorocyclopentadiene	12.5	2.46	ug/kg wet	19.7		63.6	60-140	21.9	40
Surrogate: 2-Fluorobiphenyl-surr		14.6	ug/kg wet	19.7		73.9	60-140		
Surrogate: 2-Fluorophenol-surr		36.2	ug/kg wet	39.4		92.0	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		38.7	ug/kg wet	39.4		98.2	60-140		
Surrogate: Nitrobenzene-d5-surr		18.2	ug/kg wet	19.7		92.6	60-140		
Surrogate: Phenol-d5-surr		35.3	ug/kg wet	39.4		89.6	60-140		
Surrogate: p-Terphenyl-d14-surr		13.6		19.7		69.1	60-140		
DENT MEL (DODOGO MELA)					/2022 4	4- 2/0/2022			
BENZ MDL (BGB0424-MRL1)	0.00 11	2 22			/2023 Analyze	ed: 2/8/2023			
3,3'-Dichlorobenzidine	<2.33 U	2.33	ug/kg wet	1.86					
Benzidine	<2.33 J1, U	2.33	ug/kg wet	1.86					
Surrogate: 2-Fluorobiphenyl-surr		13.7	ug/kg wet	18.6		73.7	60-140		
Surrogate: 2-Fluorophenol-surr		36.1	ug/kg wet	37.2		96.9	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		42.0	ug/kg wet	37.2		113	60-140		
Surrogate: Nitrobenzene-d5-surr		17.8	ug/kg wet	18.6		95.4	60-140		
Surrogate: Phenol-d5-surr		37.0	ug/kg wet	37.2		99.3	60-140		
Surrogate: p-Terphenyl-d14-surr		15.6		18.6		84.0	60-140		
SV MDL (BGB0424-MRL2)			Pre	epared: 2/3/	/2023 Analyze	d: 2/17/2023	3		
1,2,4-Trichlorobenzene	1.42 J	2.37	ug/kg wet	1.90	,	74.7			
1,2-Dichlorobenzene	<2.37 U	2.37	ug/kg wet	1.90		,			
(o-Dichlorobenzene)	<b>\2.37</b> 0	2.57	ug/kg Wet	1.50					
1,2-Diphenylhydrazine	1.46 J	2.37	ug/kg wet	1.90		77.1			
1,3-Dichlorobenzene	<2.37 U	2.37	ug/kg wet	1.90		=			
(m-Dichlorobenzene)	\2.J/ U	2.37	251 HCC	2.50					
1,4-Dichlorobenzene	<2.37 U	2.37	ug/kg wet	1.90					
(p-Dichlorobenzene)	-2.57		J. J						
2,2'-Oxybis(1-chloropropane),	1.64 J	2.37	ug/kg wet	1.90		86.1			
bis(2-Chloro-1-methy			3. 3						
2,4,6-Trichlorophenol	3.79 J	4.75	ug/kg wet	3.80		99.9			
2,4-Dichlorophenol	3.66 J	4.75	ug/kg wet	3.80		96.4			
2,4-Dimethylphenol	3.54 J	4.75	ug/kg wet	3.80		93.2			
2,4-Dinitrophenol	5.77	4.75	ug/kg wet	9.50		60.7	50-150		
2,4-Dinitrotoluene (2,4-DNT)	1.45 J	2.37	ug/kg wet	1.90		76.2			
2,6-Dinitrotoluene (2,6-DNT)	1.64 J	2.37	ug/kg wet	1.90		86.5			
2-Chloronaphthalene	1.61 J	2.37	ug/kg wet	1.90		84.8			
2-Chlorophenol	3.08 J	4.75	ug/kg wet	3.80		81.1			
2-Methyl-4,6-dinitrophenol	<19.0 U	19.0	ug/kg wet	3.80		01.1			
(4,6-Dinitro-2-methylph	<13.0 0	19.0	ag/ng wet	3.00					
2-Nitrophenol	4.15 J	4.75	ug/kg wet	3.80		109			
4-Bromophenyl phenyl ether (BDE-3)	4.15 J 1.47 J	2.37	ug/kg wet	1.90		77.7			
4-Chloro-3-methylphenol		4.75	ug/kg wet	3.80		94.5			
, , , , , , , , , , , , , , , , , , ,	3.59 J	2.37	ug/kg wet ug/kg wet	1.90		86.3			
4-Chlorophenyl phenylether 4-Nitrophenol	1.64 J		J. J				E0_1E0		
•	8.08	2.37	ug/kg wet	9.50		85.1	50-150		
Acenaphthene	1.48 J	2.37	ug/kg wet	1.90		77.7			
Acenaphthylene	1.83 J	2.37	ug/kg wet	1.90		96.2			



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0424 - SW-3570 (Cd	ontinued)		-		(2022 A	1-2/17/2022			
SV MDL (BGB0424-MRL2)					2023 Analyze				
Anthracene	1.48 J	2.37	ug/kg wet	1.90		77.7			
Benzo(a)anthracene	1.46 J	2.37	ug/kg wet	1.90		77.0			
Benzo(a)pyrene	1.53 J	2.37	ug/kg wet	1.90		80.4			
Benzo(b)fluoranthene	1.60 J	2.37	ug/kg wet	1.90		84.4			
Benzo(g,h,i)perylene	1.62 J	2.37	ug/kg wet	1.90		85.4			
Benzo(k)fluoranthene	1.53 J	2.37	ug/kg wet	1.90		80.8			
bis(2-Chloroethoxy)methane	1.79 J	2.37	ug/kg wet	1.90		94.3			
bis(2-Chloroethyl) ether	1.51 J	2.37	ug/kg wet	1.90		79.8			
Bis(2-ethylhexyl )phthalate	1.85 J	2.37	ug/kg wet	1.90		97.2			
Butyl benzyl phthalate	1.31 J	2.37	ug/kg wet	1.90		69.2			
Chrysene	1.53 J	2.37	ug/kg wet	1.90		80.6			
Dibenzo(a,h)anthracene	1.41 J	2.37	ug/kg wet	1.90		74.5			
Diethyl phthalate	2.23 J	2.37	ug/kg wet	1.90		117			
Dimethyl phthalate	1.67 J	2.37	ug/kg wet	1.90		87.8			
Di-n-butyl phthalate	2.21 J	2.37	ug/kg wet	1.90		116			
Di-n-octyl phthalate	1.32 J	2.37	ug/kg wet	1.90		69.6			
Fluoranthene	1.32 J	2.37	ug/kg wet	1.90		69.4			
Fluorene	1.76 J	2.37	ug/kg wet	1.90		92.8			
Hexachlorobenzene	1.40 J	2.37	ug/kg wet	1.90		73.8			
Hexachlorobutadiene	<2.37 U	2.37	ug/kg wet	1.90					
Hexachloroethane	<2.37 U	2.37	ug/kg wet	1.90					
Indeno(1,2,3-cd) pyrene	1.45 J	2.37	ug/kg wet	1.90		76.1			
Isophorone	1.51 J	2.37	ug/kg wet	1.90		79.4			
Naphthalene	1.43 J	2.37	ug/kg wet	1.90		75.5			
Nitrobenzene	1.68 J	2.37	ug/kg wet	1.90		88.4			
n-Nitrosodimethylamine	14.7 J1	2.37	ug/kg wet	9.50		155	50-150		
n-Nitrosodi-n-propylamine	1.68 J	2.37	ug/kg wet	1.90		88.5			
n-Nitrosodiphenylamine	<2.37 U	2.37	ug/kg wet	1.90					
Pentachlorophenol	2.43 J	4.75	ug/kg wet	3.80		64.1			
Phenanthrene	1.45 J	2.37	ug/kg wet	1.90		76.2			
Phenol, Total	5.03	4.75	ug/kg wet	3.80		132			
Pyrene	1.32 J	2.37	ug/kg wet	1.90		69.7			
Surrogate: 2-Fluorobiphenyl-surr		12.7	ug/kg wet	19.0		66.9	60-140		
Surrogate: 2-Fluorophenol-surr		29.4	ug/kg wet	38.0		77.3	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		27.8	ug/kg wet	38.0		73.2	60-140		
Surrogate: Nitrobenzene-d5-surr		16.4	ug/kg wet	19.0		86.2	60-140		
Surrogate: Phenol-d5-surr		30.6	ug/kg wet	38.0		80.7	60-140		
Surrogate: p-Terphenyl-d14-surr		12.9	ug/kg wet	19.0		67.7	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0424 - SW-3570	(Continued)								
MRL Check (BGB0424-MRL3)			Pre	epared: 2/3/	2023 Analyzeo	d: 2/27/2023			
Hexachlorocyclopentadiene	<2.37 11. U	2.37	ua/ka wet	1.90					

MRL Check (BGB0424-MRL3)			Pre	epared: 2/3/	2023 Analyzed	1: 2/27/2023	3	
Hexachlorocyclopentadiene	<2.37 J1, U	2.37	ug/kg wet	1.90				
Surrogate: 2-Fluorobiphenyl-surr		12.6	ug/kg wet	19.0		66.3	60-140	
Surrogate: 2-Fluorophenol-surr		29.5	ug/kg wet	38.0		77.8	60-140	
Surrogate: 2,4,6-Tribromophenol-surr		31.0	ug/kg wet	38.0		81.5	60-140	
Surrogate: Nitrobenzene-d5-surr		13.6	ug/kg wet	19.0		71.4	60-140	
Surrogate: Phenol-d5-surr		31.3	ug/kg wet	38.0		82.3	60-140	
Surrogate: p-Terphenyl-d14-surr		16.1	ug/kg wet	19.0		84.8	60-140	
23A1459-66 MS (BGB0424-MS1)	Source: 23	8A1459-66RE	<b>1</b> Pre	epared: 2/3/	2023 Analyzed	d: 2/17/2023	3	
1,2,4-Trichlorobenzene	20.4	3.18	ug/kg dry	25.4	<3.18	80.2	60-140	
1,2-Dichlorobenzene	15.2 J1	3.18	ug/kg dry	25.4	<3.18	59.9	60-140	
(o-Dichlorobenzene)								
1,2-Diphenylhydrazine	23.4	3.18	ug/kg dry	25.4	<3.18	92.0	60-140	
1 3-Dichlorohenzene	15.0 11	3 18	ua/ka dry	25.4	<3.18	59.2	60-140	

-/	13.2 31							
(o-Dichlorobenzene)								
1,2-Diphenylhydrazine	23.4	3.18	ug/kg dry	25.4	<3.18	92.0	60-140	
1,3-Dichlorobenzene	15.0 J1	3.18	ug/kg dry	25.4	<3.18	59.2	60-140	
(m-Dichlorobenzene)								
1,4-Dichlorobenzene	15.2 J1	3.18	ug/kg dry	25.4	<3.18	59.8	60-140	
(p-Dichlorobenzene)								
2,2'-Oxybis(1-chloropropane),	20.8	3.18	ug/kg dry	25.4	<3.18	82.0	60-140	
bis(2-Chloro-1-methy								
2,4,6-Trichlorophenol	49.6	6.35	ug/kg dry	50.8	<6.35	97.6	60-140	
2,4-Dichlorophenol	50.0	6.35	ug/kg dry	50.8	<6.35	98.3	60-140	
2,4-Dimethylphenol	49.5	6.35	ug/kg dry	50.8	<6.35	97.4	60-140	
2,4-Dinitrophenol	18.2	6.35	ug/kg dry	127	<6.35	14.3	10-51.3	
2,4-Dinitrotoluene (2,4-DNT)	21.4	3.18	ug/kg dry	25.4	<3.18	84.3	60-140	
2,6-Dinitrotoluene (2,6-DNT)	22.9	3.18	ug/kg dry	25.4	<3.18	90.3	60-140	
2-Chloronaphthalene	24.1	3.18	ug/kg dry	25.4	<3.18	94.9	60-140	
2-Chlorophenol	51.1	6.35	ug/kg dry	50.8	<6.35	101	60-140	
2-Methyl-4,6-dinitrophenol	24.9 J1, J	25.4	ug/kg dry	50.8	<25.4	49.1	60-140	
(4,6-Dinitro-2-methylph								
2-Nitrophenol	53.8	6.35	ug/kg dry	50.8	<6.35	106	60-140	
4-Bromophenyl phenyl ether (BDE-3)	21.6	3.18	ug/kg dry	25.4	<3.18	85.0	60-140	
4-Chloro-3-methylphenol	50.6	6.35	ug/kg dry	50.8	<6.35	99.7	60-140	
4-Chlorophenyl phenylether	22.1	3.18	ug/kg dry	25.4	<3.18	86.9	60-140	
4-Nitrophenol	96.3	3.18	ug/kg dry	127	<3.18	75.8	60-140	
Acenaphthene	21.3	3.18	ug/kg dry	25.4	<3.18	84.0	60-140	
Acenaphthylene	24.5	3.18	ug/kg dry	25.4	<3.18	96.3	60-140	
Anthracene	21.7	3.18	ug/kg dry	25.4	<3.18	85.4	60-140	
Benzo(a)anthracene	21.8	3.18	ug/kg dry	25.4	<3.18	85.9	60-140	
Benzo(a)pyrene	21.9	3.18	ug/kg dry	25.4	<3.18	86.2	60-140	
Benzo(b)fluoranthene	14.9 J1	3.18	ug/kg dry	25.4	<3.18	58.7	60-140	
Benzo(g,h,i)perylene	19.1	3.18	ug/kg dry	25.4	<3.18	75.2	60-140	
Benzo(k)fluoranthene	20.1	3.18	ug/kg dry	25.4	<3.18	79.3	60-140	
bis(2-Chloroethoxy)methane	26.3	3.18	ug/kg dry	25.4	<3.18	104	60-140	
bis(2-Chloroethyl) ether	22.6	3.18	ug/kg dry	25.4	<3.18	88.8	60-140	
Bis(2-ethylhexyl )phthalate	19.9	3.18	ug/kg dry	25.4	<3.18	78.3	60-140	
Butyl benzyl phthalate	18.2	3.18	ug/kg dry	25.4	<3.18	71.8	60-140	
Chrysene	21.1	3.18	ug/kg dry	25.4	<3.18	82.9	60-140	
•			5, 5 . 1	-				





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Limit	Units	Level	D 11				
				Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0424 - SW-3570 (Con	tinued)								
23A1459-66 MS (BGB0424-MS1)	Source:	23A1459-66RE	<b>1</b> Pre	epared: 2/3/	2023 Analyzed	d: 2/17/2023			
Dibenzo(a,h)anthracene	19.3	3.18	ug/kg dry	25.4	<3.18	75.8	60-140		
Diethyl phthalate	23.3	3.18	ug/kg dry	25.4	<3.18	91.7	60-140		
Dimethyl phthalate	24.4	3.18	ug/kg dry	25.4	<3.18	95.9	60-140		
Di-n-butyl phthalate	19.5	3.18	ug/kg dry	25.4	<3.18	76.8	60-140		
Di-n-octyl phthalate	18.4	3.18	ug/kg dry	25.4	<3.18	72.5	60-140		
Fluoranthene	17.6	3.18	ug/kg dry	25.4	<3.18	69.3	60-140		
Fluorene	22.0	3.18	ug/kg dry	25.4	<3.18	86.7	60-140		
Hexachlorobenzene	19.9	3.18	ug/kg dry	25.4	<3.18	78.3	60-140		
Hexachlorobutadiene	16.0	3.18	ug/kg dry	25.4	<3.18	63.1	60-140		
Hexachloroethane	15.1 J1	3.18	ug/kg dry	25.4	<3.18	59.5	60-140		
Indeno(1,2,3-cd) pyrene	18.8	3.18	ug/kg dry	25.4	<3.18	74.0	60-140		
Isophorone	20.4	3.18	ug/kg dry	25.4	<3.18	80.3	60-140		
Naphthalene	18.8	3.18	ug/kg dry	25.4	<3.18	73.9	60-140		
Nitrobenzene	25.7	3.18	ug/kg dry	25.4	<3.18	101	60-140		
n-Nitrosodimethylamine	71.9 J1	3.18	ug/kg dry	127	<3.18	56.6	60-140		
n-Nitrosodi-n-propylamine	22.8	3.18	ug/kg dry	25.4	<3.18	89.7	60-140		
n-Nitrosodiphenylamine	8.65 J1	3.18	ug/kg dry	25.4	<3.18	34.0	60-140		
Pentachlorophenol	38.0	6.35	ug/kg dry	50.8	<6.35	74.8	60-140		
Phenanthrene	21.2	3.18	ug/kg dry	25.4	<3.18	83.3	60-140		
Phenol, Total	52.2	6.35	ug/kg dry	50.8	11.3	80.7	60-140		
Pyrene	16.8	3.18	ug/kg dry	25.4	<3.18	66.1	60-140		
Surrogate: 2-Fluorobiphenyl-surr		20.3	ug/kg dry	25.4		79.9	60-140		
Surrogate: 2-Fluorophenol-surr		44.2	ug/kg dry	50.8		86.9	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		40.9	ug/kg dry	50.8		80.6	60-140		
Surrogate: Nitrobenzene-d5-surr		25.1	ug/kg dry	25.4		98.7	60-140		
Surrogate: Phenol-d5-surr		46.5	ug/kg dry	50.8		91.6	60-140		
Surrogate: p-Terphenyl-d14-surr		16.6	ug/kg dry	25.4		65.2	60-140		

RPD

%REC

Limits

%REC

TCEQ-TOX T104704202-22-17

RPD

Limit



Analyte

Chrysene

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

Result Qual

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Reporting

Limit

# Quality Control (Continued)

Units

Spike

Level

Source

Result

#### Semivolatile Organic Compounds by GCMS (Continued)

Matrix Spike (BGB0424-MS2)	Source: 23	3A1459-66RE	<b>2</b> Pre	epared: 2/3/	2023 Analyzed	d: 2/27/2023	3		
Hexachlorocyclopentadiene	13.4 J1	3.18	ug/kg dry	25.4	<3.18	52.6	60-140		
Surrogate: 2-Fluorobiphenyl-surr		19.5	ug/kg dry	25.4		76.8	60-140		
Surrogate: 2-Fluorophenol-surr		44.5	ug/kg dry	50.8		87.5	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		49.5	ug/kg dry	50.8		97.5	60-140		
Surrogate: Nitrobenzene-d5-surr		24.3	ug/kg dry	25.4		95.7	60-140		
Surrogate: Phenol-d5-surr		50.8	ug/kg dry	50.8		100	60-140		
Surrogate: p-Terphenyl-d14-surr		22.3	ug/kg dry	25.4		87.7	60-140		
23A1459-66 MSD (BGB0424-MSD1)	Source: 2:	BA1459-66RE	: <b>1</b> Pre	epared: 2/3/	2023 Analyze	d: 2/17/2023	3		
1,2,4-Trichlorobenzene	19.8	3.15	ug/kg dry	25.2	<3.15	78.6	60-140	2.72	40
1,2-Dichlorobenzene	15.4	3.15	ug/kg dry	25.2	<3.15	61.1	60-140	1.35	40
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	23.2	3.15	ug/kg dry	25.2	<3.15	91.8	60-140	0.939	40
1,3-Dichlorobenzene	15.3	3.15	ug/kg dry	25.2	<3.15	60.8	60-140	2.01	40
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	15.4	3.15	ug/kg dry	25.2	<3.15	61.2	60-140	1.60	4
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	20.6	3.15	ug/kg dry	25.2	<3.15	81.7	60-140	1.12	4
bis(2-Chloro-1-methy									
2,4,6-Trichlorophenol	49.1	6.31	ug/kg dry	50.5	<6.31	97.2	60-140	1.10	4
2,4-Dichlorophenol	48.9	6.31	ug/kg dry	50.5	<6.31	96.9	60-140	2.14	4
2,4-Dimethylphenol	48.4	6.31	ug/kg dry	50.5	<6.31	96.0	60-140	2.09	4
2,4-Dinitrophenol	19.3	6.31	ug/kg dry	126	<6.31	15.3	10-51.3	6.07	4
2,4-Dinitrotoluene (2,4-DNT)	21.2	3.15	ug/kg dry	25.2	<3.15	84.2	60-140	0.748	4
2,6-Dinitrotoluene (2,6-DNT)	22.9	3.15	ug/kg dry	25.2	<3.15	90.8	60-140	0.0949	4
2-Chloronaphthalene	23.0	3.15	ug/kg dry	25.2	<3.15	91.0	60-140	4.95	40
2-Chlorophenol	49.9	6.31	ug/kg dry	50.5	<6.31	98.9	60-140	2.44	40
2-Methyl-4,6-dinitrophenol	26.4 J1	25.2	ug/kg dry	50.5	<25.2	52.4	60-140	5.83	40
(4,6-Dinitro-2-methylph			J. J.						
2-Nitrophenol	54.2	6.31	ug/kg dry	50.5	<6.31	107	60-140	0.645	40
4-Bromophenyl phenyl ether (BDE-3)	21.0	3.15	ug/kg dry	25.2	<3.15	83.3	60-140	2.71	4
4-Chloro-3-methylphenol	49.8	6.31	ug/kg dry	50.5	<6.31	98.6	60-140	1.76	40
4-Chlorophenyl phenylether	22.0	3.15	ug/kg dry	25.2	<3.15	87.2	60-140	0.310	40
4-Nitrophenol	95.2	3.15	ug/kg dry	126	<3.15	75.5	60-140	1.08	40
Acenaphthene	20.6	3.15	ug/kg dry	25.2	<3.15	81.8	60-140	3.25	40
Acenaphthylene	23.9	3.15	ug/kg dry	25.2	<3.15	94.6	60-140	2.52	4
Anthracene	21.4	3.15	ug/kg dry	25.2	<3.15	85.0	60-140	1.11	40
Benzo(a)anthracene	22.1	3.15	ug/kg dry	25.2	<3.15	87.6	60-140	1.27	4
Benzo(a)pyrene	21.9	3.15	ug/kg dry	25.2	<3.15	87.0	60-140	0.271	40
Benzo(b)fluoranthene	16.8	3.15	ug/kg dry	25.2	<3.15	66.7	60-140	12.0	40
Benzo(g,h,i)perylene	18.7	3.15	ug/kg dry	25.2	<3.15	74.2	60-140	2.07	40
Benzo(k)fluoranthene	20.9	3.15	ug/kg dry	25.2	<3.15	82.7	60-140	3.51	40
bis(2-Chloroethoxy)methane	25.6	3.15	ug/kg dry	25.2	<3.15	102	60-140	2.66	4
bis(2-Chloroethyl) ether	22.2	3.15	ug/kg dry	25.2	<3.15	87.8	60-140	1.76	40
Bis(2-ethylhexyl )phthalate	21.5	3.15	ug/kg dry	25.2	<3.15	85.4	60-140	7.96	4
Butyl benzyl phthalate	18.4	3.15	ug/kg dry	25.2	<3.15	73.1	60-140	1.07	40
ol	10.7	3.13	ag/ng ury	25.2	73.13	, ,,,	60 110	1.07	-11

21.2

3.15 ug/kg dry

25.2

<3.15

84.1

60-140

0.705

40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Batch: BGB0424 - SW-3570 (Continued)           23A1459-66 MSD (BGB0424-MSD1)         Source: 23A1459-66           Dibenzo(a,h)anthracene         19.1         19.1         19.1         19.1         19.1         19.1         19.1         19.1         19.1         19.2         19.1         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2         19.2	3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (	Units  Pre ug/kg dry	Level 2/3/2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25	Result  2023 Analyzed  <3.15  <3.15  <3.15  <3.15  <3.15  <3.15	%REC 4: 2/17/2023 75.5 90.3 94.9 75.7 76.0	60-140 60-140 60-140 60-140	1.06 2.19 1.69	40 40 40 40
23A1459-66 MSD (BGB0424-MSD1)         Source: 23A1459-66           Dibenzo(a,h)anthracene         19.1           Diethyl phthalate         22.8           Dimethyl phthalate         24.0           Di-n-butyl phthalate         19.1           Di-n-octyl phthalate         19.2           Fluoranthene         17.6           Fluorene         22.2           Hexachlorobenzene         19.5           Hexachlorobethane         16.3           Hexachlorobethane         15.6           Indeno(1,2,3-cd) pyrene         18.6           Isophorone         20.6           Naphthalene         18.3           Nitrobenzene         25.6           n-Nitrosodimethylamine         63.8	3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	25.2 25.2 25.2 25.2 25.2	<3.15 <3.15 <3.15 <3.15 <3.15 <3.15	75.5 90.3 94.9 75.7	60-140 60-140 60-140	2.19 1.69	40
23A1459-66 MSD (BGB0424-MSD1)         Source: 23A1459-66           Dibenzo(a,h)anthracene         19.1           Diethyl phthalate         22.8           Dimethyl phthalate         24.0           Di-n-butyl phthalate         19.1           Di-n-octyl phthalate         19.2           Fluoranthene         17.6           Fluorene         22.2           Hexachlorobenzene         19.5           Hexachlorobutadiene         16.3           Hexachloroethane         15.6           Indeno(1,2,3-cd) pyrene         18.6           Isophorone         20.6           Naphthalene         18.3           Nitrobenzene         25.6           n-Nitrosodimethylamine         63.8	3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	25.2 25.2 25.2 25.2 25.2	<3.15 <3.15 <3.15 <3.15 <3.15 <3.15	75.5 90.3 94.9 75.7	60-140 60-140 60-140	2.19 1.69	40
Diethyl phthalate       22.8         Dimethyl phthalate       24.0         Di-n-butyl phthalate       19.1         Di-n-octyl phthalate       19.2         Fluoranthene       17.6         Fluorene       22.2         Hexachlorobenzene       19.5         Hexachlorobutadiene       16.3         Hexachloroethane       15.6         Indeno(1,2,3-cd) pyrene       18.6         Isophorone       20.6         Naphthalene       18.3         Nitrobenzene       25.6         n-Nitrosodimethylamine       63.8       J1	3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	25.2 25.2 25.2 25.2	<3.15 <3.15 <3.15 <3.15	90.3 94.9 75.7	60-140 60-140	2.19 1.69	40
Diethyl phthalate       22.8         Dimethyl phthalate       24.0         Di-n-butyl phthalate       19.1         Di-n-octyl phthalate       19.2         Fluoranthene       17.6         Fluorene       22.2         Hexachlorobenzene       19.5         Hexachlorobutadiene       16.3         Hexachloroethane       15.6         Indeno(1,2,3-cd) pyrene       18.6         Isophorone       20.6         Naphthalene       18.3         Nitrobenzene       25.6         n-Nitrosodimethylamine       63.8       J1	3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	25.2 25.2 25.2	<3.15 <3.15 <3.15	94.9 75.7	60-140	1.69	
Dimethyl phthalate       24.0         Di-n-butyl phthalate       19.1         Di-n-octyl phthalate       19.2         Fluoranthene       17.6         Fluorene       22.2         Hexachlorobenzene       19.5         Hexachlorobutadiene       16.3         Hexachloroethane       15.6         Indeno(1,2,3-cd) pyrene       18.6         Isophorone       20.6         Naphthalene       18.3         Nitrobenzene       25.6         n-Nitrosodimethylamine       63.8       J1	3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (3.15 (	ug/kg dry ug/kg dry ug/kg dry	25.2 25.2	<3.15 <3.15	75.7			40
Di-n-octyl phthalate       19.2         Fluoranthene       17.6         Fluorene       22.2         Hexachlorobenzene       19.5         Hexachlorobutadiene       16.3         Hexachloroethane       15.6         Indeno(1,2,3-cd) pyrene       18.6         Isophorone       20.6         Naphthalene       18.3         Nitrobenzene       25.6         n-Nitrosodimethylamine       63.8	3.15 3.15 3.15 3.15	ug/kg dry ug/kg dry	25.2	<3.15		60-140		
Di-n-octyl phthalate       19.2         Fluoranthene       17.6         Fluorene       22.2         Hexachlorobenzene       19.5         Hexachlorobutadiene       16.3         Hexachloroethane       15.6         Indeno(1,2,3-cd) pyrene       18.6         Isophorone       20.6         Naphthalene       18.3         Nitrobenzene       25.6         n-Nitrosodimethylamine       63.8	3.15 3.15 3.15	ug/kg dry			76.0		2.11	40
Fluorene       22.2         Hexachlorobenzene       19.5         Hexachlorobutadiene       16.3         Hexachloroethane       15.6         Indeno(1,2,3-cd) pyrene       18.6         Isophorone       20.6         Naphthalene       18.3         Nitrobenzene       25.6         n-Nitrosodimethylamine       63.8       J1	3.15 3.15		25.2			60-140	4.03	40
Hexachlorobenzene       19.5         Hexachlorobutadiene       16.3         Hexachloroethane       15.6         Indeno(1,2,3-cd) pyrene       18.6         Isophorone       20.6         Naphthalene       18.3         Nitrobenzene       25.6         n-Nitrosodimethylamine       63.8       J1	3.15	ug/kg dry		<3.15	69.9	60-140	0.165	40
Hexachlorobenzene       19.5         Hexachlorobutadiene       16.3         Hexachloroethane       15.6         Indeno(1,2,3-cd) pyrene       18.6         Isophorone       20.6         Naphthalene       18.3         Nitrobenzene       25.6         n-Nitrosodimethylamine       63.8       J1			25.2	<3.15	88.0	60-140	0.756	40
Hexachlorobutadiene       16.3         Hexachloroethane       15.6         Indeno(1,2,3-cd) pyrene       18.6         Isophorone       20.6         Naphthalene       18.3         Nitrobenzene       25.6         n-Nitrosodimethylamine       63.8       J1		ug/kg dry	25.2	<3.15	77.3	60-140	1.87	40
Hexachloroethane       15.6         Indeno(1,2,3-cd) pyrene       18.6         Isophorone       20.6         Naphthalene       18.3         Nitrobenzene       25.6         n-Nitrosodimethylamine       63.8       J1	3.15	ug/kg dry	25.2	<3.15	64.8	60-140	1.90	40
Isophorone 20.6 Naphthalene 18.3 Nitrobenzene 25.6 n-Nitrosodimethylamine 63.8 J1	3.15	ug/kg dry	25.2	<3.15	61.9	60-140	3.24	40
Naphthalene 18.3	3.15	ug/kg dry	25.2	<3.15	73.8	60-140	1.03	40
Nitrobenzene 25.6	3.15	ug/kg dry	25.2	<3.15	81.7	60-140	1.07	40
n-Nitrosodimethylamine 63.8 J1	3.15	ug/kg dry	25.2	<3.15	72.4	60-140	2.72	40
,	3.15	ug/kg dry	25.2	<3.15	101	60-140	0.543	40
n-Nitrosodi-n-propylamine	3.15	ug/kg dry	126	<3.15	50.6	60-140	11.9	40
- r -r/	3.15	ug/kg dry	25.2	<3.15	88.2	60-140	2.32	40
n-Nitrosodiphenylamine 8.57 J1	3.15	ug/kg dry	25.2	<3.15	34.0	60-140	0.879	40
Pentachlorophenol 37.6	6.31	ug/kg dry	50.5	<6.31	74.5	60-140	1.20	40
	3.15	ug/kg dry	25.2	<3.15	82.2	60-140	2.03	40
Phenol, Total 50.2	6.31	ug/kg dry	50.5	11.3	77.1	60-140	4.00	40
Pyrene 17.7	3.15	ug/kg dry	25.2	<3.15	70.2	60-140	5.36	40
Surrogate: 2-Fluorobiphenyl-surr	19.2	ug/kg dry	25.2		76.2	60-140		
Surrogate: 2-Fluorophenol-surr		ug/kg dry	50.5		88.6	60-140		
Surrogate: 2,4,6-Tribromophenol-surr	41.0	ug/kg dry	50.5		81.2	60-140		
Surrogate: Nitrobenzene-d5-surr	25.0	ug/kg dry	25.2		98.9	60-140		
Surrogate: Phenol-d5-surr		ug/kg dry	50.5		91.5	60-140		
Surrogate: p-Terphenyl-d14-surr		ug/kg dry	25.2		66.7	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### Quality Control (Continued)

### Semivolatile Organic Compounds by GCMS (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

#### Batch: BGB0424 - SW-3570 (Continued)

Matrix Spike Dup (BGB0424-MSD2)	Source: 23	A1459-66RE	<b>2</b> Pr	epared: 2/3/	2023 Analyzed	d: 2/27/2023	3		
Hexachlorocyclopentadiene	14.6 J1	3.15	ug/kg dry	25.2	<3.15	57.9	60-140	8.84	40
Surrogate: 2-Fluorobiphenyl-surr		19.2	ug/kg dry	25.2		76.2	60-140		
Surrogate: 2-Fluorophenol-surr		<i>45.5</i>	ug/kg dry	50.5		90.2	<i>60-140</i>		
Surrogate: 2,4,6-Tribromophenol-surr		48.0	ug/kg dry	50.5		95.1	60-140		
Surrogate: Nitrobenzene-d5-surr		23.0	ug/kg dry	25.2		91.0	60-140		
Surrogate: Phenol-d5-surr		47.8	ug/kg dry	50.5		94.8	60-140		
Surrogate: p-Terphenyl-d14-surr		20.8	ug/kg dry	25.2		82.5	60-140		

Prepared: 3/6/2023 Analyzed: 3/15/2023

#### Batch: BGC0816 - SW-3570

Blank (BGC0816-BLK1)

1,2,4-Trichlorobenzene	<2.48 U	2.48	ug/kg wet
1,2-Dichlorobenzene	<2.48 U	2.48	ug/kg wet
(o-Dichlorobenzene)			
1,2-Diphenylhydrazine	<2.48 U	2.48	ug/kg wet
1,3-Dichlorobenzene	<2.48 U	2.48	ug/kg wet
(m-Dichlorobenzene)			
1,4-Dichlorobenzene	<2.48 U	2.48	ug/kg wet
(p-Dichlorobenzene)			
2,2'-Oxybis(1-chloropropane),	<2.48 U	2.48	ug/kg wet
bis(2-Chloro-1-methy			
2,4,6-Trichlorophenol	<4.96 U	4.96	ug/kg wet
2,4-Dichlorophenol	<4.96 U	4.96	ug/kg wet
2,4-Dimethylphenol	<4.96 U	4.96	ug/kg wet
2,4-Dinitrophenol	<4.96 U	4.96	ug/kg wet
2,4-Dinitrotoluene (2,4-DNT)	<2.48 U	2.48	ug/kg wet
2,6-Dinitrotoluene (2,6-DNT)	<2.48 U	2.48	ug/kg wet
2-Chloronaphthalene	<2.48 U	2.48	ug/kg wet
2-Chlorophenol	<4.96 U	4.96	ug/kg wet
2-Methyl-4,6-dinitrophenol	<19.8 U	19.8	ug/kg wet
(4,6-Dinitro-2-methylph			
2-Nitrophenol	<4.96 U	4.96	ug/kg wet
4-Bromophenyl phenyl ether (BDE-3)	<2.48 U	2.48	ug/kg wet
4-Chloro-3-methylphenol	<4.96 U	4.96	ug/kg wet
4-Chlorophenyl phenylether	<2.48 U	2.48	ug/kg wet
4-Nitrophenol	<2.48 U	2.48	ug/kg wet
Acenaphthene	<2.48 U	2.48	ug/kg wet
Acenaphthylene	<2.48 U	2.48	ug/kg wet
Anthracene	<2.48 U	2.48	ug/kg wet
Benzo(a)anthracene	<2.48 U	2.48	ug/kg wet
Benzo(a)pyrene	<2.48 U		ug/kg wet

<2.48 U

<2.48 U

<2.48 U

<2.48 U

36.3

2.48 ug/kg wet

benzo(b&k)fluoranthene

bis(2-Chloroethyl) ether

Bis(2-ethylhexyl )phthalate

bis(2-Chloroethoxy)methane

Benzo(g,h,i)perylene

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

		Reporting		Spike	Source		70KEC		KPD		
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit		
Batch: BGC0816 - SW-3570 (Co	ontinued)										
Blank (BGC0816-BLK1)	,	Prepared: 3/6/2023 Analyzed: 3/15/2023									
Butyl benzyl phthalate	<2.48 U	2.48	ug/kg wet	•	•						
Chrysene	<2.48 U	2.48	ug/kg wet								
Dibenzo(a,h)anthracene	<2.48 U	2.48	ug/kg wet								
Diethyl phthalate	<2.48 U	2.48	ug/kg wet								
Dimethyl phthalate	<2.48 U	2.48	ug/kg wet								
Di-n-butyl phthalate	<2.48 U	2.48	ug/kg wet								
Di-n-octyl phthalate	<2.48 U	2.48	ug/kg wet								
Fluoranthene	<2.48 U	2.48	ug/kg wet								
Fluorene	<2.48 U	2.48	ug/kg wet								
Hexachlorobenzene	<2.48 U	2.48	ug/kg wet								
Hexachlorobutadiene	<2.48 U	2.48	ug/kg wet								
Hexachlorocyclopentadiene	<2.48 U	2.48	ug/kg wet								
Hexachloroethane	<2.48 U	2.48	ug/kg wet								
Indeno(1,2,3-cd) pyrene	<2.48 U	2.48	ug/kg wet								
Isophorone	<2.48 U	2.48	ug/kg wet								
Naphthalene	<2.48 U	2.48	ug/kg wet								
Nitrobenzene	<2.48 U	2.48	ug/kg wet								
n-Nitrosodimethylamine	<2.48 U	2.48	ug/kg wet								
n-Nitrosodi-n-propylamine	<2.48 U	2.48	ug/kg wet								
n-Nitrosodiphenylamine	<2.48 U	2.48	ug/kg wet								
Pentachlorophenol	<4.96 U	4.96	ug/kg wet								
Phenanthrene	<2.48 U	2.48	ug/kg wet								
Phenol, Total	<4.96 U	4.96	ug/kg wet								
Pyrene	<2.48 U	2.48	ug/kg wet								
Surrogate: 2-Fluorobiphenyl-surr		16.5	ug/kg wet	19.8		83.0	60-140				
Surrogate: 2-Fluorophenol-surr		39.4	ug/kg wet	39.6		99.3	60-140				
Surrogate: 2,4,6-Tribromophenol-surr		33.3	ug/kg wet	39.6		84.0	60-140				
Surrogate: Nitrobenzene-d5-surr		18.3	ug/kg wet	19.8		92.1	60-140				
Surrogate: Phenol-d5-surr		41.4	ug/kg wet	39.6		104	60-140				
Surrogate: p-Terphenyl-d14-surr		20.6	ug/kg wet	19.8		<i>104</i>	60-140				



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGC0816 - SW-3570 (C	ontinued)								
LCS (BGC0816-BS2)			Pro	epared: 3/6/	2023 Analyzeo	d: 3/15/2023	}		
1,2,4-Trichlorobenzene	13.2	2.45	ug/kg wet	19.6	•	67.6	60-140		
1,2-Dichlorobenzene	11.2 J1	2.45	ug/kg wet	19.6		57.2	60-140		
(o-Dichlorobenzene)			5. 5						
1,2-Diphenylhydrazine	16.8	2.45	ug/kg wet	19.6		85.9	60-140		
1,3-Dichlorobenzene	9.83 J1	2.45	ug/kg wet	19.6		50.2	60-140		
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	10.3 J1	2.45	ug/kg wet	19.6		52.7	60-140		
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	15.4	2.45	ug/kg wet	19.6		78.6	60-140		
bis(2-Chloro-1-methy									
2,4,6-Trichlorophenol	38.8	4.90	ug/kg wet	39.2		99.0	60-140		
2,4-Dichlorophenol	40.5	4.90	ug/kg wet	39.2		103	60-140		
2,4-Dimethylphenol	35.1	4.90	ug/kg wet	39.2		89.6	60-140		
2,4-Dinitrophenol	13.6	4.90	ug/kg wet	97.9		13.9	10-50.4		
2,4-Dinitrotoluene (2,4-DNT)	16.3	2.45	ug/kg wet	19.6		83.1	60-140		
2,6-Dinitrotoluene (2,6-DNT)	16.7	2.45	ug/kg wet	19.6		85.4	60-140		
2-Chloronaphthalene	15.3	2.45	ug/kg wet	19.6		78.2	60-140		
2-Chlorophenol	31.8	4.90	ug/kg wet	39.2		81.3	60-140		
2-Methyl-4,6-dinitrophenol	15.9 J1, J	19.6	ug/kg wet	39.2		40.6	60-140		
(4,6-Dinitro-2-methylph									
2-Nitrophenol	41.1	4.90	ug/kg wet	39.2		105	60-140		
4-Bromophenyl phenyl ether (BDE-3)	14.4	2.45	ug/kg wet	19.6		73.7	60-140		
4-Chloro-3-methylphenol	34.2	4.90	ug/kg wet	39.2		87.3	60-140		
4-Chlorophenyl phenylether	14.3	2.45	ug/kg wet	19.6		72.9	60-140		
4-Nitrophenol	71.5	2.45	ug/kg wet	97.9		73.0	60-140		
Acenaphthene	14.4	2.45	ug/kg wet	19.6		73.6	60-140		
Acenaphthylene	17.5	2.45	ug/kg wet	19.6		89.2	60-140		
Anthracene	16.2	2.45	ug/kg wet	19.6		82.9	60-140		
Benzo(a)anthracene	13.0	2.45	ug/kg wet	19.6		66.5	60-140		
Benzo(a)pyrene	13.2	2.45	ug/kg wet	19.6		67.6	60-140		
benzo(b&k)fluoranthene	25.9	2.45	ug/kg wet	39.2		66.1	60-140		
Benzo(g,h,i)perylene	12.3	2.45	ug/kg wet	19.6		62.9	60-140		
bis(2-Chloroethoxy)methane	16.7	2.45	ug/kg wet	19.6		85.4	60-140		
bis(2-Chloroethyl) ether	15.1	2.45	ug/kg wet	19.6		77.1	60-140		
Bis(2-ethylhexyl )phthalate	15.7	2.45	ug/kg wet	19.6		80.2	60-140		
Butyl benzyl phthalate	12.1	2.45	ug/kg wet	19.6		61.6	60-140		
Chrysene	12.8	2.45	ug/kg wet	19.6		65.4	60-140		
Dibenzo(a,h)anthracene	12.9	2.45	ug/kg wet	19.6		65.8	60-140		
Diethyl phthalate	14.7	2.45	ug/kg wet	19.6		75.0	60-140		
Dimethyl phthalate	13.3	2.45	ug/kg wet	19.6		68.0	60-140		
Di-n-butyl phthalate	15.0	2.45	ug/kg wet	19.6		76.8	60-140		
Di-n-octyl phthalate	12.1	2.45	ug/kg wet	19.6		61.6	60-140		
Fluoranthene	12.9	2.45	ug/kg wet	19.6		65.8	60-140		
Fluorene	15.8	2.45	ug/kg wet	19.6		80.4	60-140		
Hexachlorobenzene	14.3	2.45	ug/kg wet	19.6		72.8	60-140		
Hexachlorobutadiene	8.11 J1	2.45	ug/kg wet	19.6		41.4	60-140		
Hexachlorocyclopentadiene		2.45	ug/kg wet	19.6		19.1	60-140		
riesadi iloi ocycloperitadiene	3.74 J1	2.45	ug/kg wet	13.0		17.1	00-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGC0816 - SW-3570 (Co	ontinued)								
LCS (BGC0816-BS2)	-		Pro	epared: 3/6/	/2023 Analyzed	d: 3/15/2023	}		
Hexachloroethane	7.26 J1	2.45	ug/kg wet	19.6	,	37.1	60-140		
Indeno(1,2,3-cd) pyrene	12.7	2.45	ug/kg wet	19.6		64.7	60-140		
Isophorone	15.0	2.45	ug/kg wet	19.6		76.5	60-140		
Naphthalene	12.7	2.45	ug/kg wet	19.6		64.9	60-140		
Nitrobenzene	19.1	2.45	ug/kg wet	19.6		97.3	60-140		
n-Nitrosodimethylamine	26.1 J1	2.45	ug/kg wet	97.9		26.6	60-140		
n-Nitrosodi-n-propylamine	17.5	2.45	ug/kg wet	19.6		89.5	60-140		
n-Nitrosodiphenylamine	13.0	2.45	ug/kg wet	19.6		66.5	60-140		
Pentachlorophenol	19.8 J1	4.90	ug/kg wet	39.2		50.5	60-140		
Phenanthrene	16.0	2.45	ug/kg wet	19.6		81.9	60-140		
Phenol, Total	25.6	4.90	ug/kg wet	39.2		65.4	60-140		
Pyrene	12.7	2.45	ug/kg wet	19.6		65.1	60-140		
Surrogate: 2-Fluorobiphenyl-surr		14.5	ug/kg wet	19.6		74.1	60-140		
Surrogate: 2-Fluorophenol-surr		37.9	ug/kg wet	<i>39.2</i>		96.8	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		28.8	ug/kg wet	<i>39.2</i>		73.6	60-140		
Surrogate: Nitrobenzene-d5-surr		16.3	ug/kg wet	19.6		83.0	60-140		
Surrogate: Phenol-d5-surr		28.8	ug/kg wet	<i>39.2</i>		73.6	60-140		
Surrogate: p-Terphenyl-d14-surr		19.1	ug/kg wet	19.6		97.4	60-140		
LCS Dup (BGC0816-BSD2)			Pro	epared: 3/6/	/2023 Analyzed	d: 3/15/2023			
1,2,4-Trichlorobenzene	12.5	2.47	ug/kg wet	19.8		63.0	60-140	6.06	40
1,2-Dichlorobenzene	10.9 J1	2.47	ug/kg wet	19.8		55.0	60-140	2.99	40
(o-Dichlorobenzene)	10.5 51		3, 3						
1,2-Diphenylhydrazine	17.0	2.47	ug/kg wet	19.8		85.9	60-140	0.972	40
1,3-Dichlorobenzene	10.2 J1	2.47	ug/kg wet	19.8		51.6	60-140	3.79	40
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	10.3 J1	2.47	ug/kg wet	19.8		51.8	60-140	0.702	40
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	15.2	2.47	ug/kg wet	19.8		76.9	60-140	1.12	40
bis(2-Chloro-1-methy			,, .			400			
2,4,6-Trichlorophenol	39.6	4.95	ug/kg wet	39.6		100	60-140	2.22	40
2,4-Dichlorophenol	41.9	4.95	ug/kg wet	39.6		106	60-140	3.29	40
2,4-Dimethylphenol	38.0	4.95	ug/kg wet	39.6		96.0	60-140	7.95	40
2,4-Dinitrophenol	16.1	4.95	ug/kg wet	98.9		16.3	10-50.4	16.6	40
2,4-Dinitrotoluene (2,4-DNT)	16.5	2.47	ug/kg wet	19.8		83.5	60-140	1.54	40
2,6-Dinitrotoluene (2,6-DNT)	16.8	2.47	ug/kg wet	19.8		84.8	60-140	0.295	40
2-Chloronaphthalene	16.3	2.47	ug/kg wet	19.8		82.5	60-140	6.31	40
2-Chlorophenol	25.3	4.95	ug/kg wet	39.6		64.0	60-140	22.8	40
2-Methyl-4,6-dinitrophenol	17.3 J1, J	19.8	ug/kg wet	39.6		43.7	60-140	8.34	40
(4,6-Dinitro-2-methylph 2-Nitrophenol	43.5	4.95	ug/kg wet	39.6		110	60-140	5.76	40
4-Bromophenyl phenyl ether (BDE-3)	43.5 16.7	2.47	ug/kg wet	19.8		84.4	60-140	14.5	40
4-Chloro-3-methylphenol	36.7	4.95	ug/kg wet	39.6		92.9	60-140	7.13	40
4-Chlorophenyl phenylether	36.7 15.4	2.47	ug/kg wet	19.8		78.0	60-140	7.70	40
4-Nitrophenol	15.4 77.7	2.47	ug/kg wet	98.9		78.6	60-140	8.27	40
Acenaphthene	77.7 14.7	2.47	ug/kg wet	19.8		74.1	60-140	1.68	40
Acenaphthylene	17.7	2.47	ug/kg wet	19.8		89.2	60-140	1.06	40
	•								



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGC0816 - SW-3570 (Co	ontinued)								
LCS Dup (BGC0816-BSD2)	-		Pre	epared: 3/6/	2023 Analyze	d: 3/15/2023	3		
Anthracene	17.3	2.47	ug/kg wet	19.8		87.7	60-140	6.56	40
Benzo(a)anthracene	14.1	2.47	ug/kg wet	19.8		71.5	60-140	8.27	40
Benzo(a)pyrene	14.1	2.47	ug/kg wet	19.8		71.1	60-140	6.05	40
benzo(b&k)fluoranthene	27.5	2.47	ug/kg wet	39.6		69.6	60-140	6.18	40
Benzo(g,h,i)perylene	12.9	2.47	ug/kg wet	19.8		65.0	60-140	4.32	40
bis(2-Chloroethoxy)methane	16.3	2.47	ug/kg wet	19.8		82.2	60-140	2.78	40
bis(2-Chloroethyl) ether	13.9	2.47	ug/kg wet	19.8		70.0	60-140	8.63	40
Bis(2-ethylhexyl )phthalate	16.4	2.47	ug/kg wet	19.8		83.1	60-140	4.61	40
Butyl benzyl phthalate	14.3	2.47	ug/kg wet	19.8		72.2	60-140	16.8	40
Chrysene	13.5	2.47	ug/kg wet	19.8		68.2	60-140	5.05	40
Dibenzo(a,h)anthracene	13.3	2.47	ug/kg wet	19.8		67.1	60-140	2.84	40
Diethyl phthalate	14.8	2.47	ug/kg wet	19.8		74.9	60-140	0.825	40
Dimethyl phthalate	14.3	2.47	ug/kg wet	19.8		72.4	60-140	7.32	40
Di-n-butyl phthalate	15.2	2.47	ug/kg wet	19.8		76.9	60-140	1.16	40
Di-n-octyl phthalate	13.8	2.47	ug/kg wet	19.8		69.6	60-140	13.1	40
Fluoranthene	13.8	2.47	ug/kg wet	19.8		70.0	60-140	7.19	40
Fluorene	16.2	2.47	ug/kg wet	19.8		81.9	60-140	2.80	40
Hexachlorobenzene	15.4	2.47	ug/kg wet	19.8		77.8	60-140	7.60	40
Hexachlorobutadiene	7.98 J1	2.47	ug/kg wet	19.8		40.3	60-140	1.65	40
Hexachlorocyclopentadiene	3.86 J1	2.47	ug/kg wet	19.8		19.5	60-140	3.03	40
Hexachloroethane	6.10 J1	2.47	ug/kg wet	19.8		30.8	60-140	17.5	40
Indeno(1,2,3-cd) pyrene	13.1	2.47	ug/kg wet	19.8		66.0	60-140	2.98	40
Isophorone	14.3	2.47	ug/kg wet	19.8		72.4	60-140	4.57	40
Naphthalene	12.8	2.47	ug/kg wet	19.8		64.8	60-140	0.841	40
Nitrobenzene	18.7	2.47	ug/kg wet	19.8		94.7	60-140	1.78	40
n-Nitrosodimethylamine	39.3 J1	2.47	ug/kg wet	98.9		39.8	60-140	40.5	40
n-Nitrosodi-n-propylamine	17.3	2.47	ug/kg wet	19.8		87.5	60-140	1.28	40
n-Nitrosodiphenylamine	14.1	2.47	ug/kg wet	19.8		71.2	60-140	7.79	40
Pentachlorophenol	24.7	4.95	ug/kg wet	39.6		62.5	60-140	22.3	40
Phenanthrene	17.0	2.47	ug/kg wet	19.8		85.7	60-140	5.55	40
Phenol, Total	21.7 J1	4.95	ug/kg wet	39.6		55.0	60-140	16.3	40
Pyrene	14.8	2.47	ug/kg wet	19.8		74.6	60-140	14.7	40
Surrogate: 2-Fluorobiphenyl-surr		15.2	ug/kg wet	19.8		76.9	60-140		
Surrogate: 2-Fluorophenol-surr		38.1	ug/kg wet	39.6		96.4	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		33.5	ug/kg wet	39.6		84.8	60-140		
Surrogate: Nitrobenzene-d5-surr		15.6	ug/kg wet	19.8		79.0	60-140		
Surrogate: Phenol-d5-surr		27.5	ug/kg wet	39.6		69.4	60-140		
Surrogate: p-Terphenyl-d14-surr		25.4	ug/kg wet	19.8		129	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
atch: BGC0816 - SW-3570 (C	ontinued)			<u> </u>					
MRL Check (BGC0816-MRL2)	,		Pre	epared: 3/6/	2023 Analyzed	l: 3/15/2023	1		
1,2,4-Trichlorobenzene	1.40 J	2.34	ug/kg wet	1.87	•	74.7	50-150		
1,2-Dichlorobenzene	1.42 J	2.34	ug/kg wet	1.87		76.0	50-150		
(o-Dichlorobenzene)	2.1.2		5, 5						
1,2-Diphenylhydrazine	1.49 J	2.34	ug/kg wet	1.87		79.4	50-150		
1,3-Dichlorobenzene	<2.34 U	2.34	ug/kg wet	1.87			50-150		
(m-Dichlorobenzene)			-						
1,4-Dichlorobenzene	<2.34 U	2.34	ug/kg wet	1.87			50-150		
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	1.58 J	2.34	ug/kg wet	1.87		84.2	50-150		
bis(2-Chloro-1-methy									
2,4,6-Trichlorophenol	3.95 J	4.69	ug/kg wet	3.75		105	50-150		
2,4-Dichlorophenol	4.69	4.69	ug/kg wet	3.75		125	50-150		
2,4-Dimethylphenol	4.46 J	4.69	ug/kg wet	3.75		119	50-150		
2,4-Dinitrophenol	3.97 J	4.69	ug/kg wet	9.37		42.4	50-150		
2,4-Dinitrotoluene (2,4-DNT)	1.17 J	2.34	ug/kg wet	1.87		62.7	50-150		
2,6-Dinitrotoluene (2,6-DNT)	1.78 J	2.34	ug/kg wet	1.87		94.7	50-150		
2-Chloronaphthalene	1.73 J	2.34	ug/kg wet	1.87		92.4	50-150		
2-Chlorophenol	3.38 J	4.69	ug/kg wet	3.75		90.0	50-150		
2-Methyl-4,6-dinitrophenol	<18.7 U	18.7	ug/kg wet	3.75			50-150		
(4,6-Dinitro-2-methylph	-2517 0		J. J						
2-Nitrophenol	4.23 J	4.69	ug/kg wet	3.75		113	50-150		
4-Bromophenyl phenyl ether (BDE-3)	1.60 J	2.34	ug/kg wet	1.87		85.3	50-150		
1-Chloro-3-methylphenol	3.57 J	4.69	ug/kg wet	3.75		95.3	50-150		
1-Chlorophenyl phenylether	1.26 J	2.34	ug/kg wet	1.87		67.3	50-150		
4-Nitrophenol	4.88	2.34	ug/kg wet	9.37		52.1	50-150		
Acenaphthene	1.49 J	2.34	ug/kg wet	1.87		79.5	50-150		
Acenaphthylene	1.78 J	2.34	ug/kg wet	1.87		95.0	50-150		
Anthracene	1.76 J	2.34	ug/kg wet	1.87		78.0	50-150		
Benzo(a)anthracene	<2.34 U	2.34	ug/kg wet	1.87		, 0.0	50-150		
		2.34		1.87			50-150		
Benzo(a)pyrene	<2.34 U		ug/kg wet	3.75		61 /			
benzo(b&k)fluoranthene	2.30 J	2.34	ug/kg wet			61.4	50-150		
Benzo(g,h,i)perylene	<2.34 U	2.34	ug/kg wet	1.87		72.4	50-150		
bis(2-Chloroethoxy)methane	1.38 J	2.34	ug/kg wet	1.87		73.4	50-150		
bis(2-Chloroethyl) ether	1.72 J	2.34	ug/kg wet	1.87		91.8	50-150		
Bis(2-ethylhexyl )phthalate	11.4	2.34	ug/kg wet	1.87		607	E0 150		
Butyl benzyl phthalate	1.39 J	2.34	ug/kg wet	1.87		74.0	50-150		
Chrysene	1.25 J	2.34	ug/kg wet	1.87		66.6	50-150		
Dibenzo(a,h)anthracene	<2.34 U		ug/kg wet	1.87			50-150		
Diethyl phthalate	1.77 J		ug/kg wet	1.87		94.6	50-150		
Dimethyl phthalate	1.40 J		ug/kg wet	1.87		74.8	50-150		
Di-n-butyl phthalate	2.25 J	2.34	ug/kg wet	1.87		120	50-150		
Di-n-octyl phthalate	<2.34 U	2.34	ug/kg wet	1.87			50-150		
Fluoranthene	1.32 J	2.34	ug/kg wet	1.87		70.6	50-150		
Fluorene	1.54 J	2.34	ug/kg wet	1.87		82.3	50-150		
Hexachlorobenzene	1.26 J	2.34	ug/kg wet	1.87		67.3	50-150		
Hexachlorobutadiene	<2.34 U	2.34		1.87			50-150		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGC0816 - SW-3570 (Cd	ontinued)								
MRL Check (BGC0816-MRL2)	,		Pr	epared: 3/6/	/2023 Analyze	d: 3/15/2023	3		
Hexachlorocyclopentadiene	<2.34 U	2.34		1.87	,		50-150		
Hexachloroethane	<2.34 U	2.34	ug/kg wet	1.87			50-150		
Indeno(1,2,3-cd) pyrene	<2.34 U	2.34	ug/kg wet	1.87			50-150		
Isophorone	1.45 J	2.34	ug/kg wet	1.87		77.4	50-150		
Naphthalene	1.42 J	2.34	ug/kg wet	1.87		75.9	50-150		
Nitrobenzene	1.80 J	2.34	ug/kg wet	1.87		96.2	50-150		
n-Nitrosodimethylamine	<2.34 U	2.34	ug/kg wet	9.37			50-150		
n-Nitrosodi-n-propylamine	1.67 J	2.34	ug/kg wet	1.87		89.3	50-150		
n-Nitrosodiphenylamine	<2.34 U	2.34	ug/kg wet	1.87		-5.5	50-150		
Pentachlorophenol	<4.69 U	4.69	ug/kg wet	3.75			50-150		
Phenanthrene	1.54 J	2.34	ug/kg wet	1.87		81.9	50-150		
Phenol, Total	<4.69 U	4.69	ug/kg wet	3.75		01.5	50-150		
Pyrene	1.18 J	2.34		1.87		63.0	50-150		
	1.10 3								
Surrogate: 2-Fluorobiphenyl-surr		14.9	ug/kg wet	18.7		79.3	60-140		
Surrogate: 2.4 6-Tribromonhonol-surr		36.3	ug/kg wet	<i>37.5</i>		96.9 72.1	60-140 60-140		
Surrogate: 2,4,6-Tribromophenol-surr		<i>27.0</i>	ug/kg wet	37.5 19.7		72.1	60-140 60-140		
Surrogate: Nitrobenzene-d5-surr		17.7	ug/kg wet	18.7		94.7 70 E	60-140 60-140		
Surrogate: Phenol-d5-surr		29.4	ug/kg wet	<i>37.5</i>		78.5 99.4	60-140		
Surrogate: p-Terphenyl-d14-surr		18.6	ug/kg wet	18.7		<i>33.4</i>	60-140		
Matrix Spike (BGC0816-MS1)	Source: 2	3A1459-24RE		-	/2023 Analyzed				
1,2,4-Trichlorobenzene	195	32.3	ug/kg dry	258	<32.3	75.4	60-140		
1,2-Dichlorobenzene	179	32.3	ug/kg dry	258	<32.3	69.1	60-140		
(o-Dichlorobenzene)			,, .				40		
1,2-Diphenylhydrazine	<32.3 J1, U	32.3	ug/kg dry	258	<32.3	<b>.</b> .	60-140		
1,3-Dichlorobenzene	164	32.3	ug/kg dry	258	<32.3	63.4	60-140		
(m-Dichlorobenzene)	46-	22.2	ualka dar	250	,22.2	647	60 140		
1,4-Dichlorobenzene (p-Dichlorobenzene)	167	32.3	ug/kg dry	258	<32.3	64.7	60-140		
(p-Dichiorobenzene)  2,2'-Oxybis(1-chloropropane),	190	32.3	ug/kg dry	258	<32.3	69.8	60-140		
bis(2-Chloro-1-methy	180	32.3	ag/ ng ur y	230	<b>\J</b> L.J	03.0	00 170		
2,4,6-Trichlorophenol	338	64.6	ug/kg dry	517	<64.6	65.4	60-140		
2,4-Dichlorophenol	818 J1	64.6	ug/kg dry	517	<64.6	158	60-140		
2,4-Dimethylphenol	461	64.6	ug/kg dry	517	<64.6	89.2	60-140		
2,4-Dinitrophenol	<64.6 J1, U	64.6	ug/kg dry	1290	<64.6		10-51.3		
2,4-Dinitrotoluene (2,4-DNT)	<32.3 J1, U	32.3	ug/kg dry	258	<32.3		60-140		
2,6-Dinitrotoluene (2,6-DNT)	<32.3 J1, U	32.3	ug/kg dry	258	<32.3		60-140		
2-Chloronaphthalene	87.4 J1	32.3	ug/kg dry	258	<32.3	33.8	60-140		
2-Chlorophenol	598	64.6	ug/kg dry	517	<64.6	116	60-140		
2-Methyl-4,6-dinitrophenol	<258 J1, U	258	ug/kg dry	517	<258		60-140		
(4,6-Dinitro-2-methylph			/						
2-Nitrophenol	<64.6 J1, U	64.6	ug/kg dry	517	<64.6		60-140		
4-Bromophenyl phenyl ether (BDE-3)	104 J1	32.3	ug/kg dry	258	<32.3	40.1	60-140		
4-Chloro-3-methylphenol	<64.6 J1, U	64.6	ug/kg dry	517	<64.6		60-140		
4-Chlorophenyl phenylether	<32.3 J1, U	32.3	ug/kg dry	258	<32.3		60-140		
4-Nitrophenol	<32.3 J1, U	32.3	ug/kg dry	1290	<32.3		60-140		
	- ,								

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Reporting

# Quality Control (Continued)

Spike

Source

Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGC0816 - SW-3570 (Cd	ontinued)									
Matrix Spike (BGC0816-MS1)		Source: 23	A1459-24RE	<b>2</b> Pr	epared: 3/6/	2023 Analyzed	d: 3/15/2023			
Acenaphthene	535	J1	32.3	ug/kg dry	258	416	45.8	60-140		
Acenaphthylene	490		32.3	ug/kg dry	258	323	64.6	60-140		
Anthracene	152	J1	32.3	ug/kg dry	258	<32.3	59.0	60-140		
Benzo(a)anthracene	183	J1	32.3	ug/kg dry	258	31.3	58.8	60-140		
Benzo(a)pyrene	134	J1	32.3	ug/kg dry	258	<32.3	52.0	60-140		
benzo(b&k)fluoranthene	270	J1	32.3	ug/kg dry	517	<32.3	52.3	60-140		
Benzo(g,h,i)perylene	216		32.3	ug/kg dry	258	22.3	75.0	60-140		
bis(2-Chloroethoxy)methane	253		32.3	ug/kg dry	258	<32.3	97.9	60-140		
bis(2-Chloroethyl) ether	<32.3	J1, U	32.3	ug/kg dry	258	<32.3		60-140		
Bis(2-ethylhexyl )phthalate	138	J1	32.3	ug/kg dry	258	18.8	46.2	60-140		
Butyl benzyl phthalate	97.2	J1	32.3	ug/kg dry	258	<32.3	37.6	60-140		
Chrysene	176	J1	32.3	ug/kg dry	258	36.7	53.9	60-140		
Dibenzo(a,h)anthracene	184		32.3	ug/kg dry	258	<32.3	71.4	60-140		
Diethyl phthalate	139	J1	32.3	ug/kg dry	258	<32.3	53.7	60-140		
Dimethyl phthalate	86.6	J1	32.3	ug/kg dry	258	<32.3	33.5	60-140		
Di-n-butyl phthalate	285		32.3	ug/kg dry	258	120	63.8	60-140		
Di-n-octyl phthalate	156		32.3	ug/kg dry	258	<32.3	60.2	60-140		
Fluoranthene	176	J1	32.3	ug/kg dry	258	81.3	36.6	60-140		
Fluorene	1070	L	32.3	ug/kg dry	258	893	67.1	60-140		
Hexachlorobenzene	93.4	J1	32.3	ug/kg dry	258	<32.3	36.2	60-140		
Hexachlorobutadiene	147	J1	32.3	ug/kg dry	258	<32.3	56.8	60-140		
Hexachlorocyclopentadiene	<32.3	J1, U	32.3	ug/kg dry	258	<32.3		60-140		
Hexachloroethane	37.2	J1	32.3	ug/kg dry	258	<32.3	14.4	60-140		
Indeno(1,2,3-cd) pyrene	184		32.3	ug/kg dry	258	<32.3	71.1	60-140		
Isophorone	<32.3	J1, U	32.3	ug/kg dry	258	<32.3		60-140		
Naphthalene	139	J1	32.3	ug/kg dry	258	<32.3	53.8	60-140		
Nitrobenzene	<32.3	J1, U	32.3	ug/kg dry	258	<32.3		60-140		
n-Nitrosodimethylamine	225	J1	32.3	ug/kg dry	1290	<32.3	17.4	60-140		
n-Nitrosodi-n-propylamine	<32.3	J1, U	32.3	ug/kg dry	258	<32.3		60-140		
n-Nitrosodiphenylamine	<32.3	J1, U	32.3	ug/kg dry	258	<32.3		60-140		
Pentachlorophenol	153	J1	64.6	ug/kg dry	517	<64.6	29.6	60-140		
Phenanthrene	639	J1	32.3	ug/kg dry	258	522	45.1	60-140		
Phenol, Total	576		64.6	ug/kg dry	517	<64.6	112	60-140		
Pyrene	214	J1	32.3	ug/kg dry	258	90.3	47.7	60-140		
Surrogate: 2-Fluorobiphenyl-surr		<i>S</i>	129	ug/kg dry	258		50.0	60-140		
Surrogate: 2-Fluorophenol-surr			414	ug/kg dry	517		80.0	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		5	209	ug/kg dry	517		40.5	60-140		
Surrogate: Nitrobenzene-d5-surr			189	ug/kg dry	258		73.1	60-140		
Surrogate: Phenol-d5-surr			449	ug/kg dry	517		86.9	60-140		
Surrogate: p-Terphenyl-d14-surr			231	ug/kg dry	258		89.3	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

Matrix Spike (BGC0816-MS2)		3A1459-24RE		Prepared: 3/6/	•				
Fluorene	1290 J1	80.8	ug/kg dry	258	1190	36.2	60-140		
Surrogate: 2-Fluorobiphenyl-surr		232	ug/kg dry	258		89.8	60-140		
Surrogate: Nitrobenzene-d5-surr	5	594	ug/kg dry	258		230	60-140		
Surrogate: p-Terphenyl-d14-surr	5	136	ug/kg dry	258		52.7	60-140		
Matrix Spike Dup (BGC0816-MSD1)	Source: 2	3A1459-24RE	<b>2</b> P	Prepared: 3/6/	/2023 Analyzed	d: 3/15/2023	3		
1,2,4-Trichlorobenzene	165	33.4	ug/kg dry	267	<33.4	61.6	60-140	16.7	40
1,2-Dichlorobenzene	179	33.4	ug/kg dry	267	<33.4	66.8	60-140	0.0334	40
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	<33.4 J1, U	33.4	ug/kg dry	267	<33.4		60-140		40
1,3-Dichlorobenzene	155 J1	33.4	ug/kg dry	267	<33.4	57.8	60-140	5.83	40
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	182	33.4	ug/kg dry	267	<33.4	68.2	60-140	8.67	40
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	199	33.4	ug/kg dry	267	<33.4	74.3	60-140	9.62	40
bis(2-Chloro-1-methy									
2,4,6-Trichlorophenol	386	66.8	ug/kg dry	535	<66.8	72.2	60-140	13.3	40
2,4-Dichlorophenol	777 J1	66.8	ug/kg dry	535	<66.8	145	60-140	5.17	40
2,4-Dimethylphenol	457	66.8	ug/kg dry	535	<66.8	85.4	60-140	0.901	40
2,4-Dinitrophenol	<66.8 J1, U	66.8	ug/kg dry	1340	<66.8		10-51.3		40
2,4-Dinitrotoluene (2,4-DNT)	<33.4 J1, U	33.4	ug/kg dry	267	<33.4		60-140		40
2,6-Dinitrotoluene (2,6-DNT)	<33.4 J1, U	33.4	ug/kg dry	267	<33.4		60-140		40
2-Chloronaphthalene	73.6 J1	33.4	ug/kg dry	267	<33.4	27.5	60-140	17.1	40
2-Chlorophenol	611	66.8	ug/kg dry	535	<66.8	114	60-140	2.13	40
2-Methyl-4,6-dinitrophenol	<267 J1, U	267	ug/kg dry	535	<267		60-140		40
(4,6-Dinitro-2-methylph									
2-Nitrophenol	<66.8 J1, U	66.8	ug/kg dry	535	<66.8		60-140		40
4-Bromophenyl phenyl ether (BDE-3)	103 J1	33.4	ug/kg dry	267	<33.4	38.4	60-140	0.962	40
4-Chloro-3-methylphenol	<66.8 J1, U	66.8	ug/kg dry	535	<66.8		60-140		40
4-Chlorophenyl phenylether	<33.4 J1, U	33.4	ug/kg dry	267	<33.4		60-140		40
4-Nitrophenol	<33.4 J1, U	33.4	ug/kg dry	1340	<33.4		60-140		40
Acenaphthene	489 J1	33.4	ug/kg dry	267	416	27.0	60-140	9.02	40
Acenaphthylene	512	33.4	ug/kg dry	267	323	70.8	60-140	4.45	40
Anthracene	146 J1	33.4	ug/kg dry	267	<33.4	54.4	60-140	4.61	40
Benzo(a)anthracene	188 J1	33.4	ug/kg dry	267	31.3	58.6	60-140	2.55	40
Benzo(a)pyrene	136 J1	33.4	ug/kg dry	267	<33.4	51.0	60-140	1.41	40
benzo(b&k)fluoranthene	285 J1	33.4	ug/kg dry	535	<33.4	53.3	60-140	5.29	40
Benzo(g,h,i)perylene	237	33.4	ug/kg dry	267	22.3	80.3	60-140	9.30	40
bis(2-Chloroethoxy)methane	281	33.4	ug/kg dry	267	<33.4	105	60-140	10.4	40
bis(2-Chloroethyl) ether	<33.4 J1, U	33.4	ug/kg dry	267	<33.4		60-140		40
Bis(2-ethylhexyl )phthalate	148 J1	33.4	ug/kg dry	267	18.8	48.5	60-140	7.20	40
Butyl benzyl phthalate	114 J1	33.4	ug/kg dry	267	<33.4	42.8	60-140	16.3	40
Chrysene	178 J1	33.4	ug/kg dry	267	36.7	52.9	60-140	1.20	40
Dibenzo(a,h)anthracene	194	33.4	ug/kg dry	267	<33.4	72.6	60-140	5.13	40
Diethyl phthalate	122 J1	33.4	ug/kg dry	267	<33.4	45.6	60-140	12.9	40
Dimethyl phthalate	88.9 J1	33.4	ug/kg dry	267	<33.4	33.2	60-140	2.62	40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGC0816 - SW-3570 (Con	tinued)									
Matrix Spike Dup (BGC0816-MSD1)	-	Source: 2	3A1459-24RE	<b>2</b> Pr	epared: 3/6/	2023 Analyze	d: 3/15/2023	3		
Di-n-butyl phthalate	235	J1	33.4	ug/kg dry	267	120	43.3	60-140	19.0	40
Di-n-octyl phthalate	169		33.4	ug/kg dry	267	<33.4	63.3	60-140	8.36	40
Fluoranthene	184	J1	33.4	ug/kg dry	267	81.3	38.3	60-140	4.29	40
Fluorene	1030	J1, L	33.4	ug/kg dry	267	893	50.6	60-140	3.62	40
Hexachlorobenzene	90.8	J1	33.4	ug/kg dry	267	<33.4	34.0	60-140	2.81	40
Hexachlorobutadiene	144	J1	33.4	ug/kg dry	267	<33.4	53.9	60-140	1.76	40
Hexachlorocyclopentadiene	<33.4	J1, U	33.4	ug/kg dry	267	<33.4		60-140		40
Hexachloroethane	45.4	J1	33.4	ug/kg dry	267	<33.4	17.0	60-140	19.8	40
Indeno(1,2,3-cd) pyrene	207		33.4	ug/kg dry	267	<33.4	77.3	60-140	11.8	40
Isophorone	<33.4	J1, U	33.4	ug/kg dry	267	<33.4		60-140		40
Naphthalene	150	J1	33.4	ug/kg dry	267	<33.4	56.0	60-140	7.43	40
Nitrobenzene	<33.4	J1, U	33.4	ug/kg dry	267	<33.4		60-140		40
n-Nitrosodimethylamine	254	J1	33.4	ug/kg dry	1340	<33.4	19.0	60-140	12.3	40
n-Nitrosodi-n-propylamine	<33.4	J1, U	33.4	ug/kg dry	267	<33.4		60-140		40
n-Nitrosodiphenylamine	<33.4	J1, U	33.4	ug/kg dry	267	<33.4		60-140		40
Pentachlorophenol	138	J1	66.8	ug/kg dry	535	<66.8	25.8	60-140	10.2	40
Phenanthrene	605	J1	33.4	ug/kg dry	267	522	31.0	60-140	5.43	40
Phenol, Total	709		66.8	ug/kg dry	535	<66.8	133	60-140	20.7	40
Pyrene	218	J1	33.4	ug/kg dry	267	90.3	47.7	60-140	2.03	40
Surrogate: 2-Fluorobiphenyl-surr		<i>5</i>	100	ug/kg dry	267		37.4	60-140		
Surrogate: 2-Fluorophenol-surr			506	ug/kg dry	535		94.6	60-140		
Surrogate: 2,4,6-Tribromophenol-surr		S	192	ug/kg dry	535		35.8	60-140		
Surrogate: Nitrobenzene-d5-surr		5	156	ug/kg dry	267		58.3	60-140		
Surrogate: Phenol-d5-surr			<i>375</i>	ug/kg dry	535		70.1	60-140		
Surrogate: p-Terphenyl-d14-surr		5	140	ug/kg dry	267		52.3	60-140		
Matrix Spike Dup (BGC0816-MSD2)		Source: 2	3A1459-24RE	<b>4</b> Pr	epared: 3/6/	2023 Analyze	d: 3/16/2023	3		
Fluorene	1510		83.6	ug/kg dry	267	1190	119	60-140	16.0	40
Surrogate: 2-Fluorobiphenyl-surr			187	ug/kg dry	267		69.8	60-140		
Surrogate: Nitrobenzene-d5-surr		S	638	ug/kg dry	267		239	60-140		
Surrogate: p-Terphenyl-d14-surr		S	153	ug/kg dry	267		<i>57.1</i>	60-140		



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Houston, TX 77043 Project Manager: Reported:

TCEQ-TOX T104704202-22-17

Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

### **Organics by GC**

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3044 - SW-3570										
Blank (BGA3044-BLK1)				Pre	epared: 1/24	4/2023 Analyze	ed: 2/1/2023			
4,4'-DDD	< 0.997	U	0.997	ug/kg wet	•	•				
4,4'-DDE	<0.997		0.997	ug/kg wet						
, 4,4'-DDT	< 0.997		0.997	ug/kg wet						
, Aldrin	< 0.997		0.997	ug/kg wet						
alpha-BHC	< 0.997		0.997	ug/kg wet						
(alpha-Hexachlorocyclohexane)				=						
beta-BHC	< 0.997	U	0.997	ug/kg wet						
(beta-Hexachlorocyclohexane)										
Chlordane (tech.)	< 0.997	U	0.997	ug/kg wet						
cis-Chlordane (alpha-Chlordane)	< 0.997	U	0.997	ug/kg wet						
delta-BHC	< 0.997	U	0.997	ug/kg wet						
Dieldrin	< 0.997	U	0.997	ug/kg wet						
Endosulfan I	< 0.997	U	0.997	ug/kg wet						
Endosulfan II	< 0.997	U	0.997	ug/kg wet						
Endosulfan sulfate	< 0.997	U	0.997	ug/kg wet						
Endrin	< 0.997	U	0.997	ug/kg wet						
Endrin aldehyde	< 0.997	U	0.997	ug/kg wet						
Endrin ketone	< 0.997	U	0.997	ug/kg wet						
gamma-BHC (Lindane,	< 0.997	U	0.997	ug/kg wet						
gamma-HexachlorocyclohexanE)										
gamma-Chlordane	< 0.997	U	0.997	ug/kg wet						
Heptachlor	< 0.997	U	0.997	ug/kg wet						
Heptachlor epoxide	< 0.997	U	0.997	ug/kg wet						
Methoxychlor	< 0.997	U	0.997	ug/kg wet						
Toxaphene (Chlorinated Camphene)	<15.0	U	15.0	ug/kg wet						
Surrogate: 2,4,5,6			5.45	ug/kg wet	<i>5.98</i>		91.2	60-140		
Tetrachloro-m-xylene-surr			23	. 5,55			· <del>-</del>			
Surrogate: Decachlorobiphenyl-surr			6.56	ug/kg wet	5.98		110	60-140		
LCS (BGA3044-BS1)				Pre	epared: 1/24	4/2023 Analyze	ed: 2/1/2023			
Toxaphene (Chlorinated Camphene)	60.8		14.9	ug/kg wet	59.6	- <b>,-</b> -	102	60-140		
Surrogate: 2,4,5,6			4.94	ug/kg wet	5.96		82.9	60-140		
Tetrachloro-m-xylene-surr					F 0.5		400	CO 1 12		
Surrogate: Decachlorobiphenyl-surr			6.53	ug/kg wet	5.96		109	60-140		



11555 Clay Road

Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

Houston, TX 77043

Project Manager: Gregg Pawlak

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3044 - SW-3570 (C	Continued)								
LCS (BGA3044-BS2)			Pre	epared: 1/2	4/2023 Analyze	d: 2/1/2023	}		
4,4'-DDD	4.90	0.994	ug/kg wet	5.96		82.1	60-140		
4,4'-DDE	5.85	0.994	ug/kg wet	5.96		98.0	60-140		
4,4'-DDT	5.29	0.994	ug/kg wet	5.96		88.7	60-140		
Aldrin	5.48	0.994	ug/kg wet	5.96		91.8	60-140		
alpha-BHC	6.17	0.994	ug/kg wet	5.96		103	60-140		
(alpha-Hexachlorocyclohexane)			J. J						
beta-BHC	5.48	0.994	ug/kg wet	5.96		91.8	60-140		
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	19.9	0.994	ug/kg wet	23.9		83.4	60-140		
cis-Chlordane (alpha-Chlordane)	4.99	0.994	ug/kg wet	5.96		83.7	60-140		
delta-BHC	5.65	0.994	ug/kg wet	5.96		94.7	60-140		
Dieldrin	5.26	0.994	ug/kg wet	5.96		88.2	60-140		
Endosulfan I	4.81	0.994	ug/kg wet	5.96		80.7	60-140		
Endosulfan II	4.84	0.994	ug/kg wet	5.96		81.1	60-140		
Endosulfan sulfate	4.52	0.994	ug/kg wet	5.96		75.8	60-140		
Endrin	5.25	0.994	ug/kg wet	5.96		88.0	60-140		
Endrin aldehyde	4.29	0.994	ug/kg wet	5.96		71.9	60-140		
Endrin ketone	5.10	0.994	ug/kg wet	5.96		85.5	60-140		
gamma-BHC (Lindane,	5.82	0.994	ug/kg wet	5.96		97.6	60-140		
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	5.09	0.994	ug/kg wet	5.96		85.3	60-140		
Heptachlor	4.86	0.994	ug/kg wet	5.96		81.5	60-140		
Heptachlor epoxide	4.95	0.994	ug/kg wet	5.96		83.1	60-140		
Methoxychlor	4.52	0.994	ug/kg wet	5.96		75.7	60-140		
Surrogate: 2,4,5,6		4.87	ug/kg wet	5.96		81.7	60-140		
Tetrachloro-m-xylene-surr		1.07	-3/1.5 1.00	2.20		02.,	00 1.0		
Surrogate: Decachlorobiphenyl-surr		6.37	ug/kg wet	5.96		107	60-140		
LCS Dup (BGA3044-BSD1)			Pre	epared: 1/24	4/2023 Analyze	d: 2/1/2023	3		
Toxaphene (Chlorinated Camphene)	59.8	15.0	ug/kg wet	59.9	, , , , , , , , , , , , , , , , , , , ,	99.8	60-140	1.68	40
Surrogate: 2,4,5,6		<i>5.86</i>	ug/kg wet	5.99		97.7	60-140		
Tetrachloro-m-xylene-surr		3.00	. 3,						
Surrogate: Decachlorobiphenyl-surr		6.58	ug/kg wet	5.99		110	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3044 - SW-3570 (C	Continued)								
LCS Dup (BGA3044-BSD2)	•		Pre	epared: 1/24	1/2023 Analyze	ed: 2/1/2023	,		
4,4'-DDD	4.82	0.997	ug/kg wet	5.98	- /-	80.5	60-140	1.68	40
4,4'-DDE	5.41	0.997	ug/kg wet	5.98		90.4	60-140	7.76	40
4,4'-DDT	5.20	0.997	ug/kg wet	5.98		86.9	60-140	1.75	40
Aldrin	5.34	0.997	ug/kg wet	5.98		89.3	60-140	2.46	40
alpha-BHC	6.02	0.997	ug/kg wet	5.98		101	60-140	2.43	40
(alpha-Hexachlorocyclohexane)	<del></del>		- <del>-</del>						
beta-BHC	5.37	0.997	ug/kg wet	5.98		89.8	60-140	1.93	40
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	19.8	0.997	ug/kg wet	23.9		82.7	60-140	0.528	40
cis-Chlordane (alpha-Chlordane)	4.99	0.997	ug/kg wet	5.98		83.4	60-140	0.0533	40
delta-BHC	5.59	0.997	ug/kg wet	5.98		93.5	60-140	1.01	40
Dieldrin	5.10	0.997	ug/kg wet	5.98		85.3	60-140	3.15	40
Endosulfan I	4.78	0.997	ug/kg wet	5.98		80.0	60-140	0.622	40
Endosulfan II	4.95	0.997	ug/kg wet	5.98		82.7	60-140	2.25	40
Endosulfan sulfate	4.76	0.997	ug/kg wet	5.98		79.6	60-140	5.18	40
Endrin	5.01	0.997	ug/kg wet	5.98		83.7	60-140	4.69	40
Endrin aldehyde	4.15	0.997	ug/kg wet	5.98		69.4	60-140	3.20	40
Endrin ketone	5.03	0.997	ug/kg wet	5.98		84.1	60-140	1.41	40
gamma-BHC (Lindane,	5.60	0.997	ug/kg wet	5.98		93.6	60-140	3.86	40
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	5.03	0.997	ug/kg wet	5.98		84.2	60-140	1.08	40
Heptachlor	4.92	0.997	ug/kg wet	5.98		82.2	60-140	1.11	40
Heptachlor epoxide	4.85	0.997	ug/kg wet	5.98		81.0	60-140	2.18	40
Methoxychlor	4.53	0.997	ug/kg wet	5.98		75.7	60-140	0.272	40
Surrogate: 2,4,5,6		5.15	ug/kg wet	5.98		86.1	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		6.47	ug/kg wet	5.98		108	60-140		
MRL Check (BGA3044-MRL1)			Pre	epared: 1/24	1/2023 Analyz	ed: 2/1/2023	-		
Toxaphene (Chlorinated Camphene)	16.0	14.8	ug/kg wet	14.8	,	108	50-150		
Surrogate: 2,4,5,6		5.53	ug/kg wet	5.92		93.4	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		6.86	ug/kg wet	5.92		116	60-140		

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

		Reporting		Spike	Source		70KLC		KFD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
atch: BGA3044 - SW-3570 (C	ontinued)								
IRL Check (BGA3044-MRL2)			Pro	epared: 1/24	4/2023 Analyze	ed: 2/1/2023			
4,4'-DDD	0.353 J	0.987	ug/kg wet	0.395		89.3			
4,4'-DDE	0.336 J	0.987	ug/kg wet	0.395		85.2			
1,4'-DDT	0.283 J	0.987	ug/kg wet	0.395		71.6			
Aldrin	0.371 J	0.987	ug/kg wet	0.395		93.9			
alpha-BHC	0.454 J	0.987	ug/kg wet	0.395		115			
(alpha-Hexachlorocyclohexane)									
beta-BHC	0.263 J	0.987	ug/kg wet	0.395		66.5			
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	1.46	0.987	ug/kg wet	1.58		92.3	50-150		
is-Chlordane (alpha-Chlordane)	0.368 J	0.987	ug/kg wet	0.395		93.3			
lelta-BHC	<0.987 J1, U	0.987	ug/kg wet	0.395					
Dieldrin	0.309 J	0.987	ug/kg wet	0.395		78.1			
indosulfan I	0.324 J	0.987	ug/kg wet	0.395		82.0			
indosulfan II	0.322 J	0.987	ug/kg wet	0.395		81.5			
Endosulfan sulfate	0.331 J	0.987	ug/kg wet	0.395		83.8			
Endrin	0.326 J	0.987	ug/kg wet	0.395		82.5			
Endrin aldehyde	0.324 J	0.987	ug/kg wet	0.395		82.0			
Endrin ketone	0.397 J	0.987	ug/kg wet	0.395		100			
jamma-BHC (Lindane,	0.312 J	0.987	ug/kg wet	0.395		78.9			
gamma-HexachlorocyclohexanE)	0.512 5		-9, 119 1100						
gamma-Chlordane	0.341 J	0.987	ug/kg wet	0.395		86.3			
leptachlor	0.369 J	0.987	ug/kg wet	0.395		93.5			
leptachlor epoxide	0.380 J	0.987	ug/kg wet	0.395		96.1			
Methoxychlor	0.304 J	0.987	ug/kg wet	0.395		76.9			
		E 27		5.92		00.6	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		5.37	ug/kg wet	5.92		90.6	00-1 <del>4</del> 0		
Surrogate: Decachlorobiphenyl-surr		6.39	ug/kg wet	5.92		108	60-140		
ourrogate. Decacriloropipilerryr-surr		0.55	ug/kg wet	J.92		100	00-140		
latrix Spike (BGA3044-MS1)	Sour	ce: 23A1459-17	Pre	epared: 1/24	4/2023 Analyze	ed: 2/1/2023			
1,4'-DDD	5.95	1.29	ug/kg dry	7.75	<1.29	76.8	60-140		
-,4'-DDE	7.23	1.29	ug/kg dry	7.75	<1.29	93.4	60-140		
1,4'-DDT	6.90	1.29	ug/kg dry	7.75	<1.29	89.0	60-140		
Aldrin	6.40	1.29	ug/kg dry	7.75	<1.29	82.5	60-140		
alpha-BHC	7.39	1.29	ug/kg dry	7.75	<1.29	95.3	60-140		
(alpha-Hexachlorocyclohexane)									
peta-BHC	6.95	1.29	ug/kg dry	7.75	<1.29	89.6	60-140		
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	25.0	1.29	ug/kg dry	31.0	<1.29	80.7	60-140		
is-Chlordane (alpha-Chlordane)	6.22	1.29	ug/kg dry	7.75	<1.29	80.3	60-140		
lelta-BHC	7.28	1.29	ug/kg dry	7.75	<1.29	93.9	60-140		
Dieldrin	6.40	1.29	ug/kg dry	7.75	<1.29	82.6	60-140		
ndosulfan I	5.87	1.29	ug/kg dry	7.75	<1.29	75.7	60-140		
ndosulfan II	6.18	1.29	ug/kg dry	7.75	<1.29	79.7	60-140		
Endosulfan sulfate	5.97	1.29	ug/kg dry	7.75	<1.29	77.0	60-140		
						83.0			
Endrin		1.29	ug/kg dry	7.75	<1.29	65.0	00-140		
Endrin Endrin aldehyde	6.43 5.45	1.29 1.29	ug/kg dry ug/kg dry	7.75 7.75	<1.29 <1.29	70.3	60-140 60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3044 - SW-3570 (Con	tinued)								
Matrix Spike (BGA3044-MS1)	•	ce: 23A1459-17	Pre	epared: 1/24	1/2023 Analyz	ed: 2/1/2023	3		
gamma-BHC (Lindane,	6.94	1.29	ug/kg dry	7.75	<1.29	89.6	60-140		
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	6.98	1.29	ug/kg dry	7.75	<1.29	90.1	60-140		
Heptachlor	5.85	1.29	ug/kg dry	7.75	<1.29	75.5	60-140		
Heptachlor epoxide	5.94	1.29	ug/kg dry	7.75	<1.29	76.7	60-140		
Methoxychlor	6.27	1.29	ug/kg dry	7.75	<1.29	81.0	60-140		
Surrogate: 2,4,5,6		6.42	ug/kg dry	7.75		82.8	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		8.42	ug/kg dry	7.75		109	60-140		
Matrix Spike Dup (BGA3044-MSD1)	Source	ce: 23A1459-17	Pre	epared: 1/24	1/2023 Analyz	ed: 2/1/2023	3		
4,4'-DDD	6.00	1.23	ug/kg dry	7.40	<1.23	81.0	60-140	0.730	40
4,4'-DDE	6.80	1.23	ug/kg dry	7.40	<1.23	91.9	60-140	6.13	40
4,4'-DDT	6.52	1.23	ug/kg dry	7.40	<1.23	88.2	60-140	5.62	40
Aldrin	6.31	1.23	ug/kg dry	7.40	<1.23	85.3	60-140	1.33	40
alpha-BHC	7.27	1.23	ug/kg dry	7.40	<1.23	98.2	60-140	1.64	40
(alpha-Hexachlorocyclohexane)	,,		- 3/ 3 - 7						
beta-BHC	6.95	1.23	ug/kg dry	7.40	<1.23	93.9	60-140	0.0143	40
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	24.3	1.23	ug/kg dry	29.6	<1.23	82.0	60-140	2.97	40
cis-Chlordane (alpha-Chlordane)	5.89	1.23	ug/kg dry	7.40	<1.23	79.7	60-140	5.45	40
delta-BHC	7.14	1.23	ug/kg dry	7.40	<1.23	96.5	60-140	1.89	40
Dieldrin	6.09	1.23	ug/kg dry	7.40	<1.23	82.2	60-140	5.07	40
Endosulfan I	5.73	1.23	ug/kg dry	7.40	<1.23	77.5	60-140	2.33	40
Endosulfan II	6.02	1.23	ug/kg dry	7.40	<1.23	81.3	60-140	2.66	40
Endosulfan sulfate	5.78	1.23	ug/kg dry	7.40	<1.23	78.1	60-140	3.19	40
Endrin	6.23	1.23	ug/kg dry	7.40	<1.23	84.2	60-140	3.18	40
Endrin aldehyde	5.05	1.23	ug/kg dry	7.40	<1.23	68.2	60-140	7.72	40
Endrin ketone	6.28	1.23	ug/kg dry	7.40	<1.23	84.9	60-140	3.24	40
gamma-BHC (Lindane,	6.74	1.23	ug/kg dry	7.40	<1.23	91.1	60-140	2.90	40
gamma-HexachlorocyclohexanE)	-								
gamma-Chlordane	6.71	1.23	ug/kg dry	7.40	<1.23	90.7	60-140	3.94	40
Heptachlor	5.78	1.23	ug/kg dry	7.40	<1.23	78.1	60-140	1.23	40
Heptachlor epoxide	5.88	1.23	ug/kg dry	7.40	<1.23	79.5	60-140	1.01	40
Methoxychlor	6.26	1.23	ug/kg dry	7.40	<1.23	84.5	60-140	0.286	40
Surrogate: 2,4,5,6		6.08	ug/kg dry	7.40		82.1	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		8.17	ug/kg dry	7.40		110	60-140		



11555 Clay Road

Houston, TX 77043

Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

Project Manager: Gregg Pawlak

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>`</u>								•	
Batch: BGA3182 - SW-3570 Blank (BGA3182-BLK1)			Dro	nared: 1/2F	/2023 Analyze	.d. 1/28/202	.3		
PCBs, Total	<2.00 U	2.00	ug/kg wet	puicu. 1/25,	, 2025 Alidiy2E	.u. 1/20/2U2			
Surrogate: 2,4,5,6	5	1.10	ug/kg wet	0.600		183	60-140		
Tetrachloro-m-xylene-surr		0.640	ua/ka wat	0.600		100	60-140		
Surrogate: Decachlorobiphenyl-surr		0.648	ug/kg wet	0.600		108	60-140		
LCS (BGA3182-BS1)			Pre	pared: 1/25,	/2023 Analyze	ed: 1/28/202	:3		
Aroclor-1016 (PCB-1016)	5.44	2.00	ug/kg wet	6.00		90.6	60-140		
Aroclor-1260 (PCB-1260)	5.59	2.00	ug/kg wet	6.00		93.2	60-140		
PCBs, Total	5.58	2.00	ug/kg wet	6.00		93.0	60-140		
Surrogate: 2,4,5,6	S	0.953	ug/kg wet	0.600		159	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.684	ug/kg wet	0.600		114	60-140		
LCS Dup (BGA3182-BSD1)			Pre	pared: 1/25,	/2023 Analyze	ed: 1/28/202	3		
Aroclor-1016 (PCB-1016)	7.19	2.00	ug/kg wet	6.00	•	120	60-140	27.7	40
Aroclor-1260 (PCB-1260)	5.28	2.00	ug/kg wet	6.00		87.9	60-140	5.77	40
PCBs, Total	5.47	2.00	ug/kg wet	6.00		91.2	60-140	2.00	40
Surrogate: 2,4,5,6	S	0.927	ug/kg wet	0.600		154	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.599	ug/kg wet	0.600		99.9	60-140		
MRL Check (BGA3182-MRL1)			Pre	pared: 1/25,	/2023 Analyze	d: 1/28/202	3		
Aroclor-1016 (PCB-1016)	3.51	2.00	ug/kg wet	1.20	•	292			
Aroclor-1260 (PCB-1260)	1.34 J	2.00	ug/kg wet	1.20		112			
PCBs, Total	1.57 J	2.00	ug/kg wet	1.20		131			
Surrogate: 2,4,5,6	<i>S</i>	1.00	ug/kg wet	0.600		167	60-140		
Tetrachloro-m-xylene-surr			J. J	-			-		
Surrogate: Decachlorobiphenyl-surr		0.537	ug/kg wet	0.600		89.5	60-140		
Matrix Spike (BGA3182-MS1)	Source: 2	3A1459-18	Prei	pared: 1/25	/2023 Analyze	d: 1/28/202	3		
Aroclor-1016 (PCB-1016)	7.88	2.69	ug/kg dry	8.07	<2.69	97.6	60-140		
Aroclor-1260 (PCB-1260)	6.99	2.69	ug/kg dry	8.07	<2.69	86.6	60-140		
PCBs, Total	7.09	2.69	ug/kg dry	8.07	<2.69	87.8	60-140		
Surrogate: 2,4,5,6	<i>S</i>	1.48	ug/kg dry	0.807		184	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr	S	0.407	ug/kg dry	0.807		50.4	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Quality Control** (Continued)

Analyte	Result		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3182 - SW-3570 (Cont	tinued)									
Matrix Spike Dup (BGA3182-MSD1)	-	Source: 23A14	59-18	Pre	pared: 1/25/	2023 Analyze	d: 1/28/202	3		
Aroclor-1016 (PCB-1016)	8.13		2.69	ug/kg dry	8.07	<2.69	101	60-140	3.17	40
Aroclor-1260 (PCB-1260)	6.71		2.69	ug/kg dry	8.07	<2.69	83.1	60-140	4.10	40
PCBs, Total	6.86		2.69	ug/kg dry	8.07	<2.69	85.0	60-140	3.26	40
Surrogate: 2,4,5,6	5	;	1.43	ug/kg dry	0.807		177	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.685	ug/kg dry	0.807		<i>85.0</i>	60-140		

Batch: BGA3603 - SW-35/0							
Blank (BGA3603-BLK1)			Pre	epared: 1/27/2023	Analyzed: 2/3/2023		
4,4'-DDD	<0.943 U	0.943	ug/kg wet				
4,4'-DDE	<0.943 U	0.943	ug/kg wet				
4,4'-DDT	<0.943 U	0.943	ug/kg wet				
Aldrin	<0.943 U	0.943	ug/kg wet				
alpha-BHC	<0.943 U	0.943	ug/kg wet				
(alpha-Hexachlorocyclohexane)							
beta-BHC	<0.943 U	0.943	ug/kg wet				
(beta-Hexachlorocyclohexane)							
Chlordane (tech.)	<0.943 U	0.943	ug/kg wet				
cis-Chlordane (alpha-Chlordane)	<0.943 U	0.943	ug/kg wet				
delta-BHC	<0.943 U	0.943	ug/kg wet				
Dieldrin	<0.943 U	0.943	ug/kg wet				
Endosulfan I	<0.943 U	0.943	ug/kg wet				
Endosulfan II	<0.943 U	0.943	ug/kg wet				
Endosulfan sulfate	<0.943 U	0.943	ug/kg wet				
Endrin	<0.943 U	0.943	ug/kg wet				
Endrin aldehyde	<0.943 U	0.943	ug/kg wet				
Endrin ketone	<0.943 U	0.943	ug/kg wet				
gamma-BHC (Lindane,	<0.943 U	0.943	ug/kg wet				
gamma-HexachlorocyclohexanE)							
gamma-Chlordane	<0.943 U	0.943	ug/kg wet				
Heptachlor	<0.943 U	0.943	ug/kg wet				
Heptachlor epoxide	<0.943 U	0.943	ug/kg wet				
Methoxychlor	<0.943 U	0.943	ug/kg wet				
Toxaphene (Chlorinated Camphene)	<14.2 U	14.2	ug/kg wet				
Surrogate: 2,4,5,6		4.90	ug/kg wet	5.66	86.6	60-140	
Tetrachloro-m-xylene-surr							
Surrogate: Decachlorobiphenyl-surr		6.13	ug/kg wet	5.66	108	60-140	

RPD

%REC

Limits

%REC

106

60-140



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Spike

Level

Source

Result

11555 Clay Road Houston, TX 77043

Analyte

Project Manager: Gregg Pawlak

Project Number:

Reporting

Limit

Units

Result Qual

Reported:

TCEQ-TOX T104704202-22-17

04/03/2023 14:08

RPD

Limit

# Quality Control (Continued)

### Organics by GC (Continued)

raidiyee	result Qual	Limit	565		court			 2
Batch: BGA3603 - SW-3570 (Co	ontinued)							
TOX LCS (BGA3603-BS1)	•		Pre	pared: 1/2	7/2023 Analyze	ed: 2/3/2023	3	
Toxaphene (Chlorinated Camphene)	57.2	13.9		55.5	,	103	60-140	
Surrogate: 2,4,5,6		5.24		<i>5.55</i>		94.5	60-140	 
Tetrachloro-m-xylene-surr		5.2 1	ug/kg wet	3.33		51.5	00 1 10	
Surrogate: Decachlorobiphenyl-surr		<i>5.78</i>	ug/kg wet	5.55		104	60-140	
			- 3, 3					
LCS (BGA3603-BS2)			Pre	epared: 1/2	7/2023 Analyze	ed: 2/3/2023	3	
4,4'-DDD	4.86	0.960	ug/kg wet	5.76		84.5	60-140	
4,4'-DDE	4.45	0.960	ug/kg wet	5.76		77.2	60-140	
4,4'-DDT	3.37 J1	0.960	ug/kg wet	5.76		58.6	60-140	
Aldrin	5.38	0.960	ug/kg wet	5.76		93.5	60-140	
alpha-BHC	6.12	0.960	ug/kg wet	5.76		106	60-140	
(alpha-Hexachlorocyclohexane)								
beta-BHC	5.45	0.960	ug/kg wet	5.76		94.7	60-140	
(beta-Hexachlorocyclohexane)								
Chlordane (tech.)	20.8	0.960	ug/kg wet	23.0		90.4	60-140	
cis-Chlordane (alpha-Chlordane)	5.17	0.960	ug/kg wet	5.76		89.8	60-140	
delta-BHC	5.85	0.960	ug/kg wet	5.76		102	60-140	
Dieldrin	5.14	0.960	ug/kg wet	5.76		89.2	60-140	
Endosulfan I	4.99	0.960	ug/kg wet	5.76		86.7	60-140	
Endosulfan II	5.15	0.960	ug/kg wet	5.76		89.5	60-140	
Endosulfan sulfate	4.67	0.960	ug/kg wet	5.76		81.1	60-140	
Endrin	5.28	0.960	ug/kg wet	5.76		91.6	60-140	
Endrin aldehyde	4.09	0.960	ug/kg wet	5.76		71.1	60-140	
Endrin ketone	5.15	0.960	ug/kg wet	5.76		89.4	60-140	
gamma-BHC (Lindane,	5.42	0.960	ug/kg wet	5.76		94.1	60-140	
gamma-HexachlorocyclohexanE)								
gamma-Chlordane	5.22	0.960	ug/kg wet	5.76		90.7	60-140	
Heptachlor	5.30	0.960	ug/kg wet	5.76		92.1	60-140	
Heptachlor epoxide	5.12	0.960	ug/kg wet	5.76		88.9	60-140	
Methoxychlor	4.23	0.960	ug/kg wet	5.76		73.5	60-140	
Surrogate: 2,4,5,6		5.79	ug/kg wet	5.76		101	60-140	 
			5, 5					

6.09 ug/kg wet

5.76

Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Anglista	Danish O. J.	Reporting	11-2-	Spike	Source	0/ 050	%REC	DDD	RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3603 - SW-3570 (C	Continued)								
TOX LCSD (BGA3603-BSD1)			Pre	epared: 1/27	7/2023 Analyze	ed: 2/3/2023	3		
Toxaphene (Chlorinated Camphene)	56.3	14.5	ug/kg wet	58.2	,	96.8	60-140	1.46	40
Surrogate: 2,4,5,6		5.30	ug/kg wet	5.82		91.1	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		6.06	ug/kg wet	5.82		104	60-140		
LCS Dup (BGA3603-BSD2)			Pre	epared: 1/27	7/2023 Analyz	ed: 2/3/2023	3		
4,4'-DDD	4.98	0.963	ug/kg wet	5.78	•	86.2	60-140	2.37	40
4,4'-DDE	4.55	0.963	ug/kg wet	5.78		78.7	60-140	2.26	40
4,4'-DDT	3.56	0.963	ug/kg wet	5.78		61.5	60-140	5.32	40
Aldrin	4.87	0.963	ug/kg wet	5.78		84.2	60-140	10.1	40
alpha-BHC	4.76	0.963	ug/kg wet	5.78		82.4	60-140	24.9	40
(alpha-Hexachlorocyclohexane)									
beta-BHC	5.01	0.963	ug/kg wet	5.78		86.7	60-140	8.40	40
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	19.7	0.963	ug/kg wet	23.1		85.2	60-140	5.50	40
cis-Chlordane (alpha-Chlordane)	4.96	0.963	ug/kg wet	5.78		85.7	60-140	4.31	40
delta-BHC	5.36	0.963	ug/kg wet	5.78		92.7	60-140	8.79	40
Dieldrin	5.18	0.963	ug/kg wet	5.78		89.7	60-140	0.916	40
Endosulfan I	4.70	0.963	ug/kg wet	5.78		81.3	60-140	6.07	40
Endosulfan II	4.84	0.963	ug/kg wet	5.78		83.8	60-140	6.21	40
Endosulfan sulfate	4.53	0.963	ug/kg wet	5.78		78.4	60-140	3.01	40
Endrin	5.15	0.963	ug/kg wet	5.78		89.1	60-140	2.39	40
Endrin aldehyde	3.91	0.963	ug/kg wet	5.78		67.6	60-140	4.64	40
Endrin ketone	4.56	0.963	ug/kg wet	5.78		78.9	60-140	12.1	40
gamma-BHC (Lindane,	4.83	0.963	ug/kg wet	5.78		83.6	60-140	11.5	40
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	5.01	0.963	ug/kg wet	5.78		86.7	60-140	4.20	40
Heptachlor	4.75	0.963	ug/kg wet	5.78		82.2	60-140	10.9	40
Heptachlor epoxide	4.98	0.963	ug/kg wet	5.78		86.2	60-140	2.62	40
Methoxychlor	4.16	0.963	ug/kg wet	5.78		72.0	60-140	1.68	40
Surrogate: 2,4,5,6		5.42	ug/kg wet	5.78		93.7	60-140		
Tetrachloro-m-xylene-surr			_						
Surrogate: Decachlorobiphenyl-surr		6.32	ug/kg wet	<i>5.78</i>		109	<i>60-140</i>		



%REC



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3603 - SW-3570 (C	Continued)								
TOX MRL (BGA3603-MRL1)			Pre	epared: 1/27	7/2023 Analyz	ed: 2/3/2023	}		
Toxaphene (Chlorinated Camphene)	16.5	14.3	ug/kg wet	14.3		115	50-150		
Surrogate: 2,4,5,6		6.22	ug/kg wet	5.71		109	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		7.38	ug/kg wet	5.71		129	60-140		
MRL Check (BGA3603-MRL2)			Pre	epared: 1/27	7/2023 Analyz	ed: 2/3/2023	}		
4,4'-DDD	0.303 J	0.980	ug/kg wet	0.392		77.2			
4,4'-DDE	0.320 J	0.980	ug/kg wet	0.392		81.7			
4,4'-DDT	0.243 J	0.980	ug/kg wet	0.392		61.9			
Aldrin	0.356 J	0.980	ug/kg wet	0.392		90.8			
alpha-BHC	0.432 J	0.980	ug/kg wet	0.392		110			
(alpha-Hexachlorocyclohexane)									
beta-BHC	0.298 J	0.980	ug/kg wet	0.392		76.0			
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	1.26	0.980	ug/kg wet	1.57		80.1	50-150		
cis-Chlordane (alpha-Chlordane)	0.338 J	0.980	ug/kg wet	0.392		86.1			
delta-BHC	<0.980 J1, U	0.980	ug/kg wet	0.392					
Dieldrin	0.286 J	0.980	ug/kg wet	0.392		72.9			
Endosulfan I	0.300 J	0.980	ug/kg wet	0.392		76.4			
Endosulfan II	0.294 J	0.980	ug/kg wet	0.392		75.0			
Endosulfan sulfate	0.309 J	0.980	ug/kg wet	0.392		78.9			
Endrin	0.281 J	0.980	ug/kg wet	0.392		71.8			
Endrin aldehyde	0.284 J	0.980	ug/kg wet	0.392		72.5			
Endrin ketone	0.361 J	0.980	ug/kg wet	0.392		92.1			
gamma-BHC (Lindane,	0.309 J	0.980	ug/kg wet	0.392		78.7			
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	0.308 J	0.980	ug/kg wet	0.392		78.6			
Heptachlor	0.278 J	0.980	ug/kg wet	0.392		70.9			
Heptachlor epoxide	0.332 J	0.980	ug/kg wet	0.392		84.7			
Methoxychlor	0.236 J	0.980	ug/kg wet	0.392		60.2			
Surrogate: 2,4,5,6		5.81	ug/kg wet	5.88		98.8	60-140		
Tetrachloro-m-xylene-surr			,, .	= 00					
Surrogate: Decachlorobiphenyl-surr		6.48	ug/kg wet	5.88		110	<i>60-140</i>		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result	Reporting Qual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3603 - SW-3570 (Cor	ntinued)								
Matrix Spike (BGA3603-MS1)	,	Source: 23A1459-25	P	repared: 1/27	7/2023 Analyze	ed: 2/3/2023	;		
4,4'-DDD	7.03	1.33	ug/kg dry	7.98	<1.33	88.0	60-140		
4,4'-DDE	5.97	1.33	ug/kg dry	7.98	<1.33	74.7	60-140		
4,4'-DDT	5.45	1.33	ug/kg dry	7.98	<1.33	68.3	60-140		
Aldrin	7.32	1.33	ug/kg dry	7.98	<1.33	91.6	60-140		
alpha-BHC	8.54	1.33	ug/kg dry	7.98	<1.33	107	60-140		
(alpha-Hexachlorocyclohexane)	0.51		-3,3,						
beta-BHC	7.79	1.33	ug/kg dry	7.98	<1.33	97.6	60-140		
(beta-Hexachlorocyclohexane)			J. J.						
Chlordane (tech.)	30.1	1.33	ug/kg dry	31.9	<1.33	94.3	60-140		
cis-Chlordane (alpha-Chlordane)	7.28	1.33	ug/kg dry	7.98	<1.33	91.1	60-140		
delta-BHC	8.52	1.33	ug/kg dry	7.98	<1.33	107	60-140		
Dieldrin	7.47	1.33	ug/kg dry	7.98	<1.33	93.5	60-140		
Endosulfan I	6.83	1.33	ug/kg dry	7.98	<1.33	85.5	60-140		
Endosulfan II	7.08	1.33	ug/kg dry	7.98	<1.33	88.6	60-140		
Endosulfan sulfate	6.70	1.33	ug/kg dry	7.98	<1.33	83.9	60-140		
Endrin	7.45	1.33	ug/kg dry	7.98	<1.33	93.3	60-140		
Endrin aldehyde	5.66	1.33	ug/kg dry	7.98	<1.33	70.8	60-140		
Endrin ketone	7.21	1.33	ug/kg dry	7.98	<1.33	90.3	60-140		
gamma-BHC (Lindane,	7.52	1.33	ug/kg dry	7.98	<1.33	94.2	60-140		
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	8.18	1.33	ug/kg dry	7.98	<1.33	102	60-140		
Heptachlor	7.31	1.33	ug/kg dry	7.98	<1.33	91.6	60-140		
Heptachlor epoxide	7.35	1.33	ug/kg dry	7.98	<1.33	92.1	60-140		
Methoxychlor	6.76	1.33	ug/kg dry	7.98	<1.33	84.6	60-140		
Surrogate: 2,4,5,6		8.12	ug/kg dry	7.98		102	60-140		
Tetrachloro-m-xylene-surr		0.12	ug///g u//	7.50		102	00 170		
Surrogate: Decachlorobiphenyl-surr		8.83	ug/kg dry	7.98		111	60-140		
Matrix Spike Dup (BGA3603-MSD1)		Source: 23A1459-25	P	repared: 1/27	7/2023 Analyze	ed: 2/3/2023	;		
4,4'-DDD	6.19	1.27	ug/kg dry	7.64	<1.27	81.0	60-140	12.8	40
4,4'-DDE	5.71	1.27	ug/kg dry	7.64	<1.27	74.7	60-140	4.51	40
4,4'-DDT	4.83	1.27	ug/kg dry	7.64	<1.27	63.2	60-140	12.2	40
Aldrin	6.24	1.27	ug/kg dry	7.64	<1.27	81.7	60-140	15.8	40
alpha-BHC	7.22	1.27	ug/kg dry	7.64	<1.27	94.5	60-140	16.8	40
(alpha-Hexachlorocyclohexane)									
beta-BHC	6.79	1.27	ug/kg dry	7.64	<1.27	89.0	60-140	13.7	40
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	25.8	1.27	ug/kg dry	30.6	<1.27	84.3	60-140	15.6	40
cis-Chlordane (alpha-Chlordane)	6.21	1.27	ug/kg dry	7.64	<1.27	81.4	60-140	15.7	40
delta-BHC	7.36	1.27	ug/kg dry	7.64	<1.27	96.4	60-140	14.6	40
Dieldrin	6.38	1.27	ug/kg dry	7.64	<1.27	83.5	60-140	15.7	40
Endosulfan I	6.12	1.27	ug/kg dry	7.64	<1.27	80.1	60-140	11.0	40
Endosulfan II	6.14	1.27	ug/kg dry	7.64	<1.27	80.4	60-140	14.2	40
Endosulfan sulfate	6.03	1.27	ug/kg dry	7.64	<1.27	79.0	60-140	10.5	40
Endrin	6.49	1.27	ug/kg dry	7.64	<1.27	85.0	60-140	13.7	40
Endrin aldehyde	5.29	1.27	ug/kg dry	7.64	<1.27	69.3	60-140	6.67	40
Endrin ketone	6.31	1.27	ug/kg dry	7.64	<1.27	82.6	60-140	13.3	40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

			Reporting		Spike	Source	e	%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3603 - SW-3570 (Con	tinued)									
Matrix Spike Dup (BGA3603-MSD1)		Source: 2	23A1459-25	Pre	epared: 1/27	7/2023 Analyz	ed: 2/3/2023	3		
gamma-BHC (Lindane,	6.58		1.27	ug/kg dry	7.64	<1.27	86.2	60-140	13.4	40
gamma-HexachlorocyclohexanE)										
gamma-Chlordane	7.07		1.27	ug/kg dry	7.64	<1.27	92.5	60-140	14.6	40
Heptachlor	6.36		1.27	ug/kg dry	7.64	<1.27	83.3	60-140	13.9	40
Heptachlor epoxide	6.12		1.27	ug/kg dry	7.64	<1.27	80.1	60-140	18.4	40
Methoxychlor	6.09		1.27	ug/kg dry	7.64	<1.27	79.7	60-140	10.4	40
Surrogate: 2,4,5,6			6.72	ug/kg dry	7.64		87.9	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			8.07	ug/kg dry	7.64		106	60-140		
PCBs, Total  Surrogate: 2,4,5,6  Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr	<1.97		0.583	ug/kg wet	0.592		98.4	60-140		
San ogate. Decaciliolophenyr-sun			0.029	ug/ng wet	0.332		100	00-1-10		
Blank (BGA3651-BLK2)				Pre	pared: 1/27	7/2023 Analyze	ed: 2/24/202	3		
PCBs, Total	<1.97	U	1.97	ug/kg wet						
Surrogate: 2,4,5,6		5	0.355	ug/kg wet	0.592		59.9	60-140		
Tetrachloro-m-xylene-surr										
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr			0.573	ug/kg wet	0.592		96.8	60-140		
· · · · · · · · · · · · · · · · · · ·			0.573			//2023 Analyze				
Surrogate: Decachlorobiphenyl-surr	3.95		0.573 1.98			7/2023 Analyze				
Surrogate: Decachlorobiphenyl-surr  LCS (BGA3651-BS1)				Pre	pared: 1/27	//2023 Analyze	ed: 2/11/202	3		
Surrogate: Decachlorobiphenyl-surr  LCS (BGA3651-BS1)  Aroclor-1016 (PCB-1016)	3.95 4.12 4.10		1.98	Pre ug/kg wet	pared: 1/27 5.93	/2023 Analyze	ed: 2/11/202 66.6	3 60-140		
Surrogate: Decachlorobiphenyl-surr  LCS (BGA3651-BS1)  Aroclor-1016 (PCB-1016)  Aroclor-1260 (PCB-1260)	4.12		1.98 1.98	Pre ug/kg wet ug/kg wet	pared: 1/27 5.93 5.93	//2023 Analyze	ed: 2/11/202 66.6 69.6	3 60-140 60-140		

Reported:



11555 Clay Road

Terracon_Houston

Project: PCCA HI & CDP Resampling 2023
Project Number:

Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3651 - SW-3570 (Con	tinued)								
LCS (BGA3651-BS2)			Pre	pared: 1/27	/2023 Analyze	ed: 2/24/202	3		
Aroclor-1016 (PCB-1016)	3.71	1.98	ug/kg wet	5.93		62.6	60-140		
Aroclor-1260 (PCB-1260)	4.02	1.98	ug/kg wet	5.93		67.7	60-140		
PCBs, Total	3.96	1.98	ug/kg wet	5.93		66.8	60-140		
Surrogate: 2,4,5,6	5	0.302	ug/kg wet	0.593		50.9	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.580	ug/kg wet	0.593		97.8	60-140		
LCS Dup (BGA3651-BSD1)			Pre	pared: 1/27	/2023 Analyze	ed: 2/11/202	3		
Aroclor-1016 (PCB-1016)	4.14	1.96	ug/kg wet	5.88		70.5	60-140	4.77	40
Aroclor-1260 (PCB-1260)	4.32	1.96	ug/kg wet	5.88		73.5	60-140	4.64	40
PCBs, Total	4.30	1.96	ug/kg wet	5.88		73.1	60-140	4.66	40
Surrogate: 2,4,5,6		0.487	ug/kg wet	0.588		82.9	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.437	ug/kg wet	0.588		74.3	60-140		
LCS Dup (BGA3651-BSD2)			Pre	pared: 1/27	/2023 Analyze	ed: 2/24/202	3		
Aroclor-1016 (PCB-1016)	4.82	1.96	ug/kg wet	5.88		82.0	60-140	25.9	40
Aroclor-1260 (PCB-1260)	4.91	1.96	ug/kg wet	5.88		83.6	60-140	20.1	40
PCBs, Total	4.89	1.96	ug/kg wet	5.88		83.3	60-140	21.1	40
Surrogate: 2,4,5,6		0.369	ug/kg wet	0.588		62.9	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.573	ug/kg wet	0.588		97.5	60-140		
Matrix Spike (BGA3651-MS1)	Source: 2	23A1459-27	Pre	pared: 1/27	/2023 Analyze	ed: 2/11/202	3		
Aroclor-1016 (PCB-1016)	6.23	3.01	ug/kg dry	9.02	<3.01	69.1	60-140		
Aroclor-1260 (PCB-1260)	6.60	3.01	ug/kg dry	9.02	<3.01	73.2	60-140		
PCBs, Total	6.55	3.01	ug/kg dry	9.02	<3.01	72.6	60-140		
Surrogate: 2,4,5,6		0.784	ug/kg dry	0.902		87.0	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.880	ug/kg dry	0.902		97.6	60-140		
Matrix Spike Dup (BGA3651-MSD1)	Source: 2	23A1459-27	Pre	pared: 1/27	/2023 Analyze	ed: 2/11/202	3		
Aroclor-1016 (PCB-1016)	5.15 J1	2.94	ug/kg dry	8.83	<2.94	58.4	60-140	18.9	40
Aroclor-1260 (PCB-1260)	5.98	2.94	ug/kg dry	8.83	<2.94	67.8	60-140	9.80	40
PCBs, Total	5.87	2.94	ug/kg dry	8.83	<2.94	66.5	60-140	10.9	40
Surrogate: 2,4,5,6		0.663	ug/kg dry	0.883		75.1	60-140		
Tetrachloro-m-xylene-surr		0 027	ua/ka day	0 803		010	60-140		
Surrogate: Decachlorobiphenyl-surr		0.837	ug/kg dry	0.883		94.8	60-140		
Surroyate: Decacnioropipnenyi-surr		U.83/	ug/кg ary	U.883		94.8	<i>60-140</i>		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3839 - SW-3511		-								
Blank (BGA3839-BLK1)					Prepared: 1/30	0/2023 Analyze	d: 2/6/2023	3		
4,4'-DDD	<0.00600	U	0.00600	ug/L						
, 4,4'-DDE	<0.00600		0.00600	ug/L						
, 4,4'-DDT	<0.00600		0.00600	ug/L						
Aldrin	<0.00600		0.00600	ug/L						
alpha-BHC	<0.00600		0.00600	ug/L						
(alpha-Hexachlorocyclohexane)	<0.00000	Ü		31						
beta-BHC	<0.00600	U	0.00600	ug/L						
(beta-Hexachlorocyclohexane)				-						
Chlordane (tech.)	< 0.00600	U	0.00600	ug/L						
cis-Chlordane (alpha-Chlordane)	< 0.00600	U	0.00600	ug/L						
delta-BHC	< 0.00600	U	0.00600	ug/L						
Dieldrin	< 0.00600	U	0.00600	ug/L						
Endosulfan I	< 0.00600	U	0.00600	ug/L						
Endosulfan II	< 0.00600	U	0.00600	ug/L						
Endosulfan sulfate	< 0.00600		0.00600	ug/L						
Endrin	<0.00600	U	0.00600	ug/L						
Endrin aldehyde	<0.00600		0.00600	ug/L						
Endrin ketone	<0.00600		0.00600	ug/L						
gamma-BHC (Lindane,	<0.00600		0.00600	ug/L						
gamma-HexachlorocyclohexanE)				-						
gamma-Chlordane	< 0.00600	U	0.00600	ug/L						
Heptachlor	< 0.00600	U	0.00600	ug/L						
Heptachlor epoxide	< 0.00600	U	0.00600	ug/L						
Methoxychlor	< 0.00600	U	0.00600	ug/L						
Toxaphene (Chlorinated Camphene)	<0.300	U	0.300	ug/L						
Surrogate: 2,4,5,6			0.123	ug/L	0.120		103	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.107	ug/L	0.120		89.4	60-140		
LCS (BGA3839-BS1)					Prepared: 1/30	0/2023 Analyze	d: 2/6/2023	3		
Toxaphene (Chlorinated Camphene)	0.982		0.300	ug/L	1.20		81.8	60-140		
Surrogate: 2,4,5,6			0.0838	ug/L	0.120		69.9	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.0987	ug/L	0.120		82.2	60-140		



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Houston, TX 77043 Project Number:
Project Manager: Gregg Pawlak

Reported:

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3839 - SW-3511 (C	Continued)								
LCS (BGA3839-BS2)	•		Pi	repared: 1/30	)/2023 Analyze	ed: 2/6/2023			
4,4'-DDD	0.0901	0.00600	ug/L	0.120		75.1	60-140		
4,4'-DDE	0.0879	0.00600	ug/L	0.120		73.3	60-140		
4,4'-DDT	0.0864	0.00600	ug/L	0.120		72.0	60-140		
Aldrin	0.0902	0.00600	ug/L	0.120		75.2	60-140		
alpha-BHC	0.120	0.00600	ug/L	0.120		100	60-140		
(alpha-Hexachlorocyclohexane)	0.220		<u>J.</u>						
beta-BHC	0.0971	0.00600	ug/L	0.120		80.9	60-140		
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	0.363	0.00600	ug/L	0.480		75.7	60-140		
cis-Chlordane (alpha-Chlordane)	0.0925	0.00600	ug/L	0.120		77.1	60-140		
delta-BHC	0.101	0.00600	ug/L	0.120		84.2	60-140		
Dieldrin	0.0940	0.00600	ug/L	0.120		78.3	60-140		
Endosulfan I	0.0853	0.00600	ug/L	0.120		71.0	60-140		
Endosulfan II	0.0903	0.00600	ug/L	0.120		75.2	60-140		
Endosulfan sulfate	0.0910	0.00600	ug/L	0.120		75.8	60-140		
Endrin	0.0830	0.00600	ug/L	0.120		69.2	60-140		
Endrin aldehyde	0.101	0.00600	ug/L	0.120		83.8	60-140		
Endrin ketone	0.0938	0.00600	ug/L	0.120		78.1	60-140		
gamma-BHC (Lindane,	0.106	0.00600	ug/L	0.120		88.0	60-140		
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	0.0863	0.00600	ug/L	0.120		71.9	60-140		
Heptachlor	0.0908	0.00600	ug/L	0.120		75.7	60-140		
Heptachlor epoxide	0.0936	0.00600	ug/L	0.120		78.0	60-140		
Methoxychlor	0.0878	0.00600	ug/L	0.120		73.2	60-140		
Surrogate: 2,4,5,6		0.122	ug/L	0.120		102	60-140		
Tetrachloro-m-xylene-surr			<i>5.</i>						
Surrogate: Decachlorobiphenyl-surr		0.106	ug/L	0.120		88.5	60-140		
LCS Dup (BGA3839-BSD1)			Pi	repared: 1/30	)/2023 Analyze	ed: 2/6/2023			
Toxaphene (Chlorinated Camphene)	1.21	0.300	ug/L	1.20		101	60-140	21.1	40
Surrogate: 2,4,5,6		0.103	ug/L	0.120		86.0	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.118	ug/L	0.120		98.3	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3839 - SW-3511 (C	Continued)								
LCS Dup (BGA3839-BSD2)	•		Р	repared: 1/30	)/2023 Analyz	ed: 2/6/2023	}		
4,4'-DDD	0.0863	0.00600	ug/L	0.120		72.0	60-140	4.27	40
4,4'-DDE	0.0911	0.00600	ug/L	0.120		75.9	60-140	3.58	40
4,4'-DDT	0.0877	0.00600	ug/L	0.120		73.1	60-140	1.43	40
Aldrin	0.0870	0.00600	ug/L	0.120		72.5	60-140	3.69	40
alpha-BHC	0.121	0.00600	ug/L	0.120		101	60-140	0.770	40
(alpha-Hexachlorocyclohexane)			<del>-</del> -						
beta-BHC	0.0975	0.00600	ug/L	0.120		81.3	60-140	0.407	40
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	0.357	0.00600	ug/L	0.480		74.5	60-140	1.61	40
cis-Chlordane (alpha-Chlordane)	0.0907	0.00600	ug/L	0.120		75.6	60-140	1.95	40
delta-BHC	0.0996	0.00600	ug/L	0.120		83.0	60-140	1.42	40
Dieldrin	0.0955	0.00600	ug/L	0.120		79.6	60-140	1.62	40
Endosulfan I	0.0850	0.00600	ug/L	0.120		70.8	60-140	0.345	40
Endosulfan II	0.0872	0.00600	ug/L	0.120		72.6	60-140	3.50	40
Endosulfan sulfate	0.0934	0.00600	ug/L	0.120		77.8	60-140	2.63	40
Endrin	0.0840	0.00600	ug/L	0.120		70.0	60-140	1.18	40
Endrin aldehyde	0.0938	0.00600	ug/L	0.120		78.1	60-140	6.97	40
Endrin ketone	0.0904	0.00600	ug/L	0.120		75.3	60-140	3.64	40
gamma-BHC (Lindane,	0.104	0.00600	ug/L	0.120		87.1	60-140	1.02	40
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	0.0872	0.00600	ug/L	0.120		72.6	60-140	0.975	40
Heptachlor	0.0906	0.00600	ug/L	0.120		75.5	60-140	0.198	40
Heptachlor epoxide	0.0889	0.00600	ug/L	0.120		74.1	60-140	5.13	40
Methoxychlor	0.0826	0.00600	ug/L	0.120		68.8	60-140	6.08	40
Surrogate: 2,4,5,6		0.123	ug/L	0.120		103	60-140		
Tetrachloro-m-xylene-surr			-						
Surrogate: Decachlorobiphenyl-surr		0.107	ug/L	0.120		89.1	60-140		
MRL Check (BGA3839-MRL1)			Р	repared: 1/30	)/2023 Analyz	ed: 2/6/2023			
Toxaphene (Chlorinated Camphene)	<0.300 J1, U	0.300	ug/L	0.300			50-150		
Surrogate: 2,4,5,6		0.118	ug/L	0.120		98.2	60-140		
Tetrachloro-m-xylene-surr			<i>5,</i>						
Surrogate: Decachlorobiphenyl-surr		0.113	ug/L	0.120		93.8	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3839 - SW-3511 (	(Continued)								
MRL Check (BGA3839-MRL2)	Continueu)			Prepared: 1/30	)/2023 Analyze	d: 2/6/2023	3		
4,4'-DDD	0.00863	0.00600	ug/L	0.0120	,	71.9	50-150		
4,4'-DDE	0.00848	0.00600	ug/L	0.0120		70.7	50-150		
4,4'-DDT	0.00919	0.00600	ug/L	0.0120		76.6	50-150		
Aldrin	0.00821	0.00600	ug/L	0.0120		68.4	50-150		
alpha-BHC	0.0112	0.00600	ug/L	0.0120		93.7	50-150		
(alpha-Hexachlorocyclohexane)	0.0112		3,						
beta-BHC	0.0102	0.00600	ug/L	0.0120		85.4	50-150		
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	0.0412	0.00600	ug/L	0.0480		85.9	50-150		
cis-Chlordane (alpha-Chlordane)	0.0138	0.00600	ug/L	0.0120		115	50-150		
delta-BHC	<0.00600 J1, U	0.00600	ug/L	0.0120			50-150		
Dieldrin	0.00932	0.00600	ug/L	0.0120		77.6	50-150		
Endosulfan I	0.00871	0.00600	ug/L	0.0120		72.6	50-150		
Endosulfan II	0.00826	0.00600	ug/L	0.0120		68.8	50-150		
Endosulfan sulfate	0.0104	0.00600	ug/L	0.0120		87.0	50-150		
Endrin	0.00974	0.00600	ug/L	0.0120		81.2	50-150		
Endrin aldehyde	0.00952	0.00600	ug/L	0.0120		79.4	50-150		
Endrin ketone	0.0104	0.00600	ug/L	0.0120		86.5	50-150		
gamma-BHC (Lindane,	0.0105	0.00600	ug/L	0.0120		87.2	50-150		
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	0.00840	0.00600	ug/L	0.0120		70.0	50-150		
Heptachlor	0.0103	0.00600	ug/L	0.0120		86.0	50-150		
Heptachlor epoxide	0.00875	0.00600	ug/L	0.0120		73.0	50-150		
Methoxychlor	0.00982	0.00600	ug/L	0.0120		81.8	50-150		
Surrogate: 2,4,5,6		0.0993	ug/L	0.120		82.7	60-140		
Tetrachloro-m-xylene-surr		0.405	,,	0.420		07.5	60.440		
Surrogate: Decachlorobiphenyl-surr		0.105	ug/L	0.120		87.5	60-140		
Matrix Spike (BGA3839-MS1)	Source: 2	23A1459-02		Prepared: 1/30	)/2023 Analyze	d: 2/6/2023	3		
4,4'-DDD	0.0701 J1	0.00600	ug/L	0.120	<0.00600	58.4	60-140		
4,4'-DDE	0.0611 J1	0.00600	ug/L	0.120	<0.00600	50.9	60-140		
4,4'-DDT	0.0348 J1	0.00600	ug/L	0.120	<0.00600	29.0	60-140		
Aldrin	0.0634 J1	0.00600	ug/L	0.120	<0.00600	52.8	60-140		
alpha-BHC	0.116	0.00600	ug/L	0.120	<0.00600	96.7	60-140		
(alpha-Hexachlorocyclohexane)									
beta-BHC	0.109	0.00600	ug/L	0.120	<0.00600	90.6	60-140		
(beta-Hexachlorocyclohexane)		0.00000	0	0.400	.0.00000	67.0	60.440		
Chlordane (tech.)	0.323	0.00600	ug/L	0.480	<0.00600	67.2	60-140		
cis-Chlordane (alpha-Chlordane)	0.0743	0.00600	ug/L	0.120	<0.00600	61.9	60-140		
delta-BHC	0.111	0.00600	ug/L	0.120	<0.00600	92.4	60-140		
Dieldrin	0.0995	0.00600	ug/L	0.120	<0.00600	82.9	60-140		
Endosulfan I	0.0905	0.00600	ug/L	0.120	<0.00600	75.4	60-140		
Endosulfan II	0.102	0.00600	ug/L	0.120	<0.00600	84.7	60-140		
Endosulfan sulfate	0.108	0.00600	ug/L	0.120	<0.00600	89.6	60-140		
Endrin	0.0952	0.00600	ug/L	0.120	<0.00600	79.3	60-140		
Endrin aldehyde	0.100	0.00600	ug/L	0.120	<0.00600	83.7	60-140		
Endrin ketone	0.105	0.00600	ug/L	0.120	<0.00600	87.5	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qu	ual Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3839 - SW-3511 (Con	tinued)								
Matrix Spike (BGA3839-MS1)	-	ource: 23A1459-02		Prepared: 1/3	0/2023 Analyze	d: 2/6/2023	3		
gamma-BHC (Lindane,	0.105	0.00600	ug/L	0.120	<0.00600	87.9	60-140		
gamma-HexachlorocyclohexanE)			_						
gamma-Chlordane	0.0721	0.00600	ug/L	0.120	< 0.00600	60.1	60-140		
Heptachlor	0.0787	0.00600	ug/L	0.120	<0.00600	65.5	60-140		
Heptachlor epoxide	0.0976	0.00600	ug/L	0.120	<0.00600	81.3	60-140		
Methoxychlor	0.0480 J1	0.00600	ug/L	0.120	<0.00600	40.0	60-140		
Surrogate: 2,4,5,6		0.104	ug/L	0.120		86.7	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr	5	0.0539	ug/L	0.120		44.9	60-140		
Matrix Spike Dup (BGA3839-MSD1)	So	ource: 23A1459-02		Prepared: 1/3	0/2023 Analyze	d: 2/6/2023	3		
4,4'-DDD	0.0588 J1	0.00600	ug/L	0.120	<0.00600	49.0	60-140	17.6	40
4,4'-DDE	0.0448 J1		ug/L	0.120	<0.00600	37.4	60-140	30.6	40
4,4'-DDT	0.0324 J1		ug/L	0.120	<0.00600	27.0	60-140	7.06	40
Aldrin	0.0534 J1		ug/L	0.120	< 0.00600	44.5	60-140	17.1	40
alpha-BHC	0.111	0.00600	ug/L	0.120	< 0.00600	92.5	60-140	4.41	40
(alpha-Hexachlorocyclohexane)			-						
beta-BHC	0.0972	0.00600	ug/L	0.120	<0.00600	81.0	60-140	11.2	40
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	0.288 J1	0.00600	ug/L	0.480	<0.00600	59.9	60-140	11.5	40
cis-Chlordane (alpha-Chlordane)	0.0670 J1	0.00600	ug/L	0.120	<0.00600	55.8	60-140	10.4	40
delta-BHC	0.100	0.00600	ug/L	0.120	<0.00600	83.4	60-140	10.2	40
Dieldrin	0.0928	0.00600	ug/L	0.120	<0.00600	77.3	60-140	6.98	40
Endosulfan I	0.0843	0.00600	ug/L	0.120	< 0.00600	70.3	60-140	7.08	40
Endosulfan II	0.0878	0.00600	ug/L	0.120	<0.00600	73.2	60-140	14.6	40
Endosulfan sulfate	0.0917	0.00600	ug/L	0.120	<0.00600	76.4	60-140	15.9	40
Endrin	0.0861	0.00600	ug/L	0.120	<0.00600	71.8	60-140	10.0	40
Endrin aldehyde	0.0914	0.00600	ug/L	0.120	<0.00600	76.1	60-140	9.45	40
Endrin ketone	0.0921	0.00600	ug/L	0.120	<0.00600	76.7	60-140	13.1	40
gamma-BHC (Lindane,	0.0991	0.00600	ug/L	0.120	<0.00600	82.6	60-140	6.22	40
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	0.0633 J1	0.00600	ug/L	0.120	<0.00600	52.7	60-140	13.0	40
Heptachlor	0.0689 J1	0.00600	ug/L	0.120	<0.00600	57.4	60-140	13.2	40
Heptachlor epoxide	0.0885	0.00600	ug/L	0.120	<0.00600	73.7	60-140	9.82	40
Methoxychlor	0.0405 J1	0.00600	ug/L	0.120	<0.00600	33.8	60-140	17.0	40
Surrogate: 2,4,5,6		0.0959	ug/L	0.120		79.9	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr	S	0.0488	ug/L	0.120		40.7	60-140		



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Houston, TX 77043 Project Number: Project Manager: Gregg Pawlak Reported:

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

# Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0044 - SW-3570										
Blank (BGB0044-BLK1)				Pr	epared: 2/1	/2023 Analyze	d: 2/7/2023			
4,4'-DDD	<1.00	U	1.00	ug/kg wet		,				
, 4,4'-DDE	<1.00		1.00	ug/kg wet						
4,4'-DDT	<1.00		1.00	ug/kg wet						
, Aldrin	<1.00		1.00	ug/kg wet						
alpha-BHC	<1.00		1.00	ug/kg wet						
(alpha-Hexachlorocyclohexane)	-1100			- <del>-</del> ··						
beta-BHC	<1.00	U	1.00	ug/kg wet						
(beta-Hexachlorocyclohexane)										
Chlordane (tech.)	<1.00	U	1.00	ug/kg wet						
cis-Chlordane (alpha-Chlordane)	<1.00	U	1.00	ug/kg wet						
delta-BHC	<1.00	U	1.00	ug/kg wet						
Dieldrin	<1.00	U	1.00	ug/kg wet						
Endosulfan I	<1.00	U	1.00	ug/kg wet						
Endosulfan II	<1.00	U	1.00	ug/kg wet						
Endosulfan sulfate	<1.00	U	1.00	ug/kg wet						
Endrin	<1.00	U	1.00	ug/kg wet						
Endrin aldehyde	<1.00	U	1.00	ug/kg wet						
Endrin ketone	<1.00	U	1.00	ug/kg wet						
gamma-BHC (Lindane,	<1.00	U	1.00	ug/kg wet						
gamma-HexachlorocyclohexanE)										
gamma-Chlordane	<1.00	U	1.00	ug/kg wet						
Heptachlor	<1.00	U	1.00	ug/kg wet						
Heptachlor epoxide	<1.00	U	1.00	ug/kg wet						
Methoxychlor	<1.00	U	1.00	ug/kg wet						
Toxaphene (Chlorinated Camphene)	<15.0	U	15.0	ug/kg wet						
Surrogate: 2,4,5,6		 S	1.61	ug/kg wet	6.00		26.8	60-140		
Tetrachloro-m-xylene-surr	•		2.02	5, 5						
Surrogate: Decachlorobiphenyl-surr			6.30	ug/kg wet	6.00		105	60-140		
TOX LCS (BGB0044-BS1)				Pr	repared: 2/1,	/2023 Analyze	d: 2/7/2023			
Toxaphene (Chlorinated Camphene)	61.0		15.0	ug/kg wet	60.0		102	60-140		
Surrogate: 2,4,5,6			4.67	ug/kg wet	6.00		77.8	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr			5.51	ug/kg wet	6.00		91.8	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analista	D C	Reporting	11.22	Spike	Source	0/5=5	%REC	202	RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0044 - SW-3570 (C	Continued)								
LCS (BGB0044-BS2)			Pro	epared: 2/1,	./2023 Analyze	d: 2/7/2023			
4,4'-DDD	5.23	1.00	ug/kg wet	6.00	•	87.1	60-140		
4,4'-DDE	5.67	1.00	ug/kg wet	6.00		94.6	60-140		
4,4'-DDT	3.67	1.00	ug/kg wet	6.00		61.2	60-140		
Aldrin	5.37	1.00	ug/kg wet	6.00		89.5	60-140		
alpha-BHC	6.24	1.00	ug/kg wet	6.00		104	60-140		
(alpha-Hexachlorocyclohexane)	*:= :								
beta-BHC	5.42	1.00	ug/kg wet	6.00		90.3	60-140		
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	21.1	1.00	ug/kg wet	24.0		87.8	60-140		
cis-Chlordane (alpha-Chlordane)	5.23	1.00	ug/kg wet	6.00		87.1	60-140		
delta-BHC	5.42	1.00	ug/kg wet	6.00		90.4	60-140		
Dieldrin	5.17	1.00	ug/kg wet	6.00		86.2	60-140		
Endosulfan I	5.02	1.00	ug/kg wet	6.00		83.6	60-140		
Endosulfan II	5.12	1.00	ug/kg wet	6.00		85.3	60-140		
Endosulfan sulfate	5.04	1.00	ug/kg wet	6.00		84.0	60-140		
Endrin	5.32	1.00	ug/kg wet	6.00		88.7	60-140		
Endrin aldehyde	4.35	1.00	ug/kg wet	6.00		72.6	60-140		
Endrin ketone	5.48	1.00	ug/kg wet	6.00		91.3	60-140		
gamma-BHC (Lindane,	5.65	1.00	ug/kg wet	6.00		94.1	60-140		
gamma-HexachlorocyclohexanE)	=:==								
gamma-Chlordane	5.16	1.00	ug/kg wet	6.00		86.1	60-140		
Heptachlor	5.36	1.00	ug/kg wet	6.00		89.4	60-140		
Heptachlor epoxide	5.32	1.00	ug/kg wet	6.00		88.6	60-140		
Methoxychlor	4.81	1.00	ug/kg wet	6.00		80.2	60-140		
Surrogate: 2,4,5,6		5.46	ug/kg wet	6.00		91.0	60-140		
Tetrachloro-m-xylene-surr			J. J	- <del>-</del>		- ·-			
Surrogate: Decachlorobiphenyl-surr		6.45	ug/kg wet	6.00		108	60-140		
TOX LCSD (BGB0044-BSD1)			Pre	epared: 2/1	./2023 Analyze	d: 2/7/2023			
Toxaphene (Chlorinated Camphene)	62.7	15.0	ug/kg wet	60.0		105	60-140	2.80	40
Surrogate: 2,4,5,6		4.79	ug/kg wet	6.00		79.9	60-140		
Tetrachloro-m-xylene-surr		2	J. J	- <del>-</del>					
Surrogate: Decachlorobiphenyl-surr		6.10	ug/kg wet	6.00		102	60-140		



Terracon_Houston

Houston, TX 77043

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road

Project Number: Project Manager: Gregg Pawlak Reported:

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0044 - SW-3570 (C	Continued)								
LCS Dup (BGB0044-BSD2)	•		Pr	epared: 2/1	/2023 Analyze	d: 2/8/2023			
4,4'-DDD	5.38	1.00	ug/kg wet	6.00	- ,	89.6	60-140	2.80	40
, 4,4'-DDE	5.59	1.00	ug/kg wet	6.00		93.2	60-140	1.44	40
, 4,4'-DDT	3.61	1.00	ug/kg wet	6.00		60.1	60-140	1.89	40
Aldrin	6.13	1.00	ug/kg wet	6.00		102	60-140	13.2	40
alpha-BHC	6.80	1.00	ug/kg wet	6.00		113	60-140	8.59	40
(alpha-Hexachlorocyclohexane)			-: <b>-</b>						
beta-BHC	6.35	1.00	ug/kg wet	6.00		106	60-140	15.8	40
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	23.4	1.00	ug/kg wet	24.0		97.4	60-140	10.4	40
cis-Chlordane (alpha-Chlordane)	5.53	1.00	ug/kg wet	6.00		92.2	60-140	5.73	40
delta-BHC	6.70	1.00	ug/kg wet	6.00		112	60-140	21.1	40
Dieldrin	5.20	1.00	ug/kg wet	6.00		86.6	60-140	0.521	40
Endosulfan I	5.13	1.00	ug/kg wet	6.00		85.5	60-140	2.27	40
Endosulfan II	5.19	1.00	ug/kg wet	6.00		86.4	60-140	1.31	40
Endosulfan sulfate	5.13	1.00	ug/kg wet	6.00		85.6	60-140	1.89	40
Endrin	5.07	1.00	ug/kg wet	6.00		84.4	60-140	4.89	40
Endrin aldehyde	4.26	1.00	ug/kg wet	6.00		71.0	60-140	2.22	40
Endrin ketone	5.39	1.00	ug/kg wet	6.00		89.8	60-140	1.68	40
gamma-BHC (Lindane,	6.31	1.00	ug/kg wet	6.00		105	60-140	11.1	40
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	5.69	1.00	ug/kg wet	6.00		94.9	60-140	9.74	40
Heptachlor	6.12	1.00	ug/kg wet	6.00		102	60-140	13.2	40
Heptachlor epoxide	6.04	1.00	ug/kg wet	6.00		101	60-140	12.7	40
Methoxychlor	4.88	1.00	ug/kg wet	6.00		81.3	60-140	1.37	40
Surrogate: 2,4,5,6		5.94	ug/kg wet	6.00		99.1	60-140		
Tetrachloro-m-xylene-surr			J. J						
Surrogate: Decachlorobiphenyl-surr		6.34	ug/kg wet	6.00		106	60-140		
TOX MRL (BGB0044-MRL1)			Pr	epared: 2/1	/2023 Analyze	d: 2/7/2023			
Toxaphene (Chlorinated Camphene)	16.8	15.0	ug/kg wet	15.0		112	50-150		
Surrogate: 2,4,5,6		5.87	ug/kg wet	6.00		97.8	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		5.90	ug/kg wet	6.00		98.3	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0044 - SW-3570 (C	Continued)								
MRL Check (BGB0044-MRL2)	<b></b>		Pr	epared: 2/1	/2023 Analyze	d: 2/7/2023			
4,4'-DDD	0.375 J	1.00	ug/kg wet	0.400	, _025 Analy20	93.7			
4,4'-DDE	0.375 J 0.366 J	1.00	ug/kg wet	0.400		91.5			
4,4'-DDT		1.00	ug/kg wet ug/kg wet	0.400		72.8			
Aldrin	0.291 J	1.00	ug/kg wet ug/kg wet	0.400		80.2			
alpha-BHC	0.321 J	1.00	ug/kg wet ug/kg wet	0.400		117			
(alpha-Hexachlorocyclohexane)	0.470 J	1.00	ug/kg Wel	0.700		11/			
beta-BHC	0.393 J	1.00	ug/kg wet	0.400		98.3			
(beta-Hexachlorocyclohexane)	0.535	2.30	-515						
Chlordane (tech.)	1.34	1.00	ug/kg wet	1.60		83.8	50-150		
cis-Chlordane (alpha-Chlordane)	0.356 J	1.00	ug/kg wet	0.400		89.1			
delta-BHC	<1.00 J1, U	1.00	ug/kg wet	0.400					
Dieldrin	0.296 J	1.00	ug/kg wet	0.400		74.0			
Endosulfan I	0.325 J	1.00	ug/kg wet	0.400		81.3			
Endosulfan II	0.339 J	1.00	ug/kg wet	0.400		84.8			
Endosulfan sulfate	0.352 J	1.00	ug/kg wet	0.400		88.0			
Endrin	0.259 J	1.00	ug/kg wet	0.400		64.6			
Endrin aldehyde	0.302 J	1.00	ug/kg wet	0.400		75.4			
Endrin ketone	0.410 J	1.00	ug/kg wet	0.400		103			
gamma-BHC (Lindane,	0.410 J 0.385 J	1.00	ug/kg wet	0.400		96.2			
gamma-HexachlorocyclohexanE)	0.303 3	1.00	~9/ Ng 110t	0.100		JU.2			
gamma-Chlordane	0.337 J	1.00	ug/kg wet	0.400		84.2			
Heptachlor	0.297 J	1.00	ug/kg wet	0.400		74.2			
Heptachlor epoxide	0.351 J	1.00	ug/kg wet	0.400		87.7			
Methoxychlor	0.336 J	1.00	ug/kg wet	0.400		83.9			
Surrogate: 2,4,5,6		4.91	ug/kg wet	6.00		81.8	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		6.28	ug/kg wet	6.00		105	60-140		
Matrix Spike (BGB0044-MS1)	Source: 2	3A1459-47	Pr	epared: 2/1	/2023 Analyze	d: 2/8/2023			
4,4'-DDD	9.43	1.45	ug/kg dry	8.69	<1.45	109	60-140		
4,4'-DDE	9.60	1.45	ug/kg dry	8.69	<1.45	110	60-140		
4,4'-DDT	5.89	1.45	ug/kg dry	8.69	<1.45	67.8	60-140		
Aldrin	8.26	1.45	ug/kg dry	8.69	<1.45	95.1	60-140		
alpha-BHC	10.2	1.45	ug/kg dry	8.69	<1.45	117	60-140		
(alpha-Hexachlorocyclohexane)									
beta-BHC	9.53	1.45	ug/kg dry	8.69	<1.45	110	60-140		
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	34.3	1.45	ug/kg dry	34.8	<1.45	98.6	60-140		
cis-Chlordane (alpha-Chlordane)	8.49	1.45	ug/kg dry	8.69	<1.45	97.7	60-140		
delta-BHC	9.44	1.45	ug/kg dry	8.69	<1.45	109	60-140		
Dieldrin	8.90	1.45	ug/kg dry	8.69	<1.45	102	60-140		
Endosulfan I	8.23	1.45	ug/kg dry	8.69	<1.45	94.7	60-140		
Endosulfan II	8.73	1.45	ug/kg dry	8.69	<1.45	100	60-140		
Endosulfan sulfate	8.68	1.45	ug/kg dry	8.69	<1.45	99.8	60-140		
Endrin	8.77	1.45	ug/kg dry	8.69	<1.45	101	60-140		
Endrin aldehyde	7.51	1.45	ug/kg dry	8.69	<1.45	86.4	60-140		
Endrin ketone	7.73	1.45	ug/kg dry	8.69	<1.45	88.9	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
atch: BGB0044 - SW-3570 (Con	tinued)								
Matrix Spike (BGB0044-MS1)	Source	: 23A1459-47	Pr	epared: 2/1	/2023 Analyze	ed: 2/8/2023			
gamma-BHC (Lindane,	9.33	1.45	ug/kg dry	8.69	<1.45	107	60-140		
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	8.25	1.45	ug/kg dry	8.69	<1.45	94.9	60-140		
Heptachlor	8.76	1.45	ug/kg dry	8.69	<1.45	101	60-140		
Heptachlor epoxide	8.76	1.45	ug/kg dry	8.69	<1.45	101	60-140		
Methoxychlor	7.29	1.45	ug/kg dry	8.69	<1.45	83.9	60-140		
Surrogate: 2,4,5,6		8.62	ug/kg dry	8.69		99.2	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		9.05	ug/kg dry	8.69		104	60-140		
Matrix Spike Dup (BGB0044-MSD1)	Source	: 23A1459-47	Pr	epared: 2/1	/2023 Analyze	ed: 2/8/2023			
4,4'-DDD	7.49	1.45	ug/kg dry	8.69	<1.45	86.2	60-140	22.9	40
4,4'-DDE	8.94	1.45	ug/kg dry	8.69	<1.45	103	60-140	7.09	40
4,4'-DDT	5.43	1.45	ug/kg dry	8.69	<1.45	62.5	60-140	8.09	40
Aldrin	7.11	1.45	ug/kg dry	8.69	<1.45	81.8	60-140	15.0	40
alpha-BHC	8.92	1.45	ug/kg dry	8.69	<1.45	103	60-140	13.1	40
(alpha-Hexachlorocyclohexane)									
beta-BHC	8.09	1.45	ug/kg dry	8.69	<1.45	93.1	60-140	16.3	40
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	29.8	1.45	ug/kg dry	34.8	<1.45	85.6	60-140	14.0	40
cis-Chlordane (alpha-Chlordane)	7.39	1.45	ug/kg dry	8.69	<1.45	85.0	60-140	13.9	40
delta-BHC	8.06	1.45	ug/kg dry	8.69	<1.45	92.7	60-140	15.8	40
Dieldrin	7.30	1.45	ug/kg dry	8.69	<1.45	84.0	60-140	19.7	40
Endosulfan I	6.97	1.45	ug/kg dry	8.69	<1.45	80.2	60-140	16.5	40
Endosulfan II	6.83	1.45	ug/kg dry	8.69	<1.45	78.6	60-140	24.4	40
Endosulfan sulfate	7.06	1.45	ug/kg dry	8.69	<1.45	81.2	60-140	20.5	40
Endrin	7.78	1.45	ug/kg dry	8.69	<1.45	89.6	60-140	12.0	40
Endrin aldehyde	6.44	1.45	ug/kg dry	8.69	<1.45	74.1	60-140	15.3	40
Endrin ketone	7.36	1.45	ug/kg dry	8.69	<1.45	84.7	60-140	4.86	40
gamma-BHC (Lindane,	7.84	1.45	ug/kg dry	8.69	<1.45	90.2	60-140	17.4	40
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	7.23	1.45	ug/kg dry	8.69	<1.45	83.2	60-140	13.1	40
Heptachlor	7.45	1.45	ug/kg dry	8.69	<1.45	85.8	60-140	16.1	40
Heptachlor epoxide	7.69	1.45	ug/kg dry	8.69	<1.45	88.5	60-140	13.1	40
Methoxychlor	7.02	1.45	ug/kg dry	8.69	<1.45	80.8	60-140	3.80	40
Surrogate: 2,4,5,6		7.28	ug/kg dry	8.69		83.8	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		9.40	ug/kg dry	8.69		108	60-140		



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Houston, TX 77043 Project Number:

Reported:

TCEQ-TOX T104704202-22-17

04/03/2023 14:08

# Quality Control (Continued)

Project Manager: Gregg Pawlak

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Nesuit Quai	LIIIIL	UIIILS	LEVEI	Nesuit	70KLC	LIIIIIG	KFD	LIIIIL
Batch: BGB0277 - SW-3511									
Blank (BGB0277-BLK1)			P	repared: 2/2/	2023 Analyze	d: 2/11/2023	}		
PCBs, Total	<0.120 U	0.120	ug/L						
Surrogate: 2,4,5,6		0.147	ug/L	0.120		123	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.142	ug/L	0.120		118	60-140		
LCS (BGB0277-BS1)			Р	repared: 2/2/	2023 Analyze	d: 2/11/2023	<b>;</b>		
Aroclor-1016 (PCB-1016)	<0.120 L, U	0.120	ug/L	1.20			60-140		
Aroclor-1260 (PCB-1260)	0.852	0.120	ug/L	1.20		71.0	60-140		
PCBs, Total	1.14	0.120	ug/L	1.20		94.9	60-140		
Surrogate: 2,4,5,6		0.117	ug/L	0.120		97.1	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.118	ug/L	0.120		98.6	60-140		
LCS Dup (BGB0277-BSD1)			P	repared: 2/2/	2023 Analyze	d: 2/11/2023	;		
Aroclor-1016 (PCB-1016)	<0.120 L, U	0.120	ug/L	1.20			60-140		40
Aroclor-1260 (PCB-1260)	0.913	0.120	ug/L	1.20		76.1	60-140	6.89	40
PCBs, Total	1.22	0.120	ug/L	1.20		102	60-140	7.18	40
Surrogate: 2,4,5,6		0.131	ug/L	0.120		109	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.127	ug/L	0.120		106	60-140		
MRL Check (BGB0277-MRL1)			P	repared: 2/2/	2023 Analyze	d: 2/11/2023	;		
Aroclor-1016 (PCB-1016)	<0.120 J1, L, U	0.120	ug/L	0.240			50-150		
Aroclor-1221 (PCB-1221)	<0.120 U	0.120	ug/L				50-150		
Aroclor-1232 (PCB-1232)	<0.120 U	0.120	ug/L				50-150		
Aroclor-1242 (PCB-1242)	<0.120 U	0.120	ug/L				50-150		
Aroclor-1248 (PCB-1248)	<0.120 U	0.120	ug/L				50-150		
Aroclor-1254 (PCB-1254)	<0.120 U	0.120	ug/L				50-150		
Aroclor-1260 (PCB-1260)	0.206	0.120	ug/L	0.240		85.8	50-150		
PCBs, Total	0.489 J1	0.120	ug/L	0.240		204	50-150		
Surrogate: 2,4,5,6		0.133	ug/L	0.120		111	60-140		
Tetrachloro-m-xylene-surr		0.120	//	0.120		107	60 140		
Surrogate: Decachlorobiphenyl-surr		0.128	ug/L	0.120		107	60-140		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Quality Control** (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0277 - SW-3511 (Con	tinued)								
Matrix Spike (BGB0277-MS1)	Source:	23A1459-49	Р	repared: 2/2/	2023 Analyzed	d: 2/11/2023	}		
Aroclor-1016 (PCB-1016)	0.709 J1	0.120	ug/L	1.20	<0.120	59.1	60-140		
Aroclor-1260 (PCB-1260)	0.549 J1	0.120	ug/L	1.20	<0.120	45.8	60-140		
PCBs, Total	0.571 J1	0.120	ug/L	1.20	<0.120	47.6	60-140		
Surrogate: 2,4,5,6		0.105	ug/L	0.120		87.6	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr	S	0.0685	ug/L	0.120		57.1	60-140		
Matrix Spike Dup (BGB0277-MSD1)	Source:	23A1459-49	Р	repared: 2/2/	2023 Analyzed	d: 2/11/2023	}		
Aroclor-1016 (PCB-1016)	0.805	0.120	ug/L	1.20	<0.120	67.1	60-140	12.7	40
Aroclor-1260 (PCB-1260)	0.556 J1	0.120	ug/L	1.20	< 0.120	46.3	60-140	1.17	40
PCBs, Total	0.589 J1	0.120	ug/L	1.20	<0.120	49.1	60-140	3.09	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		0.115	ug/L	0.120		95.9	60-140		
Surrogate: Decachlorobiphenyl-surr	5	0.0649	ug/L	0.120		<i>54.1</i>	60-140		

Batch: BGB0477 - SW-3570							
Blank (BGB0477-BLK1)			Pre	epared: 2/3/2023	Analyzed: 2/10/2023		
4,4'-DDD	<0.999 U	0.999	ug/kg wet				
4,4'-DDE	<0.999 U	0.999	ug/kg wet				
4,4'-DDT	<0.999 U	0.999	ug/kg wet				
Aldrin	<0.999 U	0.999	ug/kg wet				
alpha-BHC	<0.999 U	0.999	ug/kg wet				
(alpha-Hexachlorocyclohexane)							
beta-BHC	<0.999 U	0.999	ug/kg wet				
(beta-Hexachlorocyclohexane)							
Chlordane (tech.)	<0.999 U	0.999	ug/kg wet				
cis-Chlordane (alpha-Chlordane)	<0.999 U	0.999	ug/kg wet				
delta-BHC	<0.999 U	0.999	ug/kg wet				
Dieldrin	<0.999 U	0.999	ug/kg wet				
Endosulfan I	<0.999 U	0.999	ug/kg wet				
Endosulfan II	<0.999 U	0.999	ug/kg wet				
Endosulfan sulfate	<0.999 U	0.999	ug/kg wet				
Endrin	<0.999 U	0.999	ug/kg wet				
Endrin aldehyde	<0.999 U	0.999	ug/kg wet				
Endrin ketone	<0.999 U	0.999	ug/kg wet				
gamma-BHC (Lindane,	<0.999 U	0.999	ug/kg wet				
gamma-HexachlorocyclohexanE)		0.000					
gamma-Chlordane	<0.999 U	0.999	ug/kg wet				
Heptachlor	<0.999 U	0.999	ug/kg wet				
Heptachlor epoxide	<0.999 U	0.999	ug/kg wet				
Methoxychlor	<0.999 U	0.999	ug/kg wet				
Toxaphene (Chlorinated Camphene)	<15.0 U	15.0	ug/kg wet				
Surrogate: 2,4,5,6		6.52	ug/kg wet	5.99	109	<i>60-140</i>	
Tetrachloro-m-xylene-surr							
Surrogate: Decachlorobiphenyl-surr		6.50	ug/kg wet	5.99	108	60-140	





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

TOX LCS (BGB0477-BS1)			Pre	pared: 2/3/2023 A	nalyzed: 2/10/2023	3
Toxaphene (Chlorinated Camphene)	62.4	14.9	ug/kg wet	59.7	104	60-140
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		3.71	ug/kg wet	5.97	62.2	60-140
Surrogate: Decachlorobiphenyl-surr		5.83	ug/kg wet	5.97	97.6	60-140
-CS (BGB0477-BS2)			Pre	pared: 2/3/2023 A	nalyzed: 2/10/2023	3
4,4'-DDD	5.52	0.991	ug/kg wet	5.95	92.9	60-140
4,4'-DDE	4.95	0.991	ug/kg wet	5.95	83.2	60-140
4,4'-DDT	3.58	0.991	ug/kg wet	5.95	60.2	60-140
Aldrin	5.09	0.991	ug/kg wet	5.95	85.6	60-140
alpha-BHC	6.52	0.991	ug/kg wet	5.95	110	60-140
(alpha-Hexachlorocyclohexane)						
beta-BHC	5.63	0.991	ug/kg wet	5.95	94.7	60-140
(beta-Hexachlorocyclohexane)						
Chlordane (tech.)	20.9	0.991	ug/kg wet	23.8	88.1	60-140
cis-Chlordane (alpha-Chlordane)	5.27	0.991	ug/kg wet	5.95	88.6	60-140
delta-BHC	4.67	0.991	ug/kg wet	5.95	78.5	60-140
Dieldrin	5.11	0.991	ug/kg wet	5.95	85.9	60-140
Endosulfan I	4.76	0.991	ug/kg wet	5.95	80.0	60-140
Endosulfan II	5.29	0.991	ug/kg wet	5.95	88.9	60-140
Endosulfan sulfate	5.15	0.991	ug/kg wet	5.95	86.5	60-140
Endrin	5.00	0.991	ug/kg wet	5.95	84.0	60-140
Endrin aldehyde	4.61	0.991	ug/kg wet	5.95	77.5	60-140
Endrin ketone	5.87	0.991	ug/kg wet	5.95	98.7	60-140
gamma-BHC (Lindane,	5.95	0.991	ug/kg wet	5.95	100	60-140
gamma-HexachlorocyclohexanE)						
gamma-Chlordane	5.49	0.991	ug/kg wet	5.95	92.3	60-140
Heptachlor	5.24	0.991	ug/kg wet	5.95	88.1	60-140
Heptachlor epoxide	4.95	0.991	ug/kg wet	5.95	83.2	60-140
Methoxychlor	5.35	0.991	ug/kg wet	5.95	89.9	60-140
Surrogate: 2,4,5,6		5.45	ug/kg wet	5.95	91.7	60-140
Tetrachloro-m-xylene-surr						
Surrogate: Decachlorobiphenyl-surr		6.14	ug/kg wet	<i>5.95</i>	103	<i>60-140</i>



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte		Reporting		Spike	Source		%REC		RPD
	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0477 - SW-3570 (C	ontinued)								
TOX LCSD (BGB0477-BSD1)	•		Pre	epared: 2/3/	2023 Analyze	d: 2/10/2023	3		
Toxaphene (Chlorinated Camphene)	53.7	14.8	ug/kg wet	59.2		90.6	60-140	15.0	40
Surrogate: 2,4,5,6		4.42	ug/kg wet	5.92		74.6	60-140		
Tetrachloro-m-xylene-surr			5, 5						
Surrogate: Decachlorobiphenyl-surr		5.19	ug/kg wet	5.92		87.6	60-140		
LCS Dup (BGB0477-BSD2)			Pre	epared: 2/3/	/2023 Analyze	d: 2/10/2023	3		
4,4'-DDD	5.26	0.983	ug/kg wet	5.90		89.1	60-140	4.95	40
4,4'-DDE	5.43	0.983	ug/kg wet	5.90		92.1	60-140	9.29	40
4,4'-DDT	3.37 J1	0.983	ug/kg wet	5.90		57.1	60-140	6.19	40
Aldrin	4.94	0.983	ug/kg wet	5.90		83.8	60-140	2.97	40
alpha-BHC	5.86	0.983	ug/kg wet	5.90		99.3	60-140	10.7	40
(alpha-Hexachlorocyclohexane)	5.55		J, J						
beta-BHC	5.27	0.983	ug/kg wet	5.90		89.3	60-140	6.67	40
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	20.6	0.983	ug/kg wet	23.6		87.4	60-140	1.61	40
cis-Chlordane (alpha-Chlordane)	5.29	0.983	ug/kg wet	5.90		89.6	60-140	0.355	40
delta-BHC	4.25	0.983	ug/kg wet	5.90		72.1	60-140	9.35	40
Dieldrin	5.15	0.983	ug/kg wet	5.90		87.3	60-140	0.919	40
Endosulfan I	4.66	0.983	ug/kg wet	5.90		79.0	60-140	2.07	40
Endosulfan II	4.98	0.983	ug/kg wet	5.90		84.3	60-140	6.10	40
Endosulfan sulfate	4.93	0.983	ug/kg wet	5.90		83.5	60-140	4.40	40
Endrin	4.88	0.983	ug/kg wet	5.90		82.7	60-140	2.41	40
Endrin aldehyde	4.35	0.983	ug/kg wet	5.90		73.8	60-140	5.79	40
Endrin ketone	5.26	0.983	ug/kg wet	5.90		89.1	60-140	11.1	40
gamma-BHC (Lindane,	5.56	0.983	ug/kg wet	5.90		94.2	60-140	6.84	40
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	5.41	0.983	ug/kg wet	5.90		91.6	60-140	1.54	40
Heptachlor	5.10	0.983	ug/kg wet	5.90		86.4	60-140	2.74	40
Heptachlor epoxide	4.82	0.983	ug/kg wet	5.90		81.7	60-140	2.60	40
Methoxychlor	4.63	0.983	ug/kg wet	5.90		78.5	60-140	14.4	40
Surrogate: 2,4,5,6		<i>5.26</i>	ug/kg wet	5.90		89.1	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		5.65	ug/kg wet	5.90		<i>95.7</i>	60-140		



%REC

TCEQ-TOX T104704202-22-17



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0477 - SW-3570 (C	Continued)								
TOX MRL (BGB0477-MRL1)			Pre	epared: 2/3/	2023 Analyze	d: 2/10/2023			
Toxaphene (Chlorinated Camphene)	<14.3 J1, U	14.3	ug/kg wet	14.3			50-150		
Surrogate: 2,4,5,6	S	3.38	ug/kg wet	5.71		59.2	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		4.97	ug/kg wet	5.71		87.0	60-140		
MRL Check (BGB0477-MRL2)			Pre	epared: 2/3/	2023 Analyze	d: 2/10/2023	1		
4,4'-DDD	0.370 J	0.981	ug/kg wet	0.393		94.2			
4,4'-DDE	0.405 J	0.981	ug/kg wet	0.393		103			
4,4'-DDT	0.261 J	0.981	ug/kg wet	0.393		66.6			
Aldrin	0.337 J	0.981	ug/kg wet	0.393		86.0			
alpha-BHC	0.437 J	0.981	ug/kg wet	0.393		111			
(alpha-Hexachlorocyclohexane)									
beta-BHC	0.438 J	0.981	ug/kg wet	0.393		112			
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	1.19	0.981	ug/kg wet	1.57		75.9	50-150		
cis-Chlordane (alpha-Chlordane)	0.176 J	0.981	ug/kg wet	0.393		44.9			
delta-BHC	<0.981 J1, U	0.981	ug/kg wet	0.393					
Dieldrin	0.286 J	0.981	ug/kg wet	0.393		72.9			
Endosulfan I	0.316 J	0.981	ug/kg wet	0.393		80.6			
Endosulfan II	0.344 J	0.981	ug/kg wet	0.393		87.6			
Endosulfan sulfate	0.321 J	0.981	ug/kg wet	0.393		81.9			
Endrin	0.279 J	0.981	ug/kg wet	0.393		71.1			
Endrin aldehyde	0.246 J	0.981	ug/kg wet	0.393		62.6			
Endrin ketone	0.413 J	0.981	ug/kg wet	0.393		105			
gamma-BHC (Lindane,	0.402 J	0.981	ug/kg wet	0.393		103			
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	0.332 J	0.981	ug/kg wet	0.393		84.6			
Heptachlor	0.356 J	0.981	ug/kg wet	0.393		90.7			
Heptachlor epoxide	0.328 J	0.981	ug/kg wet	0.393		83.6			
Methoxychlor	0.329 J	0.981	ug/kg wet	0.393		83.9			
Surrogate: 2,4,5,6		<i>4.75</i>	ug/kg wet	5.89		80.6	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr		5.61	ug/kg wet	5.89		95.3	60-140		

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Spike

Source

Reporting

			Reporting		Spike	Jource		70KLC		KFD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0477 - SW-3570 (Cont	tinued)									
Matrix Spike (BGB0477-MS1)		Source: 23A	1459-66	Pre	pared: 2/3/	2023 Analyzed	d: 2/10/2023			
4,4'-DDD	6.78		1.31	ug/kg dry	7.88	<1.31	86.1	60-140		
4,4'-DDE	6.51		1.31	ug/kg dry	7.88	<1.31	82.6	60-140		
, 4,4'-DDT	4.23	11	1.31	ug/kg dry	7.88	<1.31	53.7	60-140		
Aldrin	6.21		1.31	ug/kg dry	7.88	<1.31	78.8	60-140		
alpha-BHC	7.62		1.31	ug/kg dry	7.88	<1.31	96.7	60-140		
(alpha-Hexachlorocyclohexane)	7.02			-3/3 /						
beta-BHC	6.85		1.31	ug/kg dry	7.88	<1.31	86.9	60-140		
(beta-Hexachlorocyclohexane)				J. J.						
Chlordane (tech.)	26.2		1.31	ug/kg dry	31.5	<1.31	83.0	60-140		
cis-Chlordane (alpha-Chlordane)	6.59		1.31	ug/kg dry	7.88	<1.31	83.6	60-140		
delta-BHC	5.41		1.31	ug/kg dry	7.88	<1.31	68.6	60-140		
Dieldrin	6.57		1.31	ug/kg dry	7.88	<1.31	83.4	60-140		
Endosulfan I	6.00		1.31	ug/kg dry	7.88	<1.31	76.2	60-140		
Endosulfan II	6.63		1.31	ug/kg dry	7.88	<1.31	84.1	60-140		
Endosulfan sulfate	6.36		1.31	ug/kg dry	7.88	<1.31	80.8	60-140		
Endrin	6.28		1.31	ug/kg dry	7.88	<1.31	79.8	60-140		
Endrin aldehyde	5.35		1.31	ug/kg dry	7.88	<1.31	67.9	60-140		
Endrin ketone	6.95		1.31	ug/kg dry	7.88	<1.31	88.2	60-140		
gamma-BHC (Lindane,	7.27		1.31	ug/kg dry	7.88	<1.31	92.3	60-140		
gamma-HexachlorocyclohexanE)	7.27		1.51	ug/kg ury	7.00	1.51	72.5	00 110		
gamma-Chlordane	6.92		1.31	ug/kg dry	7.88	<1.31	87.8	60-140		
Heptachlor	6.56		1.31	ug/kg dry	7.88	<1.31	83.3	60-140		
Heptachlor epoxide	6.10		1.31	ug/kg dry	7.88	<1.31	77.5	60-140		
Methoxychlor	6.00		1.31	ug/kg dry	7.88	<1.31	76.2	60-140		
Surrogate: 2,4,5,6			6.13	ug/kg dry	7.88		77.8	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr			7.29	ug/kg dry	7.88		92.6	60-140		
Matrix Calles Dum (BCB0477 MCD1)		Sa	1450.66		marad: 2/2/	2022 Applyzor	4. 2/10/2022	,		
Matrix Spike Dup (BGB0477-MSD1) 4,4'-DDD	c 20	Source: 23A			•	2023 Analyzeo <1.26			6.00	40
•	6.39		1.26	ug/kg dry	7.54		84.7	60-140		
4,4'-DDE	6.49		1.26	ug/kg dry	7.54	<1.26	86.1	60-140	0.188	40
4,4'-DDT	4.46	J1	1.26	ug/kg dry	7.54	<1.26	59.1	60-140	5.23	40
Aldrin	5.93		1.26	ug/kg dry	7.54	<1.26	78.6	60-140	4.59	40
alpha-BHC	7.36		1.26	ug/kg dry	7.54	<1.26	97.6	60-140	3.43	40
(alpha-Hexachlorocyclohexane)			1.20		7.54	.1.20	07.6	CO 140	2.62	40
beta-BHC	6.60		1.26	ug/kg dry	7.54	<1.26	87.6	60-140	3.63	40
(beta-Hexachlorocyclohexane)	25.2		1 26	ua/ka day	20.2	-1.26	04.0	60 140	2 17	40
Chlordane (tech.)	25.3		1.26	ug/kg dry	30.2	<1.26	84.0	60-140	3.17	
cis-Chlordane (alpha-Chlordane)	6.38		1.26	ug/kg dry	7.54	<1.26	84.6	60-140	3.23	40
delta-BHC	5.31		1.26	ug/kg dry	7.54	<1.26	70.4	60-140	1.85	40
Dieldrin	6.43		1.26	ug/kg dry	7.54	<1.26	85.2	60-140	2.23	40
Endosulfan I	5.75		1.26	ug/kg dry	7.54	<1.26	76.3	60-140	4.23	40
Endosulfan II	6.07		1.26	ug/kg dry	7.54	<1.26	80.5	60-140	8.73	40
Endosulfan sulfate	6.22		1.26	ug/kg dry	7.54	<1.26	82.4	60-140	2.35	40
Endrin	6.13		1.26	ug/kg dry	7.54	<1.26	81.2	60-140	2.53	40
Endrin aldehyde	5.51		1.26	ug/kg dry	7.54	<1.26	73.1	60-140	3.05	40
Endrin ketone	6.70		1.26	ug/kg dry	7.54	<1.26	88.9	60-140	3.56	40

Reported:



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023 11555 Clay Road Project Number:

Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

#### **Quality Control** (Continued)

### Organics by GC (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0477 - SW-3570 (Con	tinued)									
Matrix Spike Dup (BGB0477-MSD1)	-	Source: 2	23A1459-66	Pre	epared: 2/3/	2023 Analyze	d: 2/10/2023	3		
gamma-BHC (Lindane,	6.97		1.26	ug/kg dry	7.54	<1.26	92.5	60-140	4.19	40
gamma-HexachlorocyclohexanE)				'						
gamma-Chlordane	6.71		1.26	ug/kg dry	7.54	<1.26	89.0	60-140	2.97	40
Heptachlor	6.38		1.26	ug/kg dry	7.54	<1.26	84.7	60-140	2.74	40
Heptachlor epoxide	5.87		1.26	ug/kg dry	7.54	<1.26	77.9	60-140	3.82	40
Methoxychlor	5.94		1.26	ug/kg dry	7.54	<1.26	78.7	60-140	1.04	40
Surrogate: 2,4,5,6			6.48	ug/kg dry	7.54		85.9	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			7.15	ug/kg dry	7.54		94.9	60-140		
Surrogate: 2,4,5,6	11.50		0.493	ug/kg wet	0.593		83.2	60-140		
Blank (BGB1177-BLK1)				Pro	epared: 2/8/	2023 Analyze	d: 2/25/2023	3		
PCBs, Total	<1.98		1.98 0.493	ug/kg wet			83 2	60-140		
Tetrachloro-m-xylene-surr			0.733	ug/ng wel	0.555		03.2	00-170		
Surrogate: Decachlorobiphenyl-surr			0.609	ug/kg wet	0.593		103	60-140		
LCS (BGB1177-BS1)				Pro	enared: 2/8/	/2023 Analyze	d: 2/25/2023	3		
Aroclor-1016 (PCB-1016)	4.70		1.96	ug/kg wet	5.88		80.0	60-140		
Aroclor-1260 (PCB-1260)	5.37		1.96	ug/kg wet	5.88		91.4	60-140		
PCBs, Total	5.23		1.96	ug/kg wet	5.88		89.0	60-140		
Surrogate: 2,4,5,6			0.592	ug/kg wet	0.588		101	60-140		
Tetrachloro-m-xylene-surr				. 37 30	*****					
Surrogate: Decachlorobiphenyl-surr			0.611	ug/kg wet	0.588		104	60-140		
LCS Dup (BGB1177-BSD1)				Dro	enared: 2/8/	/2023 Analyze	d· 2/25/2023	3		
Aroclor-1016 (PCB-1016)	3.63		1.96	ug/kg wet	5.87	2023 Alialyze	62.0	60-140	25.6	40
Aroclor-1010 (PCB-1010) Aroclor-1260 (PCB-1260)	5.70		1.96	ug/kg wet	5.87		97.2	60-140	5.97	40
PCBs, Total	5.70		1.96	ug/kg wet ug/kg wet	5.87		89.8	60-140	0.661	40
	5.2/									
Surrogate: 2,4,5,6			0.440	ug/kg wet	0.587		75.0	60-140		
Tetrachloro-m-xylene-surr										

0.664 ug/kg wet

0.587

Surrogate: Decachlorobiphenyl-surr

113

60-140



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

## Quality Control (Continued)

### Organics by GC (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB1177 - SW-3570 (Con	tinued)								
MRL Check (BGB1177-MRL1)	_		Pre	epared: 2/8/	2023 Analyze	d: 2/25/2023	3		
Aroclor-1016 (PCB-1016)	0.476 J	1.98	ug/kg wet	1.19		40.1			
Aroclor-1260 (PCB-1260)	1.56 J	1.98	ug/kg wet	1.19		132			
PCBs, Total	1.34 J	1.98	ug/kg wet	1.19		113			
Surrogate: 2,4,5,6		0.409	ug/kg wet	0.593		69.0	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.637	ug/kg wet	0.593		107	60-140		
Matrix Spike (BGB1177-MS1)	Sourc	e: 23A1459-46	Pre	epared: 2/8/	/2023 Analyze	d: 2/25/2023	3		
Aroclor-1016 (PCB-1016)	6.45	2.79	ug/kg dry	8.37	<2.79	77.1	60-140		
Aroclor-1260 (PCB-1260)	10.3	2.79	ug/kg dry	8.37	<2.79	123	60-140		
PCBs, Total	9.45	2.79	ug/kg dry	8.37	<2.79	113	60-140		
Surrogate: 2,4,5,6		1.07	ug/kg dry	0.837		127	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		1.04	ug/kg dry	0.837		124	60-140		
Matrix Spike Dup (BGB1177-MSD1)	Sourc	e: 23A1459-46	Pre	epared: 2/8/	2023 Analyze	d: 2/25/2023	3		
Aroclor-1016 (PCB-1016)	3.83 J1	2.79	ug/kg dry	8.37	<2.79	45.7	60-140	51.1	40
Aroclor-1260 (PCB-1260)	7.70	2.79	ug/kg dry	8.37	<2.79	92.0	60-140	28.6	40
PCBs, Total	6.89	2.79	ug/kg dry	8.37	<2.79	82.3	60-140	31.4	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		0.666	ug/kg dry	0.837		79.6	60-140		
Surrogate: Decachlorobiphenyl-surr		0.662	ug/kg dry	0.837		79.1	60-140		
Batch: BGC1392 - SW-3570					/2022 AI	1. 2/11/202			
MB PCB (BGC1392-BLK1)				eparea: 3/9/	2023 Analyze	a: 3/11/2023	5		
PCBs, Total	<1.93 U	1.93	ug/kg wet						
Surrogate: 2,4,5,6		0.619	ug/kg wet	0.580		107	60-140		

0.639 ug/kg wet

0.580

110

60-140

Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

### Organics by GC (Continued)

		Reporting		Spike	Source	A	%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
atch: BGC1392 - SW-3570 (Con	tinued)								
BS PCB (BGC1392-BS1)			Pre	epared: 3/9/	2023 Analyze	d: 3/11/2023	3		
Aroclor-1016 (PCB-1016)	6.18	1.99	ug/kg wet	5.97		103	60-140		
Aroclor-1260 (PCB-1260)	5.89	1.99	ug/kg wet	5.97		98.6	60-140		
PCBs, Total	5.98	1.99	ug/kg wet	5.97		100	60-140		
Surrogate: 2,4,5,6		0.604	ug/kg wet	0.597		101	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.688	ug/kg wet	0.597		115	60-140		
BSD PCB (BGC1392-BSD1)			Pre	epared: 3/9/	2023 Analyze	d: 3/11/2023	3		
Aroclor-1016 (PCB-1016)	6.06	1.94	ug/kg wet	5.83		104	60-140	1.91	40
Aroclor-1260 (PCB-1260)	5.66	1.94	ug/kg wet	5.83		97.0	60-140	3.98	40
PCBs, Total	5.78	1.94	ug/kg wet	5.83		99.1	60-140	3.40	40
Surrogate: 2,4,5,6		0.616	ug/kg wet	0.583		106	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.663	ug/kg wet	0.583		114	60-140		
MDL PCB (BGC1392-MRL1)			Pre	epared: 3/9/	2023 Analyze	d: 3/11/2023	3		
Aroclor-1016 (PCB-1016)	1.71 J	1.93	ug/kg wet	1.16		148			
Aroclor-1260 (PCB-1260)	1.27 J	1.93	ug/kg wet	1.16		110			
PCBs, Total	1.39 J	1.93	ug/kg wet	1.16		120			
Surrogate: 2,4,5,6		0.577	ug/kg wet	0.578		99.8	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.627	ug/kg wet	0.578		108	60-140		
23A1459-24 MS (BGC1392-MS1)	Source: 2	23A1459-24RE	<b>2</b> Pre	epared: 3/9/	2023 Analyze	d: 3/11/2023	3		
Aroclor-1016 (PCB-1016)	95.7	26.9	ug/kg dry	80.7	<26.9	119	60-140		
Aroclor-1260 (PCB-1260)	54.0	26.9	ug/kg dry	80.7	<26.9	67.0	60-140		
PCBs, Total	65.0	26.9	ug/kg dry	80.7	<26.9	80.6	60-140		
Surrogate: 2,4,5,6	5	12.0	ug/kg dry	8.07		149	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		7.48	ug/kg dry	8.07		92.7	60-140		
23A1459-24 MSD (BGC1392-MSD1)	Source: 2	23A1459-24RE	2 Pre	epared: 3/9/	2023 Analyze	d: 3/11/2023	3		
Aroclor-1016 (PCB-1016)	78.7	26.6	ug/kg dry	79.9	<26.6	98.5	60-140	19.5	40
Aroclor-1260 (PCB-1260)	67.4	26.6	ug/kg dry	79.9	<26.6	84.3	60-140	22.0	40
PCBs, Total	70.6	26.6	ug/kg dry	79.9	<26.6	88.3	60-140	8.19	40
Surrogate: 2,4,5,6	S	12.0	ug/kg dry	7.99		150	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		7.38	ug/kg dry	7.99		92.3	60-140		



Terracon_Houston

Project Number:

Reported:

TCEQ-TOX T104704202-22-17

Houston, TX 77043 Project Manager: Gregg Pawlak

04/03/2023 14:08

# Quality Control (Continued)

Project: PCCA HI & CDP Resampling 2023

#### Metals, Total

11555 Clay Road

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3226 - EPA 200.	8 Solid	_						_		_
Blank (BGA3226-BLK1)				Pre	epared: 1/25	/2023 Analyze	ed: 1/30/2023	3		
Antimony	<0.0888	U	0.0888	mg/kg wet		,				
Arsenic	< 0.0443		0.0443	mg/kg wet						
Beryllium	< 0.0177	U	0.0177	mg/kg wet						
Lead	< 0.0443	U	0.0443	mg/kg wet						
Silver	< 0.0443	U	0.0443	mg/kg wet						
Zinc	<0.177	U	0.177	mg/kg wet						
Blank (BGA3226-BLK2)				Pre	epared: 1/25	/2023 Analyze	ed: 1/31/2023	3		
Cadmium	<0.0888	U	0.0888	mg/kg wet						
Chromium	<0.266	U	0.266	mg/kg wet						
Copper	0.0410	J	0.0888	mg/kg wet						
Selenium	<0.177	U	0.177	mg/kg wet						
Thallium	<0.0443	U	0.0443	mg/kg wet						
Blank (BGA3226-BLK3)				Pre	epared: 1/25	/2023 Analyze	ed: 1/31/2023	3		
Nickel	<0.0888	U	0.0888	mg/kg wet						
LCS (BGA3226-BS1)				Pre	epared: 1/25	/2023 Analyze	ed: 1/30/2023	3		
Antimony	9.79		0.102	mg/kg wet	10.2		96.1	85-115		
Arsenic	4.84		0.0509	mg/kg wet	5.09		95.0	85-115		
Beryllium	1.78		0.0203	mg/kg wet	2.04		87.2	85-115		
Lead	4.67		0.0509	mg/kg wet	5.09		91.7	85-115		
Silver	4.89		0.0509	mg/kg wet	5.09		96.0	85-115		
Zinc	18.6		0.203	mg/kg wet	20.4		91.4	85-115		
LCS (BGA3226-BS2)				Pre	epared: 1/25	/2023 Analyze	ed: 1/31/2023	3		
Cadmium	10.5		0.102	mg/kg wet	10.2		103	85-115		
Chromium	31.3		0.305	mg/kg wet	30.5		102	85-115		
Copper	11.2		0.102	mg/kg wet	10.2		110	85-115		
Selenium	20.7		0.203	mg/kg wet	20.4		102	85-115		
Thallium	5.48		0.0509	mg/kg wet	5.09		108	85-115		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3226 - EPA 200.8	Solid (Continu	ued)								
LCS (BGA3226-BS3)				Pre	pared: 1/25	/2023 Analyze	ed: 1/31/2023	3		
Nickel	10.2		0.102	mg/kg wet	10.2		100	85-115		
Duplicate (BGA3226-DUP1)		Source: 2	3A1459-16	Pre	pared: 1/25	/2023 Analyze	ed: 1/30/2023	3		
Antimony	< 0.0542	U	0.0542	mg/kg dry		< 0.0542				20
Arsenic	0.940		0.0270	mg/kg dry		0.891			5.35	20
Beryllium	0.0463		0.0108	mg/kg dry		0.0436			6.04	20
Lead	1.36		0.0270	mg/kg dry		1.23			10.5	20
Silver	0.00552	J	0.0270	mg/kg dry		0.00472			15.6	20
Zinc	3.63		0.108	mg/kg dry		3.48			4.10	20
Duplicate (BGA3226-DUP2)		Source: 2	3A1459-30	Pre	pared: 1/25	/2023 Analyze	ed: 1/30/2023	3		
Antimony	< 0.0557	U	0.0557	mg/kg dry		< 0.0557				20
Arsenic	0.946		0.0278	mg/kg dry		0.867			8.69	20
Lead	1.25		0.0278	mg/kg dry		1.06			16.4	20
Silver	0.00873	J	0.0278	mg/kg dry		0.00820			6.22	20
Zinc	2.79		0.111	mg/kg dry		2.52			10.3	20
Duplicate (BGA3226-DUP3)		Source: 2	3A1459-16	Pre	pared: 1/25	/2023 Analyze	ed: 1/31/2023	3		
Cadmium	0.0141	J	0.0542	mg/kg dry		0.0132			6.61	20
Chromium	1.17		0.162	mg/kg dry		1.10			5.76	20
Copper	0.685		0.0542	mg/kg dry		0.568			18.7	20
Selenium	0.321		0.108	mg/kg dry		0.312			2.95	20
Thallium	0.0255	J	0.0270	mg/kg dry		0.0241			5.57	20
Duplicate (BGA3226-DUP4)		Source: 2	3A1459-30	Pre	pared: 1/25	/2023 Analyze	ed: 1/31/2023	3		
Cadmium	0.0292	J	0.0557	mg/kg dry		0.0319			8.85	20
Chromium	1.42		0.167	mg/kg dry		1.10			25.8	20
Copper	0.945		0.0557	mg/kg dry		0.652			36.7	20
Selenium	0.354		0.111	mg/kg dry		0.320			10.1	20
Thallium	0.0415	J1	0.0278	mg/kg dry		0.0311			28.6	20
	0.0.120	-		,						





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result	Oual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
,	- Nesult									
Batch: BGA3226 - EPA 200.8 S	Folid (Contin	ued)								
Duplicate (BGA3226-DUP5)		Source: 2	3A1459-16	Pre	epared: 1/25,	/2023 Analyzed	d: 1/31/2023	3		
Nickel	1.22		0.0542	mg/kg dry		0.998			19.9	20
Duplicate (BGA3226-DUP6)		Source: 2	3A1459-30	Pre	epared: 1/25/	/2023 Analyze	d: 1/31/2023	,		
Nickel	1.01		0.0557			0.918			9.90	20
Duplicate (BGA3226-DUP7)		Source: 2	3A1459-30	Pr	epared: 1/25	5/2023 Analyze	ed: 2/1/2023			
Beryllium	0.0525	J1	0.0111	mg/kg dry		0.0412			24.2	20
MDL Check (BGA3226-MRL1)				Pre	epared: 1/25/	/2023 Analyze	d: 1/30/2023	,		
Antimony	0.0467	J	0.0977		0.0487	,	95.8			
Arsenic	0.00780		0.0487	mg/kg wet	0.00487		160			
Beryllium	0.00166	J	0.0195	mg/kg wet	0.000975		170			
Lead	0.00556	J	0.0487	mg/kg wet	0.00487		114			
Silver	0.00234	J	0.0487	mg/kg wet	0.00244		96.0			
Zinc	0.138	J	0.195	mg/kg wet	0.0975		141			
MDL Check (BGA3226-MRL2)				Pre	epared: 1/25/	/2023 Analyzed	d: 1/31/2023	ì		
Cadmium	0.00517	J	0.0977	mg/kg wet	0.00487		106			
Chromium	0.0228	J	0.292	mg/kg wet	0.0146		156			
Copper	0.104		0.0977	mg/kg wet	0.00975		NR			
Selenium	0.0887	J	0.195	mg/kg wet	0.0975		91.0			
Thallium	0.00273	J	0.0487	mg/kg wet	0.00244		112			
MDL Check (BGA3226-MRL3)				Pre	epared: 1/25/	/2023 Analyzed	d: 1/31/2023	t		
Nickel	0.00702	J	0.0977	mg/kg wet	0.00487		144			
Matrix Spike (BGA3226-MS1)		Source: 2	3A1459-16	Pre	epared: 1/25/	/2023 Analyzed	d: 1/30/2023	t		
Antimony	3.83	J1	0.0541	mg/kg dry	5.40	<0.0541	71.0	75-125		
Arsenic	3.32		0.0270	mg/kg dry	2.70	0.891	89.9	75-125		
Beryllium	1.01		0.0108	mg/kg dry	1.08	0.0436	89.3	75-125		
Lead	4.08		0.0270	mg/kg dry	2.70	1.23	106	75-125		
Silver	2.57		0.0270	mg/kg dry	2.70	0.00472	95.2	75-125		
Zinc	12.5		0.108	mg/kg dry	10.8	3.48	83.6	75-125		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3226 - EPA 200.8 S	olid (Contin	ued)								
Matrix Spike (BGA3226-MS2)	-	Source: 2	3A1459-30	Pre	pared: 1/25	5/2023 Analyze	ed: 1/30/202	3		
Antimony	3.24	J1	0.0562	mg/kg dry	5.61	< 0.0562	57.7	75-125		
Arsenic	3.91		0.0280	mg/kg dry	2.80	0.867	109	75-125		
Lead	4.46		0.0280	mg/kg dry	2.80	1.06	121	75-125		
Silver	2.81		0.0280	mg/kg dry	2.80	0.00820	100	75-125		
Zinc	13.4		0.112	mg/kg dry	11.2	2.52	97.3	75-125		
Matrix Spike (BGA3226-MS3)		Source: 2	3A1459-16	Pre	pared: 1/25	5/2023 Analyze	ed: 1/31/202	3		
Cadmium	5.76		0.0541	mg/kg dry	5.40	0.0132	106	75-125		
Chromium	16.8		0.162	mg/kg dry	16.2	1.10	96.9	75-125		
Copper	5.83		0.0541	mg/kg dry	5.40	0.568	97.5	75-125		
Selenium	10.4		0.108	mg/kg dry	10.8	0.312	93.9	75-125		
Thallium	2.73		0.0270	mg/kg dry	2.70	0.0241	100	75-125		
Matrix Spike (BGA3226-MS4)		Source: 2	3A1459-30	Pre	pared: 1/25	5/2023 Analyze	ed: 1/31/202	3		
Cadmium	5.94		0.0562	mg/kg dry	5.61	0.0319	105	75-125		
Chromium	18.3		0.168	mg/kg dry	16.8	1.10	102	75-125		
Copper	6.59		0.0562	mg/kg dry	5.61	0.652	106	75-125		
Selenium	11.0		0.112	mg/kg dry	11.2	0.320	95.3	75-125		
Thallium	2.90		0.0280	mg/kg dry	2.80	0.0311	102	75-125		
Matrix Spike (BGA3226-MS5)		Source: 2	3A1459-16	Pre	pared: 1/25	5/2023 Analyze	ed: 1/31/202	3		
Nickel	5.89		0.0541	mg/kg dry	5.40	0.998	90.7	75-125		
Matrix Spike (BGA3226-MS6)		Source: 2	3A1459-30	Pre	pared: 1/25	5/2023 Analyze	ed: 1/31/202	3		
Nickel	7.19		0.0562	mg/kg dry	5.61	0.918	112	75-125		
Matrix Spike (BGA3226-MS7)		Source: 2	3A1459-30	Pre	epared: 1/2	5/2023 Analyze	ed: 2/1/2023	3		
Beryllium	1.20		0.0112	mg/kg dry	1.12	0.0412	104	75-125		



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Houston, TX 77043 Project Number: Project Manager: Gregg Pawlak Reported:

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
. Jidiyee	- Nesait Quai				- ACSUIT	701120			
Batch: BGA3233 - EPA 200.8	Solid								
Blank (BGA3233-BLK1)			Pre	pared: 1/25,	/2023 Analyzed	d: 1/31/2023	3		
Antimony	<0.0996 U	0.0996	mg/kg wet						
Arsenic	<0.0497 U	0.0497	mg/kg wet						
Cadmium	<0.0996 U	0.0996	mg/kg wet						
Chromium	0.0174 J	0.298	mg/kg wet						
Lead	<0.0497 U	0.0497	mg/kg wet						
Nickel	<0.0996 U	0.0996	mg/kg wet						
Silver	<0.0497 U	0.0497	mg/kg wet						
Thallium	<0.0497 U	0.0497	mg/kg wet						
Blank (BGA3233-BLK2)			Pre	epared: 1/25	5/2023 Analyze	d: 2/1/2023			
Beryllium	<0.0199 U	0.0199	mg/kg wet	•	,				
Selenium	<0.199 U	0.199	mg/kg wet						
Zinc	<0.199 U	0.199	mg/kg wet						
Blank (BGA3233-BLK3)			Pre	epared: 1/25	5/2023 Analyze	d: 2/1/2023	_		
Copper	0.0575 J	0.0996	mg/kg wet						
LCS (BGA3233-BS1)			Pre	pared: 1/25,	/2023 Analyzed	d: 1/31/2023	3		
Antimony	10.5	0.0982	mg/kg wet	9.80		107	85-115		
Arsenic	5.28	0.0490	mg/kg wet	4.90		108	85-115		
Cadmium	10.4	0.0982	mg/kg wet	9.80		106	85-115		
Chromium	31.8	0.294	mg/kg wet	29.4		108	85-115		
Lead	5.44	0.0490	mg/kg wet	4.90		111	85-115		
Nickel	10.4	0.0982	mg/kg wet	9.80		107	85-115		
Silver	5.14	0.0490	mg/kg wet	4.90		105	85-115		
Thallium	5.32	0.0490	mg/kg wet	4.90		109	85-115		
LCS (BGA3233-BS2)			Pre	epared: 1/25	5/2023 Analyze	d: 2/1/2023			
Beryllium	2.04	0.0196	mg/kg wet	1.96		104	85-115		
Selenium	20.4	0.196	mg/kg wet	19.6		104	85-115		
Zinc	21.2	0.196	mg/kg wet	19.6		108	85-115		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3233 - EPA 200.8 \$	Solid (Continued)								
LCS (BGA3233-BS3)	(		Pro	epared: 1/25	5/2023 Analyze	ed: 2/1/2023			
Copper	11.3	0.0982	mg/kg wet	9.80	,	115	85-115		
Duplicate (BGA3233-DUP1)	Source:	23A1459-43	Pre	epared: 1/25,	/2023 Analyze	ed: 1/31/2023	3		
Antimony	<0.0485 U	0.0485	mg/kg dry		<0.0485				20
Arsenic	0.271	0.0242	mg/kg dry		0.295			8.54	20
Cadmium	0.00344 J	0.0485	mg/kg dry		0.00315			8.82	20
Chromium	1.84 J1	0.145	mg/kg dry		2.32			22.9	20
Lead	2.26	0.0242	mg/kg dry		2.27			0.399	20
Nickel	1.36	0.0485	mg/kg dry		1.64			19.1	20
Silver	<0.0242 U	0.0242	mg/kg dry		<0.0242				20
Thallium	0.0195 J	0.0242	mg/kg dry		0.0223			13.4	20
Duplicate (BGA3233-DUP2)	Source:	23A1459-43	Pro	epared: 1/25	5/2023 Analyze	ed: 2/1/2023			
Beryllium	0.213	0.00967	mg/kg dry		0.217			1.60	20
Selenium	0.355	0.0967	mg/kg dry		0.377			5.94	20
Zinc	2.85	0.0967	mg/kg dry		3.41			18.0	20
Duplicate (BGA3233-DUP3)	Source:	23A1459-43	Pro	epared: 1/25	5/2023 Analyze	ed: 2/1/2023			
Copper	0.852	0.0485	mg/kg dry		0.962			12.1	20
MDL Check (BGA3233-MRL1)			Pre	epared: 1/25,	/2023 Analyze	ed: 1/31/2023	3		
Antimony	0.0512 J	0.0996	mg/kg wet	0.0497		103			
Arsenic	0.00736 J	0.0497	mg/kg wet	0.00497		148			
Cadmium	0.00537 J	0.0996	mg/kg wet	0.00497		108			
Chromium	0.0364 J	0.298	mg/kg wet	0.0149		244			
Lead	0.00616 J	0.0497	mg/kg wet	0.00497		124			
Nickel	0.0145 J	0.0996	mg/kg wet	0.00497		292			
Silver	0.00298 J	0.0497	mg/kg wet	0.00249		120			
Thallium	0.00328 J	0.0497	mg/kg wet	0.00249		132			



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number:

Reported:

TCEQ-TOX T104704202-22-17

Houston, TX 77043 Project Manager: Gregg Pawlak

04/03/2023 14:08

## Quality Control (Continued)

#### **Metals, Total (Continued)**

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3233 - EPA 200.8 \$	Solid (Continued)								
MDL Check (BGA3233-MRL2)			Pr	epared: 1/25	5/2023 Analyze	ed: 2/1/2023	;		
Beryllium	0.00258 J	0.0199	mg/kg wet	0.000994		260			
Selenium	0.0960 J	0.199	mg/kg wet	0.0994		96.6			
Zinc	0.170 J	0.199	mg/kg wet	0.0994		171			
MDL Check (BGA3233-MRL3)			Pr	epared: 1/25	5/2023 Analyze	ed: 2/1/2023	;		
Copper	0.0831 J	0.0996	mg/kg wet	0.00994		836			
Matrix Spike (BGA3233-MS1)	Source:	23A1459-43	Pre	epared: 1/25,	/2023 Analyze	d: 1/31/202	3		
Antimony	1.05 J1	0.0489	mg/kg dry	4.88	<0.0489	21.5	75-125		
Arsenic	2.43	0.0244	mg/kg dry	2.44	0.295	87.5	75-125		
Cadmium	4.85	0.0489	mg/kg dry	4.88	0.00315	99.4	75-125		
Chromium	16.8	0.146	mg/kg dry	14.6	2.32	99.1	75-125		
Lead	4.85	0.0244	mg/kg dry	2.44	2.27	106	75-125		
Nickel	6.26	0.0489	mg/kg dry	4.88	1.64	94.7	75-125		
Silver	2.31	0.0244	mg/kg dry	2.44	< 0.0244	94.8	75-125		
Thallium	2.38	0.0244	mg/kg dry	2.44	0.0223	96.6	75-125		
Matrix Spike (BGA3233-MS2)	Source:	23A1459-43	Pr	epared: 1/25	5/2023 Analyze	ed: 2/1/2023	1		
Beryllium	1.25	0.00974	mg/kg dry	0.975	0.217	106	75-125		
Selenium	9.01	0.0974	mg/kg dry	9.75	0.377	88.5	75-125		
Zinc	13.1	0.0974	mg/kg dry	9.75	3.41	99.3	75-125		
Matrix Spike (BGA3233-MS3)	Source:	23A1459-43	Pr	epared: 1/25	5/2023 Analyze	ed: 2/1/2023	<b>;</b>		
Copper	5.86	0.0489	mg/kg dry	4.88	0.962	100	75-125		

Batch: BGA3813 - EPA 245.1

Blank (BGA3813-BLK1) Prepared & Analyzed: 1/30/2023

Mercury <0.200 U 0.200 ug/L





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result	Oual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·			Little			. toour	701120			
Batch: BGA3813 - EPA 245.1 (C	Lontinued)				_		/a.a./a.===			
LCS (BGA3813-BS1)						& Analyzed: 1,				
Mercury	5.05		0.200	ug/L	5.00		101	85-115		
Duplicate (BGA3813-DUP1)		Source: 2	23A1459-02		Prepared	& Analyzed: 1,	/30/2023			
Mercury	<0.200	U	0.200	ug/L		<0.200				20
MDL Check (BGA3813-MRL1)					Prepared	& Analyzed: 1,	/30/2023			
Mercury	<0.200	U	0.200	ug/L	0.100					
Matrix Spike (BGA3813-MS1)		Source: 2	23A1459-02		Prepared	& Analyzed: 1,	/30/2023			
Mercury	5.19		0.200	ug/L	5.00	<0.200	104	70-130		
Batch: BGA3843 - Cr VI										
					Propared: 1/2	0/2022 Apply	ed: 2/1/2022			
Blank (BGA3843-BLK1)	4.5-		1.00		Prepared: 1/3	u/2023 AlidiyZ	.eu. 2/1/2023	•		
Chromium (VI)	<1.96	<u>U</u>	1.96	mg/kg we	:L					
LCS (BGA3843-BS1)					Prepared: 1/3	0/2023 Analyz	ed: 2/1/2023			
Chromium (VI)	9.66		1.99	mg/kg we	t 9.96		97.0	80-120		
Duplicate (BGA3843-DUP1)		Source: 2	23A1459-16		Prepared: 1/3	0/2023 Analyz	ed: 2/1/2023			
Chromium (VI)	<2.68	U	2.68	mg/kg dry	1	0.150			200	20
Duplicate (BGA3843-DUP2)	_	Source: 2	23A1459-35		Prepared: 1/3	0/2023 Analyz	ed: 2/1/2023			
Chromium (VI)	0.480	J	2.71			1.23			87.8	20
MRL Check (BGA3843-MRL1)					Prepared: 1/3	0/2023 Analyz	ed: 2/1/2023			
Chromium (VI)	1.80	J	1.98	mg/kg we	t 1.98	•	90.9	50-150		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

## Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3843 - Cr VI (Contin	ued)									
SMS (BGA3843-MS1)	•	Source: 2	3A1459-16	Pre	epared: 1/30	)/2023 Analyz	ed: 2/1/2023	3		
Chromium (VI)	2.95	J1	2.69	mg/kg dry	13.4	0.150	20.9	75-125		
IMS (BGA3843-MS2)		Source: 2	3A1459-16	Pre	epared: 1/30	)/2023 Analyz	red: 2/1/2023	3		
Chromium (VI)	9.49	J1	2.69	mg/kg dry	1200	0.150	0.776	75-125		
PMS (BGA3843-PS1)		Source: 2	3A1459-16	Pre	epared: 1/30	)/2023 Analyz	ed: 2/1/2023	3		
Chromium (VI)	80.8	J1		ug/L	250	2.88	31.2	85-115		
Batala BCA2045 Call										
Batch: BGA3845 - Cr VI										
Blank (BGA3845-BLK1)					pared: 1/30	/2023 Analyze	ed: 1/31/202	3		
Chromium (VI)	<5.00	U	5.00	mg/kg wet						
LCS (BGA3845-BS1)				Pre	pared: 1/30	/2023 Analyze	ed: 1/31/202	3		
Chromium (VI)	9.40		5.00	mg/kg wet	9.88		95.1	80-120		
Duplicate (BGA3845-DUP1)		Source: 2	3A1459-36	Pre	pared: 1/30	/2023 Analyze	ed: 1/31/202	.3		
Chromium (VI)	3.02	J1, J	5.00	mg/kg dry		1.78			51.5	20
Duplicate (BGA3845-DUP2)		Source: 2	3A1459-60	Pre	pared: 1/30	/2023 Analyze	ed: 1/31/202	3		
Chromium (VI)	0.238	J	5.00	mg/kg dry		0.165			36.3	20
MRL Check (BGA3845-MRL1)				Pre	pared: 1/30	/2023 Analyze	ed: 1/31/202	3		
Chromium (VI)	1.75	J	5.00	mg/kg wet	2.00		87.7	50-150		
SMS (BGA3845-MS1)		Source: 2	3A1459-60	Pre	pared: 1/30	/2023 Analyze	ed: 1/31/202	3		
Chromium (VI)	11.3		5.00	mg/kg dry	12.3	0.165	90.9	75-125		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

<0.0190 U

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

#### **Metals, Total (Continued)**

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3845 - Cr VI (Continued	)									
IMS (BGA3845-MS2)		Source: 2	3A1459-60	Pre	epared: 1/30	/2023 Analyze	d: 1/31/202	.3		
Chromium (VI)	8.67	J1	5.00	mg/kg dry	1210	0.165	0.704	75-125		
PMS (BGA3845-PS1)		Source: 2	3A1459-60	Pre	epared: 1/30	/2023 Analyze	d: 1/31/202	13		
Chromium (VI)	272			ug/L	250	3.42	107	85-115		
Batch: BGA3912 - SW-7471										
MDL Check (BGA3912-MRL1)					Prepared 8	& Analyzed: 1/	31/2023			
Mercury	0.0124	J	0.0200	mg/kg wet	0.0100		124			
Matrix Spike (BGA3912-MS1)		Source: 2	3A1459-16		Prepared 8	& Analyzed: 1/	31/2023			
Mercury	0.267		0.0199	mg/kg dry	0.248	<0.0199	108	80-120		
Matrix Spike (BGA3912-MS2)		Source: 2	3A1459-30		Prepared 8	& Analyzed: 1/	31/2023			
Mercury	0.273		0.0199	mg/kg dry	0.249	<0.0199	110	80-120		
Matrix Spike Dup (BGA3912-MSD1)		Source: 2	3A1459-16		Prepared 8	& Analyzed: 1/	31/2023			
Mercury	0.236		0.0180	mg/kg dry	0.225	0.00962	100	80-120	12.4	20
Matrix Spike Dup (BGA3912-MSD2)		Source: 2	3A1459-30		Prepared 8	& Analyzed: 1/	31/2023			
Mercury	0.249		0.0182	mg/kg dry	0.228	< 0.0182	109	80-120	8.99	20

0.0190 mg/kg wet

Mercury





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0014 - SW-7471 (Contin	nued)									
Matrix Spike (BGB0014-MS1)	_	Source: 2	3A1459-43		Prepared	& Analyzed: 2	/1/2023			
Mercury	0.283		0.0200	mg/kg dry	0.250	0.0141	108	80-120		
Matrix Spike (BGB0014-MS2)		Source: 2	3A4064-01		Prepared	& Analyzed: 2	/1/2023			
Mercury	0.457		0.0295	mg/kg dry	0.369	0.158	80.9	80-120		
Matrix Spike Dup (BGB0014-MSD1)		Source: 2	3A1459-43		Prepared	& Analyzed: 2	/1/2023			
Mercury	0.283		0.0199	mg/kg dry	0.249	0.0141	108	80-120	0.0481	20
Matrix Spike Dup (BGB0014-MSD2)		Source: 2	3A4064-01		Prepared	& Analyzed: 2	/1/2023			
Mercury	0.424	J1	0.0295	mg/kg dry	0.369	0.158	72.0	80-120	7.43	20
Batch: BGB0820 - EPA 200.8 Solid										
Blank (BGB0820-BLK1)					Prepared	& Analyzed: 2	/7/2023			
Antimony	< 0.0960	U	0.0960	mg/kg wet			7 - 7			
Cadmium	< 0.0960		0.0960	mg/kg wet						
Chromium	<0.287		0.287	mg/kg wet						
Lead	< 0.0479		0.0479	mg/kg wet						
Nickel	< 0.0960	U	0.0960	mg/kg wet						
Silver	< 0.0479	U	0.0479	mg/kg wet						
Thallium	< 0.0479	U	0.0479	mg/kg wet						
Zinc	<0.191	U	0.191	mg/kg wet						
Blank (BGB0820-BLK3)				Pr	epared: 2/7	/2023 Analyze	ed: 2/8/2023			
Copper	0.0228	J	0.0960	mg/kg wet		•				
Selenium	< 0.191		0 101	mg/kg wet						



Terracon_Houston

Houston, TX 77043

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number:

Reported:

TCEQ-TOX T104704202-22-17

04/03/2023 14:08

Quality Control (Continued)

Project Manager: Gregg Pawlak

Analyte	Result (	Reportinç Qual Limi		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0820 - EPA 200.8	Solid (Continu	red)							
Blank (BGB0820-BLK4)	•	•	Р	repared: 2/7	/2023 Analyzed	d: 2/27/2023	3		
Arsenic	<0.0479 L	0.0479	mg/kg wet	,/-	, /	, ,			
Blank (BGB0820-BLK6)			P	repared: 2/7	/2023 Analyzeo	d: 2/27/2023	3		
Beryllium	<0.0191 U	0.019	mg/kg wet		,,,	, ,			
LCS (BGB0820-BS1)				Prepared	& Analyzed: 2	/7/2023			
Antimony	9.98	0.094	mg/kg wet	9.42	, , , , ,	106	85-115		
Cadmium	9.53	0.094		9.42		101	85-115		
Chromium	29.7		mg/kg wet	28.2		105	85-115		
Lead	5.00		mg/kg wet	4.71		106	85-115		
Nickel	9.58		mg/kg wet	9.42		102	85-115		
Silver	4.57		. mg/kg wet	4.71		97.0	85-115		
Thallium	5.05	0.047		4.71		107	85-115		
Zinc	19.4		mg/kg wet	18.8		103	85-115		
LCS (BGB0820-BS3)			F	repared: 2/7	7/2023 Analyze	d: 2/8/2023			
Copper	9.61	0.094	mg/kg wet	9.42		102	85-115		
Selenium	19.8	0.188	mg/kg wet	18.8		105	85-115		
LCS (BGB0820-BS4)			P	repared: 2/7	/2023 Analyzed	d: 2/27/2023	3		
Arsenic	5.40	0.047	. mg/kg wet	4.71		115	85-115		
LCS (BGB0820-BS6)			P	repared: 2/7	/2023 Analyzed	d: 2/27/2023	3		
Beryllium	1.94	0.0188	mg/kg wet	1.88		103	85-115		
Duplicate (BGB0820-DUP1)	S	ource: 23A1459-46		Prepared	& Analyzed: 2,	/7/2023			
Antimony	<0.0577 L	0.057	mg/kg dry		< 0.0577				20
Cadmium	0.0340 J		mg/kg dry		0.0336			1.08	20
Chromium	4.19	0.173	mg/kg dry		4.16			0.744	20
Lead	3.02	0.0288	mg/kg dry		2.94			2.54	20
Nickel	4.05 J	1 0.0577	mg/kg dry		5.00			21.0	20
Silver	0.00834 J	0.0288	mg/kg dry		0.00800			4.25	20
Thallium	0.0406	0.0288	mg/kg dry		0.0397			2.31	20
Zinc	11.0	0.11	mg/kg dry		10.2			8.18	20





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Antimonry 0.0349 J 0.0657 mg/kg dry <0.0657 200 20 20 Cadmium 0.215 J1 0.0657 mg/kg dry 0.125 52.7 20 Lead 10.4 0.164 mg/kg dry 9.78 5.73 20 Nickel 4.49 0.0657 mg/kg dry 9.78 5.73 20 Silver 0.0466 0.0328 mg/kg dry 0.0413 12.1 20 Thallium 0.0543 0.0328 mg/kg dry 0.0413 12.1 20 Thallium 0.0543 0.0328 mg/kg dry 0.0506 7.13 20 Zinc 64.6 J1 0.656 mg/kg dry 4.9.2 27.2 20 Zinc 64.6 J1 0.656 mg/kg dry 0.0506 7.13 20 Zinc 64.6 J1 0.656 mg/kg dry 0.0506 7.13 20 Zinc 64.6 J1 0.656 mg/kg dry 0.0506 7.13 20 Zinc 64.6 J1 0.0557 mg/kg dry 0.0506 7.13 20 Zinc 64.6 J1 0.0557 mg/kg dry 0.0506 7.13 20 Zinc 64.6 J1 0.0557 mg/kg dry 0.0506 7.13 20 Zinc 64.6 J1 0.0557 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0578 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 J1 0.0577 mg/kg dry 0.626 0.0627 20 Zinc 64.6 Zin	Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Antimony 0.0349 J 0.0657 mg/kg dry <0.0657 200 20 Cadmium 0.215 11 0.0657 mg/kg dry 0.125 52.7 20 Lead 10.4 0.164 mg/kg dry 0.125 52.7 20 Silver 10.4 0.0657 mg/kg dry 1.61 2.73 20 Silver 0.0466 0.0328 mg/kg dry 0.0413 12.1 20 Thallium 0.0543 0.0328 mg/kg dry 0.0413 12.1 20 Thallium 0.0543 0.0328 mg/kg dry 0.0506 7.13 20 Thallium 0.0543 0.0545 mg/kg dry 0.0506 7.13 20 Thallium 0.0547 0.115 mg/kg dry 0.0506 7.13 20 Thallium 0.0527 0.115 mg/kg dry 0.626 0.0627 20 Thallium 0.0527 0.115 mg/kg dry 0.626 0.0627 20 Thallium 0.0547 0.115 mg/kg dry 0.626 0.0627 20 Thallium 0.0547 0.115 mg/kg dry 0.626 0.0627 20 Thallium 0.0547 0.0567 mg/kg dry 0.626 0.0627 0.0567 mg/kg dry 0.0568 0.0627 0.0628 0.0627 0.0567 mg/kg dry 0.0568 0.06	Batch: BGB0820 - EPA 200.8 S	Solid (Contin	ued)			·				·	·
Cadmium   0.215   11   0.0657   mg/kg dry   0.125   52.7   20     Lead   10.4   0.164   mg/kg dry   9.78   5.33   20     Nickel   4.49   0.0657   mg/kg dry   9.78   5.33   20     Nickel   0.0466   0.0328   mg/kg dry   0.0413   12.1   20     Thallium   0.0543   0.0328   mg/kg dry   0.0506   7.13   20     Thallium   0.0543   0.0557   mg/kg dry   4.9.2   27.2   20     Duplicate (BGB0820-DUP5)   Source: 23A1459-46   Prepared: 2/7/2023 Analyzed: 2/8/2023     Duplicate (BGB0820-DUP6)   Source: 23A3576-36   Prepared: 2/7/2023 Analyzed: 2/8/2023     Duplicate (BGB0820-DUP7)   Source: 23A1459-46   Prepared: 2/7/2023 Analyzed: 2/27/2023 Analyzed: 2/2	Duplicate (BGB0820-DUP2)		Source: 2	23A3576-36		Prepared	& Analyzed: 2	/7/2023			
Lead	Antimony	0.0349	J	0.0657	mg/kg dry		< 0.0657			200	20
Nickel 4.49 0.0657 mg/kg dry 4.61 2.73 20 Silver 0.0466 0.0328 mg/kg dry 0.0413 12.1 20 Thallium 0.0543 0.0328 mg/kg dry 0.0506 7.13 20 Zinc 64.6 11 0.656 mg/kg dry 0.0506 7.13 20  Duplicate (BGB0820-DUP5) Source: 23A1459-46 Prepared: 2/7/2023 Analyzed: 2/8/2023  Duplicate (BGB0820-DUP6) Source: 23A3576-36 Prepared: 2/7/2023 Analyzed: 2/8/2023  Duplicate (BGB0820-DUP7) Source: 23A1459-46 Prepared: 2/7/2023 Analyzed: 2/27/2023  Arsenic 1.73 0.028 mg/kg dry 1.71 1.14 20  Duplicate (BGB0820-DUP8) Source: 23A3576-36 Prepared: 2/7/2023 Analyzed: 2/27/2023  Arsenic 2.61 0.164 mg/kg dry 2.49 4.69 20  Duplicate (BGB0820-DUPB) Source: 23A1459-46 Prepared: 2/7/2023 Analyzed: 2/27/2023  Beryllium 0.22 0.0575 mg/kg dry 0.224 0.906 20  Duplicate (BGB0820-DUPC) Source: 23A3576-36 Prepared: 2/7/2023 Analyzed: 2/27/2023  Duplicate (BGB0820-DUPB) Prepared: 2/7/2023 Analyzed: 2/27/2023	Cadmium	0.215	J1	0.0657	mg/kg dry		0.125			52.7	20
Silver         0.0466         0.0328         mg/kg dry         0.0413         12.1         20           Thallium         0.0543         0.0328         mg/kg dry         0.0506         7.13         20           Zinc         64.6         31         0.656         mg/kg dry         49.2         27.2         20           Duplicate (BGB0820-DUP5)         Source: 23A1459-46         Prepared: 2/7/2023 Analyzed: 2/8/2023           Copper         3.12         31         0.0577         mg/kg dry         4.44         35.1         20           Selenium         5.32         0.115         mg/kg dry         0.626         0.0627         20           Duplicate (BGB0820-DUP6)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/8/2023           Chromium         5.33         0.197         mg/kg dry         5.52         3.55         20           Copper         10.0         0.0657         mg/kg dry         9.88         1.24         20           Selenium         1.10         0.0131         mg/kg dry         1.71         1.14         20           Duplicate (BGB0820-DUP8)         Source: 23A1459-46         Prepared: 2/7/2023 Analyzed: 2/27/2023	Lead	10.4		0.164	mg/kg dry		9.78			5.73	20
Thallium	Nickel	4.49		0.0657	mg/kg dry		4.61			2.73	20
Duplicate (BGB0820-DUP5)   Source: 23A1459-46   Prepared: 2/7/2023 Analyzed: 2/8/2023   27.2   20	Silver	0.0466		0.0328	mg/kg dry		0.0413			12.1	20
Duplicate (BGB0820-DUP5)   Source: 23A1459-46   Prepared: 2/7/2023 Analyzed: 2/8/2023   3.12   31   0.0577   mg/kg dry   4.44   35.1   20   20   20	Thallium	0.0543		0.0328	mg/kg dry		0.0506			7.13	20
Copper Selenium         3.12 J1 0.0577 mg/kg dry 0.626         4.44 35.1 20 0.627         20           Duplicate (BGB0820-DUP6)         Source: 23A3576-36 chromium 5.33 0.197 mg/kg dry 9.88 1.24 20 0.0627         Prepared: 2/7/2023 Analyzed: 2/8/2023         20           Copper 10.0 copper 11.0 copper 20.0 copper 11.0 c	Zinc	64.6	J1	0.656	mg/kg dry		49.2			27.2	20
Selenium         0.627         0.115 mg/kg dry         0.626         0.0627         20           Duplicate (BGB0820-DUP6)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/8/2023         Prepared: 2/7/2023 Analyzed: 2/8/2023         20           Chromium         5.33         0.197 mg/kg dry         5.52         3.55         20           Copper         10.0         0.0657 mg/kg dry         9.88         1.24         20           Selenium         1.10         0.131 mg/kg dry         1.13         3.01         20           Duplicate (BGB0820-DUP7)         Source: 23A1459-46 mg/kg dry         Prepared: 2/7/2023 Analyzed: 2/27/2023         1.14         20           Duplicate (BGB0820-DUP8)         Source: 23A3576-36 mg/kg dry         Prepared: 2/7/2023 Analyzed: 2/27/2023         4.69         20           Duplicate (BGB0820-DUPB)         Source: 23A1459-46 mg/kg dry         Prepared: 2/7/2023 Analyzed: 2/27/2023         4.69         20           Duplicate (BGB0820-DUPC)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023         0.906         20           Duplicate (BGB0820-DUPC)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023         0.906         20	Duplicate (BGB0820-DUP5)		Source: 2	23A1459-46	Р	repared: 2/7	//2023 Analyze	ed: 2/8/2023			
Duplicate (BGB0820-DUP6)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/8/2023           Chromium         5.33         0.197 mg/kg dry         5.52         3.55         20           Copper         10.0         0.0657 mg/kg dry         9.88         1.24         20           Selenium         1.10         0.131 mg/kg dry         1.13         3.01         20           Duplicate (BGB0820-DUP7)         Source: 23A1459-46         Prepared: 2/7/2023 Analyzed: 2/27/2023           Arsenic         1.73         0.0288 mg/kg dry         1.71         1.14         20           Duplicate (BGB0820-DUP8)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023           Arsenic         2.61         0.164 mg/kg dry         2.49         4.69         20           Duplicate (BGB0820-DUPB)         Source: 23A1459-46         Prepared: 2/7/2023 Analyzed: 2/27/2023           Beryllium         0.222         0.0575 mg/kg dry         0.224         0.906         20           Duplicate (BGB0820-DUPC)           Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023	Copper	3.12	J1	0.0577	mg/kg dry		4.44			35.1	20
Chromium         5.33         0.197 mg/kg dry         5.52         3.55 20         20 copper           Selenium         10.0 0.0657 mg/kg dry         9.88 1.24 20         1.24 20         20           Selenium         1.10 0.131 mg/kg dry         1.13 3.01 20         3.01 20           Duplicate (BGB0820-DUP7)         Source: 23A1459-46 Prepared: 2/7/2023 Analyzed: 2/27/2023 Analyzed	Selenium	0.627		0.115	mg/kg dry		0.626			0.0627	20
Copper         10.0         0.0657 mg/kg dry         9.88         1.24 20         20           Selenium         1.10         0.131 mg/kg dry         1.13         3.01 20         20           Duplicate (BGB0820-DUP7)         Source: 23A1459-46 mg/kg dry         Prepared: 2/7/2023 Analyzed: 2/27/2023         2/27/2023           Arsenic         1.73         0.0288 mg/kg dry         9.88 mg/kg dry         1.13         3.01 20           Duplicate (BGB0820-DUP8)         Source: 23A3576-36 mg/kg dry         Prepared: 2/7/2023 Analyzed: 2/27/2023         4.69 20           Duplicate (BGB0820-DUPB)         Source: 23A1459-46 mg/kg dry         Prepared: 2/7/2023 Analyzed: 2/27/2023         4.69 20           Duplicate (BGB0820-DUPC)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023         0.906 20	Duplicate (BGB0820-DUP6)		Source: 2	23A3576-36	P	repared: 2/7	//2023 Analyze	ed: 2/8/2023			
Selenium         1.10         0.131         mg/kg dry         1.13         3.01         20           Duplicate (BGB0820-DUP7)         Source: 23A1459-46         Prepared: 2/7/2023 Analyzed: 2/27/2023         Prepared: 2/7/2023 Analyzed:	Chromium	5.33		0.197	mg/kg dry		5.52			3.55	20
Duplicate (BGB0820-DUP7)         Source: 23A1459-46         Prepared: 2/7/2023 Analyzed: 2/27/2023           Arsenic         1.73         0.0288 mg/kg dry         1.71         1.14         20           Duplicate (BGB0820-DUP8)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023         Prepared: 2/7/2023 Analyzed: 2/27/2023           Arsenic         2.61         0.164 mg/kg dry         2.49         4.69         20           Duplicate (BGB0820-DUPB)         Source: 23A1459-46 mg/kg dry         Prepared: 2/7/2023 Analyzed: 2/27/2023 Analyzed: 2/27/2023         Prepared: 2/7/2023 Analyzed: 2/27/2023           Beryllium         0.222         0.0575 mg/kg dry         0.224         0.906         20           Duplicate (BGB0820-DUPC)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023	Copper	10.0		0.0657	mg/kg dry		9.88			1.24	20
Arsenic 1.73 0.0288 mg/kg dry 1.71 1.14 20  Duplicate (BGB0820-DUP8) Source: 23A3576-36 Prepared: 2/7/2023 Analyzed: 2/27/2023 Arsenic 2.61 0.164 mg/kg dry 2.49 4.69 20  Duplicate (BGB0820-DUPB) Source: 23A1459-46 Prepared: 2/7/2023 Analyzed: 2/27/2023 Beryllium 0.222 0.0575 mg/kg dry 0.224 0.906 20  Duplicate (BGB0820-DUPC) Source: 23A3576-36 Prepared: 2/7/2023 Analyzed: 2/27/2023	Selenium	1.10		0.131	mg/kg dry		1.13			3.01	20
Duplicate (BGB0820-DUP8)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023           Arsenic         2.61         0.164         mg/kg dry         2.49         4.69         20           Duplicate (BGB0820-DUPB)         Source: 23A1459-46         Prepared: 2/7/2023 Analyzed: 2/27/2023         Prepared: 2/7/2023 Analyzed: 2/27/2023           Duplicate (BGB0820-DUPC)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023	Duplicate (BGB0820-DUP7)		Source: 2	23A1459-46	Pr	epared: 2/7/	/2023 Analyze	d: 2/27/2023			
Arsenic 2.61 0.164 mg/kg dry 2.49 4.69 20  Duplicate (BGB0820-DUPB) Source: 23A1459-46 Prepared: 2/7/2023 Analyzed: 2/27/2023  Beryllium 0.222 0.0575 mg/kg dry 0.224 0.906 20  Duplicate (BGB0820-DUPC) Source: 23A3576-36 Prepared: 2/7/2023 Analyzed: 2/27/2023	Arsenic	1.73		0.0288	mg/kg dry		1.71			1.14	20
Duplicate (BGB0820-DUPB)         Source: 23A1459-46         Prepared: 2/7/2023 Analyzed: 2/27/2023           Beryllium         0.222         0.0575         mg/kg dry         0.224         0.906         20           Duplicate (BGB0820-DUPC)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023	Duplicate (BGB0820-DUP8)		Source: 2	23A3576-36	Pr	epared: 2/7/	/2023 Analyze	d: 2/27/2023			
Beryllium         0.222         0.0575         mg/kg dry         0.224         0.906         20           Duplicate (BGB0820-DUPC)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023	Arsenic	2.61		0.164	mg/kg dry		2.49			4.69	20
Duplicate (BGB0820-DUPC)         Source: 23A3576-36         Prepared: 2/7/2023 Analyzed: 2/27/2023	Duplicate (BGB0820-DUPB)		Source: 2	23A1459-46	Pr	epared: 2/7/	/2023 Analyze	d: 2/27/2023			
	Beryllium	0.222		0.0575	mg/kg dry		0.224			0.906	20
• • •	Duplicate (BGB0820-DUPC)		Source: 2	23A3576-36	Pr	epared: 2/7/	/2023 Analyze	d: 2/27/2023			
		0.462		0.0656	mg/kg dry		0.484			4.73	20





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analida		0	Reporting	11.2	Spike	Source	0/550	%REC	P.00	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0820 - EPA 200.8 S	olid (Contin	ued)								
MDL Check (BGB0820-MRL1)	-	=			Prepared 8	& Analyzed: 2/	′7/2023			
Antimony	0.0474	J	0.0947	mg/kg wet	0.0473		100			
Cadmium	0.00435	J	0.0947	mg/kg wet	0.00473		92.0			
Chromium	0.0175	J	0.284	mg/kg wet	0.0142		123			
Lead	0.00567	J	0.0472	mg/kg wet	0.00473		120			
Nickel	0.0173	J	0.0947	mg/kg wet	0.00473		366			
Silver	0.00331	J	0.0472	mg/kg wet	0.00236		140			
Thallium	0.00246	J	0.0472	mg/kg wet	0.00236		104			
Zinc	0.145	J	0.189	mg/kg wet	0.0945		153			
MDL Check (BGB0820-MRL3)				P	repared: 2/7/	2023 Analyze	d: 2/8/2023			
Copper	0.0368	J	0.0947		0.00945	•	389			
Selenium	0.0942		0.189	mg/kg wet	0.0945		99.7			
MDL Check (BGB0820-MRL4)				Pr	epared: 2/7/2	2023 Analyzed	l: 2/27/2023			
Arsenic	0.00350	J	0.0472	mg/kg wet	0.00473		74.0			
MDL Check (BGB0820-MRL6)				—— Pr	epared: 2/7/2	2023 Analyzed	l: 2/27/2023			
Beryllium	0.00104	J	0.0189	mg/kg wet	0.000945	· 	110			
Matrix Spike (BGB0820-MS1)		Source: 2	3A1459-46		Prepared 8	& Analyzed: 2/	7/2023			
Antimony	2.78	J1	0.286	mg/kg dry	5.71	<0.286	48.6	75-125		
Cadmium	5.47		0.286	mg/kg dry	5.71	0.0336	95.2	75-125		
Chromium	18.7		0.171	mg/kg dry	17.1	4.16	85.0	75-125		
Lead	5.52		0.0286	mg/kg dry	2.86	2.94	90.2	75-125		
Nickel	8.75	J1	0.0572	mg/kg dry	5.71	5.00	65.6	75-125		
Silver	2.64		0.0286	mg/kg dry	2.86	0.00800	92.0	75-125		
Thallium	2.51		0.0286	mg/kg dry	2.86	0.0397	86.6	75-125		
Zinc	20.4		0.114	mg/kg dry	11.4	10.2	89.8	75-125		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
lid (Continued)								
•	23A3576-36		Prepared	& Analyzed: 2/	7/2023			
		mg/ka drv	6.41	<0.0642	24.3	75-125		
	0.0642		6.41	0.125	106	75-125		
13.0	0.160	mg/kg dry	3.20	9.78	99.6	75-125		
10.2		mg/kg dry	6.41	4.61	87.1	75-125		
3.41	0.0320	mg/kg dry	3.20	0.0413	105	75-125		
2.93	0.0320	mg/kg dry	3.20	0.0506	89.8	75-125		
64.6	0.640	mg/kg dry	12.8	49.2	121	75-125		
Source:	23A1459-46	Pr	epared: 2/7	/2023 Analyze	d: 2/8/2023			
7.42 J1	0.0572	mg/kg dry	5.71	4.44	52.2	75-125		
9.13 J1			11.4	0.626	74.5	75-125		
Source:	23A3576-36	Pr	epared: 2/7	/2023 Analyzed	d: 2/8/2023			
24.8	0.961	mg/kg dry	19.2	5.52	100	75-125		
17.6	0.321	mg/kg dry	6.41	9.88	121	75-125		
10.5 J1	0.640	mg/kg dry	12.8	1.13	72.8	75-125		
Source:	23A1459-46	Pre	epared: 2/7/	'2023 Analyzed	l: 2/27/2023	_		
4.71	0.0286	mg/kg dry	2.86	1.71	105	75-125		
Source:	23A3576-36	Pre	epared: 2/7/	'2023 Analyzed	l: 2/27/2023			
5.57	0.0320		3.20	2.49	96.2	75-125		
Source:	23A1459-46	Pre	epared: 2/7/	'2023 Analyzed	l: 2/27/2023			
1.24	0.0571	mg/kg dry	1.14	0.224	89.0	75-125		
Source:	23A3576-36	Pre	epared: 2/7/	'2023 Analyzed	l: 2/27/2023			
1.89			1.28	0.484	110	75-125		
	Source: 24.8 17.6 10.5 17.6 19.13 19.13 11 Source: 24.8 17.6 10.5 11 Source: 4.71 Source: 5.57 Source: 5.57 Source: 5.57 Source: 5.57	Result         Qual         Limit           Jid (Continued)           Source:         23A3576-36           1.56         J1         0.0642           6.90         0.0642         0.0642           13.0         0.0320         0.0320           2.93         0.0320         0.640           Source:         23A1459-46           7.42         J1         0.0572           9.13         J1         0.114           Source:         23A3576-36           24.8         0.961         0.321           10.5         J1         0.640           Source:         23A1459-46           4.71         0.0286           5.57         0.0320           Source:         23A1459-46           1.24         0.0571           Source:         23A1459-46           1.24         0.0571	Result   Qual   Limit   Units	Result   Qual   Limit   Units   Level	Result   Qual   Limit   Units   Level   Result	Result   Qual   Limit   Units   Level   Result   %REC	Result   Qual   Limit   Units   Level   Result   %REC   Limits	Result   Qual   Limit   Units   Level   Result   %REC   Limits   RPD





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB1025 - SW-7471										
MDL Check (BGB1025-MRL1)					Prepared	& Analyzed: 2	2/8/2023			
Mercury	<0.0191	U	0.0191	mg/kg wet	0.00955					
Matrix Spike (BGB1025-MS1)		Source: 2	23A4081-01		Prepared	& Analyzed: 2	2/8/2023			
Mercury	0.768		0.0481	mg/kg dry	0.601	0.255	85.4	80-120		
Matrix Spike (BGB1025-MS2)		Source: 2	23B0969-01		Prepared	& Analyzed: 2	2/8/2023			
Mercury	0.422	J1	0.0312	mg/kg dry	0.389	0.203	56.3	80-120		
Matrix Spike Dup (BGB1025-MSD1)		Source: 2	23A4081-01		Prepared	& Analyzed: 2	2/8/2023			
Mercury	0.724	J1	0.0480	mg/kg dry	0.600	0.255	78.2	80-120	5.95	20
Matrix Spike Dup (BGB1025-MSD2)		Source: 2	23B0969-01		Prepared	& Analyzed: 2	2/8/2023			
Mercury	0.417	J1	0.0312	mg/kg dry	0.389	0.203	55.1	80-120	1.04	20
Batch: BGB1605 - EPA 200.8										
Blank (BGB1605-BLK1)				P	repared: 2/10	/2023 Analyze	ed: 2/22/202	3		
Selenium	<2.00	U	2.00	ug/L	•	,				
LCS (BGB1605-BS1)				P	repared: 2/10	/2023 Analyze	ed: 2/22/202	3		
Selenium	213		2.00	ug/L	200		107	85-115		
Duplicate (BGB1605-DUP1)		Source: 2	23A1459-05	P	repared: 2/10	/2023 Analyze	ed: 2/22/202	3		
Selenium	<10.0	U	10.0	ug/L		<10.0				20
Duplicate (BGB1605-DUP2)		Source: 2	23A3576-02	P	repared: 2/10	/2023 Analyze	ed: 2/24/202	3		
Selenium	0.737	J	2.00	ug/L		0.668			9.82	20





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

lyzed: 2/24/202 lyzed: 2/24/202			
lyzed: 2/24/202	 !3		
lyzed: 2/24/202	23		
	-		
lyzed: 2/22/202	23		
lyzed: 2/22/202	.3		
	75-125		
lyzed: 2/24/202	23		
111	75-125		
. 2/24/2023			
. 2,2 1,2023			
: 2/24/2023			
103	80-120		
: 2/24/2023			
· ·		200	20
: 2/24/2023			
. ,		17.3	20
	lyzed: 2/22/202 105 lyzed: 2/24/202 111 :: 2/24/2023 :: 2/24/2023 103	lyzed: 2/24/2023 111 75-125 1: 2/24/2023 1: 2/24/2023 103 80-120 1: 2/24/2023	lyzed: 2/22/2023 105 75-125 lyzed: 2/24/2023 111 75-125 l: 2/24/2023 103 80-120 l: 2/24/2023 200





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB3245 - Cr VI (Continued)										
MRL Check (BGB3245-MRL1)					Prepared 8	& Analyzed: 2,	/24/2023			
Chromium (VI)	2.47	J	5.00	mg/kg wet	1.99		124	50-150		
SMS (BGB3245-MS1)		Source: 2	3A1459-66		Prepared 8	& Analyzed: 2,	/24/2023			
Chromium (VI)	<5.00	J1, U	5.00	mg/kg dry	13.2	0.144	NR	75-125		
IMS (BGB3245-MS2)		Source: 2	3A1459-66		Prepared 8	& Analyzed: 2,	/24/2023			
Chromium (VI)	5.62	J1	5.00	mg/kg dry	1440	0.144	0.381	75-125		
PMS (BGB3245-PS1)		Source: 2	3A1459-66		Prepared 8	& Analyzed: 2,	/24/2023			
Chromium (VI)	2.30	J1		ug/L	250	2.73	NR	85-115		
Batch: BGB3632 - EPA 200.8 Blank (BGB3632-BLK1)					Prepared: 2/2	4/2023 Analyz	ed: 3/1/2023	3		
Selenium	<2.00	U	2.00	ug/L						
LCS (BGB3632-BS1)				F	Prepared: 2/24	4/2023 Analyz	ed: 3/1/2023	3		
Selenium	204		2.00	ug/L	200		102	85-115		
Duplicate (BGB3632-DUP1)		Source: 2	3A1459-13	F	Prepared: 2/24	4/2023 Analyz	ed: 3/1/2023	3		
Selenium	<10.0	U	10.0	ug/L		<10.0				20
MRL Check (BGB3632-MRL1)				F	Prepared: 2/2	4/2023 Analyz	ed: 3/1/2023	3		
Selenium	0.320	J	2.00	ug/L	0.330		97.0			
Matrix Spike (BGB3632-MS1)		Source: 2	3A1459-13	F	Prepared: 2/2	4/2023 Analyz	ed: 3/1/2023	3		
Selenium	989		10.0	ug/L	1000	<10.0	98.9	75-125		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: SGA0369 - BGA3325									
Interference Check A (SGA0369-IFA1)				Prepared 8	k Analyzed: 1/	'30/2023			
Antimony	0.183		ug/L				70-130		
Arsenic	0.328		ug/L				70-130		
Beryllium	0.00200		ug/L				70-130		
Lead	0.448		ug/L				70-130		
Silver	0.0750		ug/L				70-130		
Zinc	1.60		ug/L				70-130		
Interference Check B (SGA0369-IFB1)				Prepared 8	k Analyzed: 1/	30/2023			
Antimony	93.3		ug/L	100		93.3	70-130		
Arsenic	48.8		ug/L	50.0		97.5	70-130		
Beryllium	16.3		ug/L	20.0		81.6	70-130		
Lead	40.1		ug/L	50.0		80.1	70-130		
Silver	42.5		ug/L	50.0		85.1	70-130		
Zinc	169		ug/L	200		84.5	70-130		
Batch: SGA0382 - BGA3325									
Interference Check A (SGA0382-IFA1)				Propared 0	k Analyzed: 1/	31/2022			
Cadmium	0.400		ug/l	i icpaicu e	k milalyzcu. 1/	J1/202J	70-130		
Chromium	0.409 1.26		ug/L ug/L				70-130 70-130		
Copper	1.26 0.977		ug/L ug/L				70-130 70-130		
Selenium	0.9// 0.224		ug/L ug/L				70-130 70-130		
Thallium	0.224		ug/L ug/L				70-130 70-130		
manum	0.00500						.0-130		
Interference Check B (SGA0382-IFB1)					k Analyzed: 1/	=			
Cadmium	91.8		ug/L	100		91.8	70-130		
Chromium	274		ug/L	300		91.3	70-130		
Copper	89.1		ug/L	100		89.1	70-130		
Selenium	190		ug/L	200		95.0	70-130		
Thallium	45.7		ug/L	50.0		91.5	70-130		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: SGA0395 - BGA3325									
Interference Check A (SGA0395-IFA1)				Prepared 8	& Analyzed: 1/	'31/2023			
Antimony	0.163		ug/L				70-130		
Arsenic	0.269		ug/L				70-130		
Cadmium	0.366		ug/L				70-130		
Chromium	1.26		ug/L				70-130		
Lead	0.442		ug/L				70-130		
Nickel	0.837		ug/L				70-130		
Silver	0.0790		ug/L				70-130		
Thallium	0.0100		ug/L				70-130		
Interference Check B (SGA0395-IFB1)				Prepared 8	& Analyzed: 1/	31/2023			
Antimony	99.6		ug/L	100		99.6	70-130		
Arsenic	50.4		ug/L	50.0		101	70-130		
Cadmium	94.7		ug/L	100		94.7	70-130		
Chromium	288		ug/L	300		96.0	70-130		
Lead	46.8		ug/L	50.0		93.5	70-130		
Nickel	88.4		ug/L	100		88.4	70-130		
Silver	44.7		ug/L	50.0		89.3	70-130		
Thallium	47.0		ug/L	50.0		94.0	70-130		
Batch: SGB0004 - BGA3233									
Interference Check A (SGB0004-IFA1)				Prepared a	& Analyzed: 2	/1/2023			
Arsenic	0.281		ug/L				70-130		
Beryllium	0.00800		ug/L				70-130		
Lead	0.493		ug/L				70-130		
Selenium	0.170		ug/L				70-130		
Zinc	1.33		ug/L				70-130		



11555 Clay Road

Houston, TX 77043

Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

**Reported:** 04/03/2023 14:08

Project Manager: Gregg Pawlak

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: SGB0004 - BGA3233 (	(Continued)								
Interference Check B (SGB0004-IF	B1)			Prepared	& Analyzed: 2	/1/2023			
Arsenic	50.7		ug/L	50.0		101	70-130		
Beryllium	18.1		ug/L	20.0		90.3	70-130		
Lead	48.8		ug/L	50.0		97.5	70-130		
Selenium	200		ug/L	200		100	70-130		
Zinc	184		ug/L	200		92.1	70-130		
Batch: SGB0011 - BGA3233									
Interference Check A (SGB0011-IF	A1)			Prepared	& Analyzed: 2	/1/2023			
Copper	0.676		ug/L				70-130		
Interference Check B (SGB0011-IF	·B1)			Prepared	& Analyzed: 2	/1/2023			
Copper	93.3		ug/L	100		93.3	70-130		
Batch: SGB0018 - BGA3233									
Interference Check A (SGB0018-IF	A1)			Prepared	& Analyzed: 2	/1/2023			
Copper	0.602		ug/L	·	•		70-130		
Interference Check B (SGB0018-IF	B1)			Prepared	& Analyzed: 2	/1/2023			
Copper	93.8		ug/L	100		93.8	70-130		
Batch: SGB0094 - BGB0820									
Interference Check A (SGB0094-IF	:Δ1)			Prepared	& Analyzed: 2	/7/2023			
Antimony	0.135		ug/L		,	, ,	70-130		
Cadmium	0.440		ug/L				70-130		
Chromium	1.18		ug/L				70-130		
Lead	0.479		ug/L				70-130		
Nickel	0.902		ug/L				70-130		
Silver	0.0870		ug/L				70-130		
Thallium	0.00300		ug/L				70-130		
Zinc	1.17		ug/L				70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

		Reporting	Spike	Source	%REC		RPD
Analyte	Result Qual	Limit Units	Level	Result %REC	Limits	RPD	Limit
Batch: SGB0094 - BGB08	320 (Continued)						
Interference Check B (SGB009	= = = = = = = = = = = = = = = = = = =		Prepared	& Analyzed: 2/7/2023			
Antimony	102	ug/L	100	102	70-130		
Cadmium	96.6	ug/L	100	96.6	70-130		
Chromium	283	ug/L	300	94.4	70-130		
Lead	47.2	ug/L	50.0	94.5	70-130		
Nickel	86.9	ug/L	100	86.9	70-130		
Silver	47.2	ug/L	50.0	94.4	70-130		
Thallium	45.8	ug/L	50.0	91.6	70-130		
Zinc	176	ug/L	200	88.1	70-130		
Interference Check A (SGB010	06-IFA1)		Prepared	& Analyzed: 2/8/2023			
			Prepared	& Analyzed: 2/8/2023			
Chromium Copper	1.15	ug/L			70-130 70-130		
Selenium	0.273	ug/L					
Selenium							
	0.358	ug/L			70-130		
Interference Check B (SGB010		ug/L	Prepared	& Analyzed: 2/8/2023			
Interference Check B (SGB010 Chromium		ug/L	Prepared 300	& Analyzed: 2/8/2023 95.6			
•	06-IFB1)	<del>-</del>	•	, , ,	70-130		
Chromium	<b>06-IFB1)</b> 287	ug/L	300	95.6	70-130 70-130		
Chromium Copper Selenium	<b>06-IFB1)</b> 287 89.9 196	ug/L ug/L	300 100	95.6 89.9	70-130 70-130 70-130		
Chromium Copper	287 89.9 196	ug/L ug/L	300 100 200	95.6 89.9	70-130 70-130 70-130		



Reported:



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number:

Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: SGB0325 - BGB1605 (Conti	inued)								
Interference Check B (SGB0325-IFB1)	/			Prepared 8	& Analyzed: 2/	22/2023			
Selenium	194		ug/L	200	, 200. 2/	97.2	70-130		
Batch: SGB0332 - BGB1605									
Interference Check A (SGB0332-IFA1)				Prepared &	& Analyzed: 2/	22/2023			
Selenium	0.0760		ug/L				70-130		
Interference Check B (SGB0332-IFB1)				Prepared 8	& Analyzed: 2/	22/2023			
Selenium	203		ug/L	200	. ,	102	70-130		
Batch: SGB0385 - BGB1605 Interference Check A (SGB0385-IFA1) Selenium	0.168		ug/L	Prepared &	& Analyzed: 2/	24/2023	70-130		
Interference Check B (SGB0385-IFB1)				Prepared 8	& Analyzed: 2/	24/2023			
Selenium	178		ug/L	200		89.2	70-130		
Batch: SGB0390 - BGB0820									
Interference Check A (SGB0390-IFA1)				Prepared 8	& Analyzed: 2/	27/2023			
Arsenic	0.0940		ug/L				70-130		
Interference Check B (SGB0390-IFB1)				Prepared 8	& Analyzed: 2/	27/2023			
Arsenic	52.0		ug/L	50.0	,	104	70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: SGB0401 - BGB0820									
Interference Check A (SGB0401-IFA1)				Prepared 8	k Analyzed: 2/	27/2023			
Beryllium	0.00300		ug/L				70-130		
Interference Check B (SGB0401-IFB1)				Prepared 8	& Analyzed: 2/	27/2023			
Beryllium	19.1		ug/L	20.0		95.4	70-130		
Batch: SGC0003 - BGB3632									
Interference Check A (SGC0003-IFA1)				Prepared	& Analyzed: 3	/1/2023			
Selenium	0.0760		ug/L				70-130		
Interference Check B (SGC0003-IFB1)				Prepared	& Analyzed: 3	/1/2023			
Selenium	199		ug/L	200		99.7	70-130		



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Houston, TX 77043

Project Manager: Gregg Pawlak

Project Number:

Reported:

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

# Quality Control (Continued)

#### Metals, Dissolved

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0721 - EPA 200.	.8 Dissolved									
Blank (BGB0721-BLK1)					Prepared: 2/6,	/2023 Analyze	d: 2/8/2023			
Arsenic	<0.500	U	0.500	ug/L						
Chromium	<3.00		3.00	ug/L						
Copper	0.422	J	1.00	ug/L						
Lead	<0.500	U	0.500	ug/L						
Nickel	<1.00	U	1.00	ug/L						
Silver	<0.500	U	0.500	ug/L						
Thallium	<0.500	U	0.500	ug/L						
Blank (BGB0721-BLK2)					Prepared: 2/6	/2023 Analyze	d: 2/9/2023			
Antimony	<1.00	U	1.00	ug/L		•	•			
, Cadmium	<1.00		1.00	ug/L						
Zinc	<2.00		2.00	ug/L						
Blank (BGB0721-BLK3)					Prepared: 2/6/	2023 Analyzed	1: 2/14/2023			
Beryllium	<0.200	U	0.200	ug/L						
LCS (BGB0721-BS1)					Prepared: 2/6,	/2023 Analyze	d: 2/8/2023			
Arsenic	49.6		0.500	ug/L	50.0	•	99.2	85-115		
Chromium	295		3.00	ug/L	300		98.2	85-115		
Copper	104		1.00	ug/L	100		104	85-115		
Lead	51.0		0.500	ug/L	50.0		102	85-115		
Nickel	98.0		1.00	ug/L	100		98.0	85-115		
Silver	53.7		0.500	ug/L	50.0		107	85-115		
Thallium	48.9		0.500	ug/L	50.0		97.7	85-115		
LCS (BGB0721-BS2)					Prepared: 2/6	/2023 Analyze	d: 2/9/2023			
Antimony	93.4		1.00	ug/L	100	•	93.4	85-115		
Cadmium	100		1.00	ug/L	100		100	85-115		
Zinc	204		2.00	ug/L	200		102	85-115		



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Houston, TX 77043

Project Manager: Gregg Pawlak

Reported:

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

# Quality Control (Continued)

Project Number:

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0721 - EPA 200.8 L	Dissolved (Co	ntinuea	<u>, , , , , , , , , , , , , , , , , , , </u>							
LCS (BGB0721-BS3)	• /-		-		Prepared: 2/6/	2023 Analyze	d: 2/14/2023			
Beryllium	19.0		0.200	ug/L	20.0		95.0	85-115		
Duplicate (BGB0721-DUP1)		Source: 2	3A1459-02		Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Arsenic	1.96	J	2.50	ug/L		1.89			3.43	20
Chromium	1.12	J	15.0	ug/L		0.979			13.1	20
Copper	2.28	J	5.00	ug/L		2.09			8.48	20
Lead	1.19	J	2.50	ug/L		1.16			1.79	20
Nickel	1.24	J	5.00	ug/L		1.03			18.2	20
Silver	<2.50	U	2.50	ug/L		<2.50				20
Thallium	<2.50	U	2.50	ug/L		<2.50				20
Duplicate (BGB0721-DUP2)		Source: 2	3A1459-49		Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Lead	<2.50	U	2.50	ug/L		0.539			200	20
Thallium	<2.50	U	2.50	ug/L		<2.50				20
Duplicate (BGB0721-DUP3)		Source: 2	3A1459-02		Prepared: 2/6	/2023 Analyze	ed: 2/9/2023			
Antimony	<5.00	U	5.00	ug/L		<5.00				20
Cadmium	<5.00	U	5.00	ug/L		<5.00				20
Zinc	4.71	J	10.0	ug/L		4.16			12.4	20
Duplicate (BGB0721-DUP4)		Source: 2	3A1459-49		Prepared: 2/6,	/2023 Analyze	d: 2/9/2023			
Antimony	<5.00	U	5.00	ug/L		<5.00				20
Cadmium	<5.00		5.00	ug/L		<5.00				20
Copper	1.09		5.00	ug/L		1.31			18.5	20
Silver	<2.50		2.50	ug/L		<2.50				20
Zinc	<10.0		10.0	ug/L		<10.0				20
Duplicate (BGB0721-DUP5)		Source: 2	3A1459-02		Prepared: 2/6/	2023 Analyze	d: 2/14/2023	_		
Beryllium	<1.00	U	1.00	ug/L		<1.00				20



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0721 - EPA 200.8 Dis	ssolved (Co	ontinued	<i>"</i>							
Duplicate (BGB0721-DUP6)	-		3A1459-49		Prepared: 2/6/	'2023 Analyze	d: 2/14/2023			
Arsenic	1.47	J	2.50	ug/L		1.23			17.3	20
Chromium	<15.0	U	15.0	ug/L		<15.0				20
Nickel	0.504	J	5.00	ug/L		0.531			5.22	20
Duplicate (BGB0721-DUPA)		Source: 2	3A1459-49		Prepared: 2/6/	2023 Analyze	d: 2/28/2023			
Beryllium	<1.00	U	1.00	ug/L		<1.00				20
BGB0310-BLK2 (BGB0721-LBK1)					Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Lead	<0.500	U	0.500	ug/L	•	•				
Thallium	<0.500		0.500	ug/L						
BGB0310-BLK2 (BGB0721-LBK2)					Prepared: 2/6	/2023 Analyze	ed: 2/9/2023			_
Antimony	<1.00	U	1.00	ug/L						
Cadmium	<1.00	U	1.00	ug/L						
Copper	1.76		1.00	ug/L						
Silver	<0.500	U	0.500	ug/L						
Zinc	4.82		2.00	ug/L						
BGB0310-BLK2 (BGB0721-LBK3)					Prepared: 2/6/	2023 Analyze	d: 2/14/2023			
Chromium	0.222	J	3.00	ug/L						
Nickel	0.781	J	1.00	ug/L						
BGB0310-BLK2 (BGB0721-LBK5)					Prepared: 2/6/	2023 Analyze	d: 2/22/2023			
Arsenic	<0.500	U	0.500	ug/L						
BGB0310-BLK2 (BGB0721-LBK6)					Prepared: 2/6/	2023 Analyze	d: 2/28/2023			
Beryllium	0.0140	J	0.200	ug/L		•				



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Houston, TX 77043 Reported:

TCEQ-TOX T104704202-22-17

Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

Project Number:

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0721 - EPA 200.8 D	issolved (Continue	ed)							
BGB0310-BLK2 (BGB0721-LBK7)				Prepared: 2/6	/2023 Analyze	ed: 3/1/2023			
Silver	<0.500 U	0.500	ug/L	, ,	,				
MDL Check (BGB0721-MRL1)				Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Arsenic	0.124 J	0.500	ug/L	0.100		124			
Chromium	0.132 J	3.00	ug/L	0.0800		165			
Copper	0.624 J	1.00	ug/L	0.200		312			
Lead	0.102 J	0.500	ug/L	0.100		102			
Nickel	0.0230 J	1.00	ug/L	0.0500		46.0			
Silver	0.0360 J	0.500	ug/L	0.0300		120			
Thallium	0.0350 J	0.500	ug/L	0.0300		117			
MDL Check (BGB0721-MRL2)				Prepared: 2/6	/2023 Analyze	ed: 2/9/2023			
Antimony	0.215 J	1.00	ug/L	0.200		108			
Cadmium	0.0490 J	1.00	ug/L	0.0500		98.0			
Zinc	0.196 J	2.00	ug/L	0.200		98.0			
MDL Check (BGB0721-MRL3)				Prepared: 2/6/	2023 Analyze	d: 2/14/2023	3		
Beryllium	0.0320 J	0.200	ug/L	0.0100		320			
Matrix Spike (BGB0721-MS1)	Source:	23A1459-02		Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Arsenic	44.5	2.50	ug/L	50.0	1.89	85.2	75-125		
Chromium	257	15.0	ug/L	300	0.979	85.3	75-125		
Copper	77.6	5.00	ug/L	100	2.09	75.5	75-125		
Lead	39.0	2.50	ug/L	50.0	1.16	75.8	75-125		
Nickel	73.5 J1	5.00	ug/L	100	1.03	72.4	75-125		
Silver	39.9	2.50	ug/L	50.0	<2.50	79.9	75-125		
Thallium	38.7	2.50	ug/L	50.0	<2.50	77.4	75-125		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

Aughte	B	Reporting		Spike	Source	6/ 5=0	%REC	000	RPD
Analyte	Result Qu	ıal Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0721 - EPA 200.8 D	Dissolved (Cont	tinued)							
Matrix Spike (BGB0721-MS2)	So	urce: 23A1459-49		Prepared: 2/6	5/2023 Analyze	ed: 2/8/2023			
Lead	36.0 J1	2.50	ug/L	50.0	0.539	70.9	75-125		
Thallium	38.1	2.50	ug/L	50.0	<2.50	76.3	75-125		
Matrix Spike (BGB0721-MS3)	So	urce: 23A1459-02		Prepared: 2/6	5/2023 Analyze	ed: 2/9/2023			
Antimony	94.6	5.00	ug/L	100	<5.00	94.6	75-125		
Cadmium	81.8	5.00	ug/L	100	<5.00	81.8	75-125		
Zinc	167	10.0	ug/L	200	4.16	81.5	75-125		
Matrix Spike (BGB0721-MS4)	So	urce: 23A1459-49		Prepared: 2/6	5/2023 Analyze	ed: 2/9/2023			
Antimony	94.0	5.00	ug/L	100	<5.00	94.0	75-125		
Cadmium	85.7	5.00	ug/L	100	<5.00	85.7	75-125		
Copper	85.0	5.00	ug/L	100	1.31	83.7	75-125		
Silver	40.7	2.50	ug/L	50.0	<2.50	81.5	75-125		
Zinc	164	10.0	ug/L	200	<10.0	81.9	75-125		
Matrix Spike (BGB0721-MS5)	So	urce: 23A1459-02		Prepared: 2/6	/2023 Analyze	d: 2/14/2023	3		
Beryllium	16.3	1.00	ug/L	20.0	<1.00	81.4	75-125		
Matrix Spike (BGB0721-MS6)	So	urce: 23A1459-49		Prepared: 2/6	/2023 Analyze	d: 2/14/2023	3		
Arsenic	51.7	2.50	ug/L	50.0	1.23	101	75-125		
Chromium	279	15.0	ug/L	300	<15.0	93.1	75-125		
Nickel	93.1	5.00	ug/L	100	0.531	92.5	75-125		
Matrix Spike (BGB0721-MSA)	So	urce: 23A1459-49		Prepared: 2/6	/2023 Analyze	d: 2/28/2023	3		
Beryllium	16.6	1.00	ug/L	20.0	<1.00	82.8	75-125		
Batch: BGB1125 - Cr VI	_					10 1000			
Matrix Spike (BGB1125-MS1)		urce: 23A1135-01		•	& Analyzed: 2				
Chromium (VI)	223	3.00	ug/L	250	6.74	86.4	70-130		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB1125 - Cr VI (Continue	d)									
Matrix Spike Dup (BGB1125-MSD1)	-	Source: 2	3A1135-01		Prepared	& Analyzed: 2	2/8/2023			
Chromium (VI)	258		3.00	ug/L	250	6.74	100	70-130	14.5	20
Batch: BGB1154 - Cr VI										
Matrix Spike (BGB1154-MS1)		Source: 2	3A1135-01RE1		Prepared: 2/8/	2023 Analyze	d: 2/10/2023	3		
Chromium (VI)	158	J1	3.00	ug/L	250	5.29	61.2	70-130		
Matrix Spike Dup (BGB1154-MSD1)		Source: 2	3A1135-01RE1		Prepared: 2/8/	2023 Analyze	d: 2/10/2023	3		
Chromium (VI)	156	J1	3.00	ug/L	250	5.29	60.1	70-130	1.80	20
BGB0310-BLK1 (BGB2104-LBK1) Chromium (VI)	32.4		3.00	ug/L		k Analyzed: 2,	,			
Chromium (VI)	32.4		3.00	ug/L						
Matrix Spike (BGB2104-MS1)		Source: 2	3A1459-01		•	k Analyzed: 2,	/15/2023			
Chromium (VI)	257		3.00	ug/L	250	11.1	98.4	70-130		
Matrix Spike Dup (BGB2104-MSD1)		Source: 2	3A1459-01		Prepared 8	k Analyzed: 2,	/15/2023			
Chromium (VI)	261		3.00	ug/L	250	11.1	99.9	70-130	1.45	20
Batch: SGB0118 - BGB0721										
Interference Check A (SGB0118-IFA1)					Prepared	& Analyzed: 2	2/8/2023			
Arsenic	0.286			ug/L				70-130		
Chromium	1.27			ug/L				70-130		
Copper	0.807			ug/L				70-130		
Lead	0.502			ug/L				70-130		
Nickel	0.998			ug/L				70-130		
Silver	0.107			ug/L				70-130		
Thallium	0.00700			ug/L				70-130		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: SGB0118 - BG	B0721 (Continued)								
Interference Check B (SGI				Prepared	& Analyzed: 2	/8/2023			
Arsenic	55.7		ug/L	50.0	,	111	70-130		
Chromium	315		ug/L	300		105	70-130		
Copper	105		ug/L	100		105	70-130		
Lead	51.8		ug/L	50.0		104	70-130		
Nickel	99.4		ug/L	100		99.4	70-130		
Silver	54.2		ug/L	50.0		108	70-130		
Thallium	49.3		ug/L	50.0		98.5	70-130		
Batch: SGB0138 - BG	B0721								
Interference Check A (SGI	B0138-IFA1)			Prepared	& Analyzed: 2	/9/2023			
Antimony	0.231		ug/L				70-130		
Cadmium	0.447		ug/L				70-130		
Copper	0.494		ug/L				70-130		
Silver	0.0850		ug/L				70-130		
Zinc	2.14		ug/L				70-130		
Interference Check B (SGI	B0138-IFB1)			Prepared	& Analyzed: 2	/9/2023			
Antimony	103		ug/L	100		103	70-130		
Cadmium	89.9		ug/L	100		89.9	70-130		
Copper	82.9		ug/L	100		82.9	70-130		
Silver	45.3		ug/L	50.0		90.6	70-130		
Zinc	167		ug/L	200		83.3	70-130		
Batch: SGB0194 - BG	<i>B0721</i>								
Interference Check A (SGI				Prepared 8	& Analyzed: 2,	/14/2023			
Antimony	0.285		ug/L				70-130		
Arsenic	0.113		ug/L				70-130		
Beryllium	-0.00500 U		ug/L				70-130		
Cadmium	0.388		ug/L				70-130		
Chromium	3.13		ug/L				70-130		
Copper	0.170		ug/L				70-130		
Nickel	0.543		ug/L				70-130		
Silver	0.0100		ug/L				70-130		
Zinc	0.966		ug/L				70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: SGB0194 - BGB07	21 (Continued)								
Interference Check B (SGB019	= =			Prepared 8	& Analyzed: 2/	14/2023			
Antimony	104		ug/L	100	·	104	70-130		
Arsenic	52.3		ug/L	50.0		105	70-130		
Beryllium	17.6		ug/L	20.0		88.1	70-130		
Cadmium	103		ug/L	100		103	70-130		
Chromium	297		ug/L	300		98.9	70-130		
Copper	92.6		ug/L	100		92.6	70-130		
Nickel	91.4		ug/L	100		91.4	70-130		
Silver	49.8		ug/L	50.0		99.7	70-130		
Zinc	181		ug/L	200		90.7	70-130		
Batch: SGB0321 - BGB07 Interference Check A (SGB032				Prepared 8	& Analyzed: 2/	22/2023			
Antimony	0.196		ug/L		, ,	•	70-130		
Arsenic	0.0940		ug/L				70-130		
Cadmium	0.319		ug/L				70-130		
Interference Check B (SGB032	21-IFB1)			Prepared 8	& Analyzed: 2/	22/2023			
Antimony	106		ug/L	100		106	70-130		
Arsenic	48.3		ug/L	50.0		96.6	70-130		
Cadmium	96.0		ug/L	100		96.0	70-130		
Batch: SGB0424 - BGB18	225								
Interference Check A (SGB042				Prepared 8	& Analyzed: 2/	28/2023			
Beryllium	0.00200		ug/L		. ,		70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: SGB0424 - BGB1825 (Co	entinued)								
Interference Check B (SGB0424-IFB1)	<u> </u>			Prepared 8	& Analyzed: 2/	28/2023			
Beryllium	16.2		ug/L	20.0		81.0	70-130		
Batch: SGB0432 - BGB0721									
Interference Check B (SGB0432-IFB1)	)			Prepared 8	& Analyzed: 2/	28/2023			
Beryllium	16.4		ug/L	20.0		81.8	70-130		
Batch: SGC0006 - BGB0721									
Interference Check A (SGC0006-IFA1)	)			Prepared 8	& Analyzed: 3,	/1/2023			
Silver	0.0110		ug/L				70-130		
Interference Check B (SGC0006-IFB1)	)			Prepared &	& Analyzed: 3,	/1/2023			
Silver	48.3		ug/L	50.0		96.5	70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

#### **General Chemistry**

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA2916 - Percent Solids										
				n	roparodi 1/22	/2022 Apply	d. 1/24/201	12		
Blank (BGA2916-BLK1)			0.100		reparea: 1/23	/2023 Analyze	u: 1/24/202	23		
% Solids	<0.100	U	0.100	%						
Duplicate (BGA2916-DUP1)		Source: 2	23A1459-16	Р	repared: 1/23	/2023 Analyze	ed: 1/24/202	23		
% Solids	74.9	ı	0.100	%		74.4			0.637	10
Duplicate (BGA2916-DUP2)		Source: 2	23A1459-35	Р	repared: 1/23	/2023 Analyze	ed: 1/24/202	23		
% Solids	73.0	<u> </u>	0.100	%	· ·	73.1			0.0739	10
Reference (BGA2916-SRM1)				P	repared: 1/23	/2023 Analyze	ed: 1/24/202	23		
% Solids	0.341			%	0.350	,	97.4	78.9-118		
Batch: BGA2930 - pH										
LCS (BGA2930-BS1)					Prepared 8	& Analyzed: 1/	23/2023			
рН	6.86			pH Units @	6.86	•	100	98.6-101.4		
				25 °C						
Duplicate (BGA2930-DUP1)		Source: 2	23A1459-16		Prepared 8	& Analyzed: 1/	23/2023			
pH	8.18		0.100	pH Units @		8.16			0.245	200
				25 °C						
Batch: BGA3071 - pH										
LCS (BGA3071-pH					Dropared (	& Analyzed: 1/	124/2022			
pH				pH Units @	•	x Analyzeu: 1/	100	98.6-101.4		
ριι	6.86			25 °C	0.00		100	50.0-101.4		
Duplicate (BGA3071-DUP1)		Source: 2	23A1459-24		Prepared 8	& Analyzed: 1/	24/2023			
pH	8.44			pH Units @	•	8.47	,		0.355	200
r	0.11			25 °C						





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

1.23

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

#### **General Chemistry (Continued)**

Analyte	Result Q	Reporting ual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGA3093 - Percent Solids									
Blank (BGA3093-BLK1)				Prepared: 1/24,	/2023 Analyze	d: 1/25/2023	3		
% Solids	<0.100 U	0.100	%						
Duplicate (BGA3093-DUP1)	So	ource: 23A1459-25		Prepared: 1/24,	/2023 Analyze	d: 1/25/2023	3		
% Solids	74.1	0.100	%		74.2			0.0503	10
Reference (BGA3093-SRM1)				Prepared: 1/24,	/2023 Analyze	d: 1/25/2023	3		
% Solids	0.372		%	0.350		106	78.9-118		
Batch: BGA3214 - CN-9014									
Blank (BGA3214-BLK1)				Prepared: 1/25,	/2023 Analyze	d: 1/26/2023	3		
Total Cyanide	<0.0485 U	0.0485	mg/kg we	et					
LCS (BGA3214-BS1)				Prepared: 1/25,	/2023 Analyze	d: 1/26/2023	3		
Total Cyanide	0.977	0.0481	mg/kg we	et 0.962		102	90-110		
QCS (BGA3214-BS2)				Prepared: 1/25,	/2023 Analyze	d: 1/26/2023	3		
Total Cyanide	0.970	0.0481	mg/kg we	et 0.962		101	90-110		
MRL Check (BGA3214-MRL1)				Prepared: 1/25,	/2023 Analyze	d: 1/26/2023	3		
Total Cyanide	0.132	0.0500	mg/kg we	et 0.100		132	50-150		
Matrix Spike (BGA3214-MS1)	So	ource: 23A1459-16		Prepared: 1/25,	/2023 Analyze	d: 1/26/2023	3		
Total Cyanide	1.19	0.0646	mg/kg dr	у 1.29	<0.0646	92.2	80-120		
Matrix Spike Dup (BGA3214-MSD1)	Sc	ource: 23A1459-16		Prepared: 1/25	/2023 Analyze	d: 1/26/2023	3		

0.0659 mg/kg dry

1.32

< 0.0659

93.7

80-120

3.66

20

Total Cyanide





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3582 - CN-9014										
Blank (BGA3582-BLK1)					Prepared	& Analyzed: 1,	/27/2023			
Total Cyanide	<0.0485	U	0.0485	mg/kg wet						
LCS (BGA3582-BS1)					Prepared	& Analyzed: 1,	/27/2023			
Total Cyanide	0.968		0.0495	mg/kg wet	0.990		97.7	90-110		
QCS (BGA3582-BS2)					Prepared	& Analyzed: 1,	/27/2023			
Total Cyanide	1.02		0.0500	mg/kg wet	1.00		102	90-110		
MRL Check (BGA3582-MRL1)					Prepared	& Analyzed: 1,	/27/2023			
Total Cyanide	0.0819		0.0500	mg/kg wet	0.100		81.9	50-150		
Matrix Spike (BGA3582-MS1)		Source: 2	3A1459-36		Prepared	& Analyzed: 1,	/27/2023			
Total Cyanide	1.12		0.0645	mg/kg dry	1.29	<0.0645	87.2	80-120		
Matrix Spike Dup (BGA3582-MSD1)		Source: 2	3A1459-36		Prepared	& Analyzed: 1,	/27/2023			
Total Cyanide	1.23		0.0677	mg/kg dry	1.35	<0.0677	90.6	80-120	8.67	20
Batch: BGA3833 - TSS										
Blank (BGA3833-BLK1)				Pr	epared: 1/30	/2023 Analyze	ed: 1/31/202	3		
Residue-nonfilterable (TSS)	<1.00	U	1.00	mg/L		,				
LCS (BGA3833-BS1)				Pr	epared: 1/30	)/2023 Analyze	ed: 1/31/202	3		
Residue-nonfilterable (TSS)	98.6		1.00	mg/L	100		98.6	85-115		
Duplicate (BGA3833-DUP1)		Source: 2	3A1459-05	Pr	epared: 1/30	)/2023 Analyze	ed: 1/31/202	3		
Residue-nonfilterable (TSS)	11.6	J1	1.00	mg/L		9.47			20.0	10





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3833 - TSS (Continued)										
Duplicate (BGA3833-DUP2)		Source: 23	3A4289-01		Prepared: 1/30,	/2023 Analyzed:	: 1/31/2023			
Residue-nonfilterable (TSS)	2.95	J1	1.00	mg/L		2.53			15.4	10
Batch: BGA3841 - TSS										
Blank (BGA3841-BLK1)					Prepared: 1/30,	/2023 Analyzed:	: 1/31/2023			
Residue-nonfilterable (TSS)	<1.00	U	1.00	mg/L						
LCS (BGA3841-BS1)					Prepared: 1/30	/2023 Analyzed:	1/31/2023			
Residue-nonfilterable (TSS)	99.2		1.00	mg/L	100	<u> </u>	99.2	85-115		
Duplicate (BGA3841-DUP1)		Source: 23	3A4311-02		Prepared: 1/30	/2023 Analyzed:	1/31/2023			
Residue-nonfilterable (TSS)	3.16	J1	1.00	mg/L		4.63			37.8	10
Duplicate (BGA3841-DUP2)		Source: 23	3A4422-02		Prepared: 1/30,	/2023 Analyzed:	1/31/2023			
Residue-nonfilterable (TSS)	1.89	J1	1.00	mg/L		2.32			20.0	10
Batch: BGA3879 - TSS										
Blank (BGA3879-BLK1)					Prenared: 1/20	/2023 Analyzed:	1/31/2022			
Residue-nonfilterable (TSS)	<1.00	U	1.00	mg/L	. repareu. 1/30	, LUZU AHAIYZEU	. 1/31/2023			
LCS (BGA3879-BS1)					Prepared: 1/30	/2023 Analyzed:	1/31/2023			
Residue-nonfilterable (TSS)	98.0		1.00	mg/L	100		98.0	85-115		
Duplicate (BGA3879-DUP1)		Source: 23	3A0138-01		Prepared: 1/30	/2023 Analyzed:	1/31/2023			
Residue-nonfilterable (TSS)	4.42		1.00	mg/L	,	4.21	, = = = = =		4.88	10





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA3879 - TSS (Continued)	)									
Duplicate (BGA3879-DUP2)		Source: 2	3A4452-02	F	repared: 1/30	/2023 Analyze	ed: 1/31/202	23		
Residue-nonfilterable (TSS)	1.68	J1	1.00	mg/L		1.05			46.2	10
Batch: BGA3958 - pH										
LCS (BGA3958-BS1)					Prepared 8	& Analyzed: 1,	/31/2023			
рН	6.86			pH Units @ 25 °C	6.86		100	98.6-101.4		
Duplicate (BGA3958-DUP1)		Source: 2	3A1459-46		Prepared 8	& Analyzed: 1,	/31/2023			
pH	8.85		0.100	pH Units @ 25 °C		8.75			1.14	200
Batalia BCA 2070 Barrant Calida										
					Prepared: 1/31	1/2023 Analvz	ed: 2/1/202	3		
Batch: BGA3978 - Percent Solids Blank (BGA3978-BLK1) % Solids	<0.100	U	0.100	%	Prepared: 1/31	1/2023 Analyz	ed: 2/1/202	3		
Blank (BGA3978-BLK1)	<0.100		0.100 <b>3A0200-02</b>	%	Prepared: 1/31					
Blank (BGA3978-BLK1) % Solids	<0.100			%					0.131	10
Blank (BGA3978-BLK1) % Solids  Duplicate (BGA3978-DUP1)		Source: 2	3A0200-02	%		1/2023 Analyz 1.18	ed: 2/1/202	3	0.131	10
Blank (BGA3978-BLK1) % Solids  Duplicate (BGA3978-DUP1) % Solids		Source: 2	<b>3A0200-02</b> 0.100	%	Prepared: 1/31	1/2023 Analyz 1.18	ed: 2/1/202	3	0.131	10
Blank (BGA3978-BLK1) % Solids  Duplicate (BGA3978-DUP1) % Solids  Duplicate (BGA3978-DUP2)	1.19	Source: 2	3A0200-02 0.100 3A4592-03	%	Prepared: 1/31	1/2023 Analyz 1.18 1/2023 Analyz 2.34	ed: 2/1/202	3		
% Solids  Duplicate (BGA3978-DUP1) % Solids  Duplicate (BGA3978-DUP2) % Solids	1.19	Source: 2	3A0200-02 0.100 3A4592-03	%	Prepared: 1/31	1/2023 Analyz 1.18 1/2023 Analyz 2.34	ed: 2/1/202	3		
Blank (BGA3978-BLK1) % Solids  Duplicate (BGA3978-DUP1) % Solids  Duplicate (BGA3978-DUP2) % Solids  Reference (BGA3978-SRM1) % Solids	1.19 2.34	Source: 2	3A0200-02 0.100 3A4592-03	%	Prepared: 1/31 Prepared: 1/31 Prepared: 1/31	1/2023 Analyz 1.18 1/2023 Analyz 2.34	ed: 2/1/202 ed: 2/1/202 ed: 2/1/202	3		
Blank (BGA3978-BLK1) % Solids  Duplicate (BGA3978-DUP1) % Solids  Duplicate (BGA3978-DUP2) % Solids  Reference (BGA3978-SRM1)	1.19 2.34	Source: 2	3A0200-02 0.100 3A4592-03	%	Prepared: 1/31 Prepared: 1/31 Prepared: 1/31	1/2023 Analyz 1.18 1/2023 Analyz 2.34 1/2023 Analyz	ed: 2/1/202 ed: 2/1/202 ed: 2/1/202 107	3 3 78.9-118		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGA4008 - NH3-N T (Col	ntinued)								
LCS (BGA4008-BS1)			Pro	epared: 1/31	1/2023 Analyz	ed: 2/1/2023			
Ammonia as N	94.4	9.92	mg/kg wet	99.2		95.2	85-115		
Duplicate (BGA4008-DUP1)	Sour	rce: 23A1459-16	Pro	epared: 1/31	1/2023 Analyz	ed: 2/1/2023			
Ammonia as N	<13.4 J1, U	13.4	mg/kg dry		8.26			200	20
MRL Check (BGA4008-MRL1)			Pre	epared: 1/31	1/2023 Analyz	ed: 2/1/2023			
Ammonia as N	8.12 J	10.0	mg/kg wet	10.0		81.2	50-150		
Matrix Spike (BGA4008-MS1)	Sour	rce: 23A1459-16	Pre	epared: 1/31	1/2023 Analyz	ed: 2/1/2023			
Ammonia as N	134	13.4	mg/kg dry	134	8.26	94.1	85-115		
Batch: BGB0157 - CN-9014									
Blank (BGB0157-BLK1)			Pi	repared: 2/1,	/2023 Analyze	ed: 2/2/2023			
Total Cyanide	<0.0500 U	0.0500	mg/kg wet						
LCS (BGB0157-BS1)			Pr	epared: 2/1	/2023 Analyze	ed: 2/2/2023			
Total Cyanide	0.990	0.0500	mg/kg wet	1.00		99.0	90-110		
QCS (BGB0157-BS2)			Pr	epared: 2/1,	/2023 Analyze	ed: 2/2/2023			
Total Cyanide	1.02	0.0500	mg/kg wet	1.00		102	90-110		
MRL Check (BGB0157-MRL1)			Pr	epared: 2/1	/2023 Analyze	ed: 2/2/2023			
Total Cyanide	0.116	0.0500	mg/kg wet	0.100		116	50-150		
Matrix Spike (BGB0157-MS1)	Sour	rce: 23A1459-46	Pr	epared: 2/1	/2023 Analyze	ed: 2/2/2023			
Total Cyanide	1.24	0.0697	mg/kg dry	1.39	<0.0697	88.8	80-120		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0157 - CN-9014 (Conti	inued)									
Matrix Spike Dup (BGB0157-MSD1)	-	Source: 2	3A1459-46		Prepared: 2/1	/2023 Analyze	ed: 2/2/2023			
Total Cyanide	1.31		0.0697	mg/kg dry	1.39	<0.0697	93.8	80-120	5.56	20
Batch: BGB0296 - Percent Solids										
Blank (BGB0296-BLK1)					Prepared: 2/2	/2023 Analyze	ed: 2/3/2023			
% Solids	<0.100	U	0.100	%	•					
Duplicate (BGB0296-DUP1)		Source: 2	3B0615-03		Prepared: 2/2	/2023 Analyze	ed: 2/3/2023			
% Solids	1.57		0.100	%		1.57			0.126	20
Duplicate (BGB0296-DUP2)		Source: 2	3B0932-04		Prepared: 2/2	/2023 Analyze	ed: 2/3/2023			
% Solids	1.34		0.100	%		1.33			0.940	20
Reference (BGB0296-SRM1)					Prepared: 2/2	/2023 Analyze	ed: 2/3/2023			
% Solids	0.379			%	0.350		108	78.9-118		
Batch: BGB0479 - NH3-N SEAL-35	50 1									
Matrix Spike (BGB0479 - NH3-N SEAL-33		Source: 2	3B1077-01		Prepared	& Analyzed: 2	/3/2023			
Ammonia as N	0.400		0.0500	mg/L	0.400	0.0214	94.8	90-110		
Matrix Spike (BGB0479-MS2)		Source: 2	3B0505-02		Prepared	& Analyzed: 2	/3/2023			
Ammonia as N	2.22		1.00	mg/L	0.400	1.82	99.7	90-110		
Matrix Spike Dup (BGB0479-MSD1)		Source: 2	3B1077-01		Prepared	& Analyzed: 2	/3/2023			
Ammonia as N	0.399		0.0500	mg/L	0.400	0.0214	94.5	90-110	0.300	20





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qu		orting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Allalyte	Result QL	ıaı	LIIIIT	Units	Levei	Kesuit	%KEC	LIIIIIUS	KPD	LIIIIT
Batch: BGB0479 - NH3-N SEAL-3.	50.1 (Contil	nued)								
Matrix Spike Dup (BGB0479-MSD2)	=	ource: 23B0505-	02		Prepared	& Analyzed: 2	2/3/2023			
Ammonia as N	2.23		1.00	mg/L	0.400	1.82	101	90-110	0.225	20
Batch: BGB0480 - NH3-N SEAL-3.	50.1									
Matrix Spike (BGB0480-MS1)	So	ource: 23B0810-	01		Prepared	& Analyzed: 2	2/3/2023			
Ammonia as N	0.422	0	.0500	mg/L	0.400	0.0355	96.7	90-110		
Matrix Spike (BGB0480-MS2)	So	ource: 23A1459-	-50		Prepared	& Analyzed: 2	2/3/2023			
Ammonia as N	1.83		0.100	mg/L	0.400	1.45	95.2	90-110		
Matrix Spike Dup (BGB0480-MSD1)	So	ource: 23B0810-	01		Prepared	& Analyzed: 2	2/3/2023			
Ammonia as N	0.429	0	.0500	mg/L	0.400	0.0355	98.3	90-110	1.55	20
Matrix Spike Dup (BGB0480-MSD2)	So	ource: 23A1459-	-50		Prepared	& Analyzed: 2	2/3/2023			
Ammonia as N	1.88		0.100	mg/L	0.400	1.45	106	90-110	2.35	20
Batch: BGB0685 - NH3-N T										
					Duamanadi 2/C	/2022 Amalum	٠١- ١٦/٦٥٦٦			
Blank (BGB0685-BLK1)	0.04 11		0.01		Prepared: 2/6	/2023 Analyze	a: 2///2023			
Ammonia as N	<9.91 U		9.91	mg/kg wet						
LCS (BGB0685-BS1)					Prepared: 2/6	/2023 Analyze	ed: 2/7/2023			
Ammonia as N	87.2		9.92	mg/kg wet	99.2		87.9	85-115		
Duplicate (BGB0685-DUP1)	So	ource: 23A1459-	30		Prepared: 2/6	/2023 Analyze	ed: 2/7/2023			
Ammonia as N	7.56 J1	, J	13.5	mg/kg dry		<13.5			200	20



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0685 - NH3-N T (Cont	tinued)									
MRL Check (BGB0685-MRL1)	-			Р	repared: 2/6	/2023 Analyze	ed: 2/7/2023	3		
Ammonia as N	7.26	J	9.97	mg/kg wet	9.97		72.8	50-150		
Matrix Spike (BGB0685-MS1)		Source: 2	3A1459-30	P	repared: 2/6	/2023 Analyze	ed: 2/7/2023	3		
Ammonia as N	136		13.5	mg/kg dry	135	<13.5	101	85-115		
Batch: BGB0847 - pH										
LCS (BGB0847-BS1)					Prepared	& Analyzed: 2	2/7/2023			
рН	6.86			pH Units @ 25 °C	6.86		100	98.6-101.4		
Duplicate (BGB0847-DUP1)		Source: 2	3A1459-66		Prepared	& Analyzed: 2	2/7/2023			
pH	8.45		0.100	pH Units @ 25 °C		8.41			0.474	200
Batch: BGB0953 - NH3-N T										
Blank (BGB0953-BLK1)				Р	repared: 2/7	/2023 Analyze	ed: 2/8/2023	3		
Ammonia as N	<9.99	U	9.99	mg/kg wet						
LCS (BGB0953-BS1)				Р	repared: 2/7	/2023 Analyze	ed: 2/8/2023	3		
Ammonia as N	97.2		10.0	mg/kg wet	100		97.2	85-115		
Duplicate (BGB0953-DUP1)		Source: 2	3A1459-27	Р	repared: 2/7	/2023 Analyze	ed: 2/8/2023	3		
Ammonia as N	9.00	J	15.3	mg/kg dry		9.86			9.19	20
MRL Check (BGB0953-MRL1)				Р	repared: 2/7	/2023 Analyze	ed: 2/8/2023	3		
Ammonia as N	8.94	J	9.98	mg/kg wet	9.98		89.6	50-150		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result	Oual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	- INCOURT					Result	701120			Little
Batch: BGB0953 - NH3-NT (Cont	tinued)									
Matrix Spike (BGB0953-MS1)		Source: 2	3A1459-27	ŀ	Prepared: 2/7	/2023 Analyze	ed: 2/8/2023			
Ammonia as N	110	J1	15.3	mg/kg dry	153	9.86	65.2	85-115		
Batch: BGB1156 - NH3-N T										
Blank (BGB1156-BLK1)				ı	Prepared: 2/8	/2023 Analyze	ed: 2/9/2023			
Ammonia as N	<9.96	U	9.96	mg/kg wet						
LCS (BGB1156-BS1)					Prepared: 2/8	/2023 Analyze	ed: 2/9/2023			
Ammonia as N	94.5		9.90	mg/kg wet	99.0		95.5	85-115		
Duplicate (BGB1156-DUP1)		Source: 2	3A1459-56	-	Prepared: 2/8	/2023 Analyze	d: 2/9/2023			
Ammonia as N	<12.3	U	12.3	mg/kg dry		<12.3				20
MRL Check (BGB1156-MRL1)				-	Prepared: 2/8	/2023 Analyze	ed: 2/9/2023			
Ammonia as N	8.65	J1, J	9.97	mg/kg wet	99.7		8.68	50-150		
Matrix Spike (BGB1156-MS1)		Source: 2	3A1459-56	-	Prepared: 2/8	/2023 Analyze	ed: 2/9/2023			
Ammonia as N	118	J1	12.3	mg/kg dry	12.3	<12.3	958	85-115		
D DODATE										
Batch: BGB1516 - Alkalinity					_					
Blank (BGB1516-BLK1)			_		•	& Analyzed: 2/	10/2023			
Salinity	<1.00	U	1.00	Salinity units						
LCS (BGB1516-BS1)					Prepared 8	& Analyzed: 2/	10/2023			
Salinity	<1.00	U	1.00	Salinity units	;			90-110		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qual	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB1516 - Alkalinity (Co	ontinued)							
QSC (BGB1516-BS2)	-		Prepared 8	& Analyzed: 2/1	.0/2023			
Salinity	<1.00 U	1.00 Salinity units				90-110		
LCS (BGB1516-BS3)			Prepared 8	& Analyzed: 2/1	0/2023			
Salinity	35.1	Salinity units	35.0		100	90-110		
LCS (BGB1516-BS4)			Prepared 8	& Analyzed: 2/1	0/2023			
Salinity	<1.00 U	1.00 Salinity units				90-110		
Duplicate (BGB1516-DUP1)	Source: 2	23B2331-01	Prepared 8	& Analyzed: 2/1	0/2023			
Salinity	<1.00 U	1.00 Salinity units		<1.00				15
Duplicate (BGB1516-DUP2)	Source: 2	23B2192-08	Prepared 8	& Analyzed: 2/1	0/2023			
Salinity	<1.00 U	1.00 Salinity units		<1.00				15



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

#### **Elutriate Semivolatile Organic Compounds by GCMS**

Analyte	Result (	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0925 - SW-3511										
Blank (BGB0925-BLK1)				P	repared: 2/7/	2023 Analyze	d: 2/10/2023	}		
3,3'-Dichlorobenzidine	<0.562 U	i	0.562	ug/L			,,			
Benzidine	<0.562 U		0.562	ug/L						
	<0.302									
Surrogate: 2-Fluorobiphenyl-surr			9.76	ug/L	10.0		97.6	54.6-148		
Surrogate: 2-Fluorophenol-surr			18.1	ug/L	20.0		90.4	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			21.4	ug/L	20.0		107	52.4-136		
Surrogate: Nitrobenzene-d5-surr			10.2	ug/L	10.0		102	52-162		
Surrogate: Phenol-d5-surr			19.5	ug/L	20.0		97.6	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr			9.23	ug/L	10.0		92.3	51.9-147		
Blank (BGB0925-BLK2)				P	Prepared: 2/7/	2023 Analyze	d: 2/14/2023	3		
1,2,4-Trichlorobenzene	<0.562 L	J	0.562	ug/L						
1,2-Dichlorobenzene	<0.562 \	J	0.562	ug/L						
(o-Dichlorobenzene)										
1,2-Diphenylhydrazine	<0.562 L	J	0.562	ug/L						
1,3-Dichlorobenzene	<0.562 L	J	0.562	ug/L						
(m-Dichlorobenzene)										
1,4-Dichlorobenzene	<0.562 L	J	0.562	ug/L						
(p-Dichlorobenzene)										
2,2'-Oxybis(1-chloropropane),	<0.562 L	J	0.562	ug/L						
bis(2-Chloro-1-methy										
2,4-Dichlorophenol	<0.562 L		0.562	ug/L						
2,4-Dimethylphenol	<1.12 U		1.12	ug/L						
2,4-Dinitrophenol	<4.50 L	J	4.50	ug/L						
2,4-Dinitrotoluene (2,4-DNT)	<0.562 L	J	0.562	ug/L						
2,6-Dinitrotoluene (2,6-DNT)	<0.562 L	J	0.562	ug/L						
2-Chloronaphthalene	<0.562 L	J	0.562	ug/L						
2-Chlorophenol	<1.12 \	J	1.12	ug/L						
2-Methyl-4,6-dinitrophenol	<1.12 U	J	1.12	ug/L						
(4,6-Dinitro-2-methylph										
2-Nitrophenol	<1.12 \	J	1.12	ug/L						
4-Bromophenyl phenyl ether (BDE-3)	<0.562 L	J	0.562	ug/L						
4-Chloro-3-methylphenol	<1.12 U	J	1.12	ug/L						
4-Chlorophenyl phenylether	<0.562 \	J	0.562	ug/L						
4-Nitrophenol	<4.50 L	J	4.50	ug/L						
Acenaphthene	<0.562 L		0.562	ug/L						
Acenaphthylene	<0.562 L		0.562	ug/L						
Anthracene	<0.562 U		0.562	ug/L						
Benzo(a)anthracene	<0.562 U		0.562	ug/L						
Benzo(a)pyrene	<0.562 L		0.562	ug/L						
benzo(b&k)fluoranthene	<1.12 U		1.12	ug/L						
Benzo(g,h,i)perylene	<0.562 U		0.562	ug/L						
bis(2-Chloroethoxy)methane	<0.562 U		0.562	ug/L						
bis(2-Chloroethyl) ether	<0.562 U		0.562	ug/L						
Bis(2-ethylhexyl )phthalate	<0.562 U		0.562	ug/L						
Butyl benzyl phthalate	<0.562 U		0.562	ug/L						
Chrysene	<0.562 C		0.562	ug/L ug/L						

%REC

TCEQ-TOX T104704202-22-17

RPD



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Quality Control**

(Continued)

Spike

Source

Reporting

Analyte	Result Qua	l Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0925 - SW-3511 (C	ontinued)								
Blank (BGB0925-BLK2)			F	Prepared: 2/7/	2023 Analyze	d: 2/14/2023	3		
Dibenzo(a,h)anthracene	<0.562 U	0.562	ug/L						
Diethyl phthalate	0.852	0.562	ug/L						
Dimethyl phthalate	1.52	0.562	ug/L						
Di-n-butyl phthalate	9.16	0.562	ug/L						
Di-n-octyl phthalate	<0.562 U	0.562	ug/L						
Fluoranthene	<0.562 U	0.562	ug/L						
Fluorene	<0.562 U	0.562	ug/L						
Hexachlorobenzene	<0.562 U	0.562	ug/L						
Hexachlorobutadiene	<0.562 U	0.562	ug/L						
Hexachlorocyclopentadiene	<0.562 U	0.562	ug/L						
Hexachloroethane	<0.562 U	0.562	ug/L						
Indeno(1,2,3-cd) pyrene	<0.562 U	0.562	ug/L						
Isophorone	<0.562 U	0.562	ug/L						
Naphthalene	<0.562 U	0.562	ug/L						
Nitrobenzene	<0.562 U	0.562	ug/L						
n-Nitrosodimethylamine	<2.25 U	2.25	ug/L						
n-Nitrosodi-n-propylamine	<0.562 U	0.562	ug/L						
n-Nitrosodiphenylamine	<0.562 U	0.562	ug/L						
Pentachlorophenol	<1.12 U	1.12	ug/L						
Phenanthrene	<0.562 U	0.562	ug/L						
Phenol, Total	0.648	1.12	ug/L						
Pyrene	<0.562 U	0.562	ug/L						
Surrogate: 2-Fluorobiphenyl-surr		9.17	ug/L	10.0		91.7	54.6-148		
Surrogate: 2-Fluorophenol-surr		21.9	ug/L	20.0		110	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		18.7	ug/L	20.0		93.3	52.4-136		
Surrogate: Nitrobenzene-d5-surr		8.20	ug/L	10.0		82.0	<i>52-162</i>		
Surrogate: Phenol-d5-surr		21.6	ug/L	20.0		108	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		9.58	ug/L	10.0		95.8	51.9-147		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Quality Control**

(Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0925 - SW-3511 (Cd	ontinued)								
BS BENZ (BGB0925-BS1)	-		Р	repared: 2/7/	2023 Analyzed:	2/10/2023	;		
3,3'-Dichlorobenzidine	6.51	0.562	ug/L	10.0	,	65.1	22.3-156		
Benzidine	2.78	0.562	ug/L	10.0		27.8	9.32-162		
Surrogate: 2-Fluorobiphenyl-surr		9.31	ug/L	10.0		93.1	<i>54.6-148</i>		
Surrogate: 2-Fluorophenol-surr		21.8	ug/L ug/L	20.0		109	55-152		
Surrogate: 2,4,6-Tribromophenol-surr		19.9	ug/L ug/L	20.0		99.7	52.4-136		
Surrogate: Nitrobenzene-d5-surr		10.5	ug/L ug/L	10.0		105	<i>52-162</i>		
Surrogate: Phenol-d5-surr		20.2	ug/L ug/L	20.0		101	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		8.57	ug/L	10.0		<i>85.7</i>	51.9-147		
BS SV (BGB0925-BS2)			P	repared: 2/7/	2023 Analyzed:	2/14/2023	<b>.</b>		
1,2,4-Trichlorobenzene	9.54	0.562	ug/L	10.0	,	95.4	60-140		
1,2-Dichlorobenzene	9.71	0.562	ug/L	10.0		97.1	60-140		
(o-Dichlorobenzene)	5.7.1		51						
1,2-Diphenylhydrazine	10.6	0.562	ug/L	10.0		106	60-140		
1,3-Dichlorobenzene	8.38	0.562	ug/L	10.0		83.8	60-140		
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	9.52	0.562	ug/L	10.0		95.2	60-140		
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	10.7	0.562	ug/L	10.0		107	60-140		
bis(2-Chloro-1-methy		0 = 05		20.0		07.5	60.630		
2,4-Dichlorophenol	19.5	0.562	ug/L	20.0		97.6	60-140		
2,4-Dimethylphenol	22.1	1.12	ug/L	20.0		111	35.9-153		
2,4-Dinitrophenol	51.7	4.50	ug/L	50.0		103	60-140		
2,4-Dinitrotoluene (2,4-DNT)	10.0	0.562	ug/L	10.0		100	60-140		
2,6-Dinitrotoluene (2,6-DNT)	10.8	0.562	ug/L	10.0		108	60-140		
2-Chloronaphthalene	10.2	0.562	ug/L	10.0		102	60-140		
2-Chlorophenol	12.3	1.12	ug/L	20.0		61.4	60-140		
2-Methyl-4,6-dinitrophenol	21.8	1.12	ug/L	20.0		109	60-140		
(4,6-Dinitro-2-methylph	20.2	1 12	ua/I	20.0		101	60-140		
2-Nitrophenol 4-Bromophenyl phenyl ether (BDE-3)	20.2	1.12 0.562	ug/L ug/L	10.0		90.1	60-140		
4-Chloro-3-methylphenol	9.01	1.12		20.0		103	60-140		
4-Chlorophenyl phenylether	20.6	0.562	ug/L ug/L	10.0		80.1	60-140		
4-Nitrophenol	8.01	4.50	ug/L ug/L	50.0		99.4	60-140		
Acenaphthene	49.7 10.0	0.562	ug/L ug/L	10.0		100	60-140		
Acenaphthylene	10.0	0.562	ug/L ug/L	10.0		118	60-140		
Anthracene	11.8	0.562	ug/L ug/L	10.0		101	60-140		
Benzo(a)anthracene	10.1 10.9	0.562	ug/L ug/L	10.0		101	60-140		
Benzo(a)pyrene	10.9	0.562	ug/L ug/L	10.0		101	60-140		
benzo(b&k)fluoranthene	21.4	1.12	ug/L ug/L	20.0		107	60-140		
Benzo(g,h,i)perylene	9.08	0.562	ug/L ug/L	10.0		90.8	60-140		
bis(2-Chloroethoxy)methane	10.7	0.562	ug/L ug/L	10.0		107	60-140		
bis(2-Chloroethyl) ether	8.84	0.562	ug/L	10.0		88.4	60-140		
Bis(2-ethylhexyl )phthalate	9.47	0.562	ug/L ug/L	10.0		94.7	60-140		
Butyl benzyl phthalate	9.76	0.562	ug/L ug/L	10.0		97.6	60-140		
Chrysene	9.02	0.562	ug/L ug/L	10.0		90.2	60-140		
Dibenzo(a,h)anthracene	9.02	0.562	ug/L ug/L	10.0		90.1	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0925 - SW-3511 (Co	ontinued)								
BS SV (BGB0925-BS2)	•		Pi	repared: 2/7/	2023 Analyzed	: 2/14/2023			
Diethyl phthalate	10.3	0.562	ug/L	10.0		103	60-140		
Dimethyl phthalate	12.1	0.562	ug/L	10.0		121	60-140		
Di-n-butyl phthalate	<0.562 J1, L, U	0.562	ug/L	10.0			60-140		
Di-n-octyl phthalate	10.8	0.562	ug/L	10.0		108	60-140		
Fluoranthene	9.58	0.562	ug/L	10.0		95.8	60-140		
Fluorene	10.3	0.562	ug/L	10.0		103	60-140		
Hexachlorobenzene	8.15	0.562	ug/L	10.0		81.5	60-140		
Hexachlorobutadiene	5.55 J1	0.562	ug/L	10.0		55.5	60-140		
Hexachlorocyclopentadiene	7.59	0.562	ug/L	10.0		75.9	60-140		
Hexachloroethane	8.15	0.562	ug/L	10.0		81.5	60-140		
Indeno(1,2,3-cd) pyrene	9.03	0.562	ug/L	10.0		90.3	60-140		
Isophorone	9.52	0.562	ug/L	10.0		95.2	60-140		
Naphthalene	10.2	0.562	ug/L	10.0		102	60-140		
Nitrobenzene	11.4	0.562	ug/L	10.0		114	60-140		
n-Nitrosodimethylamine	4.16	2.25	ug/L	50.0		8.32	2.5-65.7		
n-Nitrosodi-n-propylamine	10.9	0.562	ug/L	10.0		109	60-140		
n-Nitrosodiphenylamine	5.61 J1	0.562	ug/L	10.0		56.1	60-140		
Pentachlorophenol	19.5	1.12	ug/L	20.0		97.6	36.8-149		
Phenanthrene	9.48	0.562	ug/L	10.0		94.8	60-140		
Phenol, Total	19.3	1.12	ug/L	20.0		96.3	60-140		
Pyrene	9.23	0.562	ug/L	10.0		92.3	60-140		
Surrogate: 2-Fluorobiphenyl-surr		9.68	ug/L	10.0		96.8	54.6-148		
Surrogate: 2-Fluorophenol-surr		23.6	ug/L	20.0		118	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		16.3	ug/L	20.0		81.6	52.4-136		
Surrogate: Nitrobenzene-d5-surr		8.43	ug/L	10.0		84.3	52-162		
Surrogate: Phenol-d5-surr		25.7	ug/L	20.0		129	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		8.22	ug/L	10.0		82.2	51.9-147		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

			Spike Source			%REC		RPD	
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
Ratch: BGB0925 - SW-3511 (Cd	ontinued)								
BSD BENZ (BGB0925-BSD1)			P	repared: 2/7/	2023 Analyzed	d: 2/10/2023	3		
3,3'-Dichlorobenzidine	6.90	0.562	ug/L	10.0		69.0	22.3-156	5.80	40
Benzidine	2.55	0.562	ug/L	10.0		25.5	9.32-162	8.52	40
Surrogate: 2-Fluorobiphenyl-surr		9.80	ug/L	10.0		98.0	54.6-148		
Surrogate: 2-Fluorophenol-surr		18.6	ug/L	20.0		93.1	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		20.9	ug/L	20.0		104	52.4-136		
Surrogate: Nitrobenzene-d5-surr		9.97	ug/L	10.0		99.7	52-162		
Surrogate: Phenol-d5-surr		18.9	ug/L	20.0		94.4	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		8.62	ug/L	10.0		86.2	51.9-147		
BSD SV (BGB0925-BSD2)			Р	repared: 2/7/	2023 Analyzeo	d: 2/14/2023	3		
1,2,4-Trichlorobenzene	10.7	0.562	ug/L	10.0	•	107	60-140	11.2	40
1,2-Dichlorobenzene	9.90	0.562	ug/L	10.0		99.0	60-140	1.85	40
(o-Dichlorobenzene)	2.30		٠,						
1,2-Diphenylhydrazine	9.57	0.562	ug/L	10.0		95.7	60-140	9.91	40
1,3-Dichlorobenzene	8.92	0.562	ug/L	10.0		89.2	60-140	6.33	40
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	9.97	0.562	ug/L	10.0		99.7	60-140	4.59	40
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	10.0	0.562	ug/L	10.0		100	60-140	6.89	40
ois(2-Chloro-1-methy									
2,4-Dichlorophenol	21.9	0.562	ug/L	20.0		110	60-140	11.6	40
2,4-Dimethylphenol	22.3	1.12	ug/L	20.0		112	35.9-153	0.973	40
2,4-Dinitrophenol	54.2	4.50	ug/L	50.0		108	60-140	4.79	40
2,4-Dinitrotoluene (2,4-DNT)	10.3	0.562	ug/L	10.0		103	60-140	2.39	40
2,6-Dinitrotoluene (2,6-DNT)	12.5	0.562	ug/L	10.0		125	60-140	15.1	40
2-Chloronaphthalene	10.9	0.562	ug/L	10.0		109	60-140	6.92	40
2-Chlorophenol	14.4	1.12	ug/L	20.0		71.9	60-140	15.9	40
2-Methyl-4,6-dinitrophenol	22.7	1.12	ug/L	20.0		114	60-140	4.27	40
(4,6-Dinitro-2-methylph									
2-Nitrophenol	17.8	1.12	ug/L	20.0		89.2	60-140	12.5	40
4-Bromophenyl phenyl ether (BDE-3)	10.9	0.562	ug/L	10.0		109	60-140	19.4	40
4-Chloro-3-methylphenol	20.9	1.12	ug/L	20.0		104	60-140	1.51	40
4-Chlorophenyl phenylether	10.3	0.562	ug/L	10.0		103	60-140	25.0	40
4-Nitrophenol	44.2	4.50	ug/L	50.0		88.3	60-140	11.7	40
Acenaphthene	10.6	0.562	ug/L	10.0		106	60-140	5.50	40
Acenaphthylene	12.0	0.562	ug/L	10.0		120	60-140	1.04	40
Anthracene	10.3	0.562	ug/L	10.0		103	60-140	1.99	40
Benzo(a)anthracene	10.8	0.562	ug/L	10.0		108	60-140	0.660	40
Benzo(a)pyrene	10.8	0.562	ug/L	10.0		108	60-140	6.06	40
penzo(p&k)fluoranthene	22.3	1.12	ug/L	20.0		112	60-140	4.51	40
Benzo(g,h,i)perylene	10.5	0.562	ug/L	10.0		105	60-140	14.2	40
bis(2-Chloroethoxy)methane	10.1	0.562	ug/L	10.0		101	60-140	5.07	40
bis(2-Chloroethyl) ether	11.6	0.562	ug/L	10.0		116	60-140	26.9	40
Bis(2-ethylhexyl )phthalate	11.2	0.562	ug/L	10.0		112	60-140	16.9	40
Butyl benzyl phthalate	10.6	0.562	ug/L	10.0		106	60-140	8.61	40
Chrysene Dibenzo(a,h)anthracene	9.99 10.7	0.562 0.562	ug/L ug/L	10.0 10.0		99.9 107	60-140 60-140	10.3 17.6	40 40



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0925 - SW-3511 (C	ontinued)								
BSD SV (BGB0925-BSD2)	-		Pi	repared: 2/7/	2023 Analyzed	1: 2/14/2023	}		
Diethyl phthalate	11.7	0.562	ug/L	10.0		117	60-140	13.3	40
Dimethyl phthalate	12.8	0.562	ug/L	10.0		128	60-140	6.07	40
Di-n-butyl phthalate	<0.562 J1, L, U	0.562	ug/L	10.0			60-140		40
Di-n-octyl phthalate	11.5	0.562	ug/L	10.0		115	60-140	5.73	40
Fluoranthene	10.1	0.562	ug/L	10.0		101	60-140	5.72	40
Fluorene	10.9	0.562	ug/L	10.0		109	60-140	5.45	40
Hexachlorobenzene	11.5	0.562	ug/L	10.0		115	60-140	33.7	40
Hexachlorobutadiene	7.03	0.562	ug/L	10.0		70.3	60-140	23.5	40
Hexachlorocyclopentadiene	7.28	0.562	ug/L	10.0		72.8	60-140	4.17	40
Hexachloroethane	7.33	0.562	ug/L	10.0		73.3	60-140	10.6	40
Indeno(1,2,3-cd) pyrene	10.5	0.562	ug/L	10.0		105	60-140	15.0	40
Isophorone	8.45	0.562	ug/L	10.0		84.5	60-140	12.0	40
Naphthalene	10.8	0.562	ug/L	10.0		108	60-140	6.43	40
Nitrobenzene	10.6	0.562	ug/L	10.0		106	60-140	6.69	40
n-Nitrosodimethylamine	4.16	2.25	ug/L	50.0		8.32	2.5-65.7	0.0391	40
n-Nitrosodi-n-propylamine	9.10	0.562	ug/L	10.0		91.0	60-140	17.8	40
n-Nitrosodiphenylamine	12.5 J1	0.562	ug/L	10.0		125	60-140	76.3	40
Pentachlorophenol	23.2	1.12	ug/L	20.0		116	36.8-149	17.2	40
Phenanthrene	10.7	0.562	ug/L	10.0		107	60-140	11.9	40
Phenol, Total	21.7	1.12	ug/L	20.0		109	60-140	12.0	40
Pyrene	9.50	0.562	ug/L	10.0		95.0	60-140	2.87	40
Surrogate: 2-Fluorobiphenyl-surr		10.3	ug/L	10.0		103	54.6-148		
Surrogate: 2-Fluorophenol-surr		23.4	ug/L	20.0		117	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		20.0	ug/L	20.0		100	52.4-136		
Surrogate: Nitrobenzene-d5-surr		8.80	ug/L	10.0		88.0	<i>52-162</i>		
Surrogate: Phenol-d5-surr		23.5	ug/L	20.0		118	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		8.29	ug/L	10.0		82.9	51.9-147		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Quality Control**

(Continued)

Analyto	Pocult Oual	Reporting	Unite	Spike	Source	0/LDEC	%REC	RPD	RPD Limit
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	KYU	Limit
Batch: BGB0925 - SW-3511 (Co	ntinued)								
BGA3905-BLK1 (BGB0925-LBK1)				repared: 2/7/	2023 Analyze	d: 2/14/2023	3		
3,3'-Dichlorobenzidine	<0.562 U	0.562	ug/L						
Benzidine	<0.562 U	0.562	ug/L						
Surrogate: 2-Fluorobiphenyl-surr		14.5	ug/L	10.0		145	54.6-148		
Surrogate: 2-Fluorophenol-surr	S	31.0	ug/L	20.0		155	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr	S	<i>38.7</i>	ug/L	20.0		193	<i>52.4-136</i>		
Surrogate: Nitrobenzene-d5-surr	S	18.4	ug/L	10.0		184	<i>52-162</i>		
Surrogate: Phenol-d5-surr	S	<i>35.6</i>	ug/L	20.0		178	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		10.3	ug/L	10.0		103	51.9-147		
BGB0310-BLK1 (BGB0925-LBK2)			P	repared: 2/7/	/2023 Analyze	d: 2/14/2023	3		
3,3'-Dichlorobenzidine	<0.561 U	0.561	ug/L						
Benzidine	<0.561 U	0.561	ug/L						
Surrogate: 2-Fluorobiphenyl-surr		13.8	ug/L	9.98		138	54.6-148		
Surrogate: 2-Fluorophenol-surr		24.6	ug/L	20.0		123	55-152		
Surrogate: 2,4,6-Tribromophenol-surr	S	38.2	ug/L	20.0		192	<i>52.4-136</i>		
Surrogate: Nitrobenzene-d5-surr	· ·	15.8	ug/L	9.98		158	52-162		
Surrogate: Phenol-d5-surr		29.3	ug/L	20.0		147	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		11.5	ug/L	9.98		116	51.9-147		
BGA3905-BLK1 (BGB0925-LBK3)			P	repared: 2/7/	/2023 Analyze	d: 2/15/2023	3		
1,2,4-Trichlorobenzene	<0.562 U	0.562	ug/L	. opa. ca. 2/ //	2020 / 11.01/20	u, _, _, _	-		
1,2-Dichlorobenzene	<0.562 U	0.562	ug/L						
(o-Dichlorobenzene)	<b>\0.302 0</b>	0.502	~9/ <b>-</b>						
1,2-Diphenylhydrazine	<0.562 U	0.562	ug/L						
1,3-Dichlorobenzene	<0.562 U	0.562	ug/L						
(m-Dichlorobenzene)			-						
1,4-Dichlorobenzene	<0.562 U	0.562	ug/L						
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	<0.562 U	0.562	ug/L						
bis(2-Chloro-1-methy									
2,4-Dichlorophenol	<0.562 U	0.562	ug/L						
2,4-Dimethylphenol	<1.12 U	1.12	ug/L						
2,4-Dinitrophenol	<4.50 U	4.50	ug/L						
2,4-Dinitrotoluene (2,4-DNT)	<0.562 U	0.562	ug/L						
2,6-Dinitrotoluene (2,6-DNT)	<0.562 U	0.562	ug/L						
2-Chloronaphthalene	<0.562 U	0.562	ug/L						
2-Chlorophenol	<1.12 U	1.12	ug/L						
2-Methyl-4,6-dinitrophenol	<1.12 U	1.12	ug/L						
(4,6-Dinitro-2-methylph									
2-Nitrophenol	<1.12 U	1.12	ug/L						
4-Bromophenyl phenyl ether (BDE-3)	<0.562 U	0.562	ug/L						
4-Chloro-3-methylphenol	<1.12 U	1.12	ug/L						
4-Chlorophenyl phenylether	<0.562 U	0.562	ug/L						
4-Nitrophenol	<4.50 U	4.50	ug/L						
Acenaphthene	<0.562 U	0.562	ug/L						
Acenaphthylene	<0.562 U	0.562	ug/L						



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

### **Quality Control**

(Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0925 - SW-3511 (Cd	ontinued)								
BGA3905-BLK1 (BGB0925-LBK3)	munucu j		P	repared: 2/7/	/2023 Analyzed	: 2/15/2023			
Anthracene	<0.562 U	0.562	ug/L	,	,200	, ,,			
Benzo(a)anthracene	<0.562 U	0.562	ug/L						
Benzo(a)pyrene	<0.562 U	0.562	ug/L						
benzo(b&k)fluoranthene	<1.12 U	1.12	ug/L						
Benzo(g,h,i)perylene	<0.562 U	0.562	ug/L						
bis(2-Chloroethoxy)methane	<0.562 U	0.562	ug/L						
bis(2-Chloroethyl) ether	<0.562 U	0.562	ug/L						
Bis(2-ethylhexyl )phthalate	<0.562 U	0.562	ug/L						
Butyl benzyl phthalate	<0.562 U	0.562	ug/L						
Chrysene	<0.562 U	0.562	ug/L						
Dibenzo(a,h)anthracene	<0.562 U	0.562	ug/L						
Diethyl phthalate	0.774	0.562	ug/L						
Dimethyl phthalate	5.59	0.562	ug/L						
Di-n-butyl phthalate	<0.562 L, U	0.562	ug/L						
Di-n-octyl phthalate	<0.562 U	0.562	ug/L						
Fluoranthene	<0.562 U	0.562	ug/L						
Fluorene	<0.562 U	0.562	ug/L						
Hexachlorobenzene	<0.562 U	0.562	ug/L						
Hexachlorobutadiene	<0.562 U	0.562	ug/L						
Hexachlorocyclopentadiene	<0.562 U	0.562	ug/L						
Hexachloroethane	<0.562 U	0.562	ug/L						
Indeno(1,2,3-cd) pyrene	<0.562 U	0.562	ug/L						
Isophorone	<0.562 U	0.562	ug/L						
Naphthalene	<0.562 U	0.562	ug/L						
Nitrobenzene	<0.562 U	0.562	ug/L						
n-Nitrosodimethylamine	<2.25 U	2.25	ug/L						
n-Nitrosodi-n-propylamine	<0.562 U	0.562	ug/L						
n-Nitrosodiphenylamine	<0.562 U	0.562	ug/L						
Pentachlorophenol	<1.12 U	1.12	ug/L						
Phenanthrene	<0.562 U	0.562	ug/L						
Phenol, Total	1.43	1.12	ug/L						
Pyrene	<0.562 U	0.562	ug/L						
Surrogate: 2-Fluorobiphenyl-surr		9.70	ug/L	10.0		97.0	54.6-148		
Surrogate: 2-Fluorophenol-surr		22.3	ug/L	20.0		111	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		21.9	ug/L	20.0		109	<i>52.4-136</i>		
Surrogate: Nitrobenzene-d5-surr		7.99	ug/L	10.0		79.9	<i>52-162</i>		
Surrogate: Phenol-d5-surr		25.7	ug/L	20.0		129	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		8.20	ug/L	10.0		82.0	51.9-147		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

atch: BGB0925 - SW-3511 (C	ontinuea)				Duanawad, 2/7/2022 Analysis 2/45/202
GB0310-BLK1 (BGB0925-LBK4)			0.504	"	Prepared: 2/7/2023 Analyzed: 2/15/202
1,2,4-Trichlorobenzene	<0.561		0.561	ug/L	
1,2-Dichlorobenzene	< 0.561	U	0.561	ug/L	
o-Dichlorobenzene)			0.54	,,	
1,2-Diphenylhydrazine	< 0.561		0.561	ug/L	
,3-Dichlorobenzene	< 0.561	U	0.561	ug/L	
m-Dichlorobenzene)			0.564	,,	
L,4-Dichlorobenzene	< 0.561	U	0.561	ug/L	
p-Dichlorobenzene)	. =		0.561	/1	
2,2'-Oxybis(1-chloropropane), ois(2-Chloro-1-methy	<0.561	U	0.501	ug/L	
2,4-Dichlorophenol	40 F61		0.561	ug/L	
2,4-Dimethylphenol	<0.561		1.12	ug/L	
	<1.12		4.49	ug/L ug/L	
2,4-Dinitrophenol	<4.49				
2,4-Dinitrotoluene (2,4-DNT)	<0.561		0.561	ug/L	
2,6-Dinitrotoluene (2,6-DNT)	< 0.561		0.561	ug/L	
2-Chloronaphthalene	< 0.561		0.561	ug/L	
2-Chlorophenol	<1.12		1.12	ug/L	
2-Methyl-4,6-dinitrophenol	<1.12	U	1.12	ug/L	
4,6-Dinitro-2-methylph					
2-Nitrophenol	<1.12		1.12	ug/L	
I-Bromophenyl phenyl ether (BDE-3)	< 0.561		0.561	ug/L	
I-Chloro-3-methylphenol	<1.12	U	1.12	ug/L	
I-Chlorophenyl phenylether	< 0.561		0.561	ug/L	
I-Nitrophenol	<4.49	U	4.49	ug/L	
Acenaphthene	< 0.561	U	0.561	ug/L	
Acenaphthylene	< 0.561	U	0.561	ug/L	
Anthracene	< 0.561	U	0.561	ug/L	
Benzo(a)anthracene	< 0.561	U	0.561	ug/L	
Benzo(a)pyrene	< 0.561	U	0.561	ug/L	
penzo(b&k)fluoranthene	<1.12	U	1.12	ug/L	
Benzo(g,h,i)perylene	< 0.561	U	0.561	ug/L	
ois(2-Chloroethoxy)methane	< 0.561	U	0.561	ug/L	
ois(2-Chloroethyl) ether	< 0.561	U	0.561	ug/L	
Bis(2-ethylhexyl )phthalate	< 0.561		0.561	ug/L	
Butyl benzyl phthalate	< 0.561		0.561	ug/L	
Chrysene	< 0.561		0.561	ug/L	
Dibenzo(a,h)anthracene	< 0.561		0.561	ug/L	
Diethyl phthalate	0.726	-	0.561	ug/L	
Dimethyl phthalate	5.78		0.561	ug/L	
Di-n-butyl phthalate	<0.561	1.11	0.561	ug/L	
Di-n-octyl phthalate	< 0.561	-	0.561	ug/L	
Fluoranthene	<0.561		0.561	ug/L ug/L	
Fluorene			0.561	ug/L ug/L	
Hexachlorobenzene	< 0.561		0.561	_	
	< 0.561			ug/L	
Hexachlorobutadiene	< 0.561	U	0.561	ug/L	



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

### **Quality Control**

(Continued)

		Reporting		Spike	Source	0/556	%REC		RPD
Analyte	Result Qu	al Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0925 - SW-3511 (Co	ntinued)								
BGB0310-BLK1 (BGB0925-LBK4)				Prepared: 2/7/	'2023 Analyzed	1: 2/15/2023	<b>†</b>		
Hexachloroethane	<0.561 U	0.561	ug/L						
Indeno(1,2,3-cd) pyrene	<0.561 U	0.561	ug/L						
Isophorone	<0.561 U	0.561	ug/L						
Naphthalene	<0.561 U	0.561	ug/L						
Nitrobenzene	<0.561 U	0.561	ug/L						
n-Nitrosodimethylamine	<2.24 U	2.24	ug/L						
n-Nitrosodi-n-propylamine	<0.561 U	0.561	ug/L						
n-Nitrosodiphenylamine	<0.561 U	0.561	ug/L						
Pentachlorophenol	<1.12 U	1.12	ug/L						
Phenanthrene	<0.561 U	0.561	ug/L						
Phenol, Total	1.12	1.12	ug/L						
Pyrene	<0.561 U	0.561	ug/L						
Surrogate: 2-Fluorobiphenyl-surr		9.73	ug/L	9.98		97.5	54.6-148		
Surrogate: 2-Fluorophenol-surr		22.1	ug/L	20.0		111	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		21.6	ug/L	20.0		108	<i>52.4-136</i>		
Surrogate: Nitrobenzene-d5-surr		7.96	ug/L	9.98		79.8	<i>52-162</i>		
Surrogate: Phenol-d5-surr		25.5	ug/L	20.0		128	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		8.85	ug/L	9.98		88.7	51.9-147		
MDL BENZ (BGB0925-MRL1)				Prepared: 2/7/	2023 Analyzed	1: 2/10/2023	l .		
3,3'-Dichlorobenzidine	0.179	0.562	ug/L	0.500	•	35.8			
Benzidine	0.562	0.562	ug/L	0.500		112			
Surrogate: 2-Fluorobiphenyl-surr		9.09	ug/L	10.0		90.9	54.6-148		
Surrogate: 2-Fluorophenol-surr		19.6	ug/L	20.0		98.0	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		20.9	ug/L	20.0		105	52.4-136		
Surrogate: Nitrobenzene-d5-surr		10.6	ug/L	10.0		106	52-162		
Surrogate: Phenol-d5-surr		20.7	ug/L	20.0		104	58.7-152		
Surrogate: p-Terphenyl-d14-surr		8.57	ug/L	10.0		<i>85.7</i>	51.9-147		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0925 - SW-3511 (C	ontinued)								
MDL SV (BGB0925-MRL2)			Р	repared: 2/7/	2023 Analyzed: 2	2/14/2023			
1,2,4-Trichlorobenzene	0.450	0.562	ug/L	0.500	-	90.0			
1,2-Dichlorobenzene	0.668	0.562	ug/L	0.500		134			
(o-Dichlorobenzene)			<i>5,</i>						
1,2-Diphenylhydrazine	0.681	0.562	ug/L	0.500		136			
1,3-Dichlorobenzene	0.431	0.562	ug/L	0.500		86.1			
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	0.555	0.562	ug/L	0.500		111			
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	0.770	0.562	ug/L	0.500		154			
bis(2-Chloro-1-methy									
2,4-Dichlorophenol	1.23	0.562	ug/L	1.00		123	50-150		
2,4-Dimethylphenol	1.31	1.12	ug/L	1.00		131			
2,4-Dinitrophenol	1.79	4.50	ug/L	2.50		71.5			
2,4-Dinitrotoluene (2,4-DNT)	0.373	0.562	ug/L	0.500		74.7			
2,6-Dinitrotoluene (2,6-DNT)	1.26	0.562	ug/L	0.500		253			
2-Chloronaphthalene	0.568	0.562	ug/L	0.500		114			
2-Chlorophenol	0.665	1.12	ug/L	1.00		66.5			
2-Methyl-4,6-dinitrophenol	0.691	1.12	ug/L	1.00		69.1			
(4,6-Dinitro-2-methylph			<i>5,</i>						
2-Nitrophenol	1.40	1.12	ug/L	1.00		140			
4-Bromophenyl phenyl ether (BDE-3)	0.346	0.562	ug/L	0.500		69.1			
4-Chloro-3-methylphenol	1.15	1.12	ug/L	1.00		115			
4-Chlorophenyl phenylether	0.365	0.562	ug/L	0.500		73.0			
4-Nitrophenol	4.31	4.50	ug/L	2.50		173			
Acenaphthene	0.546	0.562	ug/L	0.500		109			
Acenaphthylene	0.762	0.562	ug/L	0.500		152			
Anthracene	0.432	0.562	ug/L	0.500		86.4			
Benzo(a)anthracene	0.632	0.562	ug/L	0.500		126			
Benzo(a)pyrene	0.560	0.562	ug/L	0.500		112			
benzo(b&k)fluoranthene	1.08	1.12	ug/L	1.00		108			
Benzo(g,h,i)perylene	0.438	0.562	ug/L	0.500		87.5			
bis(2-Chloroethoxy)methane	0.799	0.562	ug/L ug/L	0.500		160			
bis(2-Chloroethyl) ether		0.562	ug/L ug/L	0.500		97.2			
	0.486	0.562	_	0.500		134			
Bis(2-ethylhexyl )phthalate	0.668		ug/L						
Butyl benzyl phthalate	0.623	0.562	ug/L	0.500		125			
Chrysene	0.400	0.562	ug/L	0.500		80.1			
Dibenzo(a,h)anthracene	0.322	0.562	ug/L	0.500		64.4			
Diethyl phthalate	1.62	0.562	ug/L	0.500		324			
Dimethyl phthalate	1.94	0.562	ug/L	0.500		388			
Di-n-butyl phthalate	10.4	0.562	ug/L	0.500		NR			
Di-n-octyl phthalate	0.589	0.562	ug/L	0.500		118			
Fluoranthene	0.311	0.562	ug/L	0.500		62.2			
Fluorene	0.589	0.562	ug/L	0.500		118			
Hexachlorobenzene	0.316	0.562	ug/L	0.500		63.1			
Hexachlorobutadiene	0.263	0.562	ug/L	0.500		52.6			
Hexachlorocyclopentadiene	0.705	0.562	ug/L	0.500		141			
Hexachloroethane	0.412	0.562	ug/L	0.500		82.3			



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Quality Control**

(Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0925 - SW-3511 (Con	ntinued)								
MDL SV (BGB0925-MRL2)	-			Prepared: 2/7/	2023 Analyze	d: 2/14/2023	3		
Indeno(1,2,3-cd) pyrene	0.378	0.562	ug/L	0.500	,20	75.5			
Isophorone	0.450	0.562	ug/L	0.500		90.0			
Naphthalene	0.565	0.562	ug/L	0.500		113			
Nitrobenzene	0.630	0.562	ug/L	0.500		126			
n-Nitrosodimethylamine	0.765 J1	2.25	ug/L	2.50		30.6	50-150		
n-Nitrosodi-n-propylamine	0.848	0.562	ug/L	0.500		170	100		
n-Nitrosodiphenylamine	0.353	0.562	ug/L	0.500		70.6			
Pentachlorophenol	0.555	1.12	ug/L	1.00		61.8			
Phenanthrene	0.479	0.562	ug/L	0.500		95.9			
Phenol, Total	1.68	1.12	ug/L	1.00		168			
Pyrene	0.403	0.562	ug/L ug/L	0.500		80.7			
	0.403								
Surrogate: 2-Fluorobiphenyl-surr		9.68	ug/L	10.0		96.8	54.6-148		
Surrogate: 2-Fluorophenol-surr		23.3	ug/L	20.0		116	55-152		
Surrogate: 2,4,6-Tribromophenol-surr		19.4	ug/L	20.0		97.0	<i>52.4-136</i>		
Surrogate: Nitrobenzene-d5-surr		<i>8.46</i>	ug/L	10.0		84.6	<i>52-162</i>		
Surrogate: Phenol-d5-surr		23.9	ug/L	20.0		120	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		9.56	ug/L	10.0		95.6	51.9-147		
23A1459-09 MS (BGB0925-MS1)	Source: 2	<b>23A1459-09RE1</b> Prepared: 2/7/2023 Analyzed: 2/14/2023							
1,2,4-Trichlorobenzene	10.2	0.562	ug/L	10.0	< 0.562	102	35.3-142		
1,2-Dichlorobenzene	8.87	0.562	ug/L	10.0	< 0.562	88.7	31.4-142		
(o-Dichlorobenzene)									
1,2-Diphenylhydrazine	8.61	0.562	ug/L	10.0	< 0.562	86.1	48.9-156		
1,3-Dichlorobenzene	8.06	0.562	ug/L	10.0	< 0.562	80.6	30.5-135		
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	9.35	0.562	ug/L	10.0	< 0.562	93.5	37.2-133		
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	9.81	0.562	ug/L	10.0	<0.562	98.1	41.7-151		
bis(2-Chloro-1-methy							40 = :==		
2,4-Dichlorophenol	21.7	0.562	ug/L	20.0	<0.562	108	42.7-158		
2,4-Dimethylphenol	21.8	1.12	ug/L	20.0	<1.12	109	38.4-170		
2,4-Dinitrophenol	55.2	4.50	ug/L	50.0	<4.50	110	60-140		
2,4-Dinitrotoluene (2,4-DNT)	9.87	0.562	ug/L	10.0	<0.562	98.7	50.3-144		
2,6-Dinitrotoluene (2,6-DNT)	12.0	0.562	ug/L	10.0	<0.562	120	43.7-157		
2-Chloronaphthalene	9.60	0.562	ug/L	10.0	< 0.562	96.0	27.4-158		
2-Chlorophenol	13.1	1.12	ug/L	20.0	<1.12	65.6	49.2-150		
2-Methyl-4,6-dinitrophenol	24.8	1.12	ug/L	20.0	<1.12	124	41.9-153		
(4,6-Dinitro-2-methylph									
2-Nitrophenol	20.0	1.12	ug/L	20.0	<1.12	100	51.9-150		
4-Bromophenyl phenyl ether (BDE-3)	9.74	0.562	ug/L	10.0	< 0.562	97.4	45.2-146		
4-Chloro-3-methylphenol	18.3	1.12	ug/L	20.0	<1.12	91.6	46.9-147		
4-Chlorophenyl phenylether	8.17	0.562	ug/L	10.0	< 0.562	81.7	44.5-143		
4-Nitrophenol	37.5	4.50	ug/L	50.0	<4.50	75.1	2-173		
Acenaphthene	10.3	0.562	ug/L	10.0	1.29	90.5	47.3-149		
Acenaphthylene	10.5	0.562	ug/L	10.0	0.579	99.1	56.5-173		
Anthracene	10.5	0.562	ug/L	10.0	< 0.562	105	49.7-160		
Benzo(a)anthracene	10.6	0.562	ug/L	10.0	< 0.562	106	41.7-151		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0925 - SW-3511 (Co	ntinued)							· ·	
23A1459-09 MS (BGB0925-MS1)	-	rce: 23A1459-09RE1		Prepared: 2/7/	2023 Analyze	d: 2/14/2023	3		
Benzo(a)pyrene	10.0	0.562	ug/L	10.0	<0.562	100	45.4-133		
benzo(b&k)fluoranthene	20.8	1.12	ug/L	20.0	<1.12	104	55.3-137		
Benzo(g,h,i)perylene	10.1	0.562	ug/L	10.0	< 0.562	101	37.9-152		
bis(2-Chloroethoxy)methane	10.2	0.562	ug/L	10.0	< 0.562	102	40.1-151		
bis(2-Chloroethyl) ether	11.9	0.562	ug/L	10.0	< 0.562	119	45.9-163		
Bis(2-ethylhexyl )phthalate	9.41	0.562	ug/L	10.0	< 0.562	94.1	38.3-135		
Butyl benzyl phthalate	9.46	0.562	ug/L	10.0	<0.562	94.6	41.1-148		
Chrysene	8.86	0.562	ug/L	10.0	<0.562	88.6	51-147		
Dibenzo(a,h)anthracene	10.7	0.562	ug/L	10.0	<0.562	107	27.5-156		
Diethyl phthalate	9.09	0.562	ug/L	10.0	0.898	81.9	53.4-146		
Dimethyl phthalate	8.49	0.562	ug/L	10.0	<0.562	84.9	53-151		
Di-n-butyl phthalate	18.4	0.562	ug/L	10.0	7.87	105	25.4-168		
Di-n-octyl phthalate	9.54	0.562	ug/L	10.0	< 0.562	95.4	39.2-123		
Fluoranthene	9.92	0.562	ug/L	10.0	< 0.562	99.2	45.3-156		
Fluorene	12.7	0.562	ug/L	10.0	3.55	91.9	56.3-145		
Hexachlorobenzene	8.96	0.562	ug/L	10.0	< 0.562	89.6	56.1-137		
Hexachlorobutadiene	8.45	0.562	ug/L	10.0	< 0.562	84.5	33.1-110		
Hexachlorocyclopentadiene	11.1	0.562	ug/L	10.0	< 0.562	111	2-179		
Hexachloroethane	8.48	0.562	ug/L	10.0	<0.562	84.8	36.2-106		
Indeno(1,2,3-cd) pyrene	10.2	0.562	ug/L	10.0	<0.562	102	33.4-153		
Isophorone	8.27	0.562	ug/L	10.0	<0.562	82.7	43.3-154		
Naphthalene	10.4	0.562	ug/L	10.0	< 0.562	104	45.1-153		
Nitrobenzene	9.96	0.562	ug/L	10.0	<0.562	99.6	54.9-156		
n-Nitrosodimethylamine	4.94	2.25	ug/L	50.0	<2.25	9.88	2-56.4		
n-Nitrosodi-n-propylamine	8.99	0.562	ug/L	10.0	< 0.562	89.9	38.3-160		
n-Nitrosodiphenylamine	17.7 J1	0.562	ug/L	10.0	<0.562	177	38.1-163		
Pentachlorophenol	20.2	1.12	ug/L	20.0	<1.12	101	42.2-151		
Phenanthrene	11.4	0.562	ug/L	10.0	1.08	103	45.3-165		
Phenol, Total	22.8	1.12	ug/L	20.0	<1.12	114	39.8-164		
Pyrene	9.73	0.562	ug/L	10.0	<0.562	97.3	46.3-149		
Surrogate: 2-Fluorobiphenyl-surr		9.49	ug/L	10.0		94.9	54.6-148		
Surrogate: 2-Fluorophenol-surr		23.0	ug/L	20.0		115	55-152		
Surrogate: 2,4,6-Tribromophenol-surr		17.0	ug/L	20.0		84.9	<i>52.4-136</i>		
Surrogate: Nitrobenzene-d5-surr		8.50	ug/L	10.0		85.0	<i>52-162</i>		
Surrogate: Phenol-d5-surr		23.8	ug/L	20.0		119	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		7.76	ug/L	10.0		77.6	51.9-147		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
atch: BGB0925 - SW-3511 (Cont	tinued)								
23A1459-09 MSD (BGB0925-MSD1)	Source:	23A1459-09RE1	F	Prepared: 2/7/	2023 Analyzed	d: 2/14/2023	3		
1,2,4-Trichlorobenzene	10.3	0.562	ug/L	10.0	< 0.562	103	35.3-142	1.59	40
1,2-Dichlorobenzene	9.23	0.562	ug/L	10.0	< 0.562	92.3	31.4-142	4.00	40
(o-Dichlorobenzene)			-						
1,2-Diphenylhydrazine	9.45	0.562	ug/L	10.0	< 0.562	94.5	48.9-156	9.29	40
1,3-Dichlorobenzene	8.18	0.562	ug/L	10.0	< 0.562	81.8	30.5-135	1.46	40
(m-Dichlorobenzene)									
1,4-Dichlorobenzene	8.96	0.562	ug/L	10.0	< 0.562	89.6	37.2-133	4.17	40
(p-Dichlorobenzene)									
2,2'-Oxybis(1-chloropropane),	10.2	0.562	ug/L	10.0	< 0.562	102	41.7-151	3.64	40
bis(2-Chloro-1-methy									
2,4-Dichlorophenol	22.0	0.562	ug/L	20.0	<0.562	110	42.7-158	1.35	40
2,4-Dimethylphenol	22.8	1.12	ug/L	20.0	<1.12	114	38.4-170	4.53	40
2,4-Dinitrophenol	65.3	4.50	ug/L	50.0	<4.50	131	60-140	16.9	40
2,4-Dinitrotoluene (2,4-DNT)	10.9	0.562	ug/L	10.0	< 0.562	109	50.3-144	9.47	40
2,6-Dinitrotoluene (2,6-DNT)	11.3	0.562	ug/L	10.0	< 0.562	113	43.7-157	5.92	40
2-Chloronaphthalene	10.8	0.562	ug/L	10.0	< 0.562	108	27.4-158	12.1	40
2-Chlorophenol	14.3	1.12	ug/L	20.0	<1.12	71.4	49.2-150	8.36	40
2-Methyl-4,6-dinitrophenol	25.3	1.12	ug/L	20.0	<1.12	127	41.9-153	2.12	40
(4,6-Dinitro-2-methylph									
2-Nitrophenol	20.9	1.12	ug/L	20.0	<1.12	104	51.9-150	4.12	40
4-Bromophenyl phenyl ether (BDE-3)	9.95	0.562	ug/L	10.0	< 0.562	99.5	45.2-146	2.07	40
1-Chloro-3-methylphenol	20.9	1.12	ug/L	20.0	<1.12	104	46.9-147	13.1	40
4-Chlorophenyl phenylether	9.11	0.562	ug/L	10.0	< 0.562	91.1	44.5-143	10.9	40
4-Nitrophenol	39.1	4.50	ug/L	50.0	<4.50	78.1	2-173	3.97	40
Acenaphthene	11.1	0.562	ug/L	10.0	1.29	97.9	47.3-149	6.85	40
Acenaphthylene	12.0	0.562	ug/L	10.0	0.579	114	56.5-173	13.1	40
Anthracene	10.4	0.562	ug/L	10.0	< 0.562	104	49.7-160	1.28	40
Benzo(a)anthracene	11.1	0.562	ug/L	10.0	< 0.562	111	41.7-151	4.49	40
Benzo(a)pyrene	10.4	0.562	ug/L	10.0	< 0.562	104	45.4-133	4.28	40
benzo(b&k)fluoranthene	21.5	1.12	ug/L	20.0	<1.12	108	55.3-137	3.42	40
Benzo(g,h,i)perylene	10.2	0.562	ug/L	10.0	< 0.562	102	37.9-152	1.37	40
bis(2-Chloroethoxy)methane	10.4	0.562	ug/L	10.0	< 0.562	104	40.1-151	1.83	40
bis(2-Chloroethyl) ether	12.2	0.562	ug/L	10.0	< 0.562	122	45.9-163	2.79	40
Bis(2-ethylhexyl )phthalate	9.07	0.562	ug/L	10.0	< 0.562	90.7	38.3-135	3.66	40
Butyl benzyl phthalate	10.0	0.562	ug/L	10.0	<0.562	100	41.1-148	6.03	40
Chrysene	9.19	0.562	ug/L	10.0	< 0.562	91.9	51-147	3.68	40
Dibenzo(a,h)anthracene	10.6	0.562	ug/L	10.0	< 0.562	106	27.5-156	0.459	40
Diethyl phthalate	10.6	0.562	ug/L	10.0	0.898	97.3	53.4-146	15.6	40
Dimethyl phthalate	10.7	0.562	ug/L ug/L	10.0	< 0.562	107	53-151	22.6	40
Di-n-butyl phthalate		0.562	ug/L ug/L	10.0	7.87	107	25.4-168	0.246	40
Di-n-octyl phthalate	18.4	0.562	ug/L	10.0	< 0.562	98.0	39.2-123	2.67	40
Fluoranthene	9.80	0.562	ug/L ug/L	10.0	< 0.562	104	45.3-156	4.68	40
Fluorene	10.4	0.562			3.55		45.3-156 56.3-145		40
Huorene Hexachlorobenzene	14.2	0.562	ug/L	10.0 10.0	< 0.562	107	56.3-145 56.1-137	11.0 4.02	40
Hexachlorobutadiene	9.33	0.562	ug/L		<0.562 <0.562	93.3			
	7.44		ug/L	10.0		74.4	33.1-110	12.7	40
Hexachlorocyclopentadiene Hexachloroethane	11.0 7.33	0.562 0.562	ug/L ug/L	10.0 10.0	<0.562 <0.562	110 73.3	2-179 36.2-106	0.764 14.5	40 40





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0925 - SW-3511 (Cont	tinued)								
23A1459-09 MSD (BGB0925-MSD1)	Source:	23A1459-09RE1	. F	Prepared: 2/7/	2023 Analyzed	d: 2/14/2023	3		
Indeno(1,2,3-cd) pyrene	10.4	0.562	ug/L	10.0	< 0.562	104	33.4-153	1.51	40
Isophorone	8.72	0.562	ug/L	10.0	< 0.562	87.2	43.3-154	5.34	40
Naphthalene	10.6	0.562	ug/L	10.0	< 0.562	106	45.1-153	2.45	40
Nitrobenzene	11.1	0.562	ug/L	10.0	< 0.562	111	54.9-156	10.9	40
n-Nitrosodimethylamine	5.48	2.25	ug/L	50.0	<2.25	11.0	2-56.4	10.3	40
n-Nitrosodi-n-propylamine	9.28	0.562	ug/L	10.0	< 0.562	92.8	38.3-160	3.25	40
n-Nitrosodiphenylamine	13.1	0.562	ug/L	10.0	< 0.562	131	38.1-163	29.8	40
Pentachlorophenol	21.8	1.12	ug/L	20.0	<1.12	109	42.2-151	7.59	40
Phenanthrene	11.5	0.562	ug/L	10.0	1.08	104	45.3-165	1.49	40
Phenol, Total	23.3	1.12	ug/L	20.0	<1.12	116	39.8-164	2.29	40
Pyrene	10.0	0.562	ug/L	10.0	<0.562	100	46.3-149	3.01	40
Surrogate: 2-Fluorobiphenyl-surr		10.2	ug/L	10.0		102	54.6-148		
Surrogate: 2-Fluorophenol-surr		24.1	ug/L	20.0		121	<i>55-152</i>		
Surrogate: 2,4,6-Tribromophenol-surr		18.4	ug/L	20.0		92.2	<i>52.4-136</i>		
Surrogate: Nitrobenzene-d5-surr		9.53	ug/L	10.0		95.3	<i>52-162</i>		
Surrogate: Phenol-d5-surr		26.0	ug/L	20.0		130	<i>58.7-152</i>		
Surrogate: p-Terphenyl-d14-surr		8.66	ug/L	10.0		86.6	51.9-147		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

#### **Elutriate Organics by GC**

	D. "	0 1	Reporting		Spike	Source	0/ DEC	%REC	555	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0543 - SW-3511										
Blank (BGB0543-BLK1)					Prepared: 2/3	/2023 Analyze	ed: 2/8/2023			
4,4'-DDD	<0.00600	U	0.00600	ug/L						
4,4'-DDE	<0.00600	U	0.00600	ug/L						
4,4'-DDT	<0.00600	U	0.00600	ug/L						
Aldrin	<0.00600		0.00600	ug/L						
alpha-BHC	<0.00600		0.00600	ug/L						
(alpha-Hexachlorocyclohexane)				_						
beta-BHC	< 0.00600	U	0.00600	ug/L						
(beta-Hexachlorocyclohexane)										
Chlordane (tech.)	<0.00600	U	0.00600	ug/L						
cis-Chlordane (alpha-Chlordane)	< 0.00600	U	0.00600	ug/L						
delta-BHC	< 0.00600	U	0.00600	ug/L						
Dieldrin	< 0.00600	U	0.00600	ug/L						
Endosulfan I	< 0.00600	U	0.00600	ug/L						
Endosulfan II	< 0.00600	U	0.00600	ug/L						
Endosulfan sulfate	< 0.00600	U	0.00600	ug/L						
Endrin	< 0.00600	U	0.00600	ug/L						
Endrin aldehyde	< 0.00600	U	0.00600	ug/L						
Endrin ketone	< 0.00600	U	0.00600	ug/L						
gamma-BHC (Lindane,	< 0.00600	U	0.00600	ug/L						
gamma-HexachlorocyclohexanE)										
gamma-Chlordane	< 0.00600	U	0.00600	ug/L						
Heptachlor	< 0.00600	U	0.00600	ug/L						
Heptachlor epoxide	< 0.00600	U	0.00600	ug/L						
Methoxychlor	< 0.00600	U	0.00600	ug/L						
Toxaphene (Chlorinated Camphene)	<0.300	U	0.300	ug/L						
Surrogate: 2,4,5,6			0.127	ug/L	0.120		106	60-140		
Tetrachloro-m-xylene-surr				31						
Surrogate: Decachlorobiphenyl-surr			0.123	ug/L	0.120		102	60-140		
LCS (BGB0543-BS1)					Prepared: 2/3	/2023 Analyze	ed: 2/8/2023			
Toxaphene (Chlorinated Camphene)	1.33		0.300	ug/L	1.20	,	111	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.105	ug/L	0.120		87.3	60-140		
Surrogate: Decachlorobiphenyl-surr			0.118	ug/L	0.120		98.7	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0543 - SW-3511 (C	Continued)								
LCS (BGB0543-BS2)	,		F	Prepared: 2/3	/2023 Analyze	d: 2/8/2023			
4,4'-DDD	0.0992	0.00600	ug/L	0.120	•	82.6	60-140		
4,4'-DDE	0.0973	0.00600	ug/L	0.120		81.0	60-140		
4,4'-DDT	0.102	0.00600	ug/L	0.120		85.2	60-140		
Aldrin	0.0847	0.00600	ug/L	0.120		70.6	60-140		
alpha-BHC	0.108	0.00600	ug/L	0.120		89.8	60-140		
(alpha-Hexachlorocyclohexane)	0.100		- 3/						
beta-BHC	0.0957	0.00600	ug/L	0.120		79.7	60-140		
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	0.348	0.00600	ug/L	0.480		72.5	60-140		
cis-Chlordane (alpha-Chlordane)	0.0881	0.00600	ug/L	0.120		73.5	60-140		
delta-BHC	0.101	0.00600	ug/L	0.120		83.8	60-140		
Dieldrin	0.102	0.00600	ug/L	0.120		85.2	60-140		
Endosulfan I	0.0856	0.00600	ug/L	0.120		71.3	60-140		
Endosulfan II	0.0996	0.00600	ug/L	0.120		83.0	60-140		
Endosulfan sulfate	0.103	0.00600	ug/L	0.120		85.5	60-140		
Endrin	0.0992	0.00600	ug/L	0.120		82.6	60-140		
Endrin aldehyde	0.105	0.00600	ug/L	0.120		87.4	60-140		
Endrin ketone	0.110	0.00600	ug/L	0.120		92.0	60-140		
gamma-BHC (Lindane,	0.0981	0.00600	ug/L	0.120		81.8	60-140		
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	0.0846	0.00600	ug/L	0.120		70.5	60-140		
Heptachlor	0.0892	0.00600	ug/L	0.120		74.3	60-140		
Heptachlor epoxide	0.0861	0.00600	ug/L	0.120		71.8	60-140		
Methoxychlor	0.103	0.00600	ug/L	0.120		85.7	60-140		
Surrogate: 2,4,5,6		0.0939	ug/L	0.120		78.2	60-140		
Tetrachloro-m-xylene-surr			3/ -	*					
Surrogate: Decachlorobiphenyl-surr		0.117	ug/L	0.120		97.3	60-140		
LCS Dup (BGB0543-BSD1)			F	Prepared: 2/3	/2023 Analyze	d: 2/8/2023			
Toxaphene (Chlorinated Camphene)	1.33	0.300	ug/L	1.20	•	111	60-140	0.0862	40
Surrogate: 2,4,5,6		0.103	ug/L	0.120		85.4	60-140		
Tetrachloro-m-xylene-surr			<i>5,</i>						
Surrogate: Decachlorobiphenyl-surr		0.117	ug/L	0.120		97.6	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0543 - SW-3511 (Cd									
LCS Dup (BGB0543-BSD2)	ontinueu j			Prenared: 2/3.	/2023 Analyze	d· 2/8/2023			
4,4'-DDD	0.104	0.00600	ug/L	0.120	2023 / 11/01/20	86.8	60-140	4.86	40
4,4'-DDE	0.110	0.00600	ug/L	0.120		92.1	60-140	12.7	40
4,4'-DDT	0.110	0.00600	ug/L	0.120		85.4	60-140	0.240	40
Aldrin	0.0999	0.00600	ug/L	0.120		83.3	60-140	16.5	40
alpha-BHC	0.123	0.00600	ug/L	0.120		102	60-140	13.1	40
(alpha-Hexachlorocyclohexane)	0.125	0.00000	ug/ L	0.120		102	00 1 10	13.1	10
beta-BHC	0.110	0.00600	ug/L	0.120		91.6	60-140	13.9	40
(beta-Hexachlorocyclohexane)	0.110		. 31						
Chlordane (tech.)	0.395	0.00600	ug/L	0.480		82.3	60-140	12.6	40
cis-Chlordane (alpha-Chlordane)	0.100	0.00600	ug/L	0.120		83.7	60-140	13.0	40
delta-BHC	0.113	0.00600	ug/L	0.120		94.2	60-140	11.6	40
Dieldrin	0.110	0.00600	ug/L	0.120		91.8	60-140	7.37	40
Endosulfan I	0.0948	0.00600	ug/L	0.120		79.0	60-140	10.2	40
Endosulfan II	0.101	0.00600	ug/L	0.120		84.1	60-140	1.33	40
Endosulfan sulfate	0.0997	0.00600	ug/L	0.120		83.1	60-140	2.88	40
Endrin	0.102	0.00600	ug/L	0.120		84.8	60-140	2.53	40
Endrin aldehyde	0.116	0.00600	ug/L	0.120		97.0	60-140	10.4	40
Endrin ketone	0.0966	0.00600	ug/L	0.120		80.5	60-140	13.3	40
gamma-BHC (Lindane,	0.116	0.00600	ug/L	0.120		96.8	60-140	16.9	40
gamma-HexachlorocyclohexanE)	0.110		-31 -						
gamma-Chlordane	0.0961	0.00600	ug/L	0.120		80.1	60-140	12.7	40
Heptachlor	0.102	0.00600	ug/L	0.120		85.4	60-140	13.8	40
Heptachlor epoxide	0.0960	0.00600	ug/L	0.120		80.0	60-140	10.8	40
Methoxychlor	0.103	0.00600	ug/L	0.120		85.8	60-140	0.163	40
Surrogate: 2,4,5,6		0.119	ug/L	0.120		99.5	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.104	ug/L	0.120		87.1	60-140		
BGA3905-BLK1 (BGB0543-LBK1)			ı	Prepared: 2/3,	/2023 Analyze	d: 2/8/2023			
4,4'-DDD	<0.00600 U	0.00600	ug/L						
4,4'-DDE	<0.00600 U	0.00600	ug/L						
4,4'-DDT	<0.00600 U	0.00600	ug/L						
Aldrin	<0.00600 U	0.00600	ug/L						
alpha-BHC	<0.00600 U	0.00600	ug/L						
(alpha-Hexachlorocyclohexane)			٠,						
beta-BHC	<0.00600 U	0.00600	ug/L						
(beta-Hexachlorocyclohexane)									
Chlordane (tech.)	<0.00600 U	0.00600	ug/L						
cis-Chlordane (alpha-Chlordane)	<0.00600 U	0.00600	ug/L						
delta-BHC	<0.00600 U	0.00600	ug/L						
Dieldrin	<0.00600 U	0.00600	ug/L						
Endosulfan I	<0.00600 U	0.00600	ug/L						
Endosulfan II	<0.00600 U	0.00600	ug/L						
Endosulfan sulfate	<0.00600 U	0.00600	ug/L						
Endrin	<0.00600 U	0.00600	ug/L						
Endrin aldehyde	<0.00600 U	0.00600	ug/L						
Endrin ketone	<0.00600 U	0.00600	ug/L						





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:

Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qu	Reporting ual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
, , , , , , , , , , , , , , , , , , ,		uai LIIIII	UIIICS	Level	Result	70KEC	LIIIIIIS	KFU	LIIIIL
Batch: BGB0543 - SW-3511 (Cd	ontinued)								
BGA3905-BLK1 (BGB0543-LBK1)				Prepared: 2/3	/2023 Analyze	ed: 2/8/2023			
gamma-BHC (Lindane,	<0.00600 U	0.00600	ug/L						
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	<0.00600 U		ug/L						
Heptachlor	<0.00600 U		ug/L						
Heptachlor epoxide	<0.00600 U	0.00600	ug/L						
Methoxychlor	<0.00600 U	0.00600	ug/L						
Toxaphene (Chlorinated Camphene)	<0.300 U	0.300	ug/L						
Surrogate: 2,4,5,6		0.108	ug/L	0.120		90.2	60-140		
Tetrachloro-m-xylene-surr			<i>5</i> ,						
Surrogate: Decachlorobiphenyl-surr	5	0.0246	ug/L	0.120		20.5	60-140		
BGB0310-BLK1 (BGB0543-LBK2)				Prepared: 2/3	/2023 Analyze	ed: 2/9/2023			
4,4'-DDD	<0.00598 U	0.00598	ug/L	-	,				
4,4'-DDE	<0.00598 U		ug/L						
, 4,4'-DDT	<0.00598 U		ug/L						
, Aldrin	<0.00598 U		ug/L						
alpha-BHC	<0.00598 U		ug/L						
(alpha-Hexachlorocyclohexane)	10.00330 0		31						
beta-BHC	<0.00598 U	0.00598	ug/L						
(beta-Hexachlorocyclohexane)			_						
Chlordane (tech.)	<0.00598 U	0.00598	ug/L						
cis-Chlordane (alpha-Chlordane)	<0.00598 U	0.00598	ug/L						
delta-BHC	0.00803	0.00598	ug/L						
Dieldrin	<0.00598 U	0.00598	ug/L						
Endosulfan I	<0.00598 U	0.00598	ug/L						
Endosulfan II	<0.00598 U	0.00598	ug/L						
Endosulfan sulfate	<0.00598 U	0.00598	ug/L						
Endrin	<0.00598 U	0.00598	ug/L						
Endrin aldehyde	<0.00598 U	0.00598	ug/L						
Endrin ketone	<0.00598 U	0.00598	ug/L						
gamma-BHC (Lindane,	<0.00598 U	0.00598	ug/L						
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	<0.00598 U	0.00598	ug/L						
Heptachlor	<0.00598 U	0.00598	ug/L						
Heptachlor epoxide	<0.00598 U	0.00598	ug/L						
Methoxychlor	<0.00598 U	0.00598	ug/L						
Toxaphene (Chlorinated Camphene)	<0.299 U	0.299	ug/L						
Surrogate: 2,4,5,6		0.125	ug/L	0.120		105	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr	5	0.0384	ug/L	0.120		32.1	60-140		
			16						



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0543 - SW-3511 (	Continued)								
MRL Check (BGB0543-MRL1)	•			Prepared: 2/3	/2023 Analyzed	d: 2/8/2023			
Toxaphene (Chlorinated Camphene)	<0.300 J1, U	0.300	ug/L	0.300	,		50-150		
Surrogate: 2,4,5,6		0.0979	ug/L	0.120		81.6	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.113	ug/L	0.120		94.3	60-140		
MRL Check (BGB0543-MRL2)				Prepared: 2/3	/2023 Analyze	d: 2/8/2023			
4,4'-DDD	0.00942	0.00600	ug/L	0.0120	•	78.5	50-150		
4,4'-DDE	0.0103	0.00600	ug/L	0.0120		86.1	50-150		
4,4'-DDT	0.0103	0.00600	ug/L	0.0120		85.0	50-150		
Aldrin	0.00929	0.00600	ug/L	0.0120		77.4	50-150		
alpha-BHC	0.0117	0.00600	ug/L	0.0120		97.2	50-150		
(alpha-Hexachlorocyclohexane)	U.U.I.		J, =						
beta-BHC	0.0105	0.00600	ug/L	0.0120		87.2	50-150		
(beta-Hexachlorocyclohexane)			-						
Chlordane (tech.)	0.0392	0.00600	ug/L	0.0480		81.6	50-150		
cis-Chlordane (alpha-Chlordane)	0.0118	0.00600	ug/L	0.0120		98.6	50-150		
delta-BHC	<0.00600 J1, U	0.00600	ug/L	0.0120			50-150		
Dieldrin	0.00965	0.00600	ug/L	0.0120		80.4	50-150		
Endosulfan I	0.00907	0.00600	ug/L	0.0120		75.6	50-150		
Endosulfan II	0.00939	0.00600	ug/L	0.0120		78.2	50-150		
Endosulfan sulfate	0.0100	0.00600	ug/L	0.0120		83.6	50-150		
Endrin	0.00904	0.00600	ug/L	0.0120		75.4	50-150		
Endrin aldehyde	0.0105	0.00600	ug/L	0.0120		87.1	50-150		
Endrin ketone	0.0104	0.00600	ug/L	0.0120		86.8	50-150		
gamma-BHC (Lindane,	0.0101	0.00600	ug/L	0.0120		83.9	50-150		
gamma-HexachlorocyclohexanE)									
gamma-Chlordane	0.00822	0.00600	ug/L	0.0120		68.5	50-150		
Heptachlor	0.00988	0.00600	ug/L	0.0120		82.4	50-150		
Heptachlor epoxide	0.00923	0.00600	ug/L	0.0120		77.0	50-150		
Methoxychlor	0.0124	0.00600	ug/L	0.0120		103	50-150		
Surrogate: 2,4,5,6		0.122	ug/L	0.120		102	60-140		
Tetrachloro-m-xylene-surr									
Surrogate: Decachlorobiphenyl-surr		0.113	ug/L	0.120		94.3	<i>60-140</i>		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

## Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0543 - SW-3511 (Con	tinued)									
Matrix Spike (BGB0543-MS1)	,	Source:	23A3576-10		Prepared: 2/3	/2023 Analyze	d: 2/8/2023			
4,4'-DDD	0.0525	J1	0.00600	ug/L	0.120	<0.00600	43.8	60-140		
4,4'-DDE	0.0353		0.00600	ug/L	0.120	<0.00600	29.4	60-140		
4,4'-DDT	0.0248		0.00600	ug/L	0.120	< 0.00600	20.7	60-140		
Aldrin	0.0441		0.00600	ug/L	0.120	< 0.00600	36.7	60-140		
alpha-BHC	0.0953		0.00600	ug/L	0.120	<0.00600	79.5	60-140		
(alpha-Hexachlorocyclohexane)	0.0555			- 5,						
beta-BHC	0.0956		0.00600	ug/L	0.120	<0.00600	79.6	60-140		
(beta-Hexachlorocyclohexane)										
Chlordane (tech.)	0.239	J1	0.00600	ug/L	0.480	<0.00600	49.7	60-140		
cis-Chlordane (alpha-Chlordane)	0.0559	J1	0.00600	ug/L	0.120	< 0.00600	46.6	60-140		
delta-BHC	0.104		0.00600	ug/L	0.120	<0.00600	86.6	60-140		
Dieldrin	0.0842		0.00600	ug/L	0.120	< 0.00600	70.2	60-140		
Endosulfan I	0.0723		0.00600	ug/L	0.120	<0.00600	60.2	60-140		
Endosulfan II	0.0812		0.00600	ug/L	0.120	<0.00600	67.6	60-140		
Endosulfan sulfate	0.0907		0.00600	ug/L	0.120	<0.00600	75.6	60-140		
Endrin	0.0811		0.00600	ug/L	0.120	< 0.00600	67.6	60-140		
Endrin aldehyde	0.0884		0.00600	ug/L	0.120	<0.00600	73.7	60-140		
Endrin ketone	0.0921		0.00600	ug/L	0.120	< 0.00600	76.7	60-140		
gamma-BHC (Lindane,	0.0899		0.00600	ug/L	0.120	< 0.00600	74.9	60-140		
gamma-HexachlorocyclohexanE)				-						
gamma-Chlordane	0.0479	J1	0.00600	ug/L	0.120	< 0.00600	39.9	60-140		
Heptachlor	0.0610	J1	0.00600	ug/L	0.120	<0.00600	50.8	60-140		
Heptachlor epoxide	0.0739		0.00600	ug/L	0.120	<0.00600	61.6	60-140		
Methoxychlor	0.0260	J1	0.00600	ug/L	0.120	<0.00600	21.7	60-140		
Surrogate: 2,4,5,6			0.0862	ug/L	0.120		71.9	60-140		
Tetrachloro-m-xylene-surr		6	0.0226	,,	0.430		40.7	60.440		
Surrogate: Decachlorobiphenyl-surr		5	0.0236	ug/L	0.120		19.7	60-140		
Matrix Spike Dup (BGB0543-MSD1)		Source:	23A3576-10		Prepared: 2/3	/2023 Analyze	d: 2/8/2023			
4,4'-DDD	0.0464	J1	0.00600	ug/L	0.120	<0.00600	38.7	60-140	12.3	40
4,4'-DDE	0.0305	J1	0.00600	ug/L	0.120	<0.00600	25.4	60-140	14.8	40
4,4'-DDT	0.0249	J1	0.00600	ug/L	0.120	<0.00600	20.7	60-140	0.193	40
Aldrin	0.0401	J1	0.00600	ug/L	0.120	<0.00600	33.4	60-140	9.39	40
alpha-BHC	0.0975		0.00600	ug/L	0.120	<0.00600	81.2	60-140	2.23	40
(alpha-Hexachlorocyclohexane)										
beta-BHC	0.0959		0.00600	ug/L	0.120	<0.00600	79.9	60-140	0.382	40
(beta-Hexachlorocyclohexane)										
Chlordane (tech.)	0.226		0.00600	ug/L	0.480	<0.00600	47.2	60-140	5.26	40
cis-Chlordane (alpha-Chlordane)	0.0524	J1	0.00600	ug/L	0.120	<0.00600	43.7	60-140	6.42	40
delta-BHC	0.103		0.00600	ug/L	0.120	<0.00600	85.9	60-140	0.794	40
Dieldrin	0.0813		0.00600	ug/L	0.120	<0.00600	67.7	60-140	3.57	40
Endosulfan I	0.0735		0.00600	ug/L	0.120	<0.00600	61.3	60-140	1.75	40
Endosulfan II	0.0836		0.00600	ug/L	0.120	<0.00600	69.7	60-140	2.95	40
Endosulfan sulfate	0.0932		0.00600	ug/L	0.120	<0.00600	77.6	60-140	2.68	40
Endrin	0.0814		0.00600	ug/L	0.120	<0.00600	67.9	60-140	0.413	40
Endrin aldehyde	0.0951		0.00600	ug/L	0.120	<0.00600	79.3	60-140	7.34	40
Endrin ketone	0.0947		0.00600	ug/L	0.120	<0.00600	79.0	60-140	2.85	40



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Houston, TX 77043 Project Number:

Reported:

Project Manager: Gregg Pawlak

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

## Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0543 - SW-3511 (Con	tinued)									
Matrix Spike Dup (BGB0543-MSD1)	-	Source: 2	23A3576-10		Prepared: 2/3	3/2023 Analyze	d: 2/8/2023			
gamma-BHC (Lindane,	0.0937		0.00600	ug/L	0.120	<0.00600	78.0	60-140	4.11	40
gamma-HexachlorocyclohexanE)										
gamma-Chlordane	0.0446	J1	0.00600	ug/L	0.120	<0.00600	37.1	60-140	7.17	40
Heptachlor	0.0563	J1	0.00600	ug/L	0.120	<0.00600	46.9	60-140	8.05	40
Heptachlor epoxide	0.0732		0.00600	ug/L	0.120	<0.00600	61.0	60-140	0.971	40
Methoxychlor	0.0311	J1	0.00600	ug/L	0.120	<0.00600	25.9	60-140	17.8	40
Surrogate: 2,4,5,6			0.0804	ug/L	0.120		67.0	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr		5	0.0196	ug/L	0.120		16.4	60-140		
Batch: BGB1127 - SW-3511										
Blank (BGB1127-BLK1)					Prepared: 2/8	/2023 Analyzed	l: 2/17/2023	3		
PCBs, Total	<0.120	U	0.120	ug/L						
Surrogate: 2,4,5,6			0.161	ug/L	0.120		134	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.123	ug/L	0.120		103	60-140		
LCS (BGB1127-BS1)					Prepared: 2/8	/2023 Analyzed	l: 2/17/2023	3		
Aroclor-1016 (PCB-1016)	1.28		0.120	ug/L	1.20		106	60-140		
Aroclor-1260 (PCB-1260)	0.977		0.120	ug/L	1.20		81.4	60-140		
PCBs, Total	1.00		0.120	ug/L	1.20		83.5	60-140		
Surrogate: 2,4,5,6			0.152	ug/L	0.120		126	60-140		
Tetrachloro-m-xylene-surr				3/						
Surrogate: Decachlorobiphenyl-surr			0.118	ug/L	0.120		98.7	60-140		
LCS Dup (BGB1127-BSD1)					Prepared: 2/8	/2023 Analyzed	l: 2/17/2023			
Aroclor-1016 (PCB-1016)	1.19		0.120	ug/L	1.20	,	99.1	60-140	7.19	40
Aroclor-1260 (PCB-1260)	0.989		0.120	ug/L	1.20		82.4	60-140	1.18	40
PCBs, Total	1.01		0.120	ug/L	1.20		83.9	60-140	0.378	40
Surrogate: 2,4,5,6			0.150	ug/L	0.120		125	60-140		
Tetrachloro-m-xylene-surr			0.150	ug/L	0.120		123	00 170		
Surrogate: Decachlorobiphenyl-surr			0.130	ug/L	0.120		108	60-140		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
,		-								
Batch: BGB1127 - SW-3511 (C	vnunuea)				Droparade 2/0/	2022 Anali	4. 2/17/2022			
BGA3905-BLK1 (BGB1127-LBK1)			0.120		Prepared: 2/8/	ZUZS ANBIYZE	u. 2/1//2023	1		
Arcelor 1331 (PCR 1331)	<0.120		0.120	ug/L						
Aroclor 1222 (PCB-1221)	<0.120		0.120	ug/L						
Aroclor-1232 (PCB-1232)	<0.120		0.120	ug/L						
Aroclor-1242 (PCB-1242)	<0.120		0.120	ug/L						
Aroclor 1254 (PCB-1254)	<0.120		0.120	ug/L						
Aroclor-1254 (PCB-1254)	<0.120		0.120	ug/L						
Aroclor-1260 (PCB-1260)	<0.120		0.120	ug/L						
PCBs, Total	<0.120	U 	0.120	ug/L						
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		_	0.166	ug/L	0.120		138	60-140	_	
Surrogate: Decachlorobiphenyl-surr		5	0.0291	ug/L	0.120		24.2	60-140		
BGB0310-BLK1 (BGB1127-LBK2)					Prepared: 2/8/	2023 Analyze	d: 2/17/2023			
Aroclor-1016 (PCB-1016)	<0.120	U	0.120	ug/L	·	•				
Aroclor-1221 (PCB-1221)	<0.120		0.120	ug/L						
Aroclor-1232 (PCB-1232)	<0.120		0.120	ug/L						
Aroclor-1242 (PCB-1242)	<0.120		0.120	ug/L						
Aroclor-1248 (PCB-1248)	<0.120		0.120	ug/L						
Aroclor-1254 (PCB-1254)	<0.120		0.120	ug/L						
Aroclor-1260 (PCB-1260)	<0.120		0.120	ug/L						
PCBs, Total	<0.120		0.120	ug/L						
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		5	0.174	ug/L	0.120		146	60-140		
Surrogate: Decachlorobiphenyl-surr		5	0.0495	ug/L	0.120		41.4	60-140		
MRL Check (BGB1127-MRL1)					Prepared: 2/8/	2023 Analyze	d: 2/17/2023			
Aroclor-1016 (PCB-1016)	0.381	J1	0.120	ug/L	0.240		159	50-150		
Aroclor-1260 (PCB-1260)	0.207		0.120	ug/L	0.240		86.4	50-150		
PCBs, Total	0.225		0.120	ug/L	0.240		93.6	50-150		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.151	ug/L	0.120		126	60-140		
Surrogate: Decachlorobiphenyl-surr			0.125	ug/L	0.120		104	60-140		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB1127 - SW-3511 (Cont	tinued)								
Matrix Spike (BGB1127-MS1)	Source: 2	3A3576-11	Pi	repared: 2/8/.	2023 Analyzed	1: 2/17/2023	<u>.</u>		
Aroclor-1016 (PCB-1016)	1.12	0.120	ug/L	1.20	<0.120	93.3	60-140		
Aroclor-1260 (PCB-1260)	0.340 J1	0.120	ug/L	1.20	<0.120	28.3	60-140		
PCBs, Total	0.409 J1	0.120	ug/L	1.20	<0.120	34.1	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		0.115	ug/L	0.120		95.5	60-140		
Surrogate: Decachlorobiphenyl-surr	S	0.0406	ug/L	0.120		33.9	60-140		
Matrix Spike Dup (BGB1127-MSD1)	Source: 2	3A3576-11	Pi	repared: 2/8/	2023 Analyzed	l: 2/17/2023			
Aroclor-1016 (PCB-1016)	1.01	0.120	ug/L	1.20	<0.120	84.4	60-140	10.1	40
Aroclor-1260 (PCB-1260)	0.303 J1	0.120	ug/L	1.20	<0.120	25.2	60-140	11.6	40
PCBs, Total	0.367 J1	0.120	ug/L	1.20	<0.120	30.5	60-140	10.9	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		0.108	ug/L	0.120		90.0	60-140		
Surrogate: Decachlorobiphenyl-surr	S	0.0391	ug/L	0.120		32.6	60-140		



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Houston, TX 77043 Project Number:

Reported:

TCEQ-TOX T104704202-22-17

Project Manager: Gregg Pawlak 04/03/2023 14:08

# Quality Control (Continued)

#### **Elutriate Metals, Dissolved**

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0720 - EPA 200.	8 Dissolved									
Blank (BGB0720-BLK1)					Prepared: 2/6,	5/2023 Analyze	d: 2/8/2023			
Arsenic	<0.500	U	0.500	ug/L	,	•				
Cadmium	<1.00		1.00	ug/L						
Chromium	<3.00		3.00	ug/L						
Lead	<0.500		0.500	ug/L						
Nickel	<1.00		1.00	ug/L						
Thallium	<0.500		0.500	ug/L						
Zinc	<2.00	U	2.00	ug/L						
Blank (BGB0720-BLK2)					Prepared: 2/6,	5/2023 Analyze	d: 2/8/2023			
Copper	<1.00	U	1.00	ug/L						
Blank (BGB0720-BLK4)					Prepared: 2/6	5/2023 Analyze	d: 2/9/2023			
Antimony	<1.00	U	1.00	ug/L						
Blank (BGB0720-BLK5)					Prepared: 2/6	5/2023 Analyze	d: 3/1/2023			
Beryllium	0.0130	J	0.200	ug/L	,	,				
Silver	<0.500		0.500	ug/L						
LCS (BGB0720-BS1)				_	Prepared: 2/6	5/2023 Analyze	d: 2/8/2023			
Arsenic	49.7		0.500	ug/L	50.0	,	99.3	85-115		
Cadmium	102		1.00	ug/L	100		102	85-115		
Chromium	277		3.00	ug/L	300		92.5	85-115		
Lead	48.1		0.500	ug/L	50.0		96.2	85-115		
Nickel	96.6		1.00	ug/L	100		96.6	85-115		
Thallium	49.1		0.500	ug/L	50.0		98.2	85-115		
Zinc	202		2.00	ug/L	200		101	85-115		
LCS (BGB0720-BS2)					Prepared: 2/6,	5/2023 Analyze	d: 2/8/2023			
Copper	101		1.00	ug/L	100	,	101	85-115		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

#### **Elutriate Metals, Dissolved (Continued)**

Analyte	Result (	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0720 - EPA 200.8 Dis	ssolved (Co	ntinued	<u>'</u> )							
LCS (BGB0720-BS4)	iooii ca (ooiidiiaca)				Prepared: 2/6/2023 Analyzed: 2/9/2023					
Antimony	105 1.00			ug/L				85-115		
, with the same of	105									
LCS (BGB0720-BS5)					Prepared: 2/6/2023 Analyzed: 3/1/2023					
Beryllium	19.8		0.200	ug/L	20.0		99.2	85-115		
Silver	50.5		0.500	ug/L	50.0		101	85-115		
Duplicate (BGB0720-DUP1)	Source: 23A3576-02				Prepared: 2/6/2023 Analyzed: 2/8/2023					
Arsenic	1.34	J	2.50	ug/L		1.23			9.26	20
Cadmium	<5.00		5.00	ug/L		<5.00				20
Chromium	<15.0		15.0	ug/L		<15.0				20
Lead	<2.50		2.50	ug/L		<2.50				20
Nickel	0.949	J	5.00	ug/L		0.954			0.525	20
Thallium	<2.50	U	2.50	ug/L		<2.50				20
Zinc	3.28	J	10.0	ug/L		2.35			32.8	20
Duplicate (BGB0720-DUP2)	Source: 23A3576-02				Prepared: 2/6/2023 Analyzed: 2/8/2023					
Copper	2.13	J	5.00	ug/L		1.89			12.0	20
Duplicate (BGB0720-DUP4)	Source: 23A3576-02				Prepared: 2/6/2023 Analyzed: 2/9/2023					
Antimony	<5.00 l	U	5.00	ug/L		<5.00				20
Duplicate (BGB0720-DUP5)	Source: 23A3576-02			Prepared: 2/6/2023 Analyzed: 3/1/2023						
Beryllium	<1.00	U	1.00	ug/L		<1.00				20
Silver	<2.50		2.50	ug/L		<2.50				20
BGA3905-BLK2 (BGB0720-LBK1)					Prepared: 2/6	i/2023 Analyze	ed: 2/8/2023			
Arsenic	<0.500	U	0.500	ug/L	•	•				
Cadmium	<1.00		1.00	ug/L						
Chromium	<3.00		3.00	ug/L						
Lead	<0.500	U	0.500	ug/L						
Nickel	0.381	J	1.00	ug/L						
Thallium	<0.500	U	0.500	ug/L						
Zinc	4.90		2.00	ug/L						



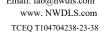
Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
, maryee	Nesait Quai	Little	Onics	ECVCI	Nesuit	/UNLC	LiiiiG	Nib	Little
Batch: BGB0720 - EPA 200.8 Dis	ssolved (Continued)								
BGA3905-BLK2 (BGB0720-LBK2)				Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Copper	2.25	1.00	ug/L						
BGA3905-BLK2 (BGB0720-LBK4)				Prepared: 2/6	/2023 Analyze	ed: 2/9/2023			
Antimony	0.293 J	1.00	ug/L						
BGA3905-BLK2 (BGB0720-LBK5)				Prepared: 2/6	/2023 Analyze	ed: 3/1/2023			
Beryllium	0.0130 J	0.200	ug/L	. ,	,				
Silver	<0.500 U	0.500	ug/L						
MDL Check (BGB0720-MRL1)				Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Arsenic	0.124 J	0.500	ug/L	0.100	,	124			
Cadmium	0.0600 J	1.00	ug/L	0.0500		120			
Chromium	0.122 J	3.00	ug/L	0.0800		152			
Lead	0.125 J	0.500	ug/L	0.100		125			
Nickel	0.0250 J	1.00	ug/L	0.0500		50.0			
Thallium	0.0360 J	0.500	ug/L	0.0300		120			
Zinc	0.363 J	2.00	ug/L	0.200		182			
MDL Check (BGB0720-MRL2)				Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Copper	0.457 J	1.00	ug/L	0.200		228			
MDL Check (BGB0720-MRL4)				Prepared: 2/6	/2023 Analyze	ed: 2/9/2023			
Antimony	0.239 J	1.00	ug/L	0.200	•	120			
MDL Check (BGB0720-MRL5)				Prepared: 2/6	/2023 Analyze	ed: 3/1/2023			
Beryllium	0.0160 J	0.200	ug/L	0.0100	,	160			
Silver	0.0340 J	0.500	ug/L	0.0300		113			




Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0720 - EPA 200.8 D	issolved (Continue	ed)							
Matrix Spike (BGB0720-MS1)	Source	23A3576-02		Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Arsenic	46.0	2.50	ug/L	50.0	1.23	89.5	75-125		
Cadmium	90.1	5.00	ug/L	100	<5.00	90.1	75-125		
Chromium	282	15.0	ug/L	300	<15.0	93.8	75-125		
Lead	48.4	2.50	ug/L	50.0	<2.50	96.9	75-125		
Nickel	88.3	5.00	ug/L	100	0.954	87.4	75-125		
Thallium	49.5	2.50	ug/L	50.0	<2.50	99.0	75-125		
Zinc	178	10.0	ug/L	200	2.35	87.9	75-125		
Matrix Spike (BGB0720-MS2)	Source:	23A3576-02		Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Copper	88.7	5.00	ug/L	100	1.89	86.8	75-125		
Matrix Spike (BGB0720-MS3)	Source	: 23A3576-02		Prepared: 2/6	/2023 Analyze	ed: 2/9/2023			
Antimony	94.9	5.00	ug/L	100	<5.00	94.9	75-125		
Matrix Spike (BGB0720-MS4)	Source:	: 23A3576-02		Prepared: 2/6	/2023 Analyze	ed: 3/1/2023			
Beryllium	20.2	1.00	ug/L	20.0	<1.00	101	75-125		
Silver	44.7	2.50	ug/L	50.0	<2.50	89.3	75-125		
Batch: BGB0721 - EPA 200.8 D	discolved								
Blank (BGB0721-BLK1)	issoiveu			Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Arsenic	<0.500 U	0.500	ug/L		,				
Chromium	<3.00 U	3.00	ug/L						
Copper	0.422 J	1.00	ug/L						
Lead	<0.500 U	0.500	ug/L						
Nickel	<1.00 U	1.00	ug/L						
Silver	<0.500 U	0.500	ug/L						
Thallium	<0.500 U	0.500	ug/L						





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported: Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Quality Control** (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0721 - EPA 200.8 i	Dissolved (Continued	Ŋ							
Blank (BGB0721-BLK2)	-			Prepared: 2/6	i/2023 Analyzed:	2/9/2023			
Antimony	<1.00 U	1.00	ug/L	•	•				
Cadmium	<1.00 U	1.00	ug/L						
Zinc	<2.00 U	2.00	ug/L						
Blank (BGB0721-BLK3)				Prepared: 2/6/	/2023 Analyzed:	2/14/2023	,		
Beryllium	<0.200 U	0.200	ug/L						
LCS (BGB0721-BS1)				Prepared: 2/6	5/2023 Analyzed:	2/8/2023			
Arsenic	49.6	0.500	ug/L	50.0	,	99.2	85-115		
Chromium	295	3.00	ug/L	300		98.2	85-115		
Copper	104	1.00	ug/L	100		104	85-115		
Lead	51.0	0.500	ug/L	50.0		102	85-115		
Nickel	98.0	1.00	ug/L	100		98.0	85-115		
Silver	53.7	0.500	ug/L	50.0		107	85-115		
Thallium	48.9	0.500	ug/L	50.0		97.7	85-115		
LCS (BGB0721-BS2)				Prepared: 2/6	5/2023 Analyzed:	2/9/2023			
Antimony	93.4	1.00	ug/L	100	-	93.4	85-115		
Cadmium	100	1.00	ug/L	100		100	85-115		
Zinc	204	2.00	ug/L	200		102	85-115		
LCS (BGB0721-BS3)				Prepared: 2/6/	/2023 Analyzed:	2/14/2023	}		
Beryllium	19.0	0.200	ug/L	20.0		95.0	85-115		
Duplicate (BGB0721-DUP1)	Source: 2	3A1459-02		Prepared: 2/6	i/2023 Analyzed:	2/8/2023			
Arsenic	1.96 J	2.50	ug/L		1.89			3.43	20
Chromium	1.12 J	15.0	ug/L		0.979			13.1	20
Copper	2.28 J	5.00	ug/L		2.09			8.48	20
Lead	1.19 J	2.50	ug/L		1.16			1.79	20
Nickel	1.24 J	5.00	ug/L		1.03			18.2	20
Silver	<2.50 U	2.50	ug/L		<2.50				20
Thallium	<2.50 U	2.50	ug/L		<2.50				20



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0721 - EPA 200.8 Dis	solved (Co	ontinued	1)							
Duplicate (BGB0721-DUP2)	-	Source: 2	23A1459-49		Prepared: 2/6/	′2023 Analyze	nd: 2/8/2023			
Lead	<2.50	U	2.50	ug/L		0.539			200	20
Thallium	<2.50	U	2.50	ug/L		<2.50				20
Duplicate (BGB0721-DUP3)		Source: 2	23A1459-02		Prepared: 2/6/	′2023 Analyze	d: 2/9/2023			
Antimony	<5.00	U	5.00	ug/L		<5.00				20
Cadmium	<5.00	U	5.00	ug/L		<5.00				20
Zinc	4.71	J	10.0	ug/L		4.16			12.4	20
Duplicate (BGB0721-DUP4)		Source: 2	23A1459-49		Prepared: 2/6/	'2023 Analyze	d: 2/9/2023			
Antimony	<5.00	U	5.00	ug/L	•	<5.00				20
Cadmium	<5.00		5.00	ug/L		<5.00				20
Copper	1.09		5.00	ug/L		1.31			18.5	20
Silver	<2.50		2.50	ug/L		<2.50				20
Zinc	<10.0	U	10.0	ug/L		<10.0				20
Duplicate (BGB0721-DUP5)		Source: 2	23A1459-02		Prepared: 2/6/	2023 Analyze	d: 2/14/2023			
Beryllium	<1.00	U	1.00	ug/L		<1.00				20
Duplicate (BGB0721-DUP6)	_	Source: 2	23A1459-49		Prepared: 2/6/2	2023 Analyze	d: 2/14/2023	_		
Arsenic	1.47	J	2.50	ug/L		1.23			17.3	20
Chromium	<15.0	U	15.0	ug/L		<15.0				20
Nickel	0.504	J	5.00	ug/L		0.531			5.22	20
Duplicate (BGB0721-DUPA)		Source: 2	23A1459-49		Prepared: 2/6/2	2023 Analyze	d: 2/28/2023			
Beryllium	<1.00	U	1.00	ug/L		<1.00				20
BGB0310-BLK2 (BGB0721-LBK1)					Prepared: 2/6/	2023 Analyze	d: 2/8/2023			
Lead	<0.500	U	0.500	ug/L	•	•				
Thallium	<0.500		0.500	ug/L						



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0721 - EPA 200.8 Dis	ssolved (Continued								
BGB0310-BLK2 (BGB0721-LBK2)	. ,	•		Prepared: 2/6/	/2023 Analyze	d: 2/9/2023			
Antimony	<1.00 U	1.00	ug/L	. ,	•				
Cadmium	<1.00 U	1.00	ug/L						
Copper	1.76	1.00	ug/L						
Silver	<0.500 U	0.500	ug/L						
Zinc	4.82	2.00	ug/L						
BGB0310-BLK2 (BGB0721-LBK3)				Prepared: 2/6/	2023 Analyzed	d: 2/14/2023			
Chromium	0.222 J	3.00	ug/L						
Nickel	0.781 J	1.00	ug/L						
BGB0310-BLK2 (BGB0721-LBK5)				Prepared: 2/6/	2023 Analyzed	d: 2/22/2023			
Arsenic	<0.500 U	0.500	ug/L						
BGB0310-BLK2 (BGB0721-LBK6)				Prepared: 2/6/	2023 Analyzed	d: 2/28/2023			
Beryllium	0.0140 J	0.200	ug/L						
BGB0310-BLK2 (BGB0721-LBK7)				Prepared: 2/6/	/2023 Analyze	d: 3/1/2023			
Copper	2.02	1.00	ug/L	•	•				
Silver	<0.500 U	0.500	ug/L						
MDL Check (BGB0721-MRL1)				Prepared: 2/6/	/2023 Analyze	d: 2/8/2023			
Arsenic	0.124 J	0.500	ug/L	0.100	•	124			
Chromium	0.132 J	3.00	ug/L	0.0800		165			
Copper	0.624 J	1.00	ug/L	0.200		312			
Lead	0.102 J	0.500	ug/L	0.100		102			
Nickel	0.0230 J	1.00	ug/L	0.0500		46.0			
Silver	0.0360 J	0.500	ug/L	0.0300		120			
Thallium	0.0350 J	0.500	ug/L	0.0300		117			



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0721 - EPA 200.8 D	Dissolved (Continue	d)							
MDL Check (BGB0721-MRL2)	•	-		Prepared: 2/6	/2023 Analyze	ed: 2/9/2023			
Antimony	0.215 J	1.00	ug/L	0.200		108			
Cadmium	0.0490 J	1.00	ug/L	0.0500		98.0			
Zinc	0.196 J	2.00	ug/L	0.200		98.0			
MDL Check (BGB0721-MRL3)				Prepared: 2/6/	/2023 Analyze	d: 2/14/2023	3		
Beryllium	0.0320 J	0.200	ug/L	0.0100		320			
Matrix Spike (BGB0721-MS1)	Source: 2	23A1459-02		Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Arsenic	44.5	2.50	ug/L	50.0	1.89	85.2	75-125		
Chromium	257	15.0	ug/L	300	0.979	85.3	75-125		
Copper	77.6	5.00	ug/L	100	2.09	75.5	75-125		
Lead	39.0	2.50	ug/L	50.0	1.16	75.8	75-125		
Nickel	73.5 J1	5.00	ug/L	100	1.03	72.4	75-125		
Silver	39.9	2.50	ug/L	50.0	<2.50	79.9	75-125		
Thallium	38.7	2.50	ug/L	50.0	<2.50	77.4	75-125		
Matrix Spike (BGB0721-MS2)	Source: 2	23A1459-49		Prepared: 2/6	/2023 Analyze	ed: 2/8/2023			
Lead	36.0 J1	2.50	ug/L	50.0	0.539	70.9	75-125		
Thallium	38.1	2.50	ug/L	50.0	<2.50	76.3	75-125		
Matrix Spike (BGB0721-MS3)	Source: 2	23A1459-02		Prepared: 2/6	/2023 Analyze	ed: 2/9/2023			
Antimony	94.6	5.00	ug/L	100	<5.00	94.6	75-125		
Cadmium	81.8	5.00	ug/L	100	<5.00	81.8	75-125		
Zinc	167	10.0	ug/L	200	4.16	81.5	75-125		
Matrix Spike (BGB0721-MS4)	Source: 2	23A1459-49		Prepared: 2/6	/2023 Analyze	ed: 2/9/2023			
Antimony	94.0	5.00	ug/L	100	<5.00	94.0	75-125		
Cadmium	85.7	5.00	ug/L	100	<5.00	85.7	75-125		
Copper	85.0	5.00	ug/L	100	1.31	83.7	75-125		
Silver	40.7	2.50	ug/L	50.0	<2.50	81.5	75-125		
Zinc	164	10.0	ug/L	200	<10.0	81.9	75-125		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Quality Control**

(Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0721 - EPA 200.8 Diss	olved (C	ontinued	1)							
Matrix Spike (BGB0721-MS5)		Source: 2	3A1459-02		Prepared: 2/6/	/2023 Analyze	d: 2/14/2023	3		
Beryllium	16.3		1.00	ug/L	20.0	<1.00	81.4	75-125		
Matrix Spike (BGB0721-MS6)		Source: 2	3A1459-49		Prepared: 2/6/	/2023 Analyze	d: 2/14/2023	3		
Arsenic	51.7		2.50	ug/L	50.0	1.23	101	75-125		
Chromium	279		15.0	ug/L	300	<15.0	93.1	75-125		
Nickel	93.1		5.00	ug/L	100	0.531	92.5	75-125		
Matrix Spike (BGB0721-MSA)		Source: 2	3A1459-49		Prepared: 2/6/	/2023 Analyze	d: 2/28/2023	3		
Beryllium	16.6		1.00	ug/L	20.0	<1.00	82.8	75-125		
Batch: BGB1125 - Cr VI Matrix Spike (BGB1125-MS1)		Source: 2	23A1135-01		Prepared	& Analyzed: 2	2/8/2023			
Chromium (VI)	0.223		0.00300	mg/L	0.250	0.00674	86.4	70-130		
Matrix Spike Dup (BGB1125-MSD1)		Source: 2	3A1135-01		Prepared	& Analyzed: 2	2/8/2023			
Chromium (VI)	0.258		0.00300	mg/L	0.250	0.00674	100	70-130	14.5	20
Batch: BGB1154 - Cr VI										
Matrix Spike (BGB1154-MS1)		Source: 2	3A1135-01RE1	Ĺ	Prepared: 2/8/	/2023 Analyze	d: 2/10/2023	3		
Chromium (VI)	0.158	J1	0.00300	mg/L	0.250	0.00529	61.2	70-130		
Matrix Spike Dup (BGB1154-MSD1)		Source: 2	3A1135-01RE1	L	Prepared: 2/8/	/2023 Analyze	d: 2/10/2023	3		
Chromium (VI)	0.156	J1	0.00300	mg/L	0.250	0.00529	60.1	70-130	1.80	20



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qua	, ,	Units	Level	Result	%REC	%REC Limits	RPD	Limit
Patala PCR3404 Calif	<u> </u>								
Batch: BGB2104 - Cr VI						/			
BGB0310-BLK1 (BGB2104-LBK1)				Prepared \	& Analyzed: 2,	/15/2023			
Chromium (VI)	0.0324	0.00300	mg/L						
Matrix Spike (BGB2104-MS1)	Sou	ırce: 23A1459-01		Prepared 8	& Analyzed: 2,	15/2023			
Chromium (VI)	0.257	0.00300	mg/L	0.250	0.0111	98.4	70-130		
Matrix Spike Dup (BGB2104-MSD1)	Sou	ırce: 23A1459-01		Prepared 8	& Analyzed: 2,	/15/2023			
Chromium (VI)	0.261	0.00300	mg/L	0.250	0.0111	99.9	70-130	1.45	20
Batch: SGB0107 - BGB0720									
Interference Check A (SGB0107-IFA1)				Prepared	& Analyzed: 2	:/8/2023			
Arsenic	0.278		ug/L				70-130		
Cadmium	0.416		ug/L				70-130		
Chromium	1.37		ug/L				70-130		
Lead	0.528		ug/L				70-130		
Nickel	0.930		ug/L				70-130		
Thallium	0.00500		ug/L				70-130		
Zinc	1.26		ug/L				70-130		
Interference Check B (SGB0107-IFB1)				Prepared	& Analyzed: 2	/8/2023			
Arsenic	52.5		ug/L	50.0	•	105	70-130		
Cadmium	107		ug/L	100		107	70-130		
Chromium	297		ug/L	300		99.0	70-130		
Lead	55.0		ug/L	50.0		110	70-130		
Nickel	97.5		ug/L	100		97.5	70-130		
Thallium	50.6		ug/L	50.0		101	70-130		
Zinc	194		ug/L	200		97.0	70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result Qual	LIIIIL	UTILS	Levei	Result	70KEC	LIIIILS	KFD	LIIIIL
Batch: SGB0112 - BGB0720									
Interference Check A (SGB0112-IFA1)				Prepared	& Analyzed: 2	/8/2023			
Copper	0.742		ug/L				70-130		
Interference Check B (SGB0112-IFB1)				Prepared	& Analyzed: 2	/8/2023			
Copper	94.1		ug/L	100		94.1	70-130		
Batch: SGB0118 - BGB0721									
Interference Check A (SGB0118-IFA1)				Prepared	& Analyzed: 2	/8/2023			
Arsenic	0.286		ug/L				70-130		
Chromium	1.27		ug/L				70-130		
Copper	0.807		ug/L				70-130		
Lead	0.502		ug/L				70-130		
Nickel	0.998		ug/L				70-130		
Silver	0.107		ug/L				70-130		
Thallium	0.00700		ug/L				70-130		
Interference Check B (SGB0118-IFB1)				Prepared	& Analyzed: 2	/8/2023			
Arsenic	55.7		ug/L	50.0		111	70-130		
Chromium	315		ug/L	300		105	70-130		
Copper	105		ug/L	100		105	70-130		
Lead	51.8		ug/L	50.0		104	70-130		
Nickel	99.4		ug/L	100		99.4	70-130		
Silver	54.2		ug/L	50.0		108	70-130		
Thallium	49.3		ug/L	50.0		98.5	70-130		
Batch: SGB0135 - BGB0720									
Interference Check A (SGB0135-IFA1)				Prepared	& Analyzed: 2	/9/2023			
Antimony	0.253		ug/L		•		70-130		



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

Analista	D 11 O 1	Reporting	11,-2-	Spike	Source	0/ 050	%REC	DDD	RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: SGB0135 - BGB0	1720 (Continued)								
Interference Check B (SGB0	135-IFB1)			Prepared 8	& Analyzed: 2/	'9/2023			
Antimony	103		ug/L	100		103	70-130		
Batch: SGB0138 - BGB0	1721								
Interference Check A (SGB0	138-IFA1)			Prepared 8	& Analyzed: 2/	9/2023			
Antimony	0.231		ug/L	•			70-130		
Cadmium	0.447		ug/L				70-130		
Copper	0.494		ug/L				70-130		
Silver	0.0850		ug/L				70-130		
Zinc	2.14		ug/L				70-130		
Interference Check B (SGB0	138-IFB1)			Prepared 8	& Analyzed: 2/	9/2023			
Antimony	103		ug/L	100		103	70-130		
Cadmium	89.9		ug/L	100		89.9	70-130		
Copper	82.9		ug/L	100		82.9	70-130		
Silver	45.3		ug/L	50.0		90.6	70-130		
Zinc	167		ug/L	200		83.3	70-130		
Batch: SGB0194 - BGB0									
Interference Check A (SGB0	•			Prepared 8	k Analyzed: 2/	14/2023			
Antimony	0.285		ug/L				70-130		
Arsenic	0.113		ug/L				70-130		
Beryllium	-0.00500 U		ug/L				70-130		
Cadmium	0.388		ug/L				70-130		
Chromium	3.13		ug/L				70-130		
Copper	0.170		ug/L				70-130		
Nickel	0.543		ug/L				70-130		
Silver	0.0100		ug/L				70-130		
Zinc	0.966		ug/L				70-130		



Terracon_Houston

Project: PCCA HI & CDP Resampling 2023

Project Number:

Reported:

Houston, TX 77043

11555 Clay Road

Project Manager: Gregg Pawlak

04/03/2023 14:08

TCEQ-TOX T104704202-22-17

# Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: SGB0194 - BGB	0721 (Continued)	<u> </u>							
Interference Check B (SGB)				Prepared 8	& Analyzed: 2/	14/2023			
Antimony	104		ug/L	100		104	70-130		
Arsenic	52.3		ug/L	50.0		105	70-130		
Beryllium	17.6		ug/L	20.0		88.1	70-130		
Cadmium	103		ug/L	100		103	70-130		
Chromium	297		ug/L	300		98.9	70-130		
Copper	92.6		ug/L	100		92.6	70-130		
Nickel	91.4		ug/L	100		91.4	70-130		
Silver	49.8		ug/L	50.0		99.7	70-130		
			ug/I	200		90.7	70-130		
Zinc  Batch: SGB0321 - BGB	181		ug/L	200		90.7	70-130		
Batch: SGB0321 - BGB	0721		ug/L		& Analyzed: 2/3		70-130		
Batch: SGB0321 - BGB Interference Check A (SGB0	0721 0321-IFA1)				& Analyzed: 2/2		70-130		
Batch: SGB0321 - BGB	0721 0321-IFA1) 0.196		ug/L		& Analyzed: 2/2				
Batch: SGB0321 - BGB Interference Check A (SGB0 Antimony	0721 0321-IFA1)				& Analyzed: 2/:		70-130		
Batch: SGB0321 - BGB Interference Check A (SGB6 Antimony Arsenic	0721 0321-IFA1) 0.196 0.0940		ug/L ug/L		& Analyzed: 2/:		70-130 70-130		
Batch: SGB0321 - BGB Interference Check A (SGB0 Antimony Arsenic Cadmium	0721 0321-IFA1) 0.196 0.0940 0.319		ug/L ug/L ug/L		& Analyzed: 2/:		70-130 70-130 70-130		
Batch: SGB0321 - BGB Interference Check A (SGB0 Antimony Arsenic Cadmium Chromium	0721 0321-IFA1) 0.196 0.0940 0.319 3.57		ug/L ug/L ug/L ug/L		& Analyzed: 2/:		70-130 70-130 70-130 70-130		
Batch: SGB0321 - BGB Interference Check A (SGB0 Antimony Arsenic Cadmium Chromium Nickel	07721 0321-IFA1) 0.196 0.0940 0.319 3.57 0.557 0.0110		ug/L ug/L ug/L ug/L ug/L	Prepared 8	& Analyzed: 2/:	22/2023	70-130 70-130 70-130 70-130 70-130		
Batch: SGB0321 - BGB Interference Check A (SGB0 Antimony Arsenic Cadmium Chromium Nickel Thallium	07721 0321-IFA1) 0.196 0.0940 0.319 3.57 0.557 0.0110		ug/L ug/L ug/L ug/L ug/L	Prepared 8		22/2023	70-130 70-130 70-130 70-130 70-130		
Batch: SGB0321 - BGB Interference Check A (SGB0 Antimony Arsenic Cadmium Chromium Nickel Thallium  Interference Check B (SGB0	0721 0321-IFA1) 0.196 0.0940 0.319 3.57 0.557 0.0110		ug/L ug/L ug/L ug/L ug/L ug/L	Prepared 8		22/2023	70-130 70-130 70-130 70-130 70-130 70-130		
Batch: SGB0321 - BGB Interference Check A (SGB0 Antimony Arsenic Cadmium Chromium Nickel Thallium  Interference Check B (SGB0 Antimony	0721 0321-IFA1) 0.196 0.0940 0.319 3.57 0.557 0.0110		ug/L ug/L ug/L ug/L ug/L ug/L	Prepared 8  Prepared 8		22/2023 22/2023 106	70-130 70-130 70-130 70-130 70-130 70-130		
Batch: SGB0321 - BGB Interference Check A (SGB0 Antimony Arsenic Cadmium Chromium Nickel Thallium  Interference Check B (SGB0 Antimony Arsenic	0721 0321-IFA1) 0.196 0.0940 0.319 3.57 0.557 0.0110		ug/L ug/L ug/L ug/L ug/L ug/L	Prepared 8 Prepared 8 100 50.0		22/2023 22/2023 106 96.6	70-130 70-130 70-130 70-130 70-130 70-130 70-130		
Batch: SGB0321 - BGB Interference Check A (SGB0 Antimony Arsenic Cadmium Chromium Nickel Thallium  Interference Check B (SGB0 Antimony Arsenic Cadmium	0721 0321-IFA1) 0.196 0.0940 0.319 3.57 0.557 0.0110 0321-IFB1)		ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Prepared 8  Prepared 8  100  50.0  100		22/2023 22/2023 106 96.6 96.0	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: SGB0420 - BGB1825									
Interference Check A (SGB0420-IFA1)				Prepared 8	& Analyzed: 2/	28/2023			
Beryllium	0.00300		ug/L				70-130		
Interference Check B (SGB0420-IFB1)				Prepared 8	& Analyzed: 2/	28/2023			
Beryllium	15.0		ug/L	20.0		75.0	70-130		
Batch: SGB0424 - BGB1825									
Interference Check A (SGB0424-IFA1)				Prepared 8	& Analyzed: 2/	28/2023			
Beryllium	0.00200		ug/L		,,		70-130		
Interference Check B (SGB0424-IFB1)				Prepared 8	& Analyzed: 2/	28/2023			
Beryllium	16.2		ug/L	20.0		81.0	70-130		
Batch: SGB0432 - BGB0721									
Interference Check B (SGB0432-IFB1)				Prepared 8	& Analyzed: 2/	28/2023			
Beryllium	16.4		ug/L	20.0		81.8	70-130		
Batch: SGC0006 - BGB0721									
Interference Check A (SGC0006-IFA1)				Prepared 8	& Analyzed: 3,	/1/2023			
Copper	0.134		ug/L	- p	, ,		70-130		
Silver	0.0110		ug/L				70-130		
Interference Check B (SGC0006-IFB1)				Prepared &	& Analyzed: 3,	/1/2023			
Copper	95.0		ug/L	100		95.0	70-130		
Silver	48.3		ug/L	50.0		96.5	70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: SGC0014 - BGB0720									
Interference Check A (SGC0014-IFA1)				Prepared	& Analyzed: 3	/1/2023			
Beryllium	0.00600		ug/L				70-130		
Silver	0.00800		ug/L				70-130		
Interference Check B (SGC0014-IFB1)				Prepared	& Analyzed: 3	/1/2023			
Beryllium	17.2		ug/L	20.0		86.2	70-130		
Silver	45.5		ug/L	50.0		91.0	70-130		
Batch: SGC0057 - BGB0721									
Interference Check A (SGC0057-IFA1)				Prepared	& Analyzed: 3	/3/2023			
Copper	0.102		ug/L				70-130		
Interference Check B (SGC0057-IFB1)				Prepared	& Analyzed: 3	/3/2023			
Copper	84.8		ug/L	100		84.8	70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Quality Control (Continued)

#### **Elutriate Metals, Total**

Analyte	Result Q	)ual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB0678 - EPA 245.1										
Blank (BGB0678-BLK1)					Prepared a	& Analyzed: 2	:/6/2023			
Mercury	<0.200 U	J	0.200	ug/L						
LCS (BGB0678-BS1)					Prepared 8	& Analyzed: 2	/6/2023			
Mercury	5.07		0.200	ug/L	5.00		101	85-115		
Duplicate (BGB0678-DUP1)	S	ource: 22I	2894-01		Prepared 8	& Analyzed: 2	/6/2023			
Mercury	<0.200 U	J	0.200	ug/L		<0.200				20
Duplicate (BGB0678-DUP2)	S	ource: 23A	1459-52		Prepared 8	& Analyzed: 2	/6/2023			
Mercury	<0.200 U	J	0.200	ug/L		<0.200				20
BGB0310-LBK1 (BGB0678-LBK1)					Prepared	& Analyzed: 2	/6/2023			
Mercury	<0.200 U	J	0.200	ug/L	-	-				
BGA3905-LBK1 (BGB0678-LBK2)					Prepared 8	& Analyzed: 2	/6/2023			
Mercury	<0.200 U	J	0.200	ug/L						
MDL Check (BGB0678-MRL1)					Prepared	& Analyzed: 2	/6/2023			
Mercury	<0.200 U	J	0.200	ug/L	0.100					
Matrix Spike (BGB0678-MS1)	S	ource: 22I	2894-01		Prepared 8	& Analyzed: 2	/6/2023			
Mercury	5.21		0.200	ug/L	5.00	<0.200	104	70-130		
Matrix Spike (BGB0678-MS2)	S	ource: 23A	1459-52		Prepared	& Analyzed: 2	/6/2023			
Mercury	5.32		0.200	ug/L	5.00	<0.200	106	70-130		
Batch: BGB1605 - EPA 200.8					ropored. 2/40	/2022 4=-1	.d. 2/22/2021	,		
Blank (BGB1605-BLK1) Selenium	<2.00 U	1	2.00	Pr ug/L	repared: 2/10,	/ZUZ3 Analyz€	:u: 2/22/202.	•		
Cicinati	<2.00 U	,	2.00	ug/L						



Reported:



Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

#### **Elutriate Metals, Total (Continued)**

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB1605 - EPA 200.8 (Cd	entinued)									
LCS (BGB1605-BS1)	/				Prepared: 2/10	/2023 Analyze	ed: 2/22/2023	}		
Selenium	213		2.00	ug/L	200		107	85-115		
Duplicate (BGB1605-DUP1)		Source: 2	23A1459-05		Prepared: 2/10	/2023 Analyze	ed: 2/22/2023	3		
Selenium	<10.0	U	10.0	ug/L		<10.0				20
Duplicate (BGB1605-DUP2)		Source: 2	23A3576-02		Prepared: 2/10	/2023 Analyze	ed: 2/24/2023	3		
Selenium	0.737	J	2.00	ug/L		0.668			9.82	20
BGB0310-LBK1 (BGB1605-LBK1)					Prepared: 2/10	/2023 Analyze	ed: 2/24/2023	3		
Selenium	<2.00	U	2.00	ug/L						
BGA3905-LBK1 (BGB1605-LBK2)					Prepared: 2/10	/2023 Analyze	ed: 2/24/2023	}		
Selenium	<2.00	U	2.00	ug/L						
MDL Check (BGB1605-MRL1)					Prepared: 2/10	/2023 Analyze	ed: 2/22/2023	3		
Selenium	0.286	J	2.00	ug/L						
Matrix Spike (BGB1605-MS1)		Source: 2	23A1459-05		Prepared: 2/10	/2023 Analyze	ed: 2/22/2023	}		
Selenium	210		10.0	ug/L	200	<10.0	105	75-125		
Matrix Spike (BGB1605-MS2)		Source: 2	23A3576-02		Prepared: 2/10	/2023 Analyze	ed: 2/24/2023	}		
Selenium	222		2.00	ug/L	200	0.668	111	75-125		
Batch: BGB3632 - EPA 200.8										
Blank (BGB3632-BLK1)				_	Prepared: 2/24	1/2023 Analyz	ed: 3/1/2023			
Selenium	<2.00	U	2.00	ug/L						





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

## Quality Control (Continued)

#### **Elutriate Metals, Total (Continued)**

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGB3632 - EPA 200.8 (Con	tinued)									
LCS (BGB3632-BS1)	•				Prepared: 2/24	1/2023 Analyz	ed: 3/1/2023	•		
Selenium	204		2.00	ug/L	200		102	85-115		
Duplicate (BGB3632-DUP1)		Source: 2	23A1459-13		Prepared: 2/24	l/2023 Analyze	ed: 3/1/2023	1		
Selenium	<10.0	U	10.0	ug/L		<10.0				20
MRL Check (BGB3632-MRL1)					Prepared: 2/24	l/2023 Analyze	ed: 3/1/2023	1		
Selenium	0.320	J	2.00	ug/L	0.330		97.0			
Matrix Spike (BGB3632-MS1)		Source: 2	23A1459-13		Prepared: 2/24	l/2023 Analyz	ed: 3/1/2023	-		
Selenium	989		10.0	ug/L	1000	<10.0	98.9	75-125		
Batch: SGB0325 - BGB1605										
Interference Check A (SGB0325-IFA1)					Prepared 8	& Analyzed: 2/	'22/2023			
Selenium	-0.00300	U		ug/L				70-130		
Interference Check B (SGB0325-IFB1)					Prepared 8	& Analyzed: 2/	'22/2023			
Selenium	194			ug/L	200		97.2	70-130		
D-1-1- CODO222 - DCD1625										
Batch: SGB0332 - BGB1605					_					
Interference Check A (SGB0332-IFA1)					Prepared 8	& Analyzed: 2/	22/2023			
Selenium	0.0760			ug/L				70-130		
Interference Check B (SGB0332-IFB1)					Prepared 8	& Analyzed: 2/	'22/2023			
Selenium	203			ug/L	200		102	70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

# Quality Control (Continued)

#### **Elutriate Metals, Total (Continued)**

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: SGB0385 - BGB1605		_							
Interference Check A (SGB0385-IFA1)				Prepared 8	& Analyzed: 2	/24/2023			
Selenium	0.168		ug/L				70-130		
Interference Check B (SGB0385-IFB1)				Prepared 8	& Analyzed: 2,	/24/2023			
Selenium	178		ug/L	200		89.2	70-130		
Batch: SGC0003 - BGB3632									
Interference Check A (SGC0003-IFA1)				Prepared	& Analyzed: 3	3/1/2023			
Selenium	0.0760		ug/L				70-130		
Interference Check B (SGC0003-IFB1)				Prepared	& Analyzed: 3	3/1/2023			
Selenium	199		ug/L	200		99.7	70-130		





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

## Quality Control (Continued)

#### **Elutriate General Chemistry**

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0150 - TSS										
Blank (BGB0150-BLK1)					Prepared: 2/1	/2023 Analyze	ed: 2/2/2023			
Residue-nonfilterable (TSS)	<1.00	U	1.00	mg/L						
LCS (BGB0150-BS1)					Prepared: 2/1	/2023 Analyze	ed: 2/2/2023			
Residue-nonfilterable (TSS)	98.5		1.00	mg/L	100		98.5	85-115		
Duplicate (BGB0150-DUP1)		Source: 2	3A1459-09		Prepared: 2/1	/2023 Analyze	ed: 2/2/2023			
Residue-nonfilterable (TSS)	5.26	J1	1.00	mg/L		5.89			11.3	10
BGA3905-BLK1 (BGB0150-LBK1)					Prepared: 2/1	/2023 Analyze	ed: 2/2/2023			
Residue-nonfilterable (TSS)	<1.00	U	1.00	mg/L						
Batch: BGB0805 - TSS Blank (BGB0805-BLK1) Residue-nonfilterable (TSS)	<1.00	U	1.00	mg/L	Prepared: 2/6	/2023 Analyze	ed: 2/7/2023			
LCS (BGB0805-BS1)					Prepared: 2/6	/2023 Analyze	ed: 2/7/2023			
Residue-nonfilterable (TSS)	99.0		1.00	mg/L	100	, 2020 / 11/01/22	99.0	85-115		
Duplicate (BGB0805-DUP1)		Source: 2	3A1459-14		Prepared: 2/6	/2023 Analyze	ed: 2/7/2023			
Residue-nonfilterable (TSS)	6.35		1.00	mg/L		6.59			3.64	10
BGB0310-BLK1 (BGB0805-LBK1)					Prepared: 2/6	/2023 Analyze	ed: 2/7/2023			
Residue-nonfilterable (TSS)	6.38		1.00	mg/L						
Databa DCDAGAZ NUZ NICENI	250.1									
Batch: BGB0807 - NH3-N SEAL- BGB0310-BLK1 (BGB0807-LBK1)	350.1				Prenared	& Analyzed: 2	/7/2023			
Ammonia as N	<0.0500	U	0.0500	mg/L	repared	a. many Loan L	, , , 2023			





Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay RoadProject Number:Reported:Houston, TX 77043Project Manager: Gregg Pawlak04/03/2023 14:08

### **Quality Control**

(Continued)

### **Elutriate General Chemistry (Continued)**

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGB0807 - NH3-N SEAL-3	350.1 (Cor	ntinued)	)							
MRL Check (BGB0807-MRL1)					Prepared	& Analyzed: 2	2/7/2023			
Ammonia as N	0.0469			mg/L	0.0500		93.8	50-150		
Matrix Spike (BGB0807-MS1)		Source: 2	23A1459-08RE1		Prepared	& Analyzed: 2	2/7/2023			
Ammonia as N	0.571	J1	0.0500	mg/L	0.400	0.456	28.8	90-110		
Matrix Spike (BGB0807-MS2)		Source: 2	23B1245-02RE1		Prepared	& Analyzed: 2	2/7/2023			
Ammonia as N	2.45		0.250	mg/L	0.400	2.06	98.7	90-110		
Matrix Spike Dup (BGB0807-MSD1)		Source: 2	23A1459-08RE1		Prepared	& Analyzed: 2	2/7/2023			
Ammonia as N	1.05	J1	0.0500	mg/L	0.400	0.456	148	90-110	58.9	20
Matrix Spike Dup (BGB0807-MSD2)		Source: 2	23B1245-02RE1		Prepared	& Analyzed: 2	2/7/2023			
Ammonia as N	2.45		0.250	mg/L	0.400	2.06	97.6	90-110	0.176	20
Batch: BGB0808 - NH3-N SEAL-3	250 1									
BGA3905-BLK1 (BGB0808-LBK1)	50.1				Dronared	& Analyzed: 2	/7/2023			
Ammonia as N	<0.0500	U	0.0500	mg/L	Теригеи	C Analyzed. z	., 7 , 2025			
Matrix Spike (BGB0808-MS1)		Source: 2	23B1393-01RE1		Prepared	& Analyzed: 2	2/7/2023			
Ammonia as N	0.404		0.0500	mg/L	0.400	0.0313	93.1	90-110		
Matrix Spike (BGB0808-MS2)		Source: 2	23B0935-03RE1		Prepared	& Analyzed: 2	2/7/2023			
Ammonia as N	73.9		5.00	mg/L	0.400	73.4	110	90-110		
Matrix Spike Dup (BGB0808-MSD1)		Source: 2	23B1393-01RE1		Prepared	& Analyzed: 2	2/7/2023			
Ammonia as N	0.402		0.0500	mg/L	0.400	0.0313	92.6	90-110	0.497	20



130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-38
TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:
Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

Quality Control (Continued)

#### **Elutriate General Chemistry (Continued)**

Analyte Result Qual Limit Units Level Result %REC Limits RPD Limit			Reporting		Spike	Source		%REC		RPD
	Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

Batch: BGB0808 - NH3-N SEAL-350.1 (Continued)

 Matrix Spike Dup (BGB0808-MSD2)
 Source: 23B0935-03RE1
 Prepared & Analyzed: 2/7/2023

 Ammonia as N
 73.8
 5.00
 mg/L
 0.400
 73.4
 94.8
 90-110
 0.0812
 20



130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-38
TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

11555 Clay Road Project Number: Reported:

Houston, TX 77043 Project Manager: Gregg Pawlak 04/03/2023 14:08

### **Sample Condition Checklist**

Work Order: 23A1459

#### **Check Points**

Yes Custody Seals
Yes Containers Intact
Yes COC/Labels Agree
Yes Received On Ice
Yes Appropriate Containers
Yes Appropriate Sample Volume

Yes Coolers Intact
Yes Samples Accepted





130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-38

TCEQ-TOX T104704202-22-17

Terracon_Houston Project: PCCA HI & CDP Resampling 2023

 11555 Clay Road
 Project Number:
 Reported:

 Houston, TX 77043
 Project Manager: Gregg Pawlak
 04/03/2023 14:08

### **Term and Qualifier Definitions**

#### Item Definition

Α	Detection limit elevated due to abundance of non-target analyte.
В	Analyte was found in the associated method blank.
B2	The analyte was detected in the associated leach blank.
C+	The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report.
CQ	Internal Standard response less than 50% calibration response
Н	The parameter was analyzed outside the method specified holding time.
HP	The time between preparation and analysis was outside the method specified holding time this for parameter.
J	Estimated value - The reported value is between the detection limit and reporting limit.
J1	Estimated value - The reported value is outside the established quality control criteria for accuracy and/or precision.
L	Off scale high - The concentration of the analyte exceeds the linear range.
Р	Difference between GC column results greater than the method requirement. Higher result reported.
S	The surrogate recovery was outside the established laboratory recovery limit.
U	Non-detected compound.
V	Analyte was detected in both sample and method blank.
V2	The analyte was detected in the sample and the associated leach blank.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated
*	A = Accredited, N = Not Accredited or Accreditation not available
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content
MDL	Method Detection Limit - The minimum concentration of a substance (or analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. Based on standard deviation of replicate spiked samples take through all steps of the analytical procedure following 40 CFR Part 136 Appendix B.
SDL	Sample Detection Limit - The minimum concentration of a substance (analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. The SDL is an adjusted limit thus sample specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MDL = SDL.
MRL	Method Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and without qualification (i.e. J-flagged). The MRL is at or above the lowest calibration standard.
LRL	Laboratory Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and without qualification (i.e. J-flagged). The LRL is an adjusted limit thus sample specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MRL = LRL.

March 6, 2023

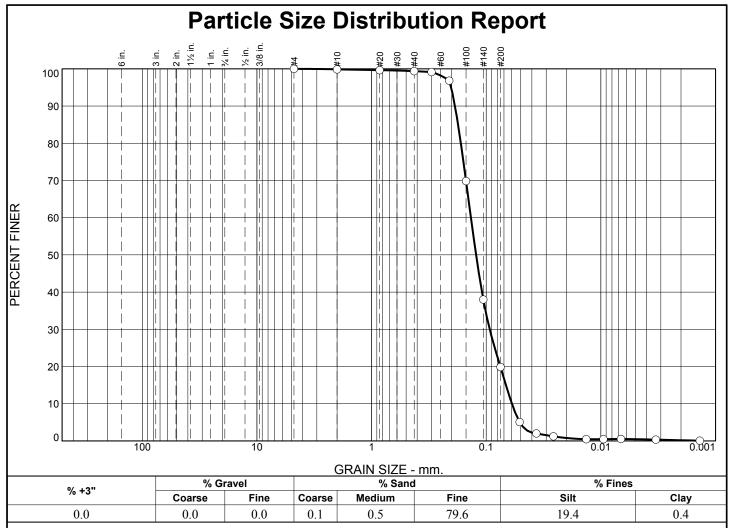
Ms. Monica Martin

Re: North Water District Laboratory Services, Inc. (NWDLS)

NWDLS Geosciences Lab Testing – Task Order #13

Project #23A1459

The Taylor Engineering Coastal & Marine Geosciences Laboratory is pleased to submit the following sediment data for NWDLS project #23A1459. Taylor Engineering received 33 samples for analysis in Jacksonville, Florida on February 1st, 2023. Laboratory testing for project #23A1459 included sieve and hydrometer analysis according to ASTM D-422. Attached to this letter are the individual test results for each sample.


If any additional information is needed or if you have any questions, please contact me at (904) 731-7040 or <a href="mailto:nlamb@taylorengineering.com">nlamb@taylorengineering.com</a>.

Sincerely,

Natalie Lamb, G.I.T.

Staff Geologist

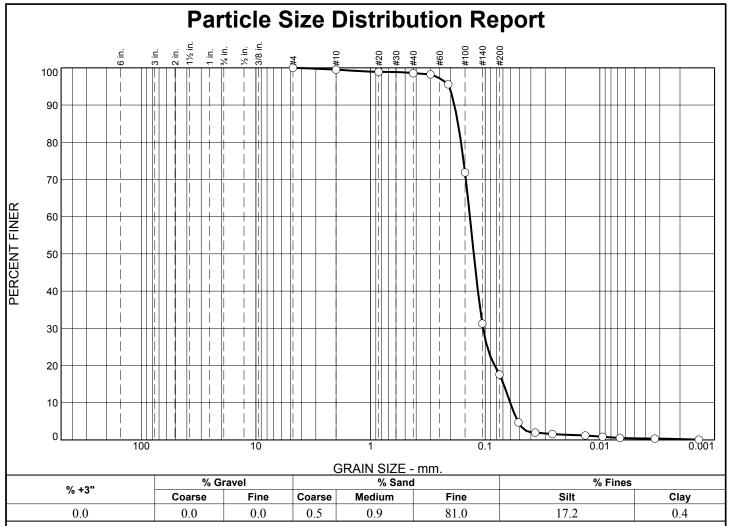
Coastal & Marine Geosciences Lab Assistant Manager



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#20	99.6		
#40	99.4		
#50	99.1		
#70	96.8		
#100	69.8		
#140	38.0		
#200	19.8		
0.0511 mm.	5.1		
0.0365 mm.	2.0		
0.0259 mm.	1.2		
0.0134 mm.	0.4		
0.0095 mm.	0.4		
0.0067 mm.	0.5		
0.0033 mm.	0.3		
0.0014 mm.	0.1		

S	Sand, silty, mostly	Soil Description fine-grained sand-sized	quartz, little silt, gray
F	PL=	Atterberg Limits LL=	PI=
[ [ ]	D ₉₀ = 0.1872 D ₅₀ = 0.1225 D ₁₀ = 0.0597	Coefficients D ₈₅ = 0.1759 D ₃₀ = 0.0932 C _u = 2.28	D ₆₀ = 0.1360 D ₁₅ = 0.0673 C _c = 1.07
ι	JSCS= SM	Classification AASHTO=	
		<u>Remarks</u>	

(no specification provided)


Source of Sample: 23A1459 Sample Number: 16

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

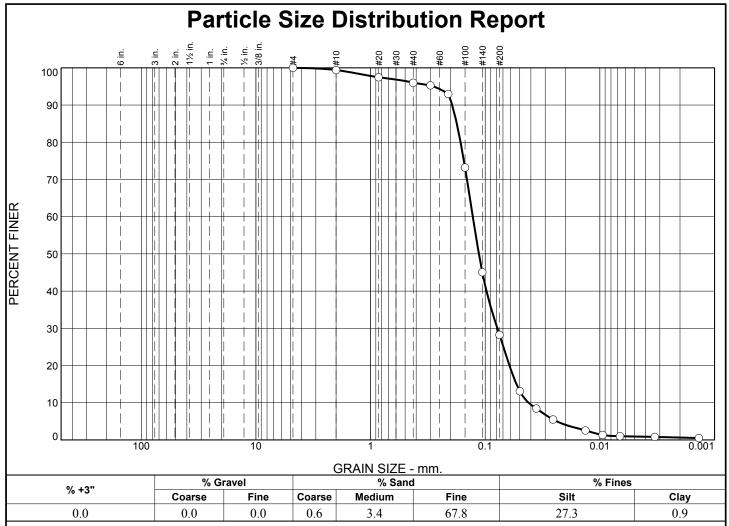
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.5		
#20	98.9		
#40	98.6		
#50	98.2		
#70	95.6		
#100	71.9		
#140	31.3		
#200	17.6		
0.0513 mm.	4.7		
0.0366 mm.	2.0		
0.0259 mm.	1.6		
0.0134 mm.	1.2		
0.0095 mm.	0.8		
0.0067 mm.	0.5		
0.0033 mm.	0.3		
0.0014 mm.	0.1		

Sand, silty, mostly fine-grained sand-sized quartz, little silt, tan				
PL=	Atterberg Limits	PI=		
D ₉₀ = 0.1856 D ₅₀ = 0.1258 D ₁₀ = 0.0606	Coefficients D ₈₅ = 0.1725 D ₃₀ = 0.1043 C _u = 2.25	D ₆₀ = 0.1360 D ₁₅ = 0.0692 C _c = 1.32		
USCS= SM	Classification AASHT	O=		
	<u>Remarks</u>			

* (no specification provided)


Source of Sample: 23A1459 Sample Number: 17

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

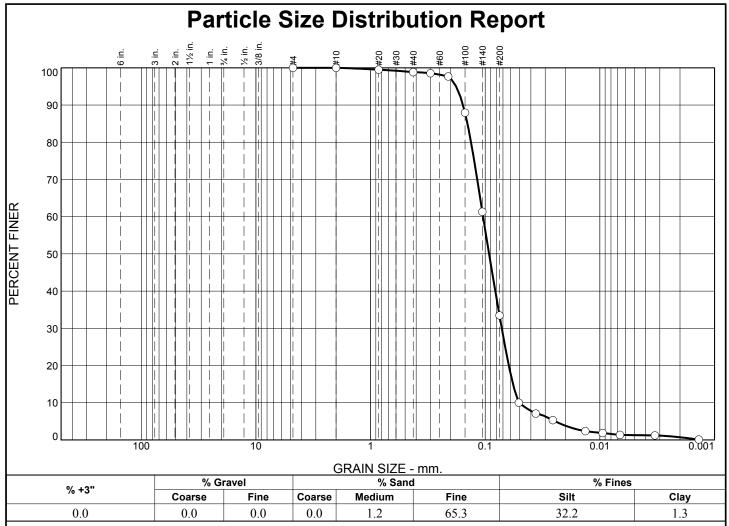
**Figure Project No:** C2022-020



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.4		
#20	97.5		
#40	96.0		
#50	95.3		
#70	93.0		
#100	73.2		
#140	45.1		
#200	28.2		
0.0499 mm.	13.1		
0.0359 mm.	8.4		
0.0256 mm.	5.5		
0.0134 mm.	2.5		
0.0095 mm.	1.3		
0.0067 mm.	1.0		
0.0033 mm.	0.8		
0.0014 mm.	0.5		

Soil Description Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray			
PL=	Atterberg Limits LL=	PI=	
D ₉₀ = 0.1941 D ₅₀ = 0.1135 D ₁₀ = 0.0420	Coefficients D ₈₅ = 0.1768 D ₃₀ = 0.0783 C _u = 3.05	D ₆₀ = 0.1283 D ₁₅ = 0.0535 C _c = 1.14	
USCS= SM	Classification AASHTO	)=	
	<u>Remarks</u>		

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 18

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

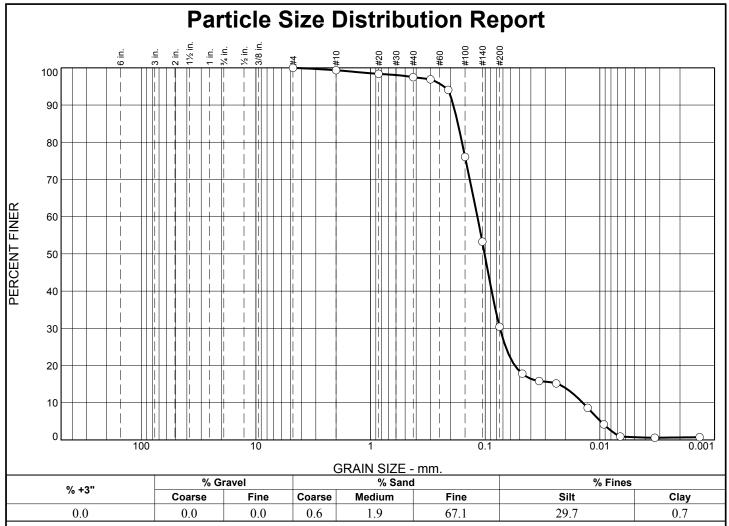
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.5		
#40	98.8		
#50	98.5		
#70	97.7		
#100	88.0		
#140	61.3		
#200	33.5		
0.0509 mm.	10.0		
0.0363 mm.	7.1		
0.0258 mm.	5.3		
0.0134 mm.	2.4		
0.0095 mm.	1.9		
0.0067 mm.	1.3		
0.0033 mm.	1.2		
0.0014 mm.	0.1		

	Soil Description				
Sand, silty, mostly trace clay, tan	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan				
PL=	Atterberg Limits	PI=			
D ₉₀ = 0.1561 D ₅₀ = 0.0925 D ₁₀ = 0.0509	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = \ 0.1428 \\ \text{D}_{30} = \ 0.0717 \\ \text{C}_{\text{U}} = \ 2.05 \end{array}$	D ₆₀ = 0.1043 D ₁₅ = 0.0572 C _c = 0.97			
USCS= SM	Classification AASHT	-O=			
	<u>Remarks</u>				

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 20

**Client:** North Water District Laboratory Services

**Project:** 23A1459

Project No: C2022-020 Figure

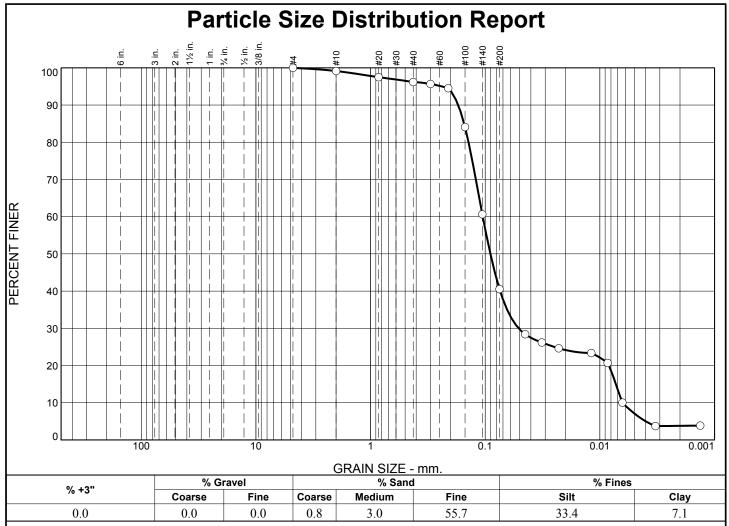
**Taylor Engineering, Inc.** 



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.4		
#20	98.4		
#40	97.5		
#50	96.9		
#70	94.1		
#100	76.1		
#140	53.3		
#200	30.4		
0.0475 mm.	17.8		
0.0339 mm.	15.8		
0.0240 mm.	15.2		
0.0128 mm.	8.6		
0.0093 mm.	4.2		
0.0066 mm.	0.9		
0.0033 mm.	0.6		
0.0014 mm.	0.7		

Soil Description Sand, silty, mostly fine-grained sand-sized quartz, some silt, gray				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1897 D ₅₀ = 0.1012 D ₁₀ = 0.0141	Coefficients D85= 0.1730 D30= 0.0744 Cu= 8.28	D ₆₀ = 0.1170 D ₁₅ = 0.0232 C _c = 3.35		
USCS= SM	Classification AASHT	O=		
	<u>Remarks</u>			

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 21

Taylor Engineering, Inc.

**Client:** North Water District Laboratory Services

**Project:** 23A1459

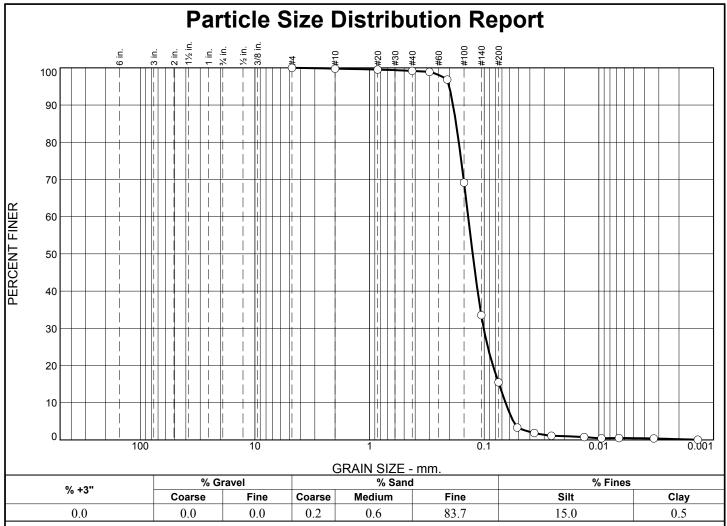
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.2		
#20	97.5		
#40	96.2		
#50	95.7		
#70	94.5		
#100	84.1		
#140	60.6		
#200	40.5		
0.0448 mm.	28.4		
0.0321 mm.	26.2		
0.0229 mm.	24.6		
0.0119 mm.	23.3		
0.0085 mm.	20.7		
0.0064 mm.	10.0		
0.0033 mm.	3.7		
0.0013 mm.	3.8		

Sand, silty, mostle clay, gray	<b>Soil Description</b> y fine-grained sand-size	ed quartz, some silt, few
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 0.1720 D ₅₀ = 0.0900 D ₁₀ = 0.0064	$\begin{array}{c} \textbf{Coefficients} \\ \textbf{D85} = 0.1527 \\ \textbf{D30} = 0.0511 \\ \textbf{Cu} = 16.51 \\ \end{array}$	D ₆₀ = 0.1050 D ₁₅ = 0.0073 C _c = 3.91
USCS= SM	Classification AASHTC	)=
	Remarks	

* (no specification provided)


Source of Sample: 23A1459 Sample Number: 22

**Taylor Engineering, Inc.** 

**Project:** 23A1459

**Figure Project No:** C2022-020

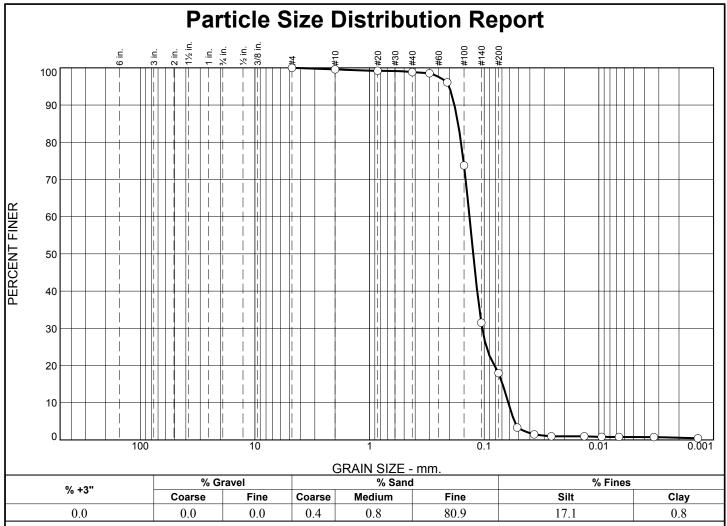
**Client:** North Water District Laboratory Services



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.8		
#20	99.5		
#40	99.2		
#50	98.9		
#70	96.8		
#100	69.1		
#140	33.5		
#200	15.5		
0.0515 mm.	3.3		
0.0366 mm.	1.8		
0.0260 mm.	1.1		
0.0134 mm.	0.7		
0.0095 mm.	0.4		
0.0067 mm.	0.5		
0.0033 mm.	0.4		
0.0014 mm.	0.1		

S	Soil Description Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray			
F	PL=	Atterberg Limits LL=	PI=	
] ] [	D ₉₀ = 0.1869 D ₅₀ = 0.1260 D ₁₀ = 0.0651	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = 0.1758 \\ \text{D}_{30} = 0.1011 \\ \text{C}_{\text{U}} = 2.12 \end{array}$	D ₆₀ = 0.1381 D ₁₅ = 0.0741 C _c = 1.14	
ι	JSCS= SM	Classification AASHTO=	=	
		Remarks		

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 24

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

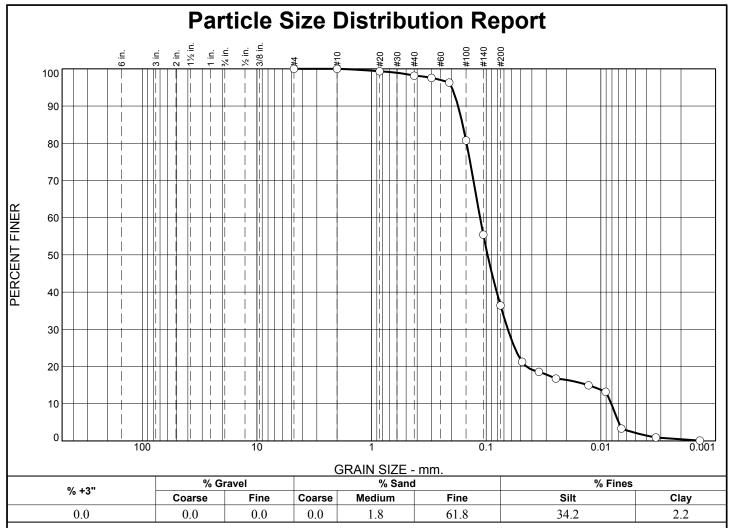
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.6		
#20	99.2		
#40	98.8		
#50	98.6		
#70	96.1		
#100	73.8		
#140	31.5		
#200	17.9		
0.0515 mm.	3.3		
0.0367 mm.	1.5		
0.0260 mm.	1.0		
0.0134 mm.	1.0		
0.0095 mm.	0.8		
0.0067 mm.	0.8		
0.0033 mm.	0.7		
0.0014 mm.	0.4		

S	Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray				
F	PL=	Atterberg Limits LL=	PI=		
[	D ₉₀ = 0.1819 D ₅₀ = 0.1247 D ₁₀ = 0.0616	Coefficients D ₈₅ = 0.1689 D ₃₀ = 0.1040 C _U = 2.18	D ₆₀ = 0.1344 D ₁₅ = 0.0691 C _c = 1.31		
ι	JSCS= SM	Classification AASHTO=	:		
		<u>Remarks</u>			

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 25

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

Project No: C2022-020 Figure

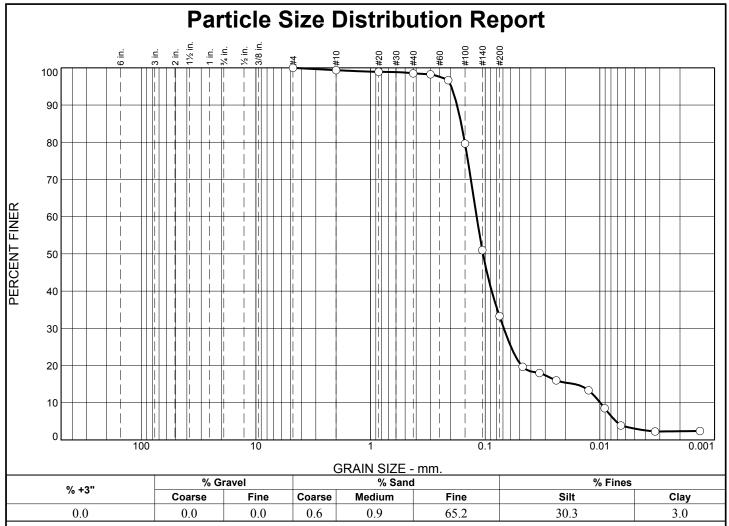


SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.4		
#40	98.2		
#50	97.6		
#70	96.3		
#100	80.8		
#140	55.4		
#200	36.4		
0.0486 mm.	21.3		
0.0347 mm.	18.6		
0.0247 mm.	16.7		
0.0128 mm.	14.9		
0.0091 mm.	13.2		
0.0066 mm.	3.3		
0.0033 mm.	0.9		
0.0014 mm.	0.1		

Sand, silty, mostl trace clay, tan	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan				
PL=	Atterberg Limits	PI=			
D ₉₀ = 0.1759 D ₅₀ = 0.0974 D ₁₀ = 0.0081	Coefficients D ₈₅ = 0.1604 D ₃₀ = 0.0647 C _u = 13.94	D ₆₀ = 0.1131 D ₁₅ = 0.0130 C _c = 4.57			
USCS= SM	Classification AASHTC	)=			
	<u>Remarks</u>				

(no specification provided)

**Source of Sample:** 23A1459 **Sample Number:** 27


**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

Project No: C2022-020 Figure

Project: 22 A 1450



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.4		
#20	98.9		
#40	98.5		
#50	98.3		
#70	96.7		
#100	79.7		
#140	51.0		
#200	33.3		
0.0472 mm.	19.6		
0.0336 mm.	18.0		
0.0240 mm.	16.0		
0.0125 mm.	13.3		
0.0091 mm.	8.5		
0.0066 mm.	3.9		
0.0033 mm.	2.2		
0.0013 mm.	2.4		

Soil Description Sand, silty, mostly fine-grained sand-sized quartz, some silt,					
trace clay, gray					
	Atterberg Limits				
PL=	LL=	PI=			
D ₉₀ = 0.1762 D ₅₀ = 0.1045 D ₁₀ = 0.0099	Coefficients D85= 0.1618 D30= 0.0689 Cu= 11.96	D ₆₀ = 0.1188 D ₁₅ = 0.0167 C _c = 4.02			
USCS= SM	Classification AASHTO	)=			
	<u>Remarks</u>				

* (no specification provided)

**Source of Sample:** 23A1459 **Sample Number:** 28


**Tested By: NEL** 

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

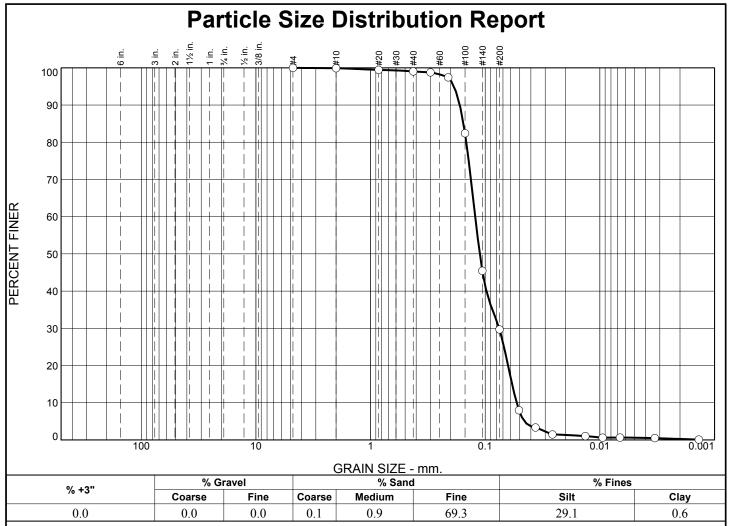
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#20	99.4		
#40	99.0		
#50	98.7		
#70	96.6		
#100	75.0		
#140	34.8		
#200	16.9		
0.0508 mm.	7.1		
0.0363 mm.	3.8		
0.0259 mm.	1.3		
0.0134 mm.	0.9		
0.0094 mm.	0.9		
0.0067 mm.	0.6		
0.0033 mm.	0.4		
0.0014 mm.	0.1		

Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray				
PL=	Atterberg Limits	PI=		
D ₉₀ = 0.1802 D ₅₀ = 0.1218 D ₁₀ = 0.0586	Coefficients D85= 0.1675 D30= 0.1000 Cu= 2.25	D ₆₀ = 0.1319 D ₁₅ = 0.0704 C _c = 1.29		
USCS= SM	Classification AASHTO	=		
	Remarks			

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 30

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

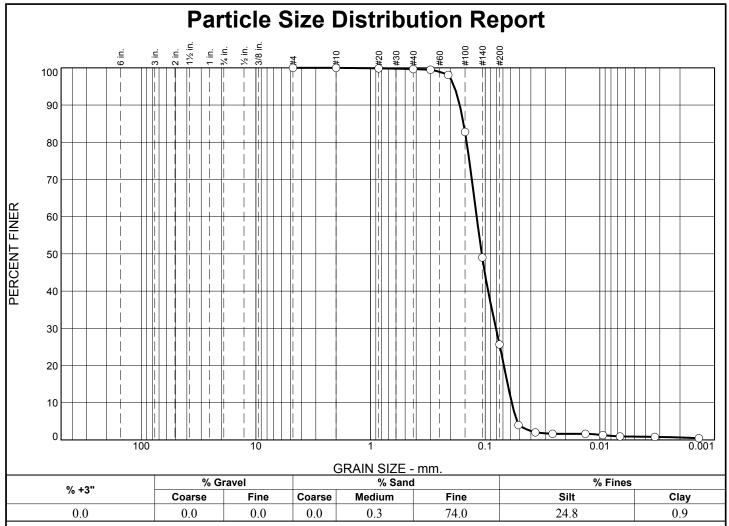
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#20	99.5		
#40	99.0		
#50	98.8		
#70	97.5		
#100	82.4		
#140	45.5		
#200	29.7		
0.0508 mm.	8.0		
0.0364 mm.	3.3		
0.0259 mm.	1.5		
0.0134 mm.	1.0		
0.0095 mm.	0.6		
0.0067 mm.	0.6		
0.0033 mm.	0.5		
0.0014 mm.	0.1		

Sand, silty, mos gray	Sand, silty, mostly fine-grained sand-sized quartz, some silt, gray				
PL=	Atterberg Limits LL=	PI=			
D ₉₀ = 0.1666 D ₅₀ = 0.1115 D ₁₀ = 0.0532	$\begin{array}{c} \textbf{Coefficients} \\ \textbf{D_{85}} = \ 0.1547 \\ \textbf{D_{30}} = \ 0.0755 \\ \textbf{C_{u}} = \ 2.30 \end{array}$	D ₆₀ = 0.1223 D ₁₅ = 0.0583 C _c = 0.88			
USCS= SM	Classification AASHT	O=			
	<u>Remarks</u>				

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 31

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

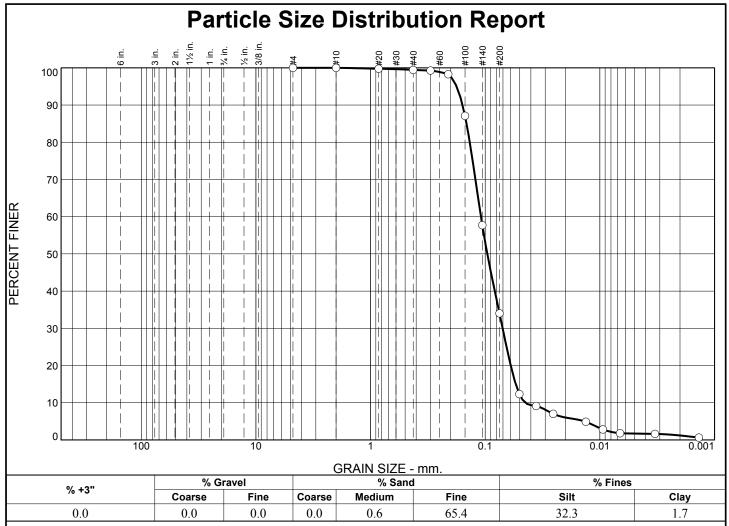
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.7		
#50	99.5		
#70	98.1		
#100	82.8		
#140	49.0		
#200	25.7		
0.0513 mm.	4.0		
0.0365 mm.	2.0		
0.0259 mm.	1.6		
0.0134 mm.	1.6		
0.0094 mm.	1.3		
0.0067 mm.	0.9		
0.0033 mm.	0.8		
0.0014 mm.	0.5		

Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1669 D ₅₀ = 0.1072 D ₁₀ = 0.0587	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = 0.1544 \\ \text{D}_{30} = 0.0805 \\ \text{C}_{\text{U}} = 2.02 \end{array}$	D ₆₀ = 0.1188 D ₁₅ = 0.0638 C _c = 0.93		
USCS= SM	Classification AASHT	O=		
	<u>Remarks</u>			

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 32

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

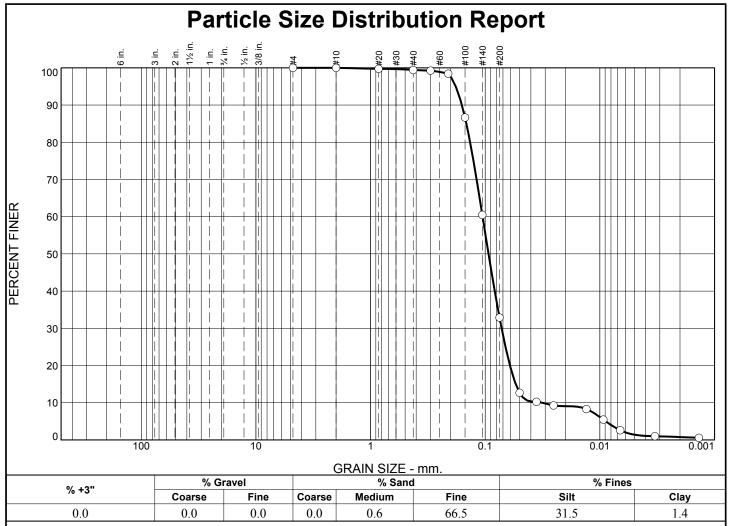
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.8		
#40	99.4		
#50	99.3		
#70	98.3		
#100	87.1		
#140	57.7		
#200	34.0		
0.0504 mm.	12.3		
0.0359 mm.	9.1		
0.0255 mm.	7.0		
0.0133 mm.	4.9		
0.0094 mm.	2.8		
0.0067 mm.	1.8		
0.0033 mm.	1.6		
0.0014 mm.	0.6		

Sand, silty, mostl trace clay, gray	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, gray			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1575 D ₅₀ = 0.0959 D ₁₀ = 0.0448	Coefficients D ₈₅ = 0.1454 D ₃₀ = 0.0705 C _u = 2.43	D ₆₀ = 0.1089 D ₁₅ = 0.0542 C _c = 1.02		
USCS= SM	Classification AASHT0	)=		
	<u>Remarks</u>			

Source of Sample: 23A1459


Sample Number: 34

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

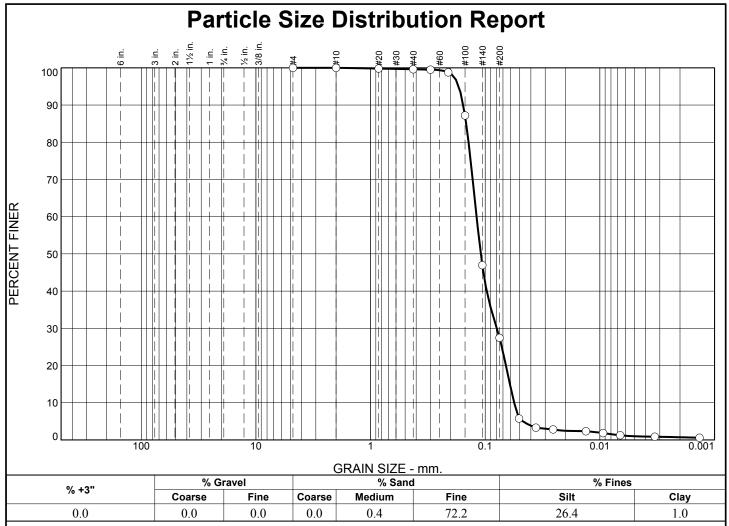
**Figure Project No:** C2022-020



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.7		
#40	99.4		
#50	99.2		
#70	98.4		
#100	86.6		
#140	60.5		
#200	32.9		
0.0502 mm.	12.7		
0.0357 mm.	10.2		
0.0253 mm.	9.3		
0.0131 mm.	8.3		
0.0093 mm.	5.5		
0.0066 mm.	2.6		
0.0033 mm.	1.0		
0.0014 mm.	0.6		

Soil Description				
Sand, silty, mostl trace clay, gray	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, gray			
PL=	Atterberg Limits	PI=		
D ₉₀ = 0.1597 D ₅₀ = 0.0935 D ₁₀ = 0.0319	Coefficients D ₈₅ = 0.1459 D ₃₀ = 0.0720 C _u = 3.30	D ₆₀ = 0.1054 D ₁₅ = 0.0543 C _c = 1.54		
USCS= SM	Classification AASHT	-O=		
	<u>Remarks</u>			

* (no specification provided)


Source of Sample: 23A1459 Sample Number: 35

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

**Figure Project No:** C2022-020

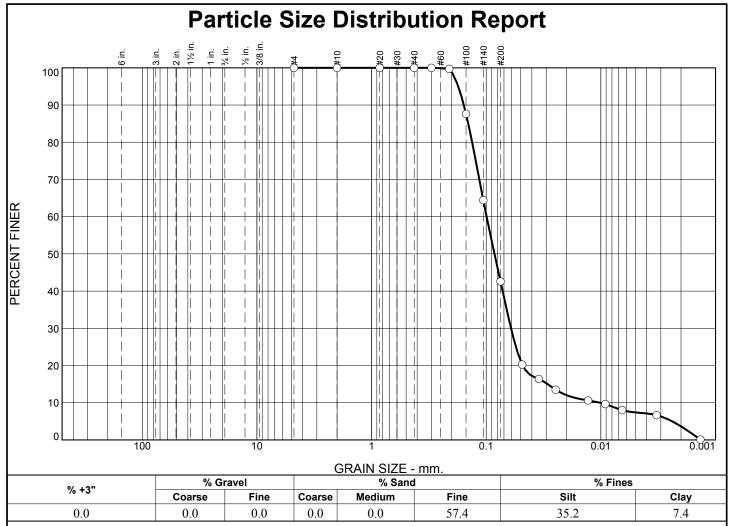


SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.8		
#40	99.6		
#50	99.5		
#70	98.8		
#100	87.2		
#140	47.0		
#200	27.4		
0.0507 mm.	5.7		
0.0361 mm.	3.3		
0.0256 mm.	2.8		
0.0132 mm.	2.3		
0.0094 mm.	1.8		
0.0066 mm.	1.2		
0.0033 mm.	0.9		
0.0014 mm.	0.6		

Sand, silty, mostl trace clay, gray	Soil Description Sand, silty, mostly fine-grained sand-sized quartz, little silt, trace clay, gray			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1554 D ₅₀ = 0.1093 D ₁₀ = 0.0559	Coefficients D ₈₅ = 0.1465 D ₃₀ = 0.0791 C _u = 2.13	D ₆₀ = 0.1190 D ₁₅ = 0.0610 C _c = 0.94		
USCS= SM	USCS= SM Classification AASHTO=			
	<u>Remarks</u>			

* (no specification provided)

**Source of Sample:** 23A1459 **Sample Number:** 36


**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

Project No: C2022-020 Figure

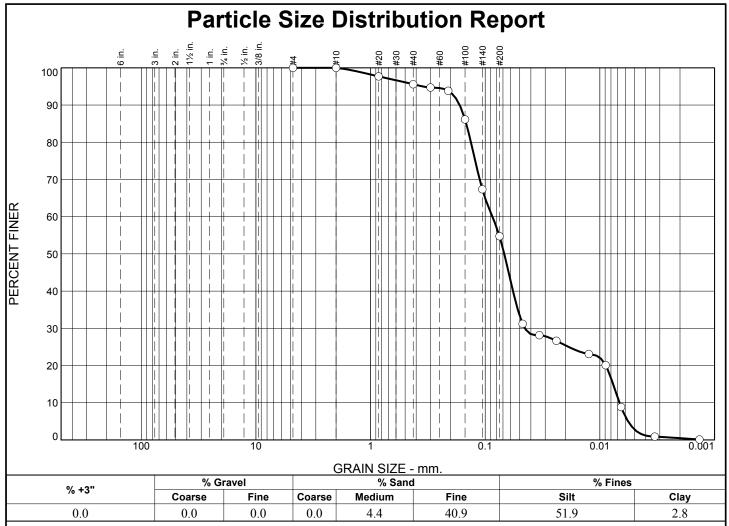
Drainet: 22 A 1450



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#50	100.0		
#70	99.7		
#100	87.6		
#140	64.4		
#200	42.6		
0.0485 mm.	20.3		
0.0347 mm.	16.4		
0.0248 mm.	13.5		
0.0129 mm.	10.6		
0.0091 mm.	9.6		
0.0065 mm.	8.0		
0.0033 mm.	6.6		
0.0014 mm.	0.1		

Sand, silty, mostly fine-grained sand-sized quartz, some silt, few clay, brown				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1567 D ₅₀ = 0.0846 D ₁₀ = 0.0102	Coefficients D ₈₅ = 0.1434 D ₃₀ = 0.0608 C _U = 9.74	D ₆₀ = 0.0992 D ₁₅ = 0.0292 C _c = 3.66		
USCS= SM	Classification AASHTO	)=		
	<u>Remarks</u>			

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 38

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

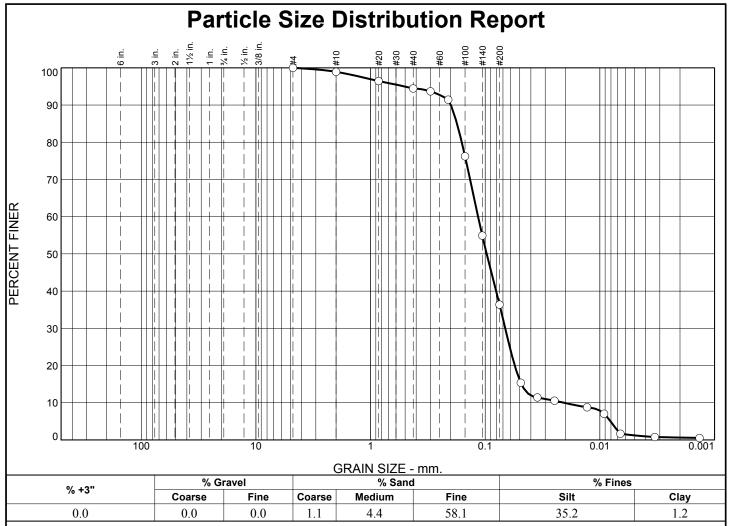
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	97.7		
#40	95.6		
#50	94.7		
#70	93.8		
#100	86.1		
#140	67.4		
#200	54.7		
0.0472 mm.	31.2		
0.0337 mm.	28.1		
0.0239 mm.	26.6		
0.0125 mm.	23.1		
0.0089 mm.	20.1		
0.0065 mm.	8.8		
0.0033 mm.	0.9		
0.0014 mm.	0.1		

Soil Description Silt, some fine-grained sand-sized quartz, trace clay, gray			
PL=	Atterberg Limits LL=	PI=	
D ₉₀ = 0.1670 D ₅₀ = 0.0682 D ₁₀ = 0.0067	Coefficients D ₈₅ = 0.1463 D ₃₀ = 0.0451 C _u = 12.82	D ₆₀ = 0.0865 D ₁₅ = 0.0077 C _c = 3.48	
USCS= ML	USCS= ML Classification AASHTO=		
<u>Remarks</u>			

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 39

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

Project No: C2022-020 Figure

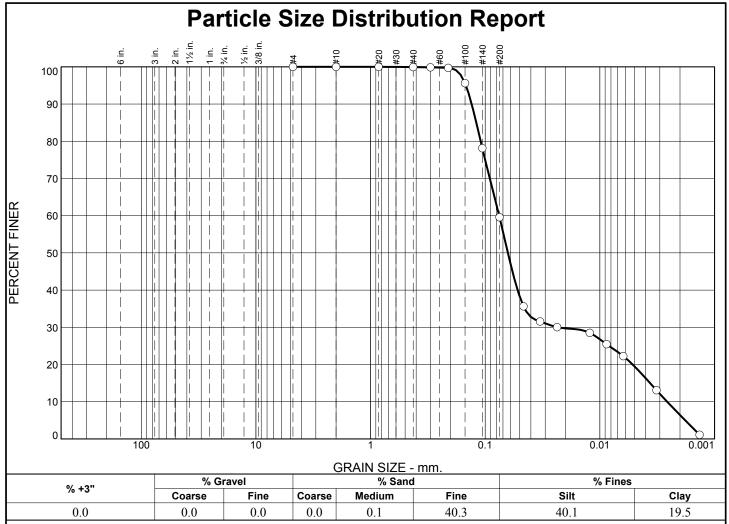


SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	98.9		
#20	96.5		
#40	94.5		
#50	93.7		
#70	91.5		
#100	76.2		
#140	54.9		
#200	36.4		
0.0490 mm.	15.3		
0.0351 mm.	11.4		
0.0249 mm.	10.5		
0.0129 mm.	8.8		
0.0092 mm.	7.0		
0.0066 mm.	1.6		
0.0033 mm.	0.8		
0.0014 mm.	0.5		

Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1995 D ₅₀ = 0.0970 D ₁₀ = 0.0207	Coefficients D ₈₅ = 0.1763 D ₃₀ = 0.0670 C _U = 5.58	D ₆₀ = 0.1154 D ₁₅ = 0.0484 C _c = 1.88		
USCS= SM	USCS= SM Classification AASHTO=			
<u>Remarks</u>				

* (no specification provided)

**Source of Sample:** 23A1459 **Sample Number:** 40


Tested By: NEL

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

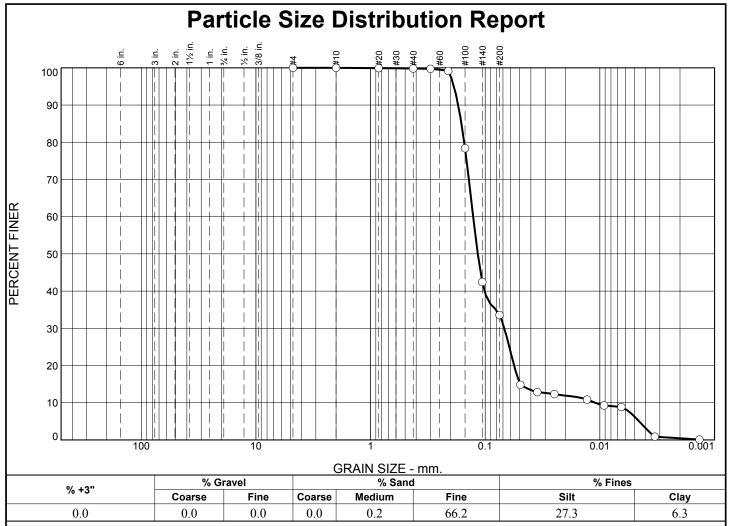
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	100.0		
#40	99.9		
#50	99.9		
#70	99.7		
#100	95.6		
#140	78.1		
#200	59.6		
0.0464 mm.	35.6		
0.0332 mm.	31.6		
0.0236 mm.	30.0		
0.0122 mm.	28.5		
0.0087 mm.	25.4		
0.0063 mm.	22.3		
0.0032 mm.	13.1		
0.0014 mm.	1.1		

Soil Description Silt, some fine-grained sand-sized quartz, little clay, tan			
PL=	Atterberg Limits LL=	PI=	
D ₉₀ = 0.1313 D ₅₀ = 0.0634 D ₁₀ = 0.0026	Coefficients D85= 0.1196 D30= 0.0234 Cu= 29.17	D ₆₀ = 0.0756 D ₁₅ = 0.0037 C _c = 2.79	
USCS= ML	Classification AASHT	O=	
	<u>Remarks</u>		

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 41

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

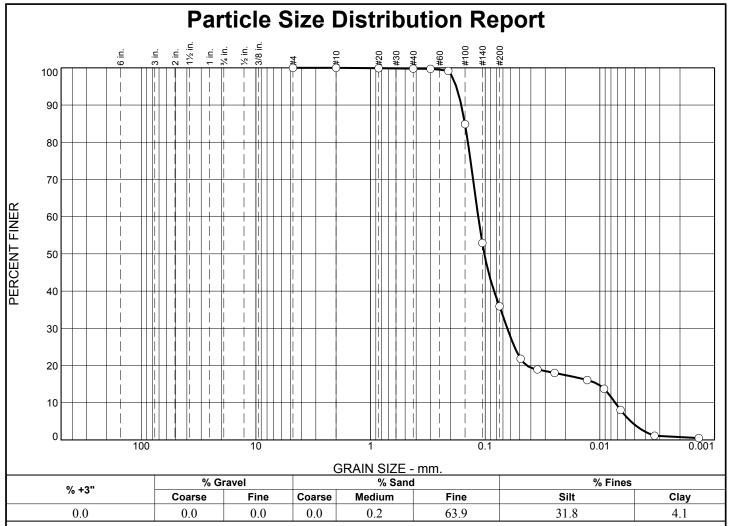
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.8		
#50	99.7		
#70	99.2		
#100	78.4		
#140	42.5		
#200	33.6		
0.0495 mm.	14.8		
0.0352 mm.	12.8		
0.0249 mm.	12.3		
0.0129 mm.	10.8		
0.0092 mm.	9.3		
0.0065 mm.	8.8		
0.0033 mm.	0.9		
0.0014 mm.	0.1		

Sand, silty, mostly fine-grained sand-sized quartz, little silt, few clay, tan			
PL=	Atterberg Limits LL=	PI=	
D ₉₀ = 0.1720 D ₅₀ = 0.1161 D ₁₀ = 0.0110	Coefficients D85= 0.1611 D30= 0.0681 Cu= 11.56	D ₆₀ = 0.1274 D ₁₅ = 0.0498 C _c = 3.31	
USCS= SM	Classification AASHTO	)=	
	<u>Remarks</u>		

* (no specification provided)


Source of Sample: 23A1459 Sample Number: 43

# **Taylor Engineering, Inc.**

**Client:** North Water District Laboratory Services

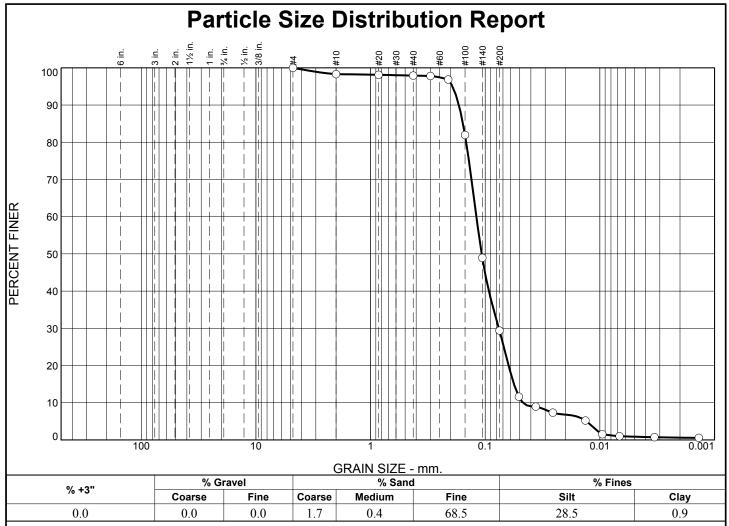
**Project:** 23A1459

**Figure Project No:** C2022-020



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.8		
#50	99.7		
#70	99.2		
#100	84.9		
#140	52.9		
#200	35.9		
0.0491 mm.	21.8		
0.0350 mm.	18.9		
0.0248 mm.	18.0		
0.0129 mm.	16.1		
0.0092 mm.	13.7		
0.0066 mm.	8.0		
0.0033 mm.	1.1		
0.0014 mm.	0.5		
* (no specif	ication provided	1)	

Sand, silty, mostl trace clay, tan	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1617 D ₅₀ = 0.1018 D ₁₀ = 0.0074	Coefficients D ₈₅ = 0.1503 D ₃₀ = 0.0642 C _U = 15.65	D ₆₀ = 0.1151 D ₁₅ = 0.0104 C _c = 4.87		
USCS= SM	Classification AASHTC	)=		
	<u>Remarks</u>			


**Source of Sample:** 23A1459 **Sample Number:** 44

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

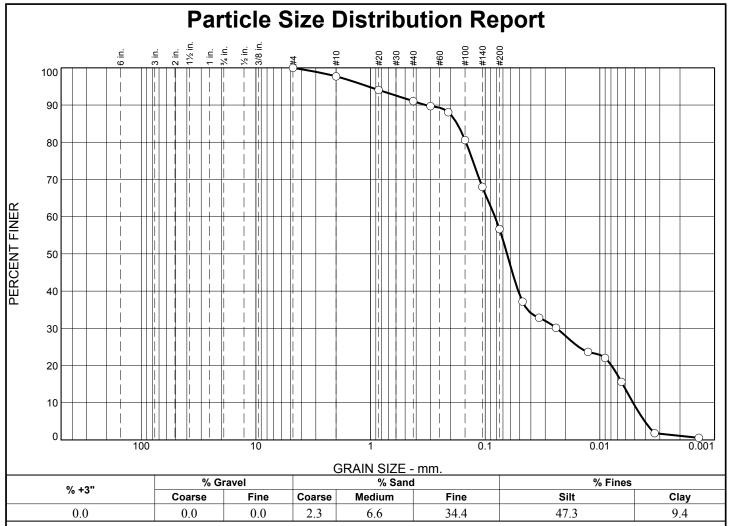
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	98.3		
#20	98.1		
#40	97.9		
#50	97.8		
#70	96.9		
#100	82.0		
#140	48.9		
#200	29.4		
0.0509 mm.	11.6		
0.0362 mm.	8.9		
0.0257 mm.	7.3		
0.0134 mm.	5.2		
0.0095 mm.	1.5		
0.0067 mm.	1.0		
0.0033 mm.	0.7		
0.0014 mm.	0.5		

Sand, silty, mostly fine-grained sand-sized quartz, some silt, tan		
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 0.1697 D ₅₀ = 0.1074 D ₁₀ = 0.0469	Coefficients D ₈₅ = 0.1562 D ₃₀ = 0.0760 C _u = 2.55	D ₆₀ = 0.1194 D ₁₅ = 0.0562 C _c = 1.03
USCS= SM	Classification AASHTO	=
	<u>Remarks</u>	

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 45

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

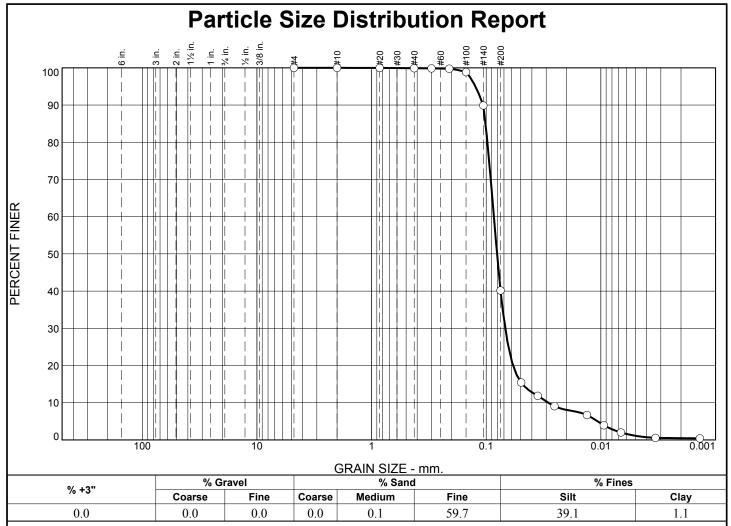
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	97.7		
#20	94.1		
#40	91.1		
#50	89.7		
#70	88.1		
#100	80.6		
#140	68.0		
#200	56.7		
0.0473 mm.	37.1		
0.0339 mm.	32.8		
0.0241 mm.	30.1		
0.0127 mm.	23.6		
0.0090 mm.	22.0		
0.0065 mm.	15.6		
0.0033 mm.	1.8		
0.0014 mm.	0.6		

Soil Description Silt, some fine to coarse-grained sand-sized quartz, few clay, tan			
PL=	Atterberg Limits LL=	PI=	
D ₉₀ = 0.3307 D ₅₀ = 0.0645 D ₁₀ = 0.0051	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = \ 0.1758 \\ \text{D}_{30} = \ 0.0238 \\ \text{C}_{\text{U}} = \ 16.01 \end{array}$	D ₆₀ = 0.0822 D ₁₅ = 0.0063 C _c = 1.35	
USCS= ML	Classification AASHTO	)=	
	Remarks		

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 46

Taylor Engineering, Inc.

**Client:** North Water District Laboratory Services

**Project:** 23A1459

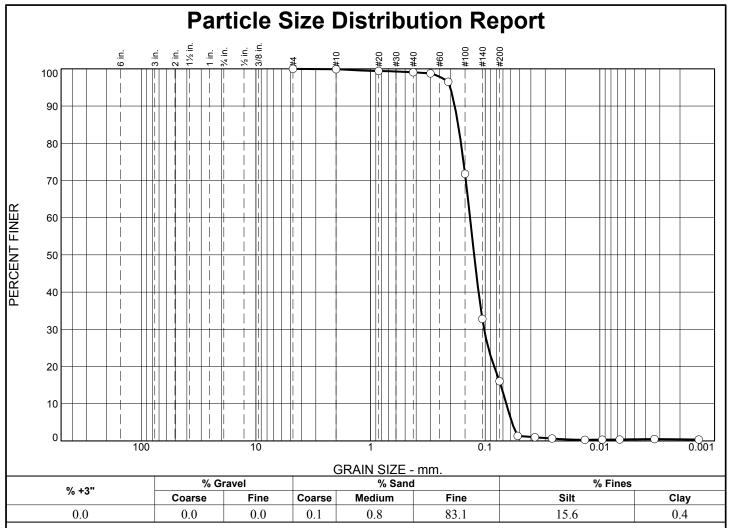
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	100.0		
#40	99.9		
#50	99.9		
#70	99.8		
#100	98.9		
#140	89.9		
#200	40.2		
0.0496 mm.	15.4		
0.0355 mm.	11.8		
0.0254 mm.	9.1		
0.0132 mm.	6.7		
0.0094 mm.	3.9		
0.0067 mm.	2.0		
0.0033 mm.	0.5		
0.0014 mm.	0.4		
	1		

Sand, silty, mostl trace clay, tan	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1063 D ₅₀ = 0.0804 D ₁₀ = 0.0288	Coefficients D85= 0.1014 D30= 0.0683 Cu= 2.98	D ₆₀ = 0.0857 D ₁₅ = 0.0484 C _c = 1.89		
USCS= SM	Classification AASHTO	)= D=		
	<u>Remarks</u>			

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 47

Taylor Engineering, Inc.

**Client:** North Water District Laboratory Services

**Project:** 23A1459

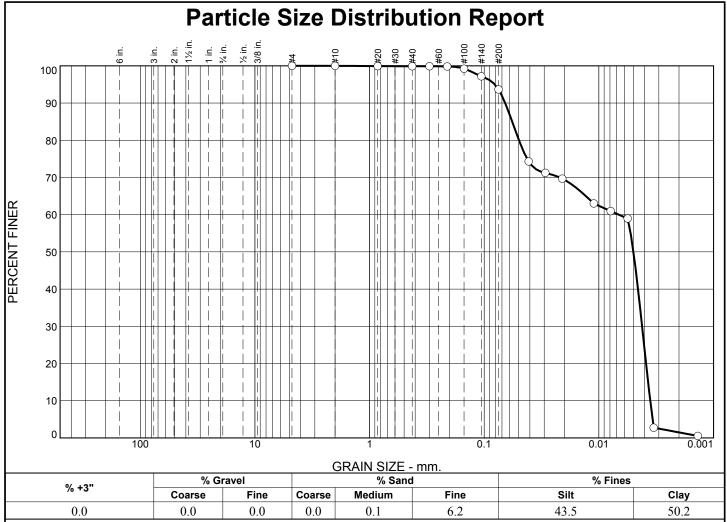
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#20	99.4		
#40	99.1		
#50	98.8		
#70	96.5		
#100	71.8		
#140	32.8		
#200	16.0		
0.0521 mm.	1.3		
0.0369 mm.	1.0		
0.0261 mm.	0.6		
0.0135 mm.	0.3		
0.0095 mm.	0.3		
0.0067 mm.	0.4		
0.0033 mm.	0.5		
0.0014 mm.	0.4		

Soil Description Sand, silty, mostly fine-grained sand-sized quartz, little silt, gray			
PL=	Atterberg Limits	PI=	
D ₉₀ = 0.1843 D ₅₀ = 0.1249 D ₁₀ = 0.0655	Coefficients D85= 0.1722 D30= 0.1022 Cu= 2.07	D ₆₀ = 0.1356 D ₁₅ = 0.0731 C _c = 1.18	
USCS= SM	Classification AASHTO	) <del>=</del>	
	<u>Remarks</u>		

(no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 48

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

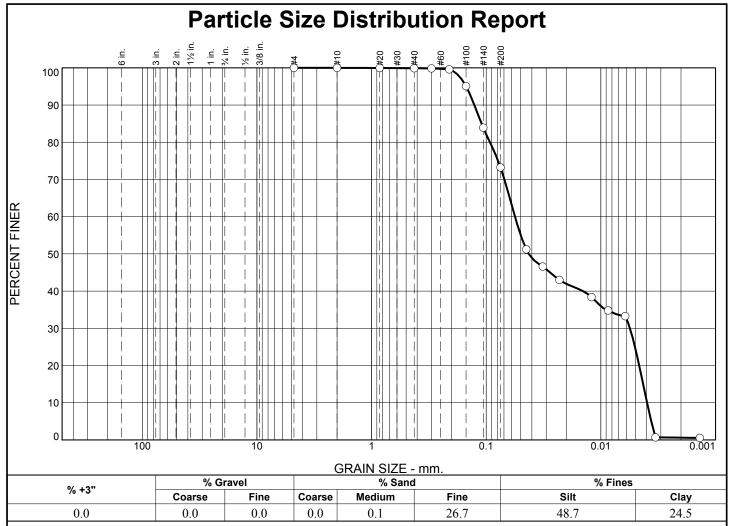
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.9		
#50	99.9		
#70	99.8		
#100	99.2		
#140	97.2		
#200	93.7		
0.0409 mm.	74.3		
0.0293 mm.	71.2		
0.0209 mm.	69.7		
0.0111 mm.	63.0		
0.0079 mm.	61.0		
0.0056 mm.	59.0		
0.0033 mm.	2.7		
0.0014 mm.	0.5		

Clay, lean, some	Soil Description Clay, lean, some silt, few fine-grained sand-sized quartz, tan			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.0656 D ₅₀ = 0.0050 D ₁₀ = 0.0036	Coefficients D ₈₅ = 0.0570 D ₃₀ = 0.0042 C _u = 1.88	$D_{60} = 0.0067$ $D_{15} = 0.0037$ $C_{c} = 0.74$		
USCS= CL	Classification AASHT	O=		
	<u>Remarks</u>			

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 54

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

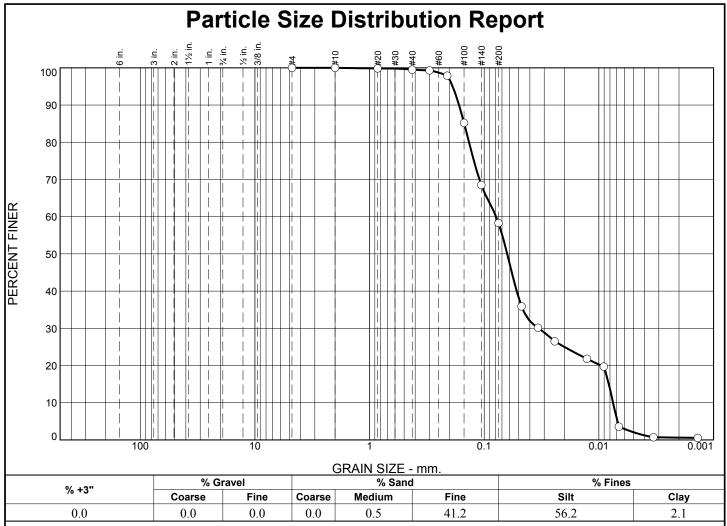
**Project:** 23A1459

Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	100.0		
#40	99.9		
#50	99.9		
#70	99.6		
#100	95.1		
#140	83.9		
#200	73.2		
0.0447 mm.	51.2		
0.0321 mm.	46.6		
0.0230 mm.	43.0		
0.0121 mm.	38.4		
0.0086 mm.	34.8		
0.0061 mm.	33.3		
0.0033 mm.	0.7		
0.0014 mm.	0.5		
* (no speci	fication provided	(i)	

Soil Description Silt, little fine-grained sand-sized quartz, little clay, tan			
PL=	Atterberg Limits LL=	PI=	
D ₉₀ = 0.1270 D ₅₀ = 0.0425 D ₁₀ = 0.0040	Coefficients D ₈₅ = 0.1096 D ₃₀ = 0.0056 C _u = 14.18	$D_{60} = 0.0561$ $D_{15} = 0.0043$ $C_{c} = 0.14$	
USCS= ML	Classification AASHT	O=	
	<u>Remarks</u>		


**Source of Sample:** 23A1459 **Sample Number:** 55

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

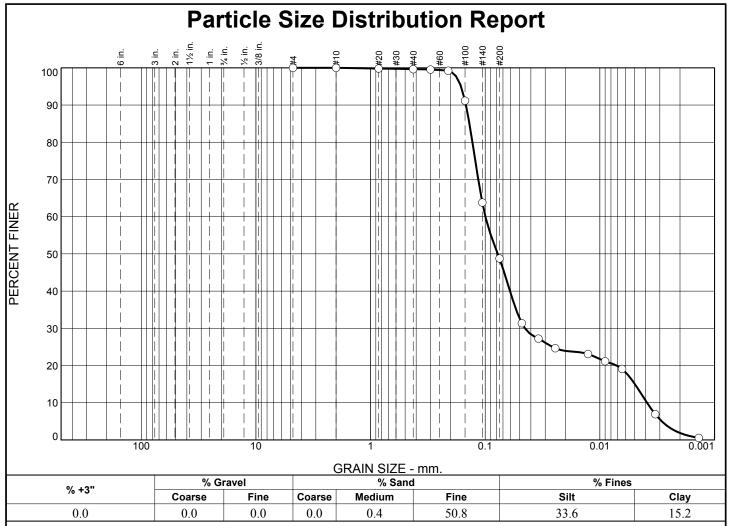
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.5		
#50	99.3		
#70	97.9		
#100	85.2		
#140	68.5		
#200	58.3		
0.0472 mm.	35.9		
0.0340 mm.	30.1		
0.0243 mm.	26.5		
0.0127 mm.	21.8		
0.0091 mm.	19.7		
0.0067 mm.	3.6		
0.0033 mm.	0.7		
0.0014 mm.	0.5		

Silt, some fine-gr	Soil Description Silt, some fine-grained sand-sized quartz, trace clay, tan			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.1658 D ₅₀ = 0.0631 D ₁₀ = 0.0075	D ₈₅ = 0.1493 D ₃₀ = 0.0335 C _u = 10.46	D ₆₀ = 0.0787 D ₁₅ = 0.0082 C _c = 1.90		
USCS= ML	Classification AASHT	O=		
	<u>Remarks</u>			

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 56

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

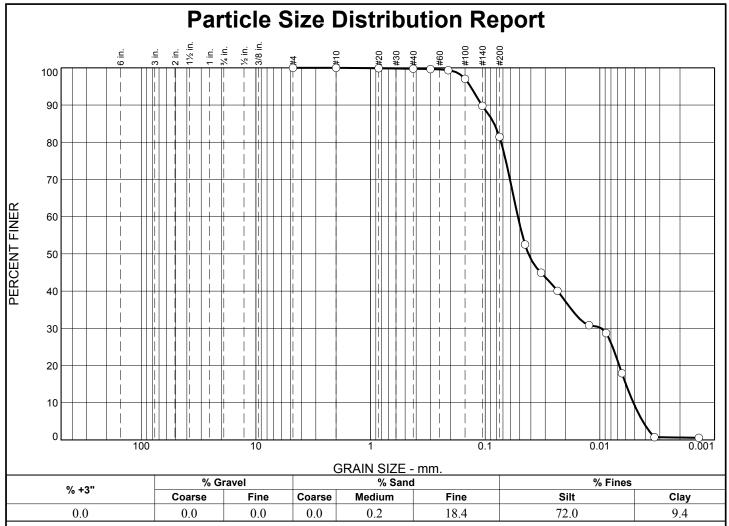
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.8		
#40	99.6		
#50	99.5		
#70	99.2		
#100	91.2		
#140	63.8		
#200	48.8		
0.0479 mm.	31.4		
0.0343 mm.	27.2		
0.0245 mm.	24.6		
0.0127 mm.	23.1		
0.0090 mm.	21.1		
0.0064 mm.	19.1		
0.0033 mm.	6.9		
0.0014 mm.	0.5		

Soil Description			
Sand, silty, mostly fine-grained sand-sized quartz, some silt, little clay, tan			
PL=	Atterberg Limits LL=	PI=	
D ₉₀ = 0.1472 D ₅₀ = 0.0776 D ₁₀ = 0.0039	Coefficients D ₈₅ = 0.1373 D ₃₀ = 0.0451 C _u = 25.66	D ₆₀ = 0.0995 D ₁₅ = 0.0050 C _c = 5.26	
USCS= SM	Classification AASHT	O=	
Remarks			

* (no specification provided)


**Source of Sample:** 23A1459 **Sample Number:** 58

Taylor Engineering, Inc.

**Client:** North Water District Laboratory Services

**Project:** 23A1459

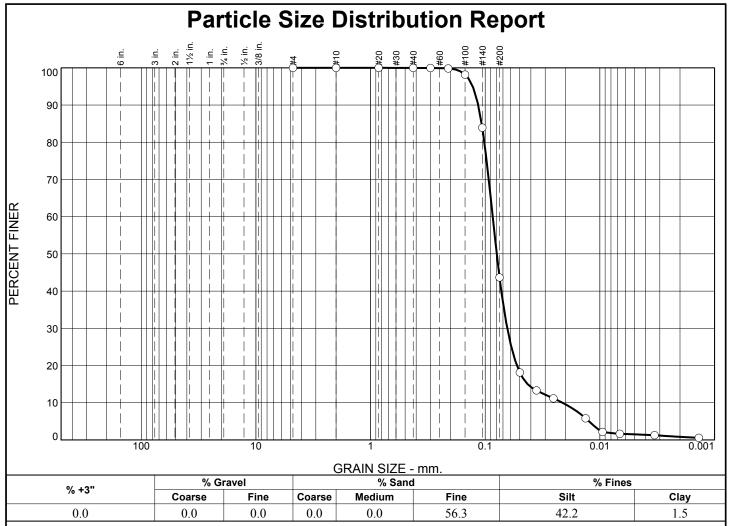
Project No: C2022-020 Figure



	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.8		
#50	99.7		
#70	99.4		
#100	97.0		
#140	89.8		
#200	81.4		
0.0450 mm.	52.5		
0.0326 mm.	44.9		
0.0234 mm.	40.0		
0.0124 mm.	30.8		
0.0088 mm.	28.7		
0.0064 mm.	17.9		
0.0033 mm.	0.7		
0.0014 mm.	0.6		

Soil Description Silt, little fine-grained sand-sized quartz, few clay, tan			
PL=	Atterberg Limits LL=	PI=	
D ₉₀ = 0.1071 D ₅₀ = 0.0420 D ₁₀ = 0.0051	Coefficients D85= 0.0834 D30= 0.0097 Cu= 10.18	D ₆₀ = 0.0519 D ₁₅ = 0.0059 C _c = 0.36	
USCS= ML	Classification AASHT	O=	
	<u>Remarks</u>		

Source of Sample: 23A1459


Sample Number: 59 Date: 3/6/2023

Taylor Engineering, Inc.

**Client:** North Water District Laboratory Services

**Project:** 23A1459

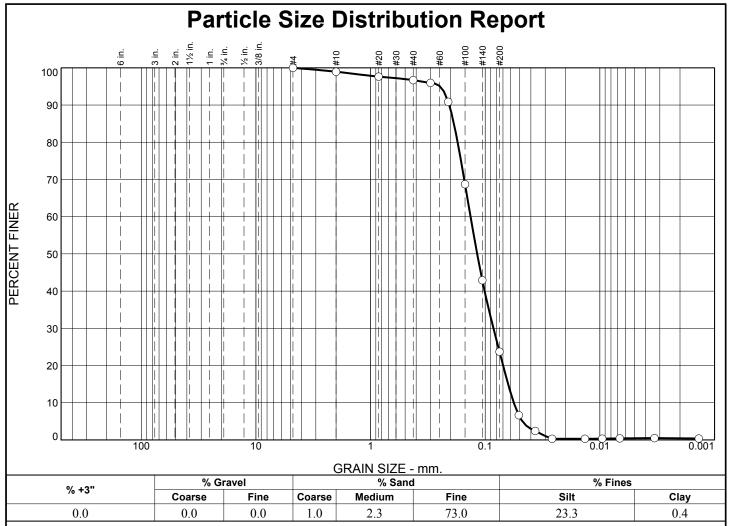
Project No: C2022-020 Figure



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#50	100.0		
#70	99.8		
#100	98.2		
#140	83.9		
#200	43.7		
0.0499 mm.	18.1		
0.0357 mm.	13.3		
0.0254 mm.	11.2		
0.0133 mm.	5.8		
0.0095 mm.	2.1		
0.0067 mm.	1.6		
0.0033 mm.	1.3		
0.0014 mm.	0.5		
* (no specif	ication provided	D .	

Sand, silty, most trace clay, tan	Sand, silty, mostly fine-grained sand-sized quartz, some silt, trace clay, tan									
PL=	Atterberg Limits LL=	PI=								
D ₉₀ = 0.1151 D ₅₀ = 0.0793 D ₁₀ = 0.0212	Coefficients D85= 0.1073 D30= 0.0642 Cu= 4.05	D ₆₀ = 0.0860 D ₁₅ = 0.0428 C _c = 2.26								
USCS= SM	Classification AASHT	O=								
	<u>Remarks</u>									

Source of Sample: 23A1459


Sample Number: 60

# **Taylor Engineering, Inc.**

**Project:** 23A1459

**Figure Project No:** C2022-020

**Client:** North Water District Laboratory Services



SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.0		
#20	97.6		
#40	96.7		
#50	96.0		
#70	90.9		
#100	68.7		
#140	42.9		
#200	23.7		
0.0510 mm.	6.6		
0.0367 mm.	2.4		
0.0261 mm.	0.3		
0.0135 mm.	0.3		
0.0095 mm.	0.3		
0.0067 mm.	0.4		
0.0033 mm.	0.5		
0.0014 mm.	0.4		

Sand, silty, most	Sand, silty, mostly fine-grained sand-sized quartz, little silt, tan										
PL=	Atterberg Limits LL=	PI=									
D ₉₀ = 0.2058 D ₅₀ = 0.1175 D ₁₀ = 0.0564	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = 0.1875 \\ \text{D}_{30} = 0.0847 \\ \text{C}_{\text{U}} = 2.38 \end{array}$	D ₆₀ = 0.1342 D ₁₅ = 0.0632 C _c = 0.95									
USCS= SM	Classification AASHTO	)=									
	Remarks										

* (no specification provided)

**Source of Sample:** 23A1459 **Sample Number:** 66

**Taylor Engineering, Inc.** 

**Client:** North Water District Laboratory Services

**Project:** 23A1459

Project No: C2022-020 Figure

Job ID: 23020290



10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

# Client Project Name : 23A1459

Report To: Client Name: NWDLS P.O.#.: 23A1459

Attn: Monica O. Martin Sample Collected By:

Client Address: 130 S Trade Center Pkwy Date Collected: 01/25/23 - 02/01/23

City, State, Zip: Conroe, Texas, 77385

#### A&B Labs has analyzed the following samples...

Client Sample ID	Matrix	A&B Sample ID
23A1459-02	Water	23020290.01
23A1459-03	Water	23020290.02
23A1459-04	Water	23020290.03
23A1459-05	Water	23020290.04
23A1459-07	Water	23020290.05
23A1459-08	Water	23020290.06
23A1459-09	Water	23020290.07
23A1459-10	Water	23020290.08
23A1459-11	Water	23020290.09
23A1459-12	Water	23020290.10
23A1459-13	Water	23020290.11
23A1459-49	Water	23020290.12
23A1459-50	Water	23020290.13
23A1459-51	Water	23020290.14
23A1459-52	Water	23020290.15
23A1459-62	Water	23020290.16

Released By: Senthilkumar Sevukan

Title: Vice President Operations

3.01 WC:

Date: 2/9/2023



This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2022; Expires: 3/31/2023 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 02/03/2023 07:20

Report Number: RPT230209050

#### LABORATORY TERM AND QUALIFIER DEFINITION REPORT



Job ID: 23020290 Date: 2/9/2023

### **General Term Definition**

Back-WtBack WeightPost-WtPost WeightBRLBelow Reporting Limitppmparts per millioncfucolony-forming unitsPre-WtPrevious Weight

Conc. Concentration Q Qualifier

D.F. Dilution Factor RegLimit Regulatory Limit

Front-Wt Front Weight RPD Relative Percent Difference

LCS Laboratory Check Standard RptLimit Reporting Limit

LCSD Laboratory Check Standard Duplicate SDL Sample Detection Limit

MS Matrix Spike surr Surrogate
MSD Matrix Spike Duplicate T Time

MW Molecular Weight TNTC Too numerous to count

J Estimation. Below calibration range but above MDL MQL Minimum Quantitation Limit

**Qualifier Definition** 



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-02 23020290.01 Date Collected: Sample Matrix 01/25/23 Water

Time Collected: % Moisture 11:20

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	3.1	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-03 23020290.02 Date Collected: Sample Matrix 01/25/23 Water

Time Collected: % Moisture 14:17

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	3.1	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-04 23020290.03 Date Collected: Sample Matrix 01/25/23 Water

Time Collected: % Moisture 15:45

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	3	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-05 23020290.04 Date Collected: Sample Matrix 01/27/23 Water

Time Collected: % Moisture 12:00

-	Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
E	EPA 415.1	Total Organic Carbon								
İ		TOC	2.3	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-07 23020290.05 Date Collected: Sample Matrix 02/01/23 Water

Time Collected: % Moisture 10:00

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	9.9	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-08 23020290.06 Date Collected: Sample Matrix 02/01/23 Water % Moisture

Time Collected: 10:00

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	5.2	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-09 23020290.07 Date Collected: Sample Matrix 02/01/23 Water

Time Collected: 10:00 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	4.9	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-10 23020290.08 Date Collected: Sample Matrix 02/01/23 Water

Time Collected: 10:00 % Moisture

L										
F	Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
E	EPA 415.1	Total Organic Carbon								
ĺ		TOC	4.6	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-11 23020290.09 Date Collected: Sample Matrix 02/01/23 Water

Time Collected: 10:00 % Moisture

L										
F	Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
E	EPA 415.1	Total Organic Carbon								
ĺ		TOC	4.6	mg/L	1	0.35	1		02/03/23 14:00	AJ

Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-12 23020290.10 Date Collected: Sample Matrix 02/01/23 Water

Time Collected: % Moisture 10:00

Τe	est Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EF	PA 415.1	Total Organic Carbon								
		TOC	4.1	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-13 23020290.11 Date Collected: Sample Matrix 02/01/23 Water

Time Collected: % Moisture 10:00

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	3.9	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-49 23020290.12 Date Collected: Sample Matrix 01/27/23 Water

Time Collected: % Moisture 16:07

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	2.2	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-50 23020290.13 Date Collected: Sample Matrix 01/27/23 Water Time Collected: % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	2.5	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-51 23020290.14 Date Collected: Sample Matrix 02/01/23 Water

Time Collected: 10:00 % Moisture

L										
	Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
	EPA 415.1	Total Organic Carbon								
Ì		TOC	2.5	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-52 23020290.15 Date Collected: Sample Matrix 02/01/23 Water

Time Collected: % Moisture 10:00

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	2.6	mg/L	1	0.35	1		02/03/23 14:00	AJ



Job ID: 23020290

Date 2/9/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: Job Sample ID: 23A1459-62 23020290.16 Date Collected: Sample Matrix 01/27/23 Water

Time Collected: % Moisture 13:26

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	2	mg/L	1	0.35	1		02/03/23 14:00	AJ

#### QUALITY CONTROL CERTIFICATE



Analysis: Total Organic Carbon Method: EPA 415.1 Reporting Units: mg/L

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
TOC	TOC	< MDL	mg/L	1	1	0.35	

QC Type: LCS and	LCS and LCSD												
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual			
TOC	10	9.5	95	эркукааса	resure	70 1100	141 5	CCILLITIE	90-110	Quai			

QC Type: MS and	QC Type: MS and MSD												
QC Sample ID: 23	8020290.16												
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual		
Tarameter	Result	JPK Added	Nesuit	70 INCC	Jpk Added	resuit	70 IXCC	NiD	CUILIIIII	CUILIIIIC	Quui		
тос	2.0	5	6.7	94	5	6.7	94	0	10	80-120			





# Sending Laboratory:

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

# Subcontracted Laboratory:

A & B Labs

10100 East Freeway, Suite 100

Houston, TX 77029 Phone: (713) 453-6060

Fax: (713) 453-6091

Work Order: 23A14	59
Analysis	Due Expires Comments
Sample ID: 23A1459-02	Marine Water Sampled: 01/25/2023 11:20
TOC-415.1  Analyte(s): Total Organic Carbon (TOC)	03/06/2023 02/22/2023 11:20 OIA
Containers Supplied:	
Sample ID: 23A1459-03	Marine Water Sampled: 01/25/2023 14:17
TOC-415.1  Analyte(s): Total Organic Carbon (TOC)	03/06/2023 02/22/2023 14:17
Containers Supplied:	
Sample ID: 23A1459-04	Marine Water Sampled: 01/25/2023 15:45
TOC-415.1  Analyte(s): Total Organic Carbon (TOC)	03/06/2023 02/22/2023 15:45
Containers Supplied:	
Sample ID: 23A1459-05	Marine Water Sampled: 01/27/2023 12:00
TOC-415.1  Analyte(s): Total Organic Carbon (TOC)	OMA 03/06/2023 02/24/2023 12:00
Containers Supplied:	
Sample ID: 23A1459-07	Elutriate Sampled: 01/16/2023 14:20
TOC-415.1-ELUT  Analyte(s): Total Organic Carbon (TOC)	03/06/2023 02/13/2023 14:20 Leached: 02/01/2023 10:00
Containers Supplied:	



(Continued)

Work Order: 23A1459 (Continued)

Analysis		Due	Expires	Comments	
Sample ID: 23A1459-08	Elutriate	Sampled: 01	/16/2023 17:20		
TOC-415.1-ELUT  Analyte(s): Total Organic Carbon (TOC)  Containers Supplied:	oua	03/06/2023	02/13/2023 17:20	Leached: 02/01/2023	10:00
Sample ID: 23A1459-09	Elutriate	Sampled: 01	/19/2023 15:20		
TOC-415.1-ELUT  Analyte(s): Total Organic Carbon (TOC)  Containers Supplied:	074	03/06/2023	02/16/2023 15:20	Leached: 02/01/2023	10:00
Sample ID: 23A1459-10	Elutriate	Sampled: 01	1/19/2023 17:00		
TOC-415.1-ELUT  Analyte(s): Total Organic Carbon (TOC)	OZA	03/06/2023	02/16/2023 17:00	Leached: 02/01/2023	10:00
Containers Supplied:					
Sample ID: 23A1459-11	Elutriate	Sampled: 01	1/18/2023 09:40		
TOC-415.1-ELUT  Analyte(s): Total Organic Carbon (TOC)	097	03/06/2023	02/15/2023 09:40	Leached: 02/01/2023	10:00
Containers Supplied:					
Sample ID: 23A1459-12	Elutriate	Sampled: 0	1/18/2023 11:15		
TOC-415.1-ELUT  Analyte(s): Total Organic Carbon (TOC)	100	03/06/2023	02/15/2023 11:15	Leached: 02/01/2023	10:00
Containers Supplied:					
Sample ID: 23A1459-13	Elutriate	Sampled: 0	1/16/2023 16:37		
TOC-415.1-ELUT  Analyte(s): Total Organic Carbon (TOC)	1)19-	03/06/2023	02/13/2023 16:37	Leached: 02/01/2023	10:00
Containers Supplied:					



(Continued)

Work Order: 23A1459 (Continued)

Analysis		Due	Exp	ires	Comments		
Sample ID: 23A1459-49	Marine	Water Samp	led: 01/27/	2023 16:	07		
TOC-415.1  Analyte(s): Total Organic Carbon (TOC)  Containers Supplied:	120	03/06/202	3 02/24/20	23 16:07			
Sample ID: 23A1459-50	Marine	Water Samp	led: 01/27/	2023 15:	20		
TOC-415.1  Analyte(s): Total Organic Carbon (TOC)	13pr	03/06/202					
Containers Supplied:							
Sample ID: 23A1459-51	Elutria	te Sampled:	01/23/2023	13:05			
TOC-415.1-ELUT  Analyte(s): Total Organic Carbon (TOC)	1417	03/06/202	23 02/20/20	23 13:05	Leached: 02/01/202	3 10:00	
Containers Supplied:							
Sample ID: 23A1459-52	Elutria	te Sampled:	01/21/2023	10:00			
TOC-415.1-ELUT  Analyte(s): Total Organic Carbon (TOC)	1517	03/06/202	23 02/18/20	23 10:00	Leached: 02/01/202	3 10:00	
Containers Supplied:							
Sample ID: 23A1459-62	Marine	Water Samp	oled: 01/27/	2023 13.	26		
TOC-415.1  Analyte(s): Total Organic Carbon (TOC)	14A	03/06/202	23 02/24/20	23 13:26			
Containers Supplied:							
Panllane	1	2-3-2	3 7:20	12-	ti	7:20	2-3-73
Released By		Date		Receive	ed By	39-6	Date
						Jeir	
						1977	

# **Sample Condition Checklist**



Α&	3 JobID : <b>23020290</b>	Date Received: 02/03/2023 Time Received: 7	20AM								
Clie	ent Name : <b>NWDLS</b>	I									
Ter	nperature : 3.9°C	Sample pH: <2 TOC									
The	rmometer ID : <b>IR4</b>	pH Paper ID: <b>104485</b>									
Pe	rservative :										
		Check Points	Yes	No	N/A						
1.	Cooler Seal present and signed.			Х							
2.	Sample(s) in a cooler.		Х								
3.	If yes, ice in cooler.	Х									
4.	4. Sample(s) received with chain-of-custody.										
5.	C-O-C signed and dated.		Х								
6.	Sample(s) received with signed sample	custody seal.		Χ							
7.	7. Sample containers arrived intact. (If No comment)										
8.	Water Soil Liquid Sludge Solid Cassette Tube Bulk Badge Food Other Matrix:										
9.	9. Samples were received in appropriate container(s)										
10.	Sample(s) were received with Proper p	reservative	Х								
11.	All samples were tagged or labeled.		Х								
12.	Sample ID labels match C-O-C ID's.		Х								
13.	Bottle count on C-O-C matches bottles	found.	Х								
14.	Sample volume is sufficient for analyse	s requested.	Х								
15.	Samples were received with in the hold	l time.	Х								
16.	VOA vials completely filled.				Х						
17.	17. Sample accepted.										
18. Has client been contacted about sub-out											
Coi	nments : Include actions taken to resol	ve discrepancies/problem:									

Received by: Amber Check in by/date: Amber / 02/03/2023

ab-s005-0321

# **Laboratory Analysis Report**

Job ID: 23020761



10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

# Client Project Name : 23A1459

Report To: Client Name: NWDLS P.O.#.: 23A1459

Attn: Monica O. Martin Sample Collected By:

Client Address: 130 S Trade Center Pkwy Date Collected: 02/03/23 City, State, Zip: Conroe, Texas, 77385

# A&B Labs has analyzed the following samples...

Client Sample ID	Matrix	A&B Sample ID
23A1459-14	Water	23020761.01
23A1459-64	Water	23020761.02
23A1459-65	Water	23020761.03

Released By: Senthilkumar Sevukan

Vice President Operations

Date: 2/15/2023

Title:

This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2022; Expires: 3/31/2023 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 02/08/2023 08:12

Report Number: RPT230215021

Total Number of Pages: 10

#### LABORATORY TERM AND QUALIFIER DEFINITION REPORT



Job ID: 23020761 Date: 2/15/2023

# General Term Definition

Back-WtBack WeightPost-WtPost WeightBRLBelow Reporting Limitppmparts per millioncfucolony-forming unitsPre-WtPrevious Weight

Conc. Concentration Q Qualifier

D.F. Dilution Factor RegLimit Regulatory Limit

Front-Wt Front Weight RPD Relative Percent Difference

LCS Laboratory Check Standard RptLimit Reporting Limit

LCSD Laboratory Check Standard Duplicate SDL Sample Detection Limit

MS Matrix Spike surr Surrogate
MSD Matrix Spike Duplicate T Time

MW Molecular Weight TNTC Too numerous to count

J Estimation. Below calibration range but above MDL MQL Minimum Quantitation Limit

**Qualifier Definition** 



Job ID: 23020761

Date 2/15/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-14 Job Sample ID: 23020761.01
Date Collected: 02/03/23 Sample Matrix Water

Time Collected: 09:05 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	2.5	mg/L	1	0.35	1		02/13/23 09:30	AJ



Job ID: 23020761

Date 2/15/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-64 Job Sample ID: 23020761.02
Date Collected: 02/03/23 Sample Matrix Water

Time Collected: 09:05 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	4	mg/L	1	0.35	1		02/13/23 09:30	AJ



Job ID: 23020761

Date 2/15/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-65 Job Sample ID: 23020761.03
Date Collected: 02/03/23 Sample Matrix Water

Time Collected: 09:05 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
EPA 415.1	Total Organic Carbon								
	TOC	2.2	mg/L	1	0.35	1		02/13/23 09:30	AJ

#### QUALITY CONTROL CERTIFICATE



Analysis: Total Organic Carbon Method: EPA 415.1 Reporting Units: mg/L

**Samples in This QC Batch :** 23020761.01,02,03

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
TOC	TOC	< MDL	mg/L	1	1	0.35	

QC Type:	QC Type: LCS and LCSD										
Darameter		LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Oual
Parameter		эрк Аййей	Result	% Rec	Spk Added	Result	% Rec	KPD	CUILIIIII	Cuillill	Qual
TOC		10	10.6	106						90-110	

QC Type: MS and MSD											
QC Sample ID: 23021	085.01										
	Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
Parameter	Result	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
TOC	40.0	5	44.4	88	5	44.9	98	1.1	10	80-120	





# Sending Laboratory:

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

Subcontracted Laboratory:

A & B Labs

10100 East Freeway, Suite 100

Houston, TX 77029

Phone: (713) 453-6060 Fax: (713) 453-6091

Work Order: 23A1459

Analysis Comments Due **Expires** 

pple ID: 23A1459-02 Marine Water Sampled: 01/25/2023 11:20

03/06/2023 02/22/2023 11:20

03/06/2023 02/22/2023 14:17

02/2

02/24/2

15:45

12:00

2023

Analyte

Carbon (TOC) Total Org

Containers Sup

Sample ID: 23A143 Marine Water Sampled: 01/25/2023 14:17

TOC-415.1

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

Sample ID: 23A1459-04 Sampled: 01/25/2 Marine W

TOC-415.1

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

Marine Water sampled: 01) 7/2023 12:00 Sample ID: 23A1459-05

TOC-415.1

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

Elutriate Sampled: 01/16/2023 14:20 Sample ID: 23A1459

TOC-415.1-ELUT

3/06/2023

03/06/2023 02/13/2023 14:20

(01/2023 10:00 Leached:

Analyte(s):

Total Organic bon (TOC)

NWDLS Rev 1.2 Effective: 11/12/2021

oplied: Containers 1



(Continued)

Work Order: 23A1459 (Continued)

Analysis	Due	Expires	Comments
Sample ID: 23A1459-14 Elutriate	Sampled: 01	/23/2023 00:00	
TOC-415.1-ELUT  Analyte(s):  Total Organic Carbon (TOC)	03/06/2023	02/20/2023 00:00	Leached: 02/03/2023 09:05
Containers Supplied:			
	-		
Analyte(s):	03/06/2023	02/24/2023 16:07	
Total Organic Carbon (TOC)  Containers Supplied:			
Analyte(s): Total Organic Carbon (TOC)  Containers Supplied:	03/06/2023	02/24/2023 15:20	
Analyte(s):	03/06/2023	02/20/2023 13:05	Leached: 02/01/2023 10:00
Total Organic Carbon (TOC)  Containers Supplied:			
Analyte(s): Total Organic Carbon (TOC)	03/06/2023	02/18/2023 10:00	Leached: 02/01/2023 10:00
Containers Supplied:		30'0	
	03/06/2023	02/24/2023 13:26	<b>4</b>
Analyte(s): Total Organic Carbon (TOC)	and and energ		
Containers Supplied:			



(Continued)

Work Order: 23A1459 (Continued)

Analysis Comments **Expires** 

Sample ID: 23A1459-64 Elutriate Sampled: 01/20/2023 09:30

TOC-415.1-ELUT

03/06/2023 02/17/2023 09:30 Leached: 02/03/2023 09:05

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

Sample ID: 23A1459-65 Elutriate Sampled: 01/21/2023 16:45

TOC-415.1-ELUT

03/06/2023 02/18/2023 16:45 Leached: 02/03/2023 09:05

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

Released By Kenly 0812

Received By

# **Sample Condition Checklist**



Α&	3 JobID : <b>23020761</b>	Date Received: 02/08/2023 Time Received: 8:	12AM						
Clie	ent Name : <b>NWDLS</b>								
Ter	nperature : 2.3°C	Sample pH: <2 TOC							
The	rmometer ID : <b>IR4</b>	pH Paper ID: <b>104485</b>							
Pe	rservative :		_	1	1				
		Check Points	Yes	No	N/A				
1.	Cooler Seal present and signed.			Χ					
2.	Sample(s) in a cooler.		Х						
3.	If yes, ice in cooler.		Х						
4.	Sample(s) received with chain-of-custo	dy.	Х						
5.	C-O-C signed and dated.		Х						
6.	Sample(s) received with signed sample	custody seal.		Χ					
7.	Sample containers arrived intact. (If No		Х						
8.	Matrix: Water Soil Liquid Sludge Solid Cassette Tube Bulk Badge Food Other								
9.	Samples were received in appropriate of	container(s)	Х						
10.	Sample(s) were received with Proper p	reservative	Х						
11.	All samples were tagged or labeled.		Х						
12.	Sample ID labels match C-O-C ID's.		Х						
13.	Bottle count on C-O-C matches bottles	found.	Х						
14.	Sample volume is sufficient for analyse	s requested.	Х						
15.	Samples were received with in the hold	l time.	х						
16.	VOA vials completely filled.				Х				
17.	Sample accepted.		Х						
18.	Has client been contacted about sub-or	ut			Х				
Co	nments : Include actions taken to resol	ve discrenancies/nrohlem							
	iments . Include actions taken to lesor	re discrepancies/ problem.							

Received by: EValdez Check in by/date: EValdez / 02/08/2023

ab-s005-0321

Job ID: 23021134



10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

# Client Project Name : 23A1459

Report To: Client Name: NWDLS P.O.#.: 23A1459

Attn: Monica O. Martin Sample Collected By:

Client Address: 130 S Trade Center Pkwy Date Collected: 01/16/23 - 01/27/23

City, State, Zip: Conroe, Texas, 77385

#### A&B Labs has analyzed the following samples...

Client Sample ID	Matrix	A&B Sample ID
23A1459-16	Solid	23021134.01
23A1459-17	Solid	23021134.02
23A1459-18	Solid	23021134.03
23A1459-20	Solid	23021134.04
23A1459-21	Solid	23021134.05
23A1459-22	Solid	23021134.06
23A1459-38	Solid	23021134.07
23A1459-40	Solid	23021134.08
23A1459-41	Solid	23021134.09
23A1459-24	Solid	23021134.10
23A1459-25	Solid	23021134.11
23A1459-27	Solid	23021134.12
23A1459-28	Solid	23021134.13
23A1459-30	Solid	23021134.14
23A1459-31	Solid	23021134.15
23A1459-32	Solid	23021134.16
23A1459-34	Solid	23021134.17
23A1459-35	Solid	23021134.18

Released By: Amanda Shute

Title: Project Manager

Date: 2/17/2023



This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2022; Expires: 3/31/2023 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 02/10/2023 10:00

Report Number: RPT230217121

Job ID: 23021134



10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

### A&B Labs has analyzed the following samples...

Client Sample ID	Matrix	A&B Sample ID
23A1459-36	Solid	23021134.19
23A1459-39	Solid	23021134.20
23A1459-43	Solid	23021134.21
23A1459-44	Solid	23021134.22
23A1459-45	Solid	23021134.23
23A1459-46	Solid	23021134.24
23A1459-47	Solid	23021134.25
23A1459-48	Solid	23021134.26
23A1459-58	Solid	23021134.27
23A1459-59	Solid	23021134.28
23A1459-60	Solid	23021134.29
BGA3903-MB	Solid	23021134.30
BGA3903-MDL	Solid	23021134.31
BGA3903-LCS	Solid	23021134.32
BGA3903-LCSD	Solid	23021134.33
BGB-0167-MB	Solid	23021134.34
BGB-0167-MDL	Solid	23021134.35
BGB-0167-BS	Solid	23021134.36
BGB-0167-BSD	Solid	23021134.37
BGA3903-MS	Solid	23021134.38
BGA3903-MSD	Solid	23021134.39
BGB-0167-MS	Solid	23021134.40
BGB-0167-MSD	Solid	23021134.41

Released By: Amanda Shute

Title: Project Manager

Date: 2/17/2023



This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2022; Expires: 3/31/2023 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 02/10/2023 10:00

Report Number: RPT230217121

# **Laboratory Report: Case Narrative**



A&B Job ID: 23021134 Date: 02/17/23

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459
Date Received: 02/10/23

Collected By:

Released By:

Title:

#### LABORATORY TERM AND QUALIFIER DEFINITION REPORT



Job ID: 23021134 Date: 2/17/2023

#### General Term Definition

Back-Wt **Back Weight** Post-Wt Post Weight BRL Below Reporting Limit ppm parts per million cfu colony-forming units Pre-Wt Previous Weight Qualifier

Conc. Concentration Q

D.F. **Dilution Factor** RegLimit Regulatory Limit

Front-Wt Front Weight RPD Relative Percent Difference LCS Laboratory Check Standard **RptLimit** Reporting Limit

LCSD Laboratory Check Standard Duplicate SDL Sample Detection Limit

MS Matrix Spike surr Surrogate

MSD Matrix Spike Duplicate Time Τ MW **TNTC** Molecular Weight Too numerous to count

Estimation. Below calibration range but above MDL MQL Minimum Quantitation Limit

#### Qualifier Definition

I Estimation Below	calibration range but above MDL.
Louination. Dolow	calibration range but above MDE.
CO	is below control limit. Desults may be bised law
S2 Surrogate recovery	is below control limit. Results may be biased low.
•	
S8 Target compounds	caused elevation of baseline. Surrogate may be biased high.
i ai qui compounds	caused elevation of pascime. Outrogate may be plased might.



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-16 Job Sample ID: 23021134.01

Date Collected: 01/16/23 Sample Matrix Solid

Date Collected: 01/16/23 Sample Matrix Solid
Time Collected: 4:20 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	63.51	mg/Kg	1.00	8.94	25			02/10/23 23:39	VMN
	>C12-C28	7.95	mg/Kg	1.00	7.35	25		J	02/10/23 23:39	VMN
	>C28-C35	6.91	mg/Kg	1.00	6.20	25		J	02/10/23 23:39	VMN
	Total C6-C35	78.37	mg/Kg	1.00	6.20				02/10/23 23:39	VMN
	1-Chlorooctane(surr)	87.3	%	1.00		60-143			02/10/23 23:39	VMN
	Chlorooctadecane(surr)	72.6	%	1.00		60-150			02/10/23 23:39	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-17 Job Sample ID: 23021134.02
Date Collected: 01/17/23 Sample Matrix Solid

Time Collected: 09:40 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	ns								
	C6-C12	57.48	mg/Kg	1.00	8.94	25			02/11/23 00:10	VMN
	>C12-C28	7.92	mg/Kg	1.00	7.35	25		J	02/11/23 00:10	VMN
	>C28-C35		mg/Kg	1.00	6.20	25		J	02/11/23 00:10	VMN
	Total C6-C35	71.79	mg/Kg	1.00	6.20				02/11/23 00:10	VMN
	1-Chlorooctane(surr)	78.9	%	1.00		60-143			02/11/23 00:10	VMN
	Chlorooctadecane(surr)	80.9	%	1.00		60-150			02/11/23 00:10	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-18 Job Sample ID: 23021134.03

Date Collected: 01/17/23 Sample Matrix Solid

Date Collected: 01/17/23 Sample Matrix Solid
Time Collected: 14:40 % Moisture

Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
Total Petroleum Hydrocarbons									
C6-C12	59.59	mg/Kg	1.00	8.94	25			02/11/23 00:43	VMN
>C12-C28	9.04	mg/Kg	1.00	7.35	25		J	02/11/23 00:43	VMN
>C28-C35	6.82	mg/Kg	1.00	6.20	25		J	02/11/23 00:43	VMN
Total C6-C35	75.45	mg/Kg	1.00	6.20				02/11/23 00:43	VMN
L-Chlorooctane(surr)	78.2	%	1.00		60-143			02/11/23 00:43	VMN
Chlorooctadecane(surr)	70.7	%	1.00		60-150			02/11/23 00:43	VMN
 	otal Petroleum Hydrocarbons 6-C12 -C12-C28 -C28-C35 -otal C6-C35 -Chlorooctane(surr)	otal Petroleum Hydrocarbons 6-C12 59.59 C12-C28 9.04 C28-C35 6.82 otal C6-C35 75.45 -Chlorooctane(surr) 78.2	otal Petroleum Hydrocarbons           6-C12         59.59         mg/Kg           c12-C28         9.04         mg/Kg           c28-C35         6.82         mg/Kg           otal C6-C35         75.45         mg/Kg           -Chlorooctane(surr)         78.2         %	otal Petroleum Hydrocarbons           6-C12         59.59         mg/Kg         1.00           C12-C28         9.04         mg/Kg         1.00           C28-C35         6.82         mg/Kg         1.00           otal C6-C35         75.45         mg/Kg         1.00           -Chlorooctane(surr)         78.2         %         1.00	otal Petroleum Hydrocarbons           6-C12         59.59         mg/Kg         1.00         8.94           C12-C28         9.04         mg/Kg         1.00         7.35           C28-C35         6.82         mg/Kg         1.00         6.20           otal C6-C35         75.45         mg/Kg         1.00         6.20           -Chlorooctane(surr)         78.2         %         1.00	otal Petroleum Hydrocarbons           6-C12         59.59         mg/Kg         1.00         8.94         25           C12-C28         9.04         mg/Kg         1.00         7.35         25           C28-C35         6.82         mg/Kg         1.00         6.20         25           otal C6-C35         75.45         mg/Kg         1.00         6.20           -Chlorooctane(surr)         78.2         %         1.00         60-143	otal Petroleum Hydrocarbons         6-C12       59.59       mg/Kg       1.00       8.94       25         C12-C28       9.04       mg/Kg       1.00       7.35       25         C28-C35       6.82       mg/Kg       1.00       6.20       25         otal C6-C35       75.45       mg/Kg       1.00       6.20         -Chlorooctane(surr)       78.2       %       1.00       60-143	otal Petroleum Hydrocarbons           6-C12         59.59         mg/Kg         1.00         8.94         25           C12-C28         9.04         mg/Kg         1.00         7.35         25         J           C28-C35         6.82         mg/Kg         1.00         6.20         25         J           otal C6-C35         75.45         mg/Kg         1.00         6.20	otal Petroleum Hydrocarbons           6-C12         59.59         mg/Kg         1.00         8.94         25         02/11/23 00:43           C12-C28         9.04         mg/Kg         1.00         7.35         25         J         02/11/23 00:43           C28-C35         6.82         mg/Kg         1.00         6.20         25         J         02/11/23 00:43           otal C6-C35         75.45         mg/Kg         1.00         6.20         02/11/23 00:43           -Chlorooctane(surr)         78.2         %         1.00         60-143         02/11/23 00:43



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-20 Job Sample ID: 23021134.04
Date Collected: 01/16/23 Sample Matrix Solid

Time Collected: 17:20 % Moisture

DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
(g 1.00	8.94	25			02/11/23 01:15	VMN
(g 1.00	7.35	25		J	02/11/23 01:15	VMN
(g 1.00	6.20	25		J	02/11/23 01:15	VMN
(g 1.00	6.20				02/11/23 01:15	VMN
1.00		60-143			02/11/23 01:15	VMN
1.00		60-150			02/11/23 01:15	VMN
	(g 1.00 (g 1.00 (g 1.00 (g 1.00 1.00	(g 1.00 8.94 (g 1.00 7.35 (g 1.00 6.20 (g 1.00 6.20 1.00	Kg 1.00 8.94 25 Kg 1.00 7.35 25 Kg 1.00 6.20 25 Kg 1.00 6.20 60-143	Kg 1.00 8.94 25 Kg 1.00 7.35 25 Kg 1.00 6.20 25 Kg 1.00 6.20 1.00 60-143	Kg 1.00 8.94 25 Kg 1.00 7.35 25 J Kg 1.00 6.20 25 J Kg 1.00 6.20 1.00 60-143	Kg     1.00     8.94     25     02/11/23 01:15       Kg     1.00     7.35     25     J     02/11/23 01:15       Kg     1.00     6.20     25     J     02/11/23 01:15       Kg     1.00     6.20     02/11/23 01:15       1.00     60-143     02/11/23 01:15



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-21 Job Sample ID: 23021134.05
Date Collected: 01/17/23 Sample Matrix Solid

Time Collected: 11:30 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	61.54	mg/Kg	1.00	8.94	25			02/11/23 01:48	VMN
	>C12-C28	8.24	mg/Kg	1.00	7.35	25		J	02/11/23 01:48	VMN
	>C28-C35	6.80	mg/Kg	1.00	6.20	25		J	02/11/23 01:48	VMN
	Total C6-C35	76.59	mg/Kg	1.00	6.20				02/11/23 01:48	VMN
	1-Chlorooctane(surr)	84.4	%	1.00		60-143			02/11/23 01:48	VMN
	Chlorooctadecane(surr)	84.4	%	1.00		60-150			02/11/23 01:48	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-22 Job Sample ID: 23021134.06
Date Collected: 01/17/23 Sample Matrix Solid

Time Collected: 16:30 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	62.70	mg/Kg	1.00	8.94	25			02/11/23 02:20	VMN
	>C12-C28	8.28	mg/Kg	1.00	7.35	25		J	02/11/23 02:20	VMN
	>C28-C35	7.44	mg/Kg	1.00	6.20	25		J	02/11/23 02:20	VMN
	Total C6-C35	78.42	mg/Kg	1.00	6.20				02/11/23 02:20	VMN
	1-Chlorooctane(surr)	79.6	%	1.00		60-143			02/11/23 02:20	VMN
	Chlorooctadecane(surr)	81	%	1.00		60-150			02/11/23 02:20	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-38 Job Sample ID: 23021134.07
Date Collected: 01/17/23 Sample Matrix Solid

Date Collected: 01/17/23 Sample Matrix Solid
Time Collected: 14:12 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	63.91	mg/Kg	1.00	8.94	25			02/11/23 02:52	VMN
	>C12-C28	8.40	mg/Kg	1.00	7.35	25		J	02/11/23 02:52	VMN
	>C28-C35	8.1	mg/Kg	1.00	6.20	25		J	02/11/23 02:52	VMN
	Total C6-C35	80.41	mg/Kg	1.00	6.20				02/11/23 02:52	VMN
	1-Chlorooctane(surr)	77.2	%	1.00		60-143			02/11/23 02:52	VMN
	Chlorooctadecane(surr)	70	%	1.00		60-150			02/11/23 02:52	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-40 Job Sample ID: 23021134.08
Date Collected: 01/16/23 Sample Matrix Solid

Time Collected: 16:37 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	63.27	mg/Kg	1.00	8.94	25			02/11/23 03:25	VMN
	>C12-C28	8.02	mg/Kg	1.00	7.35	25		J	02/11/23 03:25	VMN
	>C28-C35	7.56	mg/Kg	1.00	6.20	25		J	02/11/23 03:25	VMN
	Total C6-C35	78.85	mg/Kg	1.00	6.20				02/11/23 03:25	VMN
	1-Chlorooctane(surr)	86.8	%	1.00		60-143			02/11/23 03:25	VMN
	Chlorooctadecane(surr)	84	%	1.00		60-150			02/11/23 03:25	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-41 Job Sample ID: 23021134.09
Date Collected: 01/17/23 Sample Matrix Solid

Time Collected: 01/17/23 Sample Matrix Solid 99:20 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	65.61	mg/Kg	1.00	8.94	25			02/11/23 05:01	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25			02/11/23 05:01	VMN
	>C28-C35	9.43	mg/Kg	1.00	6.20	25		J	02/11/23 05:01	VMN
	Total C6-C35	75.04	mg/Kg	1.00	6.20				02/11/23 05:01	VMN
	1-Chlorooctane(surr)	84	%	1.00		60-143			02/11/23 05:01	VMN
	Chlorooctadecane(surr)	70	%	1.00		60-150			02/11/23 05:01	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-24 Job Sample ID: 23021134.10

Date Collected: 01/19/23 Sample Matrix Solid

Time Collected: 15:20 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s							
	C6-C12	292.59	mg/Kg	1.00	8.94	25		02/11/23 05:33	VMN
	>C12-C28	1327.36	mg/Kg	10.00	73.5	250		02/13/23 22:37	VMN
	>C28-C35	447.97	mg/Kg	1.00	6.20	25		02/11/23 05:33	VMN
	Total C6-C35	2067.91	mg/Kg	10.00	62.0			02/13/23 22:37	VMN
	1-Chlorooctane(surr)	92.7	%	1.00		60-143		02/13/23 22:37	VMN
	1-Chlorooctane(surr)	82.9	%	10.00		60-143		02/13/23 22:37	MV
	Chlorooctadecane(surr)	73.5	%	1.00		60-150		02/13/23 22:37	VMN
	Chlorooctadecane(surr)	83.8	%	10.00		60-150		02/13/23 22:37	MV



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-25 Job Sample ID: 23021134.11

Date Collected: 01/20/23 Sample Matrix Solid

Time Collected: 11:00 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S							
	C6-C12	77.86	mg/Kg	1.00	8.94	25		02/11/23 06:05	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 06:05	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 06:05	VMN
	Total C6-C35	77.86	mg/Kg	1.00	6.20			02/11/23 06:05	VMN
	1-Chlorooctane(surr)	110	%	1.00		60-143		02/11/23 06:05	VMN
	Chlorooctadecane(surr)	79.2	%	1.00		60-150		02/11/23 06:05	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-27 Job Sample ID: 23021134.12
Date Collected: 01/19/23 Sample Matrix Solid

Date Collected: 01/19/23 Sample Matrix Solid
Time Collected: 17:00 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	75.32	mg/Kg	1.00	8.94	25			02/11/23 06:37	VMN
	>C12-C28	7.77	mg/Kg	1.00	7.35	25		J	02/11/23 06:37	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/11/23 06:37	VMN
	Total C6-C35	83.09	mg/Kg	1.00	6.20				02/11/23 06:37	VMN
	1-Chlorooctane(surr)	103	%	1.00		60-143			02/11/23 06:37	VMN
	Chlorooctadecane(surr)	71.4	%	1.00		60-150			02/11/23 06:37	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-28 Job Sample ID: 23021134.13

Date Collected: 01/20/23 Sample Matrix Solid

Date Collected: 01/20/23 Sample Matrix Solid
Time Collected: 12:50 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S							
	C6-C12	74.62	mg/Kg	1.00	8.94	25		02/11/23 07:09	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 07:09	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 07:09	VMN
	Total C6-C35	74.62	mg/Kg	1.00	6.20			02/11/23 07:09	VMN
	1-Chlorooctane(surr)	103	%	1.00		60-143		02/11/23 07:09	VMN
	Chlorooctadecane(surr)	80.2	%	1.00		60-150		02/11/23 07:09	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-30 Job Sample ID: 23021134.14

Date Collected: 01/18/23 Sample Matrix Solid

Time Collected: 09:40 % Moisture

Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
Total Petroleum Hydrocarbons	5								
C6-C12	71.38	mg/Kg	1.00	8.94	25			02/11/23 07:41	VMN
>C12-C28	8.15	mg/Kg	1.00	7.35	25		J	02/11/23 07:41	VMN
>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/11/23 07:41	VMN
Total C6-C35	79.54	mg/Kg	1.00	6.20				02/11/23 07:41	VMN
1-Chlorooctane(surr)	99.9	%	1.00		60-143			02/11/23 07:41	VMN
Chlorooctadecane(surr)	82.5	%	1.00		60-150			02/11/23 07:41	VMN
	Total Petroleum Hydrocarbons C6-C12 >C12-C28 >C28-C35 Total C6-C35 1-Chlorooctane(surr)	Total Petroleum Hydrocarbons         C6-C12       71.38         >C12-C28       8.15         >C28-C35       < 6.2	Total Petroleum Hydrocarbons         C6-C12       71.38       mg/Kg         >C12-C28       8.15       mg/Kg         >C28-C35       < 6.2	Total Petroleum Hydrocarbons         C6-C12       71.38       mg/Kg       1.00         >C12-C28       8.15       mg/Kg       1.00         >C28-C35       < 6.2	Total Petroleum Hydrocarbons         C6-C12       71.38       mg/Kg       1.00       8.94         >C12-C28       8.15       mg/Kg       1.00       7.35         >C28-C35       < 6.2	Total Petroleum Hydrocarbons         C6-C12       71.38       mg/Kg       1.00       8.94       25         >C12-C28       8.15       mg/Kg       1.00       7.35       25         >C28-C35       < 6.2	Total Petroleum Hydrocarbons         C6-C12       71.38       mg/Kg       1.00       8.94       25         >C12-C28       8.15       mg/Kg       1.00       7.35       25         >C28-C35       < 6.2	Total Petroleum Hydrocarbons         C6-C12       71.38       mg/Kg       1.00       8.94       25         >C12-C28       8.15       mg/Kg       1.00       7.35       25       J         >C28-C35       < 6.2	Total Petroleum Hydrocarbons         C6-C12       71.38       mg/Kg       1.00       8.94       25       02/11/23 07:41         >C12-C28       8.15       mg/Kg       1.00       7.35       25       J       02/11/23 07:41         >C28-C35       < 6.2



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-31 Job Sample ID: 23021134.15

Date Collected: 01/18/23 Sample Matrix Solid

Date Collected: 01/18/23 Sample Matrix Solid
Time Collected: 14:00 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	74.25	mg/Kg	1.00	8.94	25		02/11/23 08:13	VMN
	>C12-C28	110.84	mg/Kg	1.00	7.35	25		02/11/23 08:13	VMN
	>C28-C35	107.35	mg/Kg	1.00	6.20	25		02/11/23 08:13	VMN
	Total C6-C35	292.44	mg/Kg	1.00	6.20			02/11/23 08:13	VMN
	1-Chlorooctane(surr)	107	%	1.00		60-143		02/11/23 08:13	VMN
	Chlorooctadecane(surr)	78.8	%	1.00		60-150		02/11/23 08:13	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-32 Job Sample ID: 23021134.16

Date Collected: 01/19/23 Sample Matrix Solid

Date Collected: 01/19/23 Sample Matrix Solid
Time Collected: 09:20 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	71.45	mg/Kg	1.00	8.94	25		02/11/23 08:45	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 08:45	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 08:45	VMN
	Total C6-C35	71.45	mg/Kg	1.00	6.20			02/11/23 08:45	VMN
	1-Chlorooctane(surr)	93.8	%	1.00		60-143		02/11/23 08:45	VMN
	Chlorooctadecane(surr)	74.6	%	1.00		60-150		02/11/23 08:45	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-34 Job Sample ID: 23021134.17
Date Collected: 01/18/23 Sample Matrix Solid

Date Collected: 01/18/23 Sample Matrix Solid
Time Collected: 11:15 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	73.11	mg/Kg	1.00	8.94	25		02/11/23 09:17	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 09:17	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 09:17	VMN
	Total C6-C35	73.11	mg/Kg	1.00	6.20			02/11/23 09:17	VMN
	1-Chlorooctane(surr)	102	%	1.00		60-143		02/11/23 09:17	VMN
	Chlorooctadecane(surr)	77.1	%	1.00		60-150		02/11/23 09:17	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-35 Job Sample ID: 23021134.18

Date Collected: 01/18/23 Sample Matrix Solid

Date Collected: 01/18/23 Sample Matrix Solid
Time Collected: 15:45 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	71.54	mg/Kg	1.00	8.94	25			02/11/23 09:50	VMN
	>C12-C28	7.76	mg/Kg	1.00	7.35	25		J	02/11/23 09:50	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/11/23 09:50	VMN
	Total C6-C35	79.30	mg/Kg	1.00	6.20				02/11/23 09:50	VMN
	1-Chlorooctane(surr)	99.2	%	1.00		60-143			02/11/23 09:50	VMN
	Chlorooctadecane(surr)	77	%	1.00		60-150			02/11/23 09:50	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-36 Job Sample ID: 23021134.19
Date Collected: 01/19/23 Sample Matrix Solid

Time Collected: 11:10 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	71.76	mg/Kg	1.00	8.94	25		02/11/23 10:22	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 10:22	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 10:22	VMN
	Total C6-C35	71.76	mg/Kg	1.00	6.20			02/11/23 10:22	VMN
	1-Chlorooctane(surr)	98.6	%	1.00		60-143		02/11/23 10:22	VMN
	Chlorooctadecane(surr)	79.1	%	1.00		60-150		02/11/23 10:22	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-39 Job Sample ID: 23021134.20
Date Collected: 01/18/23 Sample Matrix Solid

Date Collected: 01/18/23 Sample Matrix Solid
Time Collected: 09:25 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	s							
	C6-C12	69.18	mg/Kg	1.00	8.94	25		02/11/23 10:55	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 10:55	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 10:55	VMN
	Total C6-C35	69.18	mg/Kg	1.00	6.20			02/11/23 10:55	VMN
	1-Chlorooctane(surr)	83.1	%	1.00		60-143		02/11/23 10:55	VMN
	Chlorooctadecane(surr)	63.9	%	1.00		60-150		02/11/23 10:55	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-43 Job Sample ID: 23021134.21
Date Collected: 01/18/23 Sample Matrix Solid

Date Collected: 01/18/23 Sample Matrix Solid
Time Collected: 14:10 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s							
	C6-C12	76.33	mg/Kg	1.00	8.94	25		02/11/23 11:28	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 11:28	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 11:28	VMN
	Total C6-C35	76.33	mg/Kg	1.00	6.20			02/11/23 11:28	VMN
	1-Chlorooctane(surr)	102	%	1.00		60-143		02/11/23 11:28	VMN
	Chlorooctadecane(surr)	80.4	%	1.00		60-150		02/11/23 11:28	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-44 Job Sample ID: 23021134.22
Date Collected: 01/19/23 Sample Matrix Solid

Time Collected: 01/19/23 Sample Matrix Solic 98:15 Sample Matrix Solic 98:15

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S							
	C6-C12	75.24	mg/Kg	1.00	8.94	25		02/11/23 12:02	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 12:02	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 12:02	VMN
	Total C6-C35	75.24	mg/Kg	1.00	6.20			02/11/23 12:02	VMN
	1-Chlorooctane(surr)	102	%	1.00		60-143		02/11/23 12:02	VMN
	Chlorooctadecane(surr)	79.2	%	1.00		60-150		02/11/23 12:02	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-45 Job Sample ID: 23021134.23

Date Collected: 01/20/23 Sample Matrix Solid

Date Collected: 01/20/23 Sample Matrix Solid
Time Collected: 09:15 Sample Matrix Solid

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S							
	C6-C12	73.18	mg/Kg	1.00	8.94	25		02/11/23 12:36	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 12:36	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 12:36	VMN
	Total C6-C35	73.18	mg/Kg	1.00	6.20			02/11/23 12:36	VMN
	1-Chlorooctane(surr)	98.4	%	1.00		60-143		02/11/23 12:36	VMN
	Chlorooctadecane(surr)	77.4	%	1.00		60-150		02/11/23 12:36	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-46 Job Sample ID: 23021134.24

Date Collected: 01/27/23 Sample Matrix Solid

Date Collected: 01/27/23 Sample Matrix Solid
Time Collected: 14:05 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S							
	C6-C12	71.74	mg/Kg	1.00	8.94	25		02/11/23 13:11	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 13:11	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 13:11	VMN
	Total C6-C35	71.74	mg/Kg	1.00	6.20			02/11/23 13:11	VMN
	1-Chlorooctane(surr)	85.7	%	1.00		60-143		02/11/23 13:11	VMN
	Chlorooctadecane(surr)	61.8	%	1.00		60-150		02/11/23 13:11	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-47 Job Sample ID: 23021134.25

Date Collected: 01/27/23 Sample Matrix Solid

Time Collected: 09:20 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	74.21	mg/Kg	1.00	8.94	25			02/11/23 13:44	VMN
	>C12-C28	7.45	mg/Kg	1.00	7.35	25		J	02/11/23 13:44	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/11/23 13:44	VMN
	Total C6-C35	81.66	mg/Kg	1.00	6.20				02/11/23 13:44	VMN
	1-Chlorooctane(surr)	101	%	1.00		60-143			02/11/23 13:44	VMN
	Chlorooctadecane(surr)	74.7	%	1.00		60-150			02/11/23 13:44	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-48 Job Sample ID: 23021134.26

Date Collected: 01/19/23 Sample Matrix Solid

Time Collected: 14:00 % Moisture

Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
Total Petroleum Hydrocarbons									
C6-C12	77.43	mg/Kg	1.00	8.94	25			02/11/23 14:15	VMN
>C12-C28	50.33	mg/Kg	1.00	7.35	25			02/11/23 14:15	VMN
>C28-C35	16.31	mg/Kg	1.00	6.20	25		J	02/11/23 14:15	VMN
Total C6-C35	144.06	mg/Kg	1.00	6.20				02/11/23 14:15	VMN
1-Chlorooctane(surr)	104	%	1.00		60-143			02/11/23 14:15	VMN
Chlorooctadecane(surr)	81.9	%	1.00		60-150			02/11/23 14:15	VMN
	Total Petroleum Hydrocarbons C6-C12 >C12-C28 >C28-C35 Total C6-C35 1-Chlorooctane(surr)	Total Petroleum Hydrocarbons C6-C12 77.43 >C12-C28 50.33 >C28-C35 16.31 Total C6-C35 144.06 1-Chlorooctane(surr) 104	Total Petroleum Hydrocarbons         C6-C12       77.43       mg/Kg         >C12-C28       50.33       mg/Kg         >C28-C35       16.31       mg/Kg         Total C6-C35       144.06       mg/Kg         1-Chlorooctane(surr)       104       %	Total Petroleum Hydrocarbons         C6-C12       77.43       mg/Kg       1.00         >C12-C28       50.33       mg/Kg       1.00         >C28-C35       16.31       mg/Kg       1.00         Total C6-C35       144.06       mg/Kg       1.00         1-Chlorooctane(surr)       104       %       1.00	Total Petroleum Hydrocarbons  C6-C12 77.43 mg/Kg 1.00 8.94  >C12-C28 50.33 mg/Kg 1.00 7.35  >C28-C35 16.31 mg/Kg 1.00 6.20  Total C6-C35 144.06 mg/Kg 1.00 6.20  1-Chlorooctane(surr) 104 % 1.00	Total Petroleum Hydrocarbons  C6-C12 77.43 mg/Kg 1.00 8.94 25  >C12-C28 50.33 mg/Kg 1.00 7.35 25  >C28-C35 16.31 mg/Kg 1.00 6.20 25  Total C6-C35 144.06 mg/Kg 1.00 6.20  1-Chlorooctane(surr) 104 % 1.00 60-143	Total Petroleum Hydrocarbons  C6-C12 77.43 mg/Kg 1.00 8.94 25  >C12-C28 50.33 mg/Kg 1.00 7.35 25  >C28-C35 16.31 mg/Kg 1.00 6.20 25  Total C6-C35 144.06 mg/Kg 1.00 6.20  1-Chlorooctane(surr) 104 % 1.00 60-143	Total Petroleum Hydrocarbons  C6-C12 77.43 mg/Kg 1.00 8.94 25  >C12-C28 50.33 mg/Kg 1.00 7.35 25  >C28-C35 16.31 mg/Kg 1.00 6.20 25 J  Total C6-C35 144.06 mg/Kg 1.00 6.20  1-Chlorooctane(surr) 104 % 1.00 60-143	Total Petroleum Hydrocarbons  CG-C12 77.43 mg/Kg 1.00 8.94 25 02/11/23 14:15  >C12-C28 50.33 mg/Kg 1.00 7.35 25 02/11/23 14:15  >C28-C35 16.31 mg/Kg 1.00 6.20 25 J 02/11/23 14:15  Total CG-C35 144.06 mg/Kg 1.00 6.20 50 02/11/23 14:15  1-Chlorooctane(surr) 104 % 1.00 60-143 02/11/23 14:15



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-58 Job Sample ID: 23021134.27
Date Collected: 01/21/23 Sample Matrix Solid

Date Collected: 01/21/23 Sample Matrix Solid
Time Collected: 10:00 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	67.36	mg/Kg	1.00	8.94	25		02/11/23 14:47	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 14:47	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 14:47	VMN
	Total C6-C35	67.36	mg/Kg	1.00	6.20			02/11/23 14:47	VMN
	1-Chlorooctane(surr)	93.2	%	1.00		60-143		02/11/23 14:47	VMN
	Chlorooctadecane(surr)	73.7	%	1.00		60-150		02/11/23 14:47	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-59 Job Sample ID: 23021134.28
Date Collected: 01/21/23 Sample Matrix Solid

Time Collected: 15:10 % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst		
TX 1005	Total Petroleum Hydrocarbons										
	C6-C12	71.77	mg/Kg	1.00	8.94	25		02/11/23 15:19	VMN		
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 15:19	VMN		
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 15:19	VMN		
	Total C6-C35	71.77	mg/Kg	1.00	6.20			02/11/23 15:19	VMN		
	1-Chlorooctane(surr)	98.5	%	1.00		60-143		02/11/23 15:19	VMN		
	Chlorooctadecane(surr)	76.7	%	1.00		60-150		02/11/23 15:19	VMN		



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: 23A1459-60 Job Sample ID: 23021134.29
Date Collected: 01/21/23 Sample Matrix Solid

Date Collected: 01/21/23 Sample Matrix Solid
Time Collected: 11:45 Sample Matrix Solid

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst		
TX 1005	Total Petroleum Hydrocarbons										
	C6-C12	66.20	mg/Kg	1.00	8.94	25		02/11/23 16:54	VMN		
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/11/23 16:54	VMN		
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/11/23 16:54	VMN		
	Total C6-C35	66.20	mg/Kg	1.00	6.20			02/11/23 16:54	VMN		
	1-Chlorooctane(surr)	77.9	%	1.00		60-143		02/11/23 16:54	VMN		
	Chlorooctadecane(surr)	75.7	%	1.00		60-150		02/11/23 16:54	VMN		



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGA3903-MB Job Sample ID: 23021134.30

Date Collected: Sample Matrix Solid
Time Collected: % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons								
	C6-C12	63.06	mg/Kg	1.00	8.94	25		02/10/23 19:23	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/10/23 19:23	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/10/23 19:23	VMN
	Total C6-C35	63.06	mg/Kg	1.00	6.20			02/10/23 19:23	VMN
	1-Chlorooctane(surr)	89.9	%	1.00		60-143		02/10/23 19:23	VMN
	Chlorooctadecane(surr)	79.9	%	1.00		60-150		02/10/23 19:23	VMN
	Chlorooctadecane(surr)	79.9	%	1.00		60-150		02/10/23 19:23	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGA3903-MDL Job Sample ID: 23021134.31
Date Collected: Sample Matrix Solid

Date Collected: Sample Matrix Solid
Time Collected: % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst	
TX 1005	Total Petroleum Hydrocarbons										
	C6-C12	64.95	mg/Kg	1.00	8.94	25			02/10/23 19:59	VMN	
	>C12-C28	8.02	mg/Kg	1.00	7.35	25		J	02/10/23 19:59	VMN	
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/10/23 19:59	VMN	
	Total C6-C35	72.97	mg/Kg	1.00	6.20				02/10/23 19:59	VMN	
	1-Chlorooctane(surr)	90.9	%	1.00		60-143			02/10/23 19:59	VMN	
	Chlorooctadecane(surr)	79.5	%	1.00		60-150			02/10/23 19:59	VMN	



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGA3903-LCS Job Sample ID: 23021134.32
Date Collected: Sample Matrix Solid

Date Collected: Sample Matrix Solid
Time Collected: % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon								
	C6-C12	260.72	mg/Kg	1.00	8.94	25		02/10/23 20:31	VMN
	>C12-C28	178.80	mg/Kg	1.00	7.35	25		02/10/23 20:31	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/10/23 20:31	VMN
	Total C6-C35	439.52	mg/Kg	1.00	6.20			02/10/23 20:31	VMN
	1-Chlorooctane(surr)	88.4	%	1.00		60-143		02/10/23 20:31	VMN
	Chlorooctadecane(surr)	77.3	%	1.00		60-150		02/10/23 20:31	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGA3903-LCSD Job Sample ID: 23021134.33

Date Collected: Sample Matrix Solid

Time Collected: % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	268.13	mg/Kg	1.00	8.94	25		02/10/23 21:03	VMN
	>C12-C28	185.53	mg/Kg	1.00	7.35	25		02/10/23 21:03	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/10/23 21:03	VMN
	Total C6-C35	453.65	mg/Kg	1.00	6.20			02/10/23 21:03	VMN
	1-Chlorooctane(surr)	89.5	%	1.00		60-143		02/10/23 21:03	VMN
	Chlorooctadecane(surr)	77.9	%	1.00		60-150		02/10/23 21:03	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGB-0167-MB Job Sample ID: 23021134.34

Date Collected: Sample Matrix Solid

Date Collected: Sample Matrix Solid
Time Collected: % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	ıs							
	C6-C12	63.86	mg/Kg	1.00	8.94	25		02/10/23 21:36	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/10/23 21:36	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/10/23 21:36	VMN
	Total C6-C35	63.86	mg/Kg	1.00	6.20			02/10/23 21:36	VMN
	1-Chlorooctane(surr)	89.8	%	1.00		60-143		02/10/23 21:36	VMN
	Chlorooctadecane(surr)	76	%	1.00		60-150		02/10/23 21:36	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGB-0167-MDL Job Sample ID: 23021134.35

Date Collected: Sample Matrix Solid

Date Collected: Sample Matrix Solid
Time Collected: % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5								
	C6-C12	69.31	mg/Kg	1.00	8.94	25			02/10/23 22:07	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25			02/10/23 22:07	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/10/23 22:07	VMN
	Total C6-C35	69.31	mg/Kg	1.00	6.20				02/10/23 22:07	VMN
	1-Chlorooctane(surr)	95.9	%	1.00		60-143			02/10/23 22:07	VMN
	Chlorooctadecane(surr)	75.5	%	1.00		60-150			02/10/23 22:07	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGB-0167-BS Job Sample ID: 23021134.36

Date Collected: Sample Matrix Solid

Date Collected: Sample Matrix Solid
Time Collected: % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	269.68	mg/Kg	1.00	8.94	25			02/10/23 22:38	VMN
	>C12-C28	181.82	mg/Kg	1.00	7.35	25			02/10/23 22:38	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/10/23 22:38	VMN
	Total C6-C35	451.50	mg/Kg	1.00	6.20				02/10/23 22:38	VMN
	1-Chlorooctane(surr)	91.1	%	1.00		60-143			02/10/23 22:38	VMN
	Chlorooctadecane(surr)	73.7	%	1.00		60-150			02/10/23 22:38	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGB-0167-BSD Job Sample ID: 23021134.37
Date Collected: Sample Matrix Solid

Date Collected: Sample Matrix Solid
Time Collected: % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	261.97	mg/Kg	1.00	8.94	25		02/10/23 23:09	VMN
	>C12-C28	190.41	mg/Kg	1.00	7.35	25		02/10/23 23:09	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/10/23 23:09	VMN
	Total C6-C35	452.38	mg/Kg	1.00	6.20			02/10/23 23:09	VMN
	1-Chlorooctane(surr)	91.4	%	1.00		60-143		02/10/23 23:09	VMN
	Chlorooctadecane(surr)	77.4	%	1.00		60-150		02/10/23 23:09	VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGA3903-MS Job Sample ID: 23021134.38

Date Collected: Sample Matrix Calid

Date Collected: Sample Matrix Solid
Time Collected: % Moisture

Other Information: Test Method Reg Limit Q Parameter/Test Description Result Units DF **SDL** MQL Date Time Analyst TX 1005 **Total Petroleum Hydrocarbons** C6-C12 8.94 25 280.70 mg/Kg 1.00 02/11/23 17:25 VMN

25 >C12-C28 177.55 mg/Kg 1.00 7.35 02/11/23 17:25 VMN >C28-C35 6.20 25 < 6.2 mg/Kg 1.00 02/11/23 17:25 VMN Total C6-C35 458.25 mg/Kg 1.00 6.20 02/11/23 17:25 VMN 95.8 % 1.00 60-143 VMN 1-Chlorooctane(surr) 02/11/23 17:25 Chlorooctadecane(surr) 79.1 % 1.00 60-150 02/11/23 17:25 VMN



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGA3903-MSD Job Sample ID: 23021134.39
Date Collected: Sample Matrix Solid

Date Collected: Sample Matrix Solid
Time Collected: % Moisture

nalyst
MN
'I



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGB-0167-MS
Date Collected:

Job Sample ID: 23021134.40

Sample Matrix Solid

% Moisture

Time Collected:
Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5								
	C6-C12	535.18	mg/Kg	1.00	8.94	25			02/11/23 18:28	VMN
	>C12-C28	1706.31	mg/Kg	10.00	73.5	250			02/13/23 23:04	VMN
	>C28-C35	495.39	mg/Kg	1.00	6.20	25			02/11/23 18:28	VMN
	Total C6-C35	2736.88	mg/Kg	10.00	62.0				02/13/23 23:04	VMN
	1-Chlorooctane(surr)	65.3	%	1.00		60-143			02/13/23 23:04	VMN
	1-Chlorooctane(surr)	58.9	%	10.00		60-143		S2	02/13/23 23:04	MV
	Chlorooctadecane(surr)	44.3	%	1.00		60-150		S2	02/13/23 23:04	VMN
	Chlorooctadecane(surr)	52.3	%	10.00		60-150		S2	02/13/23 23:04	MV



Job ID: 23021134

Date 2/17/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name: 23A1459

Client Sample ID: BGB-0167-MSD Job Sample ID: 23021134.41
Date Collected: Sample Matrix Solid

Time Collected: Sample Matrix S

Who is the content of the content

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s							
	C6-C12	431.50	mg/Kg	1.00	8.94	25		02/11/23 18:59	VMN
	>C12-C28	1939.56	mg/Kg	10.00	73.5	250		02/13/23 23:30	VMN
	>C28-C35	525.78	mg/Kg	1.00	6.20	25		02/11/23 18:59	VMN
	Total C6-C35	2896.83	mg/Kg	10.00	62.0			02/13/23 23:30	VMN
	1-Chlorooctane(surr)	64.2	%	1.00		60-143		02/13/23 23:30	VMN
	1-Chlorooctane(surr)	76.2	%	10.00		60-143		02/13/23 23:30	MV
	Chlorooctadecane(surr)	62.4	%	1.00		60-150		02/13/23 23:30	VMN
	Chlorooctadecane(surr)	76.1	%	10.00		60-150		02/13/23 23:30	MV

#### QUALITY CONTROL CERTIFICATE



Analysis : Total Petroleum Hydrocarbons Method : TX 1005 Reporting Units : mg/Kg

Sample Preparation: PB23021061 Prep Method: TX 1005 Prep Date: 02/10/23 16:20 Prep By: VRodriguez

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
C6-C12	TPH-1005-1	< MDL	mg/Kg	1.00	25	8.94	
>C12-C28	TPH-1005-2	< MDL	mg/Kg	1.00	25	7.35	
>C28-C35	TPH-1005-4	< MDL	mg/Kg	1.00	25	6.20	
Total C6-C35		< MDL	mg/Kg	1.00		6.20	
Chlorooctadecane(surr)	3386-33-2	117	%	1.00			
1-Chlorooctane(surr)	111-85-3	111	%	1.00			

QC Type: LCS and LCS	D									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
C6-C12	500	510	102	500	521	104	2.1	20	75-125	
>C12-C28	500	549	110	500	560	112	2.1	20	75-125	
>C28-C35	500	561	112	500	577	115	2.8	20	75-125	

QC Type: MS and MS	SD										
QC Sample ID: 230	21106.01										
	Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
Parameter	Result	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	BRL	500	478	95.7	500	459	91.7	4.2	20	75-125	
>C12-C28	BRL	500	481	96.3	500	492	98.4	2.2	20	75-125	
>C28-C35	BRL	500	475	94.9	500	514	103	8	20	75-125	

#### QUALITY CONTROL CERTIFICATE



Analysis: Total Petroleum Hydrocarbons Method: TX 1005 Reporting Units: mg/Kg

Sample Preparation: PB23021063 Prep Method: TX 1005 Prep Date: 02/10/23 17:02 Prep By: VRodriguez

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
C6-C12	TPH-1005-1	< MDL	mg/Kg	1.00	25	8.94	
>C12-C28	TPH-1005-2	< MDL	mg/Kg	1.00	25	7.35	
>C28-C35	TPH-1005-4	< MDL	mg/Kg	1.00	25	6.20	
Total C6-C35		< MDL	mg/Kg	1.00		6.20	
Chlorooctadecane(surr)	3386-33-2	109	%	1.00			
1-Chlorooctane(surr)	111-85-3	104	%	1.00			

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	500	561	112	500	463	92.5	19.1	20	75-125	
>C12-C28	500	535	107	500	502	100	6.4	20	75-125	
>C28-C35	500	508	102	500	518	104	1.9	20	75-125	

QC Type: MS and MS	SD										
QC Sample ID: 230	21106.03										
	Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
Parameter	Result	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	BRL	500	492	98.4	500	503	101	2.2	20	75-125	
>C12-C28	BRL	500	536	107	500	547	109	2	20	75-125	
>C28-C35	BRL	500	547	109	500	560	112	2.4	20	75-125	

#### QUALITY CONTROL CERTIFICATE



Analysis: Total Petroleum Hydrocarbons Method: TX 1005 Reporting Units: mg/Kg

**Samples in This QC Batch :** 23021134.36,37,38,39,40,41

Sample Preparation: PB23021064 Prep Method: TX 1005 Prep Date: 02/10/23 16:54 Prep By: VRodriguez

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
C6-C12	TPH-1005-1	< MDL	mg/Kg	1.00	25	8.94	
>C12-C28	TPH-1005-2	< MDL	mg/Kg	1.00	25	7.35	
>C28-C35	TPH-1005-4	< MDL	mg/Kg	1.00	25	6.20	
Total C6-C35		< MDL	mg/Kg	1.00		6.20	
Chlorooctadecane(surr)	3386-33-2	118	%	1.00			
1-Chlorooctane(surr)	111-85-3	115	%	1.00			

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	500	514	103	500	523	105	1.7	20	75-125	
>C12-C28	500	437	87.4	500	444	88.8	1.5	20	75-125	
>C28-C35	500	460	91.9	500	474	94.8	3.1	20	75-125	

QC Type: MS and M	1SD										
QC Sample ID: 230	021094.01										
	Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
Parameter	Result	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	BRL	500	541	108	500	544	109	0.5	20	75-125	
>C12-C28	BRL	500	460	92	500	459	91.9	0.1	20	75-125	
>C28-C35	BRL	500	448	89.6	500	480	96.1	6.9	20	75-125	





# SUBCONTRACT ORDER

### Sending Laboratory:

North Water District Laboratory Services, Inc. 130 South Trade Center Parkway Conroe, TX 77385

Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

Subcontracted Laboratory:

A & B Labs

10100 East Freeway, Suite 100

Houston, TX 77029

Phone: (713) 453-6060 Fax: (713) 453-6091

Work Order: 23A1459

Analysis

Due Expires

Comments

Sample ID: 23A1459-02

Marine Water Sampled: 01/25/2023 09:30

03/06/2023

03/06/20

03/06/2023 02/22/2023 09:30

02/22

02/24/2023 11

02/22/2023 12:50

Analytel.

Total Organic Carbon (TOC)

Containers Suppl

Sample ID: 23A1459 03 Marine Water Sampled: 01/25/2023 12:50

TOC-415.1

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

Sample ID: 23A1459-04 Marine Water mpled: 01/25/2

TOC-415.1

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

impled: 01/27/2013 11:25 Sample ID: 23A1459-05 Marine Water

TOC-415.1

Analyte(s):

Total Organic Carbon (TDC)

Containers Supplied:

Sample ID: 23A1459-07 lutriate Sampled: 01/16/2023 14:20

TOC-415.1-ELUT

06/2023

03/06/2023 02/13/2023 14:20

23 14:50

Leached: 02/01/2 23 10:00

Analyte(s):

Total Organic Carbon

Containers Supplie

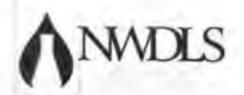


# SUBCONTRACT ORDER

(Continued)

Work Order: 23A1459 (Continued)

Analysis		Due	Expires	Comments
	- There is a	-	30,200 34:30	
Analyte(s): Total Organic Carbon (TOC) Containers Supplied:	0	3/06/2025	02/15/2023 14:10	Leached: 02/03/2021 09:05
Sample ID: 23A1459-16	Sediment S	ampled: 01	1/16/2023 14:20	
TPH-1005  Analyte(s):  1-Onlorooctadecane-surr		1-Chloroocian	01/30/2023 14:20	DIAL Total Petrolium Hydrocarbons (TPH), C6-C35
Containers Supplied:		1-01101000011	4.301	Total regional hydronistics (Th. 1) es esp
Sample ID: 23A1459-17	Sediment S.	ampled: 0	1/17/2023 09:40	02A
TPH-1005  Analyte(s): 1-Chlorooctadecane-surr  Containers Supplied:		3/06/2023 1-Chloropotan	01/31/2023 09:40 ne-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
Sample ID: 23A1459-18	Sediment S	ampled: 0	1/17/2023 14:40	03A
TPH-1005  Analyte(s): 1-Chloroctadecane-sur  Containers Supplied:		3/06/2023 L-Chlorooctan	01/31/2023 14:40 ne-surr	Total Petro eum Hydrocarbons (TPH), C6-C35
Sample ID: 23A1459-20	Sediment S	ampled: 0.	1/16/2023 17:20	DYA
TPH-1005  Analyte(s): 1-Chloroxctadecare-sur  Containers Supplied:	C	1-Orleroctor	01/30/2023 17:20 ne-sum	Total Petryleum Hydrocartions (TFH), C6-C35
Sample ID: 23A1459-21	Sediment 5	ampled: 0.	1/17/2023 11:30	05A
TPH-1005  Analyte(s): 1-Chlorocctadecane-surr	(	03/06/2023 1-Chlorocctar	01/31/2023 11:30 se-surr	
Containers Supplied:				




Work Order: 23A1459 (Continued)

Analysis		Due	Expires	Commer	nts
Sample ID: 23A1459-22	Sediment	Sampled: 0	1/17/2023 16:30	061	4
TPH-1005		03/06/2023	01/31/2023 16:30		
Analyte(s):		i Our	an wind		Total Petrol-um Hydrocarbons (TPH), C6-C35
1-Chlorooctadecane-surr		1-Chlorocca	THE-SULT		total Petro-sum Pydrocarbons (1PP) // Co-Coo
Containers Supplied:					
Sample ID: 23A1459-24	Sediment	Sampled: 0	1/19/2023 15:20	IDAC !	WE/MID
TPH-1005		03/06/2023	02/02/2023 15:20		•
Analyte(s):		4 100 17 17 17			
1-Chlorooctadecane-surr		1-Chiaroocta	ne surr		Tutal Petro aum Hydrocarbons (TPr.), Cs-C35
Containers Supplied:					
Sample ID: 23A1459-25	Sediment	Sampled: 0	1/20/2023 11:00	IIA.	
TPH-1005		03/06/2023	02/03/2023 11:00	11/1	
Analyte(s):					
1-Chlorocctadecane surr		1-Chinroceta	ng-surr		Total Petroleum Hydrocarbons (TP/I), C6-C35
Containers Supplied:					
Sample ID: 23A1459-27	Sediment	Sampled: 0	1/19/2023 17:00	12A	
TPH-1005		03/06/2023	02/02/2023 17:00		
Analyte(s):					
1-Chlorooctadecane-surr		1-Ollaroocta	ne-sur		Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:					
Sample ID: 23A1459-28	Sediment	Sampled: 0	1/20/2023 12:50	13A	
TPH-1005		03/06/2023	02/03/2023 12:50		
Analyte(s):		Lever			Tard butter in the base of the second
1-Onlorooctadecane-surr		1-Chloroocta	rie-surr		Total Petro eum Hydrocarbons (TPH), C6-C35
Containers Supplied:					
Sample ID: 23A1459-30	Sediment	Sampled: (	01/18/2023 09:40	IHA	
TPH-1005		03/06/2023	02/01/2023 09:40	1	
Analyte(s):		2.6.			
1-Chilorooctadecane-surr		1-Chlarocata	INE-SUT		Total Petroleum Hydrocartions (TP-s), C6-C15
Containers Supplied:					



Analysis		Due	Expires		Comments	
Sample ID: 23A1459-31	Sediment	Sampled: 0	1/18/2023 14	:00	[5A	
TPH-1005  Analyte(s): 1-Chlorocctadecane-surr		03/06/2023	02/01/2023 1	4:00		
Containers Supplied:		1-Chloroocta	HE SUIT		Total Petroleum Hydrocarbons (TPhi), C6-C15	
Sample ID: 23A1459-32	Sediment	Sampled: 0	1/19/2023 09	:20	16A	
TPH-1005		03/06/2023	02/02/2023 0	9:20		
Analyte(s): 1-Chlarooctadecane-surr		1-Chloroocta	ne-sum		Total Petroleum Hydrocarbons (TPVI), C6-C35	
Containers Supplied:						
Sample ID: 23A1459-34	Sediment	Sampled: 0	1/18/2023 11	:15	17A	
TPH-1005 Analyte(s):		03/06/2023	02/01/2023 1	1:15		
1-Chlarooctadecane-surr		1-Chloroocta	ne-surr		Total Petroleum Hydrocarbons (TPH), C6-C35	
Containers Supplied:						
Sample ID: 23A1459-35	Sediment	Sampled: 0	1/18/2023 15	:45	18A	
TPH-1005		03/06/2023	02/01/2023 1	5:45		
Analyte(s): 1-Onloroctadecane-surr		1-Chloroocta	ne-sun		Total Petroleum Hydrocarbons (TPH), C6-C15	
Containers Supplied:						
Sample ID: 23A1459-36	Sediment	Sampled: 0	1/19/2023 11	:10	19A	
TPH-1005 Analyte(s):		03/06/2023	02/02/2023 1			
1-Chlorooctadecane-surr		1-Chloroocta	ne surr		Total Petroseum Hydrocarbons (TPH), Cb-C35	
Contamers Supplied:						
Sample ID: 23A1459-38	Sediment	Sampled: 0	1/17/2023 14	:12	20A = 01A	
TPH-1005 Analyte(s):		03/06/2023	01/31/2023 1	4:12		
1-Chlorooctadecane surr		1-Chlorooctane surr			Total Petro eum Hydrocarbons (TPH), C6-C35	
Containers Supplied:						



Work Order: 23A1459 (Continued)

Analysis		Due	Expires	Commen	its
Sample ID: 23A1459-39	Sediment	Sampled: 01/18/2023 09:25		24 20A	
TPH-1005 Analyte(s):		03/06/2023	02/01/2023 09:25		8311
1-Chiorooctadecane-surr		1-Chloroocta	ne-surr		Total Petroleum Hydrocarbons (TPH), C6-C15
Containers Supplied:					333333
Sample ID: 23A1459-40	Sediment	Sampled: 0	1/16/2023 16:37	084	
TPH-1005		03/06/2023	01/30/2023 16:37	- 47	
Analyte(s): 1 Chloroctadecave-surr		1-Chiorooctane-sum		Total Petrol Ium Hydrocertoins (TPVI), C6-C15	
Containers Supplied:					
Sample ID: 23A1459-41	Sediment	Sampled: 0	1/17/2023 09:20	091	
TPH-1005		03/06/2023	01/31/2023 09:20		
Analyte(s):		Canada III			A Land Company of the
1-Chlarooctadecane-surr		1-Chlorocta	ne sun		Total Petrojeum Hydrocarbons (TPri), C6-C35
Containers Supplied:					
Sample ID: 23A1459-43	Sediment	Sampled: 0	1/18/2023 14:10	ZIA	
TPH-1005		03/06/2023	02/01/2023 14:10		
Analyte(s):		12 m (3)			
1-Chlorooctadecane-surr		1-Chloroocta	ne-sun		Total Petroisum Hydrocarbons (TPri), C6-C35
Containers Supplied:					
Sample ID: 23A1459-44	Sediment	Sampled: 0	1/19/2023 08:15	2.2A	
TPH-1005		03/06/2023	02/02/2023 08:15		
Analyte(s):		4 Chiesester	and an income		Total Petroleum Hydrocarbons (TPV), C6-C35
1 Chlorooctadecane surr		1-Chloroocta	nesur		Total Petitinum Hydrocalbons (1997), Ctr C35
Containers Supplied:					
Sample ID: 23A1459-45	Sediment	Sampled: 0	1/20/2023 09:15	23A	
TPH-1005		03/06/2023	02/03/2023 09:15		
Analyte(s):		Timber V			market make the latest transfer to the same of the
1-Chlorooctadecane-surr		1-Chioreocta	ne sur		Total Petroseum Hydrocarbons (TPH), C6-C35
Containers Supplied:					



# SUBCONTRACT ORDER

(Continued)

Work Order: 23A1459 (Continued)

Analysis Due Expires Comments

Sample ID: 23A1459-46 Sediment Sampled: 01/27/2023 14:05

TPH-1005

03/06/2023 Analyte(s):

1-Chlorooctanie surr

1-Chioreoctane surr

1-Chloropotane-sun

03/06/2023

Total Petro -um Hydrocarbons (TP1), Co-C35

Containers Supplied:

1-Chlorooctadecane-surr

Sample ID: 23A1459-47 250 Sediment Sampled: 01/27/2023 09:20

TPH-1005

Analyte(s): 1-Chlorooctadecane-sur03/06/2023

02/10/2023 09:20

02/24/2023 15:32

02/10/2023 14:05

Tutal Petroleum Hydrocarbons (TPH), C6-C15

Containers Supplied:

Sample ID: 23A1459-48 Sediment Sampled: 01/19/2023 14:00

TPH-1005

Analyte(s):

1-Chiarooctadecane-surr

03/06/2023 02/02/2023 14:00

Total Petroleum Hydrocarbons (TPH), C6-C35

Containers Supplied:

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

Analyte(s)

Total Organic Carbon (TOC)

Containers Supplied:

03/06/2023 02/24/2023 14:40

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

02/20/2023 13:05 Leached: 02/01/2023 10:00 03/06/2023



Work Order: 23A1459 (Continued)

Analysis Due Expires Comments

03/06/2023 02/18/2023 10:00 Leached: 02/01/2023 10:00

Analyte(s);

Total Organic Carbon (TOC)

Containers Supplied:

Sample ID: 23A1459-58 Sediment Sampled: 01/21/2023 10:00 77

TPH-1005

03/06/2023

02/04/2023 10:00

Analyte(s):

1-Chlorooctadecane-surr

1-Chiorooctane-surv

Total Petroleum Hydrocarbons (TPri), C6-C35

Containers Supplied:

Sample ID: 23A1459-59 Sediment Sampled: 01/21/2023 15:10 28 A

TPH-1005

03/06/2023

02/04/2023 15:10

Analyte(s):

1-Chlorooctadecane-surr

1-Chlorooctane-surr

Total Petrossum Hydrocarbons (TPH), C6-C35

Containers Supplied:

Sample ID: 23A1459-60 Sediment Sampled: 01/21/2023 11:45 24 F

TPH-1005

03/06/2023

02/04/2023 11:45

Analyte(s):

1-Chlorooctadecane-surr

1 Chlorooctane-surr

Total Petroleum Hydrocarbons (TPH), C6-C35

Containers Supplied:

OL Marine Water Samplea: 01/27/2023 13430

03/06/2023 02/24/2023 13:10

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

03/06/2023 02/16/2023 14:00 Leached: 02/03/2023 09:05

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:



## SUBCONTRACT ORDER (Continued)

Work Order: 23A1459 (Continued)

Analysis	Due	Expires	Comments	
Jampin 10. 2012/199-05	-	ALCOHOLD IN		
Analyte(s): Total Organic Carbon (TOC) Containers Supplied:	03/06/2023	02/18/2023 11:45	Leached: 02/03/2023 09:05	
Heath Reinse	2-10-2	//	tet	1/3/23
eleased By	Date	Receive	nd By	Late

Eny

	Vial ID	Sample ID	Re- extraction	Amt. Extracted (g / mL)	Spk #	Initial pH	Final Vol. (mL) ^{P1}	TX1006	Fraction #1 Initial vol.(mL)	Fraction #1 final vol.(mL)Pt	Fraction #2 initial vol.(mL)	Fraction #2 final vol.(mL) P2	Comments/Dilutions/ Reagent Change/Other Claups, etc.	Spike Verification Witness Analyst/Date
_	NIA	BCA 3903 -MB	_	10.23	51	n/A	10		NA	NA	NA	NA		14
	NIH		-	10.06	1 72	1	1	13				1	light MAIS	
-	+	-MO) -LS	-	16.46	3									
-	+	-100	~	10.18	53	_								tua Pla
	+	- NS	1	10.09	53	_							23A1459-16MS	DIE PAN
-	+	√ -usb		10.16	53			19					23A 1459-16M5D	ALLE
	+	23A1459-169		10.09		Th.								
-	+	171-171	_	10.42										
-		-18'	-	10.18										
		-2010		10.58										
		-21"		10.14										
	+	-22"	_	10.14								-		
		-3813		10.58								-		-
		-40"		10.43		1								-
	1	V -41"	_	10,22	V	V	V	3.6	V	V	V	V		
-	-	IA.	-									-	-	-
ľ		01									-	-		
Ì										-	-	-	-	
ľ		)(								-	-	-	-	
		31									-	-	-	
		11						inst				-		
		II.							-	-	-	-		
		2	1	1					-		-	-		
		,							-	-	-			
ľ		2	1						4					

Batch ID: 1794- 0\3023-0\

Analyte Group (circle) TX1005 TPH

TX1006 TPH Screen Only

Prep Doc:	OP117	Batch ID:	TPH- 020123-0	Ol Cent	rifuge:	428-28453	2 nd		Organic Extractions
Extraction Analyst/Date:	RLK 02	State of	Extraction 7:35		Shaken o	or Ext-Shaker	Scale	onnovenue	Comments:
	olid / BT	Analyte (	Group: TX1003 TPH	-		xtraction Tect		LE MESE	
Spike ID	Spike Amt.(m	f one	Spike ID 2205647	Spike Amt.(mL)	Spil	ke ic.	1		BGB0167
2201668	.250	10,000		.250	20,00	100		-	
2301927	1.010	1000	- 40	-	1			-	DEUK 2-1-23 IEC 2708,42)

Reagents	ID	Reagents	ID	Desmonte	1 20			-1-13 TEC 27	-
KI -	value and	01	10	Reagents	D	Reagents	ID	Reagents	ID
n-Pentane R2	1902994	Apetone	22/0277	рН рарег	-	R7 _		119	_
Sand	2108703	MeOH	22025110	R6	Siconom	R8		RIO	
	10.5	invari.	2202540	DI-Water	DI-Water-01	_		_	-

	Post Extracti	on C	oncentra	tion ^{ri}	d
Analyst/Date:				0	r WA
NEVAP Temp:			°C	Temp.	
N ₂ Blowdown	O.				
Final Solvent:	n-Pentane	1	Other		

Note: Continued on next page.

- 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16	1 X X X	10.00 10.03 10.04 10.20 10.01	52 33	H/H	10		NIA	NIH	NH	NIH		
- 85 - 850 - 165 - 1650 1459-24 161	x x	10.04	3	1					1. 4	N 117		
- 850 - 165 1459-24 13°	1 4	10,20	-									
- 1/s 1459-24 1/3	*		53					HE.			1. (2.11)	
1459-24 1 ³ 1	300	10,01										
1459-24 %	26	OUT.	33								2 34 1459-24 MS	106 Am
1101 11 1		10.00	9			Marie Control					V 2-1M5	1. 11 6
	1	10.11		017								
1 -25		10.12										
-27		10.23										
-28"	4	10.51					Y.					
-30"		10.30										
-3111	*	10.02										
-32"	1	10.13										
-3414	*	10.75						1.10				
-35 ¹⁵	1	10,51										
-3611	7	10.37					21/4					
-39"	~	10.31				8734						
-43"		10:32		ΠL								
-44"	-	10:30										
-4510	,	10.55										
~4621	-	10.11										
-472	-	1006										
-4823	-	10.23										
-58 ^M	2	10.36										
-5925	1	1009										
19A -604 020123-	ō.	O. O.	oup (cir	ele): T	X1005 TPF	тхт (	006 TPH	Screen Or	nty / Oth	er:		
	-30" -31" -32" -34" -35" -36" -37" -42" -42" -45" -46" -48" -59" -48" -59" -48" -59"	-30"31"32"32"34"35"36"39"43"44"45"48"48"59"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"38"3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									

NWDLS Report Package Page 510 of 1010

-51 -

n n l	OP117	Batch ID:	TPH-	_ Centri	fuge: 428-28453	Review:		Organic Extractions
Prep Doc:		0-23	Extraction Start Time: 11:33	T. T. W. J. C.	Shaken or Ext-Shake	Scale	8729965660	Comments:
-	olid BT	Analyt	e Group: PX1005 TPH en Only / Other:	TX1006 T	PH Extraction To Other:	echnique: ML	LE / MLSED	BGA3903.
Spike ID	Spike Amt.(n	Spil	c. Spike ID	Spike Amt(mL)	Spike Conc. (mcg/mL)			710767 6
\$1220166B	,250	7.00	2109692	,250	20,000			5 RIK 1-30-13 I 6 [3109646]
2301824	.010	10	84 41	-	-	- 200		Of46 1-30-23 TEE.010]

2.26.140			1 10	District	ID	Reagents	ID	Reagents	10
Reagents	ID	Reagents	ID	Reagents	In	N. Louisens		R9	
i i		RI	T. P. WO. C.S.	RS		,"		-	-
Pentane	1902994	Acetone	2210277	pH paper	_	RI		010	
2	1.120-11	H4	The Property of	RA	110 -		-	-	
	2108403	Metibi	2202541	DI-Water	DI-Water-01				
Sand	2108705	Meon	A 100 0 300 0	DI-Mater	154. 11.900.01				

	ost Extraction	on Co	ncentral	ion ^{PI}	6
Analyst/Date:	The Control			0	r/N/A
NEVAP Temp:			'C	Temp. ID	
N ₁ Blowdown					
Final Solvent:	n-Pentane	1	Other:		

Note: Continued on next page.

# **Sample Condition Checklist**



Α&	B JobID : <b>23021134</b>	Date Received: 02/10/2023 Time Received: 10:	00AM		
Clie	ent Name : <b>NWDLS</b>	1			
Ter	mperature : 2.3°C	Sample pH: NA			
The	ermometer ID : <b>IR4</b>	pH Paper ID : NA			
Pe	rservative :		1	1	
		Check Points	Yes	No	N/A
1.	Cooler Seal present and signed.			Х	
2.	Sample(s) in a cooler.		Х		
3.	If yes, ice in cooler.		Х		
4.	Sample(s) received with chain-of-custon	ody.	Х		
5.	C-O-C signed and dated.		Х		
6.	Sample(s) received with signed sample	e custody seal.		Х	
7.	Sample containers arrived intact. (If N	o comment)	Х		
8.	Water Soil Liquid Slu	Idge Solid Cassette Tube Bulk Badge Food Other			
9.	Samples were received in appropriate	container(s)	Х		
10.	Sample(s) were received with Proper p	preservative			Х
11.	All samples were tagged or labeled.		Х		
12.	Sample ID labels match C-O-C ID's.		Х		
13.	Bottle count on C-O-C matches bottles	found.	Х		
14.	Sample volume is sufficient for analyse	es requested.	Х		
15.	Samples were received with in the hole	d time.	Х		
16.	VOA vials completely filled.				Х
17.	Sample accepted.		Х		
18.	Has client been contacted about sub-o	ut			Х
Coı	mments : Include actions taken to resol	ve discrepancies/problem:			

Received by: EValdez Check in by/date: Jedralin / 02/10/2023

ab-s005-0321

Job ID: 23021792



10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

#### **Client Project Name:**

Report To: Client Name: NWDLS P.O.#.:

Attn: Deena Higginbotham Sample Collected By: Client Address: 130 S Trade Center Pkwy Date Collected:

City, State, Zip: Conroe, Texas, 77385

#### A&B Labs has analyzed the following samples...

Client Sample ID	Matrix	A&B Sample ID
BGB0765-MB	Solid	23021792.01
BGB0765-MDL	Solid	23021792.02
BGB0765-BS1	Solid	23021792.03
BGB0765-BSD1	Solid	23021792.04
BGB0765-MS	Solid	23021792.05
BGB0765-MSD	Solid	23021792.06
23A1459-46	Solid	23021792.07
23A1459-47	Solid	23021792.08
23A1459-55	Solid	23021792.09
BGB0983-BLK1	Solid	23021792.10
BGB0983-MRL1	Solid	23021792.11
BGB0983-BS1	Solid	23021792.12
BGB0983-BSD1	Solid	23021792.13
BGB0983-MS1	Solid	23021792.14
BGB0983-MSD1	Solid	23021792.15
23A3576-16	Solid	23021792.16
23A3576-23	Solid	23021792.17
23A3576-28	Solid	23021792.18

Released By: Amanda Shute

Title: Project Manager

Date: 2/28/2023



This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2022; Expires: 3/31/2023 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 02/17/2023 09:30

Report Number: RPT230228039

Job ID: 23021792



10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

#### A&B Labs has analyzed the following samples...

Client Sample ID	Matrix	A&B Sample ID
23A3576-35	Solid	23021792.19
23A3576-36	Solid	23021792.20
23A1459-54	Solid	23021792.21
23A1459-56	Solid	23021792.22
23A4543-01	Solid	23021792.23
23A4543-02	Solid	23021792.24
23A4543-03	Solid	23021792.25
BGB1373-BLK1	Water	23021792.26
BGB1373-MRL1	Water	23021792.27
BGB1373-BS1	Water	23021792.28
BGB1373-BSD1	Water	23021792.29
BGB1373-MS1	Water	23021792.30
BGB1373-MSD	Water	23021792.31
23A1459-02	Water	23021792.32
23A1459-03	Water	23021792.33
23A1459-04	Water	23021792.34
23A1459-05	Water	23021792.35
23A1459-49	Water	23021792.36
23A1459-50	Water	23021792.37
23A1459-62	Water	23021792.38
23A3576-02	Water	23021792.39
23A3576-04	Water	23021792.40
23A3576-06	Water	23021792.41
BGB1402-BLK	Solid	23021792.42
BGB1402-MRL1	Solid	23021792.43
BGB1402-BS1	Solid	23021792.44

Released By: Amanda Shute

Title: Project Manager

Date: 2/28/2023



This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2022; Expires: 3/31/2023 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 02/17/2023 09:30

Report Number: RPT230228039

Job ID: 23021792



10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

#### A&B Labs has analyzed the following samples...

Client Sample ID	Matrix	A&B Sample ID
BGB1402-BSD1	Solid	23021792.45
BGB1402-MS1	Solid	23021792.46
BGB1402-MSD1	Solid	23021792.47
23A1459-66	Solid	23021792.48

Released By: Amanda Shute

Title: Project Manager

Date: 2/28/2023



This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2022; Expires: 3/31/2023 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 02/17/2023 09:30

Report Number: RPT230228039

## **Laboratory Report: Case Narrative**



A&B Job ID: 23021792 Date: 02/28/23

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Date Received: 02/17/23

Collected By:

Extracts were provided and analyzed based on the attached bench sheets.

Batch ID: TPH-020923-01: The bench sheet is unclear. The original COC indicates that these samples are solids, but the

bench sheet indicates 3mL final volume. We calculated using 10g:3mL based on the bench sheet.

Batch ID: TPH-020823-03: The final volumes listed were used to calculate. Batch IDs: TPH-020723-03 and 020623-03: We calculated using 10g:10mL

Please feel free to reach out to me if you have any questions regarding this report.

Released By: Amanda Shute

Title: Project Manager

### LABORATORY TERM AND QUALIFIER DEFINITION REPORT



Job ID: 23021792 Date: 2/28/2023

## General Term Definition

Back-Wt	Back Weight	Post-Wt	Post Weight
BRL	Below Reporting Limit	ppm	parts per million
cfu	colony-forming units	Pre-Wt	Previous Weight
Conc.	Concentration	Q	Qualifier
D.F.	Dilution Factor	RegLimit	Regulatory Limit
Front-Wt	Front Weight	RPD	Relative Percent Difference
LCS	Laboratory Check Standard	RptLimit	Reporting Limit
LCSD	Laboratory Check Standard Duplicate	SDL	Sample Detection Limit
MS	Matrix Spike	surr	Surrogate
MSD	Matrix Spike Duplicate	Т	Time
MW	Molecular Weight	TNTC	Too numerous to count
J	Estimation. Below calibration range but above MDL	MQL	Minimum Quantitation Limit
Qualifier Defin	ition		
J	Estimation. Below calibration range but above MDL.		
S1	Surrogate recovery is above control limit. Results ma	ay be biased higl	h.
S2	Surrogate recovery is below control limit. Results ma	y be biased low.	
S6	Surrogate recovery is outside control limits due to ma	atrix effects.	
S8	Target compounds caused elevation of baseline. Su	rrogate may be t	piased high.



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected: BGB0765-MB

Job Sample ID:

23021792.01

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25			02/17/23 19:06	VMN
	>C12-C28	18.74	mg/Kg	1.00	7.35	25		J	02/17/23 19:06	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/17/23 19:06	VMN
	Total C6-C35	18.74	mg/Kg	1.00	6.20				02/17/23 19:06	VMN
	1-Chlorooctane(surr)	94.1	%	1.00		60-143			02/17/23 19:06	VMN
	Chlorooctadecane(surr)	83.4	%	1.00		60-150			02/17/23 19:06	VMN



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

BGB0765-MDL

Job Sample ID:

23021792.02

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25			02/17/23 19:37	VMN
	>C12-C28	8.43	mg/Kg	1.00	7.35	25		J	02/17/23 19:37	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/17/23 19:37	VMN
	Total C6-C35	8.43	mg/Kg	1.00	6.20				02/17/23 19:37	VMN
	1-Chlorooctane(surr)	96.4	%	1.00		60-143			02/17/23 19:37	VMN
	Chlorooctadecane(surr)	83	%	1.00		60-150			02/17/23 19:37	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

BGB0765-BS1

Job Sample ID: Sample Matrix

23021792.03 Solid

Time Collected: Other Information:

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst			
TX 1005	Total Petroleum Hydrocarbons											
	C6-C12	222.09	mg/Kg	1.00	8.94	25		02/17/23 20:10	VMN			
	>C12-C28	187.61	mg/Kg	1.00	7.35	25		02/17/23 20:10	VMN			
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/17/23 20:10	VMN			
	Total C6-C35	409.70	mg/Kg	1.00	6.20			02/17/23 20:10	VMN			
	1-Chlorooctane(surr)	94.2	%	1.00		60-143		02/17/23 20:10	VMN			
	Chlorooctadecane(surr)	84.1	%	1.00		60-150		02/17/23 20:10	VMN			



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected: BGB0765-BSD1

Job Sample ID: 23021792.04

Sample Matrix Solid

% Moisture

Other Information:

Time Collected:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst	
TX 1005	Total Petroleum Hydrocarbons										
	C6-C12	213.90	mg/Kg	1.00	8.94	25			02/17/23 20:43	VMN	
	>C12-C28	182.16	mg/Kg	1.00	7.35	25			02/17/23 20:43	VMN	
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/17/23 20:43	VMN	
	Total C6-C35	396.06	mg/Kg	1.00	6.20				02/17/23 20:43	VMN	
	1-Chlorooctane(surr)	89.5	%	1.00		60-143			02/17/23 20:43	VMN	
	Chlorooctadecane(surr)	85	%	1.00		60-150			02/17/23 20:43	VMN	



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected: BGB0765-MS

Job Sample ID:

23021792.05

Sample Matrix Solid

% Moisture

Other Information:

Time Collected:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S							
	C6-C12	197.42	mg/Kg	1.00	8.94	25		02/17/23 21:17	VMN
	>C12-C28	150.35	mg/Kg	1.00	7.35	25		02/17/23 21:17	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/17/23 21:17	VMN
	Total C6-C35	347.76	mg/Kg	1.00	6.20			02/17/23 21:17	VMN
	1-Chlorooctane(surr)	80.3	%	1.00		60-143		02/17/23 21:17	VMN
	Chlorooctadecane(surr)	71.6	%	1.00		60-150		02/17/23 21:17	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

BGB0765-MSD

Job Sample ID: 23021792.06

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst			
TX 1005	Total Petroleum Hydrocarbons											
	C6-C12	236.55	mg/Kg	1.00	8.94	25		02/17/23 21:48	VMN			
	>C12-C28	182.18	mg/Kg	1.00	7.35	25		02/17/23 21:48	VMN			
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/17/23 21:48	VMN			
	Total C6-C35	418.74	mg/Kg	1.00	6.20			02/17/23 21:48	VMN			
	1-Chlorooctane(surr)	95.2	%	1.00		60-143		02/17/23 21:48	VMN			
	Chlorooctadecane(surr)	74.2	%	1.00		60-150		02/17/23 21:48	VMN			



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

02/17/23 22:20 VMN

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

Time Collected:

Chlorooctadecane(surr)

66.7

%

23A1459-46

Job Sample ID:

23021792.07

Sample Matrix Solid

% Moisture

60-150

Other Informa	tion:										
Test Method	Parame	ter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Pe	etroleum Hydrocarbon	S								
	C6-C12		< 8.94	mg/Kg	1.00	8.94	25			02/17/23 22:20	VMN
	>C12-C	28	< 7.35	mg/Kg	1.00	7.35	25			02/17/23 22:20	VMN
	>C28-C	35	< 6.2	mg/Kg	1.00	6.20	25			02/17/23 22:20	VMN
	Total Co	6-C35	<6.2	mg/Kg	1.00	6.20				02/17/23 22:20	VMN
	1-Chlore	ooctane(surr)	75.5	%	1.00		60-143			02/17/23 22:20	VMN

1.00



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: 23
Date Collected:

23A1459-47

Job Sample ID: 23021792.08

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s							
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25		02/17/23 22:51	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/17/23 22:51	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/17/23 22:51	VMN
	Total C6-C35	<6.2	mg/Kg	1.00	6.20			02/17/23 22:51	VMN
	1-Chlorooctane(surr)	88.3	%	1.00		60-143		02/17/23 22:51	VMN
	Chlorooctadecane(surr)	79.2	%	1.00		60-150		02/17/23 22:51	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected: 23A1459-55

Job Sample ID:

23021792.09

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst		
TX 1005	Total Petroleum Hydrocarbons										
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25		02/18/23 00:23	VMN		
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/18/23 00:23	VMN		
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/18/23 00:23	VMN		
	Total C6-C35	<6.2	mg/Kg	1.00	6.20			02/18/23 00:23	VMN		
	1-Chlorooctane(surr)	96.3	%	1.00		60-143		02/18/23 00:23	VMN		
	Chlorooctadecane(surr)	78.5	%	1.00		60-150		02/18/23 00:23	VMN		



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

BGB0983-BLK1

Job Sample ID:

23021792.10

Sample Matrix Solid

% Moisture

Other Information:

Time Collected:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25		02/18/23 00:56	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/18/23 00:56	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/18/23 00:56	VMN
	Total C6-C35	<6.2	mg/Kg	1.00	6.20			02/18/23 00:56	VMN
	1-Chlorooctane(surr)	93.6	%	1.00		60-143		02/18/23 00:56	VMN
	Chlorooctadecane(surr)	79.7	%	1.00		60-150		02/18/23 00:56	VMN



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

BGB0983-MRL1

Job Sample ID:

23021792.11

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25		02/18/23 01:29	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/18/23 01:29	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/18/23 01:29	VMN
	Total C6-C35	<6.2	mg/Kg	1.00	6.20			02/18/23 01:29	VMN
	1-Chlorooctane(surr)	89.6	%	1.00		60-143		02/18/23 01:29	VMN
	Chlorooctadecane(surr)	79.1	%	1.00		60-150		02/18/23 01:29	VMN



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected: BGB0983-BS1

Job Sample ID:

23021792.12

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst			
TX 1005	Total Petroleum Hydrocarbons											
	C6-C12	220.46	mg/Kg	1.00	8.94	25		02/18/23 02:01	VMN			
	>C12-C28	184.73	mg/Kg	1.00	7.35	25		02/18/23 02:01	VMN			
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/18/23 02:01	VMN			
	Total C6-C35	405.19	mg/Kg	1.00	6.20			02/18/23 02:01	VMN			
	1-Chlorooctane(surr)	92.2	%	1.00		60-143		02/18/23 02:01	VMN			
	Chlorooctadecane(surr)	82	%	1.00		60-150		02/18/23 02:01	VMN			



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected: BGB0983-BSD1

Job Sample ID: 23

23021792.13

Sample Matrix % Moisture

Solid

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S							
	C6-C12	216.69	mg/Kg	1.00	8.94	25		02/18/23 02:34	VMN
	>C12-C28	173.07	mg/Kg	1.00	7.35	25		02/18/23 02:34	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/18/23 02:34	VMN
	Total C6-C35	389.76	mg/Kg	1.00	6.20			02/18/23 02:34	VMN
	1-Chlorooctane(surr)	91.1	%	1.00		60-143		02/18/23 02:34	VMN
	Chlorooctadecane(surr)	79.4	%	1.00		60-150		02/18/23 02:34	VMN



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

BGB0983-MS1

Job Sample ID:

23021792.14

Sample Matrix Solid

Time Collected: Other Information:

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit (	S	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	ıs								
	C6-C12	199.08	mg/Kg	1.00	8.94	25			02/18/23 03:06	VMN
	>C12-C28	120.85	mg/Kg	1.00	7.35	25			02/18/23 03:06	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/18/23 03:06	VMN
	Total C6-C35	319.93	mg/Kg	1.00	6.20				02/18/23 03:06	VMN
	1-Chlorooctane(surr)	70	%	1.00		60-143			02/18/23 03:06	VMN
	Chlorooctadecane(surr)	51	%	1.00		60-150	و	66	02/18/23 03:06	VMN



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected: BGB0983-MSD1

Job Sample ID:

23021792.15

Sample Matrix 9 Moisture

Solid

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S							
	C6-C12	224.64	mg/Kg	1.00	8.94	25		02/18/23 03:38	VMN
	>C12-C28	160.50	mg/Kg	1.00	7.35	25		02/18/23 03:38	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/18/23 03:38	VMN
	Total C6-C35	385.15	mg/Kg	1.00	6.20			02/18/23 03:38	VMN
	1-Chlorooctane(surr)	76.5	%	1.00		60-143		02/18/23 03:38	VMN
	Chlorooctadecane(surr)	54.5	%	1.00		60-150	S6	02/18/23 03:38	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

23A3576-16

Job Sample ID:

23021792.16

Attn: Deena Higginbotham

Sample Matrix Solid

% Moisture

Time Collected:
Other Information:

Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
Total Petroleum Hydrocarbon	s								
C6-C12	< 8.94	mg/Kg	1.00	8.94	25			02/18/23 04:10	VMN
>C12-C28	< 7.35	mg/Kg	1.00	7.35	25			02/18/23 04:10	VMN
>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/18/23 04:10	VMN
Total C6-C35	<6.2	mg/Kg	1.00	6.20				02/18/23 04:10	VMN
1-Chlorooctane(surr)	59.7	%	1.00		60-143		S6	02/18/23 04:10	VMN
Chlorooctadecane(surr)	48.3	%	1.00		60-150		S6	02/18/23 04:10	VMN
	Total Petroleum Hydrocarbon C6-C12 >C12-C28 >C28-C35 Total C6-C35 1-Chlorooctane(surr)	Total Petroleum Hydrocarbons         C6-C12       < 8.94							



Job ID: 23021792

Date 2/28/2023

Client Name:

NWDLS

Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

23A3576-23

Job Sample ID:

23021792.17

Sample Matrix Solid

Time Collected: Other Information:

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25			02/18/23 04:42	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25			02/18/23 04:42	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/18/23 04:42	VMN
	Total C6-C35	<6.2	mg/Kg	1.00	6.20				02/18/23 04:42	VMN
	1-Chlorooctane(surr)	53.6	%	1.00		60-143		S6	02/18/23 04:42	VMN
	Chlorooctadecane(surr)	56.2	%	1.00		60-150		S6	02/18/23 04:42	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected: 23A3576-28

Job Sample ID:

23021792.18

Sample Matrix Solid

oioturo

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst			
TX 1005	Total Petroleum Hydrocarbons	Total Petroleum Hydrocarbons											
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25			02/18/23 05:14	VMN			
	>C12-C28	10.25	mg/Kg	1.00	7.35	25		J	02/18/23 05:14	VMN			
	>C28-C35	10.58	mg/Kg	1.00	6.20	25		J	02/18/23 05:14	VMN			
	Total C6-C35	20.83	mg/Kg	1.00	6.20				02/18/23 05:14	VMN			
	1-Chlorooctane(surr)	55.8	%	1.00		60-143		S6	02/18/23 05:14	VMN			
	Chlorooctadecane(surr)	46.1	%	1.00		60-150		S6	02/18/23 05:14	VMN			



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

23A3576-35

Job Sample ID:

23021792.19

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	D	ate Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	ıs								
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25		0	2/18/23 05:46	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		0	2/18/23 05:46	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		0	2/18/23 05:46	VMN
	Total C6-C35	<6.2	mg/Kg	1.00	6.20			0	2/18/23 05:46	VMN
	1-Chlorooctane(surr)	81.7	%	1.00		60-143		0	2/18/23 05:46	VMN
	Chlorooctadecane(surr)	74.9	%	1.00		60-150		0	2/18/23 05:46	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

23A3576-36

Job Sample ID:

Attn: Deena Higginbotham

23021792.20 Sample Matrix

Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25			02/18/23 06:17	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25			02/18/23 06:17	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25			02/18/23 06:17	VMN
	Total C6-C35	<6.2	mg/Kg	1.00	6.20				02/18/23 06:17	VMN
	1-Chlorooctane(surr)	57.1	%	1.00		60-143		S6	02/18/23 06:17	VMN
	Chlorooctadecane(surr)	42.3	%	1.00		60-150		S6	02/18/23 06:17	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS

Project Name:

Client Sample ID:

23A1459-54

Job Sample ID:

Attn: Deena Higginbotham

23021792.21 Sample Matrix

Solid

% Moisture

Date Collected: Time Collected: Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	< 8.94	mg/Kg	1.00	8.94	25		02/18/23 06:49	VMN
	>C12-C28	< 7.35	mg/Kg	1.00	7.35	25		02/18/23 06:49	VMN
	>C28-C35	< 6.2	mg/Kg	1.00	6.20	25		02/18/23 06:49	VMN
	Total C6-C35	<6.2	mg/Kg	1.00	6.20			02/18/23 06:49	VMN
	1-Chlorooctane(surr)	87.8	%	1.00		60-143		02/18/23 06:49	VMN
	Chlorooctadecane(surr)	76.2	%	1.00		60-150		02/18/23 06:49	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

DF

1.00

1.00

1.00

1.00

1.00

1.00

**SDL** 

8.94

7.35

6.20

6.20

Project Name:

Client Sample ID: Date Collected: 23A1459-56

Parameter/Test Description

C6-C12

>C12-C28

>C28-C35

Total C6-C35

1-Chlorooctane(surr)

Chlorooctadecane(surr)

**Total Petroleum Hydrocarbons** 

Result

< 8.94

< 7.35

< 6.2

<6.2

82.9

76.7

Units

mg/Kg

mg/Kg

mg/Kg

mg/Kg

%

%

Job Sample ID:

23021792.22

Time Collected:
Other Information:

Test Method

TX 1005

Sample Matrix Solid

% Moisture

60-143

60-150

MQL	Reg Limit	Q	Date Time	Analyst
25			02/18/23 07:21	VMN
25			02/18/23 07:21	VMN
25			02/18/23 07:21	VMN

02/18/23 07:21

02/18/23 07:21

02/18/23 07:21

VMN

VMN

VMN

ab-q212-0321



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

23A4543-01

Job Sample ID:

23021792.23

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons									
	C6-C12	223.62	mg/Kg	1.00	8.94	25			02/18/23 07:52	VMN
	>C12-C28	3591.96	mg/Kg	20.00	147	25			02/20/23 14:11	VMN
	>C28-C35	7937.44	mg/Kg	20.00	124	25			02/20/23 14:11	VMN
	Total C6-C35	11753.02	mg/Kg	20.00	124				02/20/23 14:11	VMN
	1-Chlorooctane(surr)	119	%	1.00		60-143			02/18/23 07:52	VMN
	1-Chlorooctane(surr)	1115	%	20.00		60-143		S8	02/20/23 14:11	VMN
	Chlorooctadecane(surr)	41.7	%	1.00		60-150		S2	02/18/23 07:52	VMN
	Chlorooctadecane(surr)	439	%	20.00		60-150		S8	02/20/23 14:11	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

23A4543-02

Job Sample ID:

Attn: Deena Higginbotham

23021792.24 Sample Matrix

Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst	
TX 1005	Total Petroleum Hydrocarbons										
	C6-C12	251.89	mg/Kg	1.00	8.94	25			02/18/23 08:23	VMN	
	>C12-C28	4203.56	mg/Kg	20.00	147	25			02/20/23 14:44	VMN	
	>C28-C35	10445.04	mg/Kg	20.00	124	25			02/20/23 14:44	VMN	
	Total C6-C35	14900.49	mg/Kg	20.00	124				02/20/23 14:44	VMN	
	1-Chlorooctane(surr)	128	%	1.00		60-143			02/18/23 08:23	VMN	
	1-Chlorooctane(surr)	1230	%	20.00		60-143		S8	02/20/23 14:44	VMN	
	Chlorooctadecane(surr)	52	%	1.00		60-150		S2	02/18/23 08:23	VMN	
	Chlorooctadecane(surr)	594	%	20.00		60-150		S8	02/20/23 14:44	VMN	



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

23A4543-03

Job Sample ID:

23021792.25

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons									
	C6-C12	250.41	mg/Kg	1.00	8.94	25			02/18/23 08:55	VMN
	>C12-C28	3957.72	mg/Kg	20.00	147	25			02/20/23 15:18	VMN
	>C28-C35	10074.42	mg/Kg	20.00	124	25			02/20/23 15:18	VMN
	Total C6-C35	14282.54	mg/Kg	20.00	124				02/20/23 15:18	VMN
	1-Chlorooctane(surr)	126	%	1.00		60-143			02/18/23 08:55	VMN
	1-Chlorooctane(surr)	1139	%	20.00		60-143		S8	02/20/23 15:18	VMN
	Chlorooctadecane(surr)	44.7	%	1.00		60-150		S2	02/18/23 08:55	VMN
	Chlorooctadecane(surr)	510	%	20.00		60-150		S8	02/20/23 15:18	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

BGB1373-BLK1

Job Sample ID:

23021792.26

Sample Matrix

Water

% Moisture

Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
Total Petroleum Hydrocarbons									
C6-C12	< 0.659	mg/L	1.08	0.659	2.15			02/18/23 09:27	VMN
>C12-C28	< 0.691	mg/L	1.08	0.691	2.15			02/18/23 09:27	VMN
>C28-C35	0.813	mg/L	1.08	0.508	2.15		J	02/18/23 09:27	VMN
Total C6-C35	0.813	mg/L	1.08	0.508				02/18/23 09:27	VMN
1-Chlorooctane(surr)	120	%	1.08		70-125			02/18/23 09:27	VMN
Chlorooctadecane(surr)	93.8	%	1.08		70-125			02/18/23 09:27	VMN
(	Fotal Petroleum Hydrocarbons C6-C12 >C12-C28 >C28-C35 Fotal C6-C35 L-Chlorooctane(surr)	Total Petroleum Hydrocarbons         C6-C12       < 0.659	Total Petroleum Hydrocarbons	Total Petroleum Hydrocarbons           C6-C12         < 0.659					



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

BGB1373-MRL1

Job Sample ID:

23021792.27

Time Collected:
Other Information:

Sample Matrix Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5							
	C6-C12	< 0.677	mg/L	1.11	0.677	2.15		02/18/23 09:59	VMN
	>C12-C28	< 0.71	mg/L	1.11	0.710	2.15		02/18/23 09:59	VMN
	>C28-C35	< 0.522	mg/L	1.11	0.522	2.15		02/18/23 09:59	VMN
	Total C6-C35	<0.522	mg/L	1.11	0.522			02/18/23 09:59	VMN
	1-Chlorooctane(surr)	122	%	1.11		70-125		02/18/23 09:59	VMN
	Chlorooctadecane(surr)	101	%	1.11		70-125		02/18/23 09:59	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS

Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

BGB1373-BS1

Job Sample ID:

23021792.28

Sample Matrix

Water

Time Collected: Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	31.62	mg/L	1.11	0.677	2.15		02/18/23 10:31	VMN
	>C12-C28	29.47	mg/L	1.11	0.710	2.15		02/18/23 10:31	VMN
	>C28-C35	< 0.522	mg/L	1.11	0.522	2.15		02/18/23 10:31	VMN
	Total C6-C35	61.08	mg/L	1.11	0.522			02/18/23 10:31	VMN
	1-Chlorooctane(surr)	125	%	1.11		70-125		02/18/23 10:31	VMN
	Chlorooctadecane(surr)	105	%	1.11		70-125		02/18/23 10:31	VMN



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected: BGB1373-BSD1

Job Sample ID: Sample Matrix 23021792.29

% Moisture

Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	s							
	C6-C12	28.15	mg/L	1.08	0.659	2.15		02/18/23 12:09	VMN
	>C12-C28	26.88	mg/L	1.08	0.691	2.15		02/18/23 12:09	VMN
	>C28-C35	< 0.508	mg/L	1.08	0.508	2.15		02/18/23 12:09	VMN
	Total C6-C35	55.04	mg/L	1.08	0.508			02/18/23 12:09	VMN
	1-Chlorooctane(surr)	109	%	1.08		70-125		02/18/23 12:09	VMN
	Chlorooctadecane(surr)	93.3	%	1.08		70-125		02/18/23 12:09	VMN



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Time Collected:

Client Sample ID: Date Collected:

BGB1373-MS1

Job Sample ID:

23021792.30

Sample Matrix Water

Other Informa	tion:									
Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	25.83	mg/L	1.04	0.634	2.15			02/18/23 12:40	VMN
	>C12-C28	22.15	mg/L	1.04	0.666	2.15			02/18/23 12:40	VMN
	>C28-C35	< 0.489	mg/L	1.04	0.489	2.15			02/18/23 12:40	VMN
	Total C6-C35	47.98	mg/L	1.04	0.489				02/18/23 12:40	VMN
	1-Chlorooctane(surr)	97	%	1.04		70-125			02/18/23 12:40	VMN
	Chlorooctadecane(surr)	87.4	%	1.04		70-125			02/18/23 12:40	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected: BGB1373-MSD

Job Sample ID:

23021792.31

Sample Matrix

Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s							
	C6-C12	29.06	mg/L	1.04	0.634	2.15		02/18/23 13:12	VMN
	>C12-C28	25.28	mg/L	1.04	0.666	2.15		02/18/23 13:12	VMN
	>C28-C35	< 0.489	mg/L	1.04	0.489	2.15		02/18/23 13:12	VMN
	Total C6-C35	54.34	mg/L	1.04	0.489			02/18/23 13:12	VMN
	1-Chlorooctane(surr)	104	%	1.04		70-125		02/18/23 13:12	VMN
	Chlorooctadecane(surr)	90.9	%	1.04		70-125		02/18/23 13:12	VMN



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

23A1459-02

Job Sample ID:

23021792.32

Sample Matrix

Water

Time Collected:
Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.622	mg/L	1.02	0.622	2.15			02/18/23 13:43	VMN
	>C12-C28	0.66	mg/L	1.02	0.653	2.15		J	02/18/23 13:43	VMN
	>C28-C35	< 0.479	mg/L	1.02	0.479	2.15			02/18/23 13:43	VMN
	Total C6-C35	0.66	mg/L	1.02	0.479				02/18/23 13:43	VMN
	1-Chlorooctane(surr)	93.2	%	1.02		70-125			02/18/23 13:43	VMN
	Chlorooctadecane(surr)	81.9	%	1.02		70-125			02/18/23 13:43	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS

Attn: Deena Higginbotham

02/18/23 14:15

VMN

Project Name:

Client Sample ID: Date Collected:

23A1459-03

Chlorooctadecane(surr)

173

%

Job Sample ID:

23021792.33

Sample Matrix

70-125

Water

S1

Time Collected: Other Information:

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.634	mg/L	1.04	0.634	2.15			02/18/23 14:15	VMN
	>C12-C28	0.976	mg/L	1.04	0.666	2.15		J	02/18/23 14:15	VMN
	>C28-C35	< 0.489	mg/L	1.04	0.489	2.15			02/18/23 14:15	VMN
	Total C6-C35	0.976	mg/L	1.04	0.489				02/18/23 14:15	VMN
	1-Chlorooctane(surr)	165	%	1.04		70-125		S1	02/18/23 14:15	VMN

1.04



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected: 23A1459-04

Job Sample ID:

23021792.34

Time Collected:

Sample Matrix % Moisture

Water

Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	•								
	C6-C12	< 0.628	mg/L	1.03	0.628	2.15			02/18/23 14:47	VMN
	>C12-C28	< 0.659	mg/L	1.03	0.659	2.15			02/18/23 14:47	VMN
	>C28-C35	< 0.484	mg/L	1.03	0.484	2.15			02/18/23 14:47	VMN
	Total C6-C35	<0.484	mg/L	1.03	0.484				02/18/23 14:47	VMN
	1-Chlorooctane(surr)	72.8	%	1.03		70-125			02/18/23 14:47	VMN
	Chlorooctadecane(surr)	87.9	%	1.03		70-125			02/18/23 14:47	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS

Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

23A1459-05

Job Sample ID:

23021792.35

Sample Matrix

Water

Time Collected: Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5							
	C6-C12	< 0.634	mg/L	1.04	0.634	2.15		02/18/23 15:19	VMN
	>C12-C28	< 0.666	mg/L	1.04	0.666	2.15		02/18/23 15:19	VMN
	>C28-C35	< 0.489	mg/L	1.04	0.489	2.15		02/18/23 15:19	VMN
	Total C6-C35	<0.489	mg/L	1.04	0.489			02/18/23 15:19	VMN
	1-Chlorooctane(surr)	85.4	%	1.04		70-125		02/18/23 15:19	VMN
	Chlorooctadecane(surr)	89.8	%	1.04		70-125		02/18/23 15:19	VMN



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

02/18/23 15:51

02/18/23 15:51

02/18/23 15:51

VMN

VMN

VMN

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected: 23A1459-49

Total C6-C35

1-Chlorooctane(surr)

Chlorooctadecane(surr)

Job Sample ID:

23021792.36

Sample Matrix % Moisture

70-125

70-125

Water

Time Collected:
Other Information:

Test Method Reg Limit Q Parameter/Test Description Result Units DF **SDL** MQL Date Time Analyst TX 1005 **Total Petroleum Hydrocarbons** C6-C12 0.628 2.15 < 0.628 mg/L 1.03 02/18/23 15:51 VMN >C12-C28 < 0.659 mg/L 1.03 0.659 2.15 02/18/23 15:51 VMN >C28-C35 < 0.484 mg/L 1.03 0.484 2.15 02/18/23 15:51 VMN

0.484

1.03

1.03

1.03

< 0.484

95

83.9

mg/L

%

%



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

23A1459-50

Job Sample ID: Sample Matrix

23021792.37 Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.622	mg/L	1.02	0.622	2.15			02/18/23 16:23	VMN
	>C12-C28	< 0.653	mg/L	1.02	0.653	2.15			02/18/23 16:23	VMN
	>C28-C35	1.96	mg/L	1.02	0.479	2.15		J	02/18/23 16:23	VMN
	Total C6-C35	1.96	mg/L	1.02	0.479				02/18/23 16:23	VMN
	1-Chlorooctane(surr)	82.7	%	1.02		70-125			02/18/23 16:23	VMN
	Chlorooctadecane(surr)	88.6	%	1.02		70-125			02/18/23 16:23	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

23A1459-62

Job Sample ID:

23021792.38

Sample Matrix

Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	6								
	C6-C12	< 0.634	mg/L	1.04	0.634	2.15			02/18/23 16:55	VMN
	>C12-C28	< 0.666	mg/L	1.04	0.666	2.15			02/18/23 16:55	VMN
	>C28-C35	1.78	mg/L	1.04	0.489	2.15		J	02/18/23 16:55	VMN
	Total C6-C35	1.78	mg/L	1.04	0.489				02/18/23 16:55	VMN
	1-Chlorooctane(surr)	84.5	%	1.04		70-125			02/18/23 16:55	VMN
	Chlorooctadecane(surr)	87.9	%	1.04		70-125			02/18/23 16:55	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected: 23A3576-02

Job Sample ID:

% Moisture

23021792.39

Sample Matrix

Water

Other Information:

Time Collected:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.647	mg/L	1.06	0.647	2.15			02/18/23 17:27	VMN
	>C12-C28	< 0.678	mg/L	1.06	0.678	2.15			02/18/23 17:27	VMN
	>C28-C35	0.844	mg/L	1.06	0.498	2.15		J	02/18/23 17:27	VMN
	Total C6-C35	0.844	mg/L	1.06	0.498				02/18/23 17:27	VMN
	1-Chlorooctane(surr)	76	%	1.06		70-125			02/18/23 17:27	VMN
	Chlorooctadecane(surr)	89.8	%	1.06		70-125			02/18/23 17:27	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS

Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

23A3576-04

Job Sample ID:

23021792.40

Time Collected:

Sample Matrix

Water

Other	Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.653	mg/L	1.07	0.653	2.15			02/18/23 17:59	VMN
	>C12-C28	< 0.685	mg/L	1.07	0.685	2.15			02/18/23 17:59	VMN
	>C28-C35	0.653	mg/L	1.07	0.503	2.15		J	02/18/23 17:59	VMN
	Total C6-C35	0.653	mg/L	1.07	0.503				02/18/23 17:59	VMN
	1-Chlorooctane(surr)	91.5	%	1.07		70-125			02/18/23 17:59	VMN
	Chlorooctadecane(surr)	85.9	%	1.07		70-125			02/18/23 17:59	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected: 23A3576-06

Job Sample ID:

23021792.41

Sample Matrix

Water

Time Collected:

Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.653	mg/L	1.07	0.653	2.15			02/18/23 18:30	VMN
	>C12-C28	< 0.685	mg/L	1.07	0.685	2.15			02/18/23 18:30	VMN
	>C28-C35	0.548	mg/L	1.07	0.503	2.15		J	02/18/23 18:30	VMN
	Total C6-C35	0.548	mg/L	1.07	0.503				02/18/23 18:30	VMN
	1-Chlorooctane(surr)	92.1	%	1.07		70-125			02/18/23 18:30	VMN
	Chlorooctadecane(surr)	88.1	%	1.07		70-125			02/18/23 18:30	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS

Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

BGB1402-BLK

Job Sample ID:

23021792.42

Sample Matrix

Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S							
	C6-C12	< 2.68	mg/Kg	0.30	2.68	25		02/18/23 19:02	VMN
	>C12-C28	< 2.21	mg/Kg	0.30	2.21	25		02/18/23 19:02	VMN
	>C28-C35	< 1.86	mg/Kg	0.30	1.86	25		02/18/23 19:02	VMN
	Total C6-C35	<1.86	mg/Kg	0.30	1.86			02/18/23 19:02	VMN
	1-Chlorooctane(surr)	21.8	%	0.30		60-143	S2	02/18/23 19:02	VMN
	Chlorooctadecane(surr)	23.4	%	0.30		60-150	S2	02/18/23 19:02	VMN



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected:

BGB1402-MRL1

Job Sample ID:

23021792.43

Sample Matrix % Moisture

Solid

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	s								
	C6-C12	< 2.68	mg/Kg	0.30	2.68	25			02/18/23 19:34	VMN
	>C12-C28	< 2.21	mg/Kg	0.30	2.21	25			02/18/23 19:34	VMN
	>C28-C35	< 1.86	mg/Kg	0.30	1.86	25			02/18/23 19:34	VMN
	Total C6-C35	<1.86	mg/Kg	0.30	1.86				02/18/23 19:34	VMN
	1-Chlorooctane(surr)	18.8	%	0.30		60-143		S2	02/18/23 19:34	VMN
	Chlorooctadecane(surr)	23.3	%	0.30		60-150		S2	02/18/23 19:34	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

BGB1402-BS1

Job Sample ID:

23021792.44

Sample Matrix So

Solid

Time Collected:

Other	Information:	

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit C	)	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	69.16	mg/Kg	0.30	2.68	25			02/18/23 20:06	VMN
	>C12-C28	54.73	mg/Kg	0.30	2.21	25			02/18/23 20:06	VMN
	>C28-C35	< 1.86	mg/Kg	0.30	1.86	25			02/18/23 20:06	VMN
	Total C6-C35	123.89	mg/Kg	0.30	1.86				02/18/23 20:06	VMN
	1-Chlorooctane(surr)	30.3	%	0.30		60-143	S	52	02/18/23 20:06	VMN
	Chlorooctadecane(surr)	27.5	%	0.30		60-150	9	52	02/18/23 20:06	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected:

BGB1402-BSD1

Job Sample ID: 23021792.45

Sample Matrix

Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	<u>)</u>	Date Time	Analyst		
TX 1005	Total Petroleum Hydrocarbons											
	C6-C12	48.40	mg/Kg	0.30	2.68	25			02/18/23 20:37	VMN		
	>C12-C28	47.47	mg/Kg	0.30	2.21	25			02/18/23 20:37	VMN		
	>C28-C35	< 1.86	mg/Kg	0.30	1.86	25			02/18/23 20:37	VMN		
	Total C6-C35	95.87	mg/Kg	0.30	1.86				02/18/23 20:37	VMN		
	1-Chlorooctane(surr)	22.4	%	0.30		60-143	S	2	02/18/23 20:37	VMN		
	Chlorooctadecane(surr)	30.4	%	0.30		60-150	S	2	02/18/23 20:37	VMN		



Job ID: 23021792

Date 2/28/2023

Attn: Deena Higginbotham

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected: BGB1402-MS1

Job Sample ID:

23021792.46

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	63.19	mg/Kg	0.30	2.68	25		02/18/23 21:09	VMN
	>C12-C28	54.75	mg/Kg	0.30	2.21	25		02/18/23 21:09	VMN
	>C28-C35	< 1.86	mg/Kg	0.30	1.86	25		02/18/23 21:09	VMN
	Total C6-C35	117.95	mg/Kg	0.30	1.86			02/18/23 21:09	VMN
	1-Chlorooctane(surr)	29.1	%	0.30		60-143	S2	02/18/23 21:09	VMN
	Chlorooctadecane(surr)	30.4	%	0.30		60-150	S2	02/18/23 21:09	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS

Project Name:

Client Sample ID: Date Collected: BGB1402-MSD1

Job Sample ID:

Attn: Deena Higginbotham

Sample Matrix

Solid

23021792.47

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	51.95	mg/Kg	0.30	2.68	25			02/18/23 21:41	VMN
	>C12-C28	52.42	mg/Kg	0.30	2.21	25			02/18/23 21:41	VMN
	>C28-C35	< 1.86	mg/Kg	0.30	1.86	25			02/18/23 21:41	VMN
	Total C6-C35	104.37	mg/Kg	0.30	1.86				02/18/23 21:41	VMN
	1-Chlorooctane(surr)	23.5	%	0.30		60-143		S2	02/18/23 21:41	VMN
	Chlorooctadecane(surr)	33	%	0.30		60-150		S2	02/18/23 21:41	VMN



Job ID: 23021792

Date 2/28/2023

Client Name: NWDLS Attn: Deena Higginbotham

Project Name:

Client Sample ID: Date Collected: 23A1459-66

Job Sample ID:

23021792.48

Sample Matrix Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	< 2.68	mg/Kg	0.30	2.68	25		02/18/23 22:13	VMN
	>C12-C28	< 2.21	mg/Kg	0.30	2.21	25		02/18/23 22:13	VMN
	>C28-C35	< 1.86	mg/Kg	0.30	1.86	25		02/18/23 22:13	VMN
	Total C6-C35	<1.86	mg/Kg	0.30	1.86			02/18/23 22:13	VMN
	1-Chlorooctane(surr)	35.1	%	0.30		60-143	S2	02/18/23 22:13	VMN
	Chlorooctadecane(surr)	29.3	%	0.30		60-150	S2	02/18/23 22:13	VMN

#### QUALITY CONTROL CERTIFICATE



Analysis: Total Petroleum Hydrocarbons Method: TX 1005 Reporting Units: mg/Kg

QC Batch ID: Qb230217150 Created Date: 02/17/23 Created By: VNair

 $\textbf{Samples in This QC Batch} \ : \quad 23021792.01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20$ 

Sample Preparation: PB23021753 Prep Method: TX 1005 Prep Date: 02/17/23 13:01 Prep By: VRodriguez

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
C6-C12	TPH-1005-1	< MDL	mg/Kg	1.00	25	8.94	
>C12-C28	TPH-1005-2	< MDL	mg/Kg	1.00	25	7.35	
>C28-C35	TPH-1005-4	< MDL	mg/Kg	1.00	25	6.20	
Total C6-C35		< MDL	mg/Kg	1.00		6.20	
Chlorooctadecane(surr)	3386-33-2	103	%	1.00			
1-Chlorooctane(surr)	111-85-3	128	%	1.00			

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	500	554	111	500	532	106	4.1	20	75-125	
>C12-C28	500	521	104	500	518	104	0.5	20	75-125	
>C28-C35	500	530	106	500	537	107	1.3	20	75-125	

#### QUALITY CONTROL CERTIFICATE



Analysis : Total Petroleum Hydrocarbons Method : TX 1005 Reporting Units : mg/Kg

QC Batch ID: Qb230217151 Created Date: 02/17/23 Created By: VNair

**Samples in This QC Batch:** 23021792.21,22,23,24,25,42,43,44,45,46,47,48

Sample Preparation: PB23021754 Prep Method: TX 1005 Prep Date: 02/17/23 13:45 Prep By: VRodriguez

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
C6-C12	TPH-1005-1	< MDL	mg/Kg	1.00	25	8.94	
>C12-C28	TPH-1005-2	< MDL	mg/Kg	1.00	25	7.35	
>C28-C35	TPH-1005-4	< MDL	mg/Kg	1.00	25	6.20	
Total C6-C35		< MDL	mg/Kg	1.00		6.20	
Chlorooctadecane(surr)	3386-33-2	113	%	1.00			
1-Chlorooctane(surr)	111-85-3	141	%	1.00			

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	500	431	86.2	500	484	96.8	11.5	20	75-125	
>C12-C28	500	446	89.2	500	471	94.3	5.5	20	75-125	
>C28-C35	500	511	102	500	508	102	0.6	20	75-125	

#### QUALITY CONTROL CERTIFICATE



Analysis : Total Petroleum Hydrocarbons Method : TX 1005 Reporting Units : mg/L

Sample Preparation: PB23021749 Prep Method: TX 1005 Prep Date: 02/17/23 14:00 Prep By: VRodriguez

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
C6-C12	TPH-1005-1	< MDL	mg/L	1.00	2.15	0.61	
>C12-C28	TPH-1005-2	< MDL	mg/L	1.00	2.15	0.64	
>C28-C35	TPH-1005-4	< MDL	mg/L	1.00	2.15	0.47	
Total C6-C35		< MDL	mg/L	1.00		0.47	
Chlorooctadecane(surr)	3386-33-2	92.7	%	1.00			
1-Chlorooctane(surr)	111-85-3	114	%	1.00			

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	43	44.4	103	43	42.8	99.5	3.6	20	75-125	
>C12-C28	43	43.4	101	43	40.6	94.5	6.7	20	75-125	
>C28-C35	43	47.5	110	43	44.7	104	6.1	20	75-125	

Prep Doc	QP117	Bauch ID:	TPH-020623-03	Centri	ture 44	3238-7	Review.	05 02-16-23	Organic Extractions
Extraction	ALK DAG		Extraction 15:09	41-4	Shaken or (	71461	Scale ID:	8387765245	Comments:
	and BT /	Analyte	Group: (TX1005 TPH) Only / Other:	F TX1006 T	PH Extr	roction Teel er	inhque: MI	TE   MISE!	BEBUIE
Spike ID	Spike Amt.(ml		Spike ID	Spike Aust.(ml.)	Spike Conc. (mrg/m	5			
"2201668	3 .250		D TPH SEE	,250	20,000				
2301827	he .	1000	34	-	-			-	

			1 100	Marrate	m	Responts	- 10	Reagents	ID
Reagents	ID	Reagents	10	Heagents.	10	R2	- 10	lin .	
n)	224022/	10	2210277	pli yepri	-	-	_	-	-
n-Pentass	2302226	Acres	- Walney I I	Ma.		311		9.9	
Sind	208702	MeDH	2210712	D)-Witter	DI-Water-01	-	_	-	

	Post Extractio	n Ca	ecentral	ben"	1
Analyst/Date:				100	N/A
NEVA! Temp			π	Temp. ID	
N: Blowdown					
Final Solvent:	n-Pentane	1	Other:		

Note: Continued on next page.



Vui to	Sample ID	No- estruction	Amt. Extracted (g / mL)	Spk #	Initial pH	Final Vol. (ml.)**	TX1006	Fraction #1 initial vol.(mL)	Fraction #1 final vol.(ml.)**	Fraction #2 initial vol.(mL)	Fraction #2 final vol.(inL) P2	Change/Other Chups, etc.
n)/A	EGBONOS- HB		10.08	51	10/A	10		Ola	N/A	PLA	NA	
1	Hộc		10.10	53	1	1				- 1		
	851		10.06	1 3								4
	8001		10.06	3					1-1			
	NS	1	10.24	25								23A1459-46HS
	↓ KŠP		10.06	33							-/-	23A1459-46HSD
	23A1489-46	/	10.28									P- 23A1459-46
-	-47 *	1	10,17					1		15		
1	J -55"			V	V	V		V	1	V	Y	
			10.8									
	= Ar;						13-4					
	in the		11-11									
	100											
	.00											
	Ü											
				1								
	- 6											
	-0	2										
	-19		/									
	- 2	/									//	
	1										11 1	
	13											
	21											
-/	28											
-/	- 10			-					-		1	CST 02-16-23

Baich ID: TPH 020623-03 Analyte Group (circle): (X1005 TPH / TX1006 TPH / Screen Only / Other:

Prep Doc	DP117	Batck (D)	TP11-020123-0	3 Centri	10gc 447	2347	Review:	CX 02/1023	Organic Extractions
Extraction Analyst/Date:	Cotozio	1/23	Extraction   100		Shaken er 07	200	Scale ID:	0929969da	Comments:
	olle / BT /	Analyte / Serven	Group: X1005 TFR Only / Other:	➤ TX1906 TI	Pfl Extra Other	ction Tec	holque Mi	LE (MISE)	BGB0983
Spike ID	Spike Amf.(ml.	Spike Conc. (meg/m)	Spike ID	Spike Amt(mL)	Spike Conc. (meg/ml.				
* 2212742	. 250	18,000	2205642	,250	2000	0			
2301827	.015	2,000	54						

Reagents	10	Reagents	ID.	Reagents	1D	Respents	ID	Reagents	10
E)		10.5		100		B1		977	
n-Portine	2302226	April	2210277	pH paper					
H3		64	the state of the s	1 804		10		and.	
Special	2108703	Medit	2202540	DI-Water	DJ-Water-01				

- 1	Post Extractio	ın Co	ncentra	tion ^{P1}	-
Analyst/Date:	700			0	r (N)
NEVAP Temp:			T	Temp.	
Na fillendown					
Final Solvent	u-Pentane	1	Other:		

Note: Continued on next page.

Vario	Sample 1D	Re- catraction	Amt. Extracted (g / ml.)	Spk #	Initial pli	Final Vol. (ml.) ^{Pl}	TX1006	Fraction #1 initial vol.(m1.)	Fraction #1 final yol.(mL) ^{P1}	Fraction #2 initial vol.(mL)	Fraction #1 final vol.(mL) P2	Comments/Dilations/ Reagent Change/Other Claups, etc.
uit.	BGBG983 BLK		10.13	Ві	nla	10.0						
SE	-MRL		10.08	150								
28	-861		10.08	53								
3.0	-860)		10.13									
138	-MRI,		10,00								1	
92	-MSDI	100	1	1								
69	23A3576-16"		10.12									
18	-23		10.45									
78	-28		10,43				1			1		
NP:	-35"		10.07									
WY	1 -36"		10.45									
919	23A1459-54"		1065				The state of					
Dp.	1 -56"		10.23						1			
259	2394543-01"		10.15									
2/18	-02"		10.40			$\perp$						
SE	¥ -03"		10.39	1	1	4						
-												
									_		_	
	19								-		-	
	9											
	-iy			-								
	11	-										
	n					1	-					
	11											- 11.04
	- 1)	-									-0	5 02.1623

Batch ID: TPH O2013 -03 Analyte Group (circle): TX1005 TPH / TX1006 TPH / Screen Only / Other:

Prep Doc.	09117	Batch (ID:	TPH-020	823-00	3 Cmm	digr 4	1323P-7	Review.	CST 02-110-23	Organic Extractions
Extraction Analyst/Date:	CUTOZ	08/23	Extraction Start Time	1252		Shaken of	(T)40D	Scale ID:	8929965lda0	Comments:
Matrix: (Ap) / Saline / CW / N	Solid BT on-Au DW		Group: (1)	K1005 TPH	TX1006 T	PH Ext	traction Tech her:	nique (MI	LD/ MLSE/	BGB1373
Spike ID	Spike Amt(m	5.000c	51	ilie ID	Spike Amt.(mL)	Spike Cente (meg/n	c			
"2212742	.100	10,00	00 230	1827	.003	2,00	00			
1205642	.100	20,00	0	100						

Reagents	ID ID	Resents	1D	Respents	10	Reagents	ID	Reagenta	ID
11	1302216	All	2210277	pil paper	2209804	87		**	
n-Pentatos #2	- LUCCO	Azenne:	-	Bil	The state of the s	M		810	
Sand	_	MeOH	2202540	DI-Water	DI-Water-01				

	Post Extraction	a Ca	ncentrat	ion ^{Pl}	-
Analyst/Date:	17				r (N/A)
NEVAP Temp:			°C	Temp.	
N: Blowdown					
Final Solvent:	n-Pentane	7	Other		

Note: Continued on next page.

Vial ID	Sample ID	Re- estrection	Amt. Extracted (g / ml.)	Spk #	Initial pH	Final Val. (mL) ^{Fr}	TX1006	Fraction #1 initial vol.(ml.)	Fraction #1 final vol.(mL) ^{p1}	Fraction #2 initial vol.(ml.)	Fraction #2 final vol.(mL) P2	Comments/Dilutions/ Reagent Change/Other Chaps, etc.
DA-	86981373 -BLIN		32.31	Sı	~6	3.0						
7/4	-MRL		31.56	53								
10	-851		31.63	Sa				,				
in:	-850		32.42									
795	-M51		33.80		~1				100			
0	✓ -M50		33.53	1								
4)	2341459-02		34.40		9-		-					
T.	-03 "		33.63	-								
40	-04 *		34.00				1					
50	-05 "		33.68							)		
P	-49 "		34.11									
7p	-50 "		34.21									
PP.	-62 "		33.52								2 -	
90	23A3576-02 "		32.99					-				
UP	-04"		32.73									
(0)	V -06"		32.69		1					1		
_	11	-										
	- fa	7					1					
	U		-									
	1									-		
	11											
(	.11						/					CX 02.16.2
	-	5	-									co. 60. co.

Prep Doc.	OP117	Barch ID:	TPH 020923-0	Ol Cent	muge 4432	29.7 Review	CUT 07,1623	Organic Extractions
Entraction Analyst/Dine:	COT NO	R/23	Extraction 1405	The second secon	Shaken of 671	Carle	8929965666	Comments:
	olid BT /	Analyte	Group: TX1005 TP	Dr 1X10061	PH Extract Other:	ion Technique:	MLLE / MLSE	BG1B1402
Spike LD	Spike Amt(m)		Spike (1)	Spike Amt.(ml.)	Spike Conc. (oreg/ml.)			0,0,0
*2212742	. 250	10,00	0 2205642	.250	20,000			
2301827		- 0	5 "	1 1 1 1 1 1				

Reagents	ID	Reagents	10	Reagents	10)	Reagents	1D	Rangents	10
#II-	-			105		87		.69	
a-Persone	2302226	Acetime	2210277	pl1 pager	_				
61	2108703	94	2202540		Service of the	RS.		910	
Sed	4100 103	MeCRE	200040	Df-Water	Df-Water-01	A			

	Post Extractio	su Co	ocentral	tion ^{F1}	-20
Analyst/Dute					(N/A)
NEVAP Temp			~C	Temp. (D	
N2 Blowdown					
Final Solvent:	n-Pentanc	1	Other		_

Note: Continued on next page.

Vial ID	Sample ID	Re- estraction	Amt. Extracted (g /mL)	Spk.	Initial pH	Vol. (mL)P1	TX1906	fraction of initial vol.(mL)	#1 final vol.(mL)**	fraction #2 initial vol.(mL)	#2 final vol.(mL) P2	Change/Other Chups, etc.
2-A	89B1402-8X		10.12	Sı	n/a	3.0						
130	-MI		10.01	52	i			1				
V A	-861		10.09	53								
SA	-850V		10.04								1	
Ver-	-MSI		10.39									
(7 _B	V -M601		10.02									
110	2391459-66			44	1	1						
	1		1									-
		1		3.3								
	in in									-		
	-/1											
	я											
		1								-		
	14				/							
				/								
	19		/									
	-0	1					1					
	- 0									-		
	/"											
	/ *											
	21											
	7 11			16								
1	, n											
1	36				-							C55 62.46
1	1											02.02

# **Sample Condition Checklist**



A&I	3 JobID : <b>23021792</b>	Time Received : 9:3	OAM							
Clie	ent Name : <b>NWDLS</b>	1								
Ten	nperature : 1.0°C	Sample pH: NA								
The	ermometer ID : <b>IR4</b>	pH Paper ID: <b>NA</b>								
Pe	rservative :									
		Check Points		Yes	No	N/A				
1.	Cooler Seal present and signed.				Х					
2.	Sample(s) in a cooler.			Х						
3.	If yes, ice in cooler.			Χ						
4.	Sample(s) received with chain-of-custo	ody.		Χ						
5.	C-O-C signed and dated.			Χ						
6.	Sample(s) received with signed sample	custody seal.			Χ					
7.	Sample containers arrived intact. (If No comment)									
8.	Water Soil Liquid Slu Matrix:									
9.	Samples were received in appropriate of	container(s)		Χ						
10.	Sample(s) were received with Proper p	reservative				Х				
11.	All samples were tagged or labeled.			Χ						
12.	Sample ID labels match C-O-C ID's.			Χ						
13.	Bottle count on C-O-C matches bottles	found.		Χ						
14.	Sample volume is sufficient for analyse	s requested.		Χ						
15.	Samples were received with in the hold	l time.		Χ						
16.	VOA vials completely filled.					Х				
17.	Sample accepted.			Χ						
18.	Has client been contacted about sub-or	ıt				Х				
Cor	mmonts i Include actions taken to resolu	vo diseronancios/problem								
	nments: Include actions taken to resolution ples came in already extracted. ~JE 02/17/									
	. , , , , , , , , , , , , , , , , , , ,									

Check in by/date: Jedralin / 02/17/2023 Received by: Jedralin

ab-s005-0321

NWDLS Report Package Page 577 of 1010

# **Laboratory Analysis Report**

Job ID: 23022553



10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

# **Client Project Name:**

Report To: Client Name: NWDLS P.O.#.:

Attn: Monica O. Martin Sample Collected By:

Client Address: 130 S Trade Center Pkwy Date Collected: 02/01/23 - 02/10/23

City, State, Zip: Conroe, Texas, 77385

#### A&B Labs has analyzed the following samples...

Client Sample ID	Matrix	A&B Sample ID
BGB2106-BLK1	Water	23022553.01
BGB2106-MRL1	Water	23022553.02
BGB2106-BS1	Water	23022553.03
BGB2106-BSD1	Water	23022553.04
BGB2106-MS1	Water	23022553.05
BGB2106-MSD1	Water	23022553.06
23A3576-07	Water	23022553.07
23A3576-08	Water	23022553.08
23A3576-09	Water	23022553.09
23A3576-10	Water	23022553.10
23A3576-11	Water	23022553.11
23A1459-07	Water	23022553.12
23A1459-08	Water	23022553.13
23A1459-09	Water	23022553.14
23A1459-10	Water	23022553.15
23A1459-11	Water	23022553.16
23A1459-12	Water	23022553.17
23A1459-13	Water	23022553.18

Released By: Amanda Shute
Title: Project Manager

Date: 3/3/2023



This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2022; Expires: 3/31/2023 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 02/24/2023 11:35

Report Number: RPT230303103

Total Number of Pages:

Job ID: 23022553



10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

#### A&B Labs has analyzed the following samples...

Client Sample ID	Matrix	A&B Sample ID
23A1459-14	Water	23022553.19
23A1459-51	Water	23022553.20
23A1459-52	Water	23022553.21
23A1459-64	Water	23022553.22
23A1459-65	Water	23022553.23
BGA3905-BLK1	Water	23022553.24
BGB0310-BLK1	Water	23022553.25
BGB2204-BLK	Water	23022553.26
BGB2204-MRL1	Water	23022553.27
BGB2204-BS1	Water	23022553.28
BGB2204-BSD1	Water	23022553.29
BGB2204-MS1	Water	23022553.30
BGB2204-MSD1	Water	23022553.31
23B1097-01	Water	23022553.32
23B1047-02	Water	23022553.33
23B1047-05	Water	23022553.34
23B1047-06	Water	23022553.35
23B1331-02	Water	23022553.36
23B1331-04	Water	23022553.37
23A4079-02	Water	23022553.38
23A4079-03	Water	23022553.39
23A4079-04	Water	23022553.40
23A4079-05	Water	23022553.41
23A4079-06	Water	23022553.42
23A4079-07	Water	23022553.43
23A4079-08	Water	23022553.44

Released By: Amanda Shute Title: Project Manager

Date: 3/3/2023



This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2022; Expires: 3/31/2023 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 02/24/2023 11:35

Report Number: RPT230303103

# **Laboratory Analysis Report**

Job ID: 23022553



10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

#### A&B Labs has analyzed the following samples...

Client Sample ID	Matrix	A&B Sample ID
23A4079-09	Water	23022553.45
BGB1372-BLK	Water	23022553.46
	Water	23022553.47

Released By: Amanda Shute

Title: Project Manager

Date: 3/3/2023



This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2022; Expires: 3/31/2023 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 02/24/2023 11:35

Report Number: RPT230303103

Total Number of Pages: 80

# **Laboratory Report: Case Narrative**



A&B Job ID: 23022553 Date: 03/03/23

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Date Received: 02/24/23

Collected By:

Extracts were provided and analyzed based on the attached bench sheets.

All samples were calculated using default 35mL:3mL

Please feel free to reach out to me if you have any questions regarding this report.

Released By: Amanda Shute

Title: Project Manager

#### LABORATORY TERM AND QUALIFIER DEFINITION REPORT



Job ID: 23022553 Date: 3/3/2023

## General Term Definition

 Back-Wt
 Back Weight
 Post-Wt
 Post Weight

 BRL
 Below Reporting Limit
 ppm
 parts per million

 cfu
 colony-forming units
 Pre-Wt
 Previous Weight

Conc. Concentration Q Qualifier

D.F. Dilution Factor RegLimit Regulatory Limit

Front-Wt Front Weight RPD Relative Percent Difference LCS Laboratory Check Standard RptLimit Reporting Limit

LCSD Laboratory Check Standard Duplicate SDL Sample Detection Limit

MS Matrix Spike surr Surrogate

MSD Matrix Spike Duplicate T Time

MW Molecular Weight TNTC Too numerous to count

J Estimation. Below calibration range but above MDL MQL Minimum Quantitation Limit

## **Qualifier Definition**

1.1	Estimation. Below calibration range but above MDL.
10	Estimation. Below salishation range but above MBE.
S1	Surrogate recovery is above control limit. Results may be biased high.
0.	Carrogate receivery to above control limit. Recalled may be blaced high.
S8	Target compounds caused elevation of baseline. Surrogate may be biased high



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB2106-BLK1

Job Sample ID:

23022553.01

Sample Matrix

Water

% Moisture

Other Information:

Time Collected:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/24/23 21:20	SKM
	>C12-C28	0.679	mg/L	1.00	0.640	2.15		J	02/24/23 21:20	SKM
	>C28-C35	1.06	mg/L	1.00	0.470	2.15		J	02/24/23 21:20	SKM
	Total C6-C35	1.74	mg/L	1.00	0.470				02/24/23 21:20	SKM
	1-Chlorooctane(surr)	115	%	1.00		70-125			02/24/23 21:20	SKM
	Chlorooctadecane(surr)	106	%	1.00		70-125			02/24/23 21:20	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB2106-MRL1

Job Sample ID:

23022553.02

Sample Matrix

Water

Time Collected: Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/24/23 21:52	SKM
	>C12-C28	0.749	mg/L	1.00	0.640	2.15		J	02/24/23 21:52	SKM
	>C28-C35	0.727	mg/L	1.00	0.470	2.15		J	02/24/23 21:52	SKM
	Total C6-C35	1.48	mg/L	1.00	0.470				02/24/23 21:52	SKM
	1-Chlorooctane(surr)	124	%	1.00		70-125			02/24/23 21:52	SKM
	Chlorooctadecane(surr)	108	%	1.00		70-125			02/24/23 21:52	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB2106-BS1

Job Sample ID:

23022553.03

Sample Matrix

Water

% Moisture

Time Collected: Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit (	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	29.25	mg/L	1.00	0.610	2.15			02/24/23 22:23	SKM
	>C12-C28	20.48	mg/L	1.00	0.640	2.15			02/24/23 22:23	SKM
	>C28-C35	0.496	mg/L	1.00	0.470	2.15	J	J	02/24/23 22:23	SKM
	Total C6-C35	50.22	mg/L	1.00	0.470				02/24/23 22:23	SKM
	1-Chlorooctane(surr)	111	%	1.00		70-125			02/24/23 22:23	SKM
	Chlorooctadecane(surr)	104	%	1.00		70-125			02/24/23 22:23	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB2106-BSD1

Job Sample ID:

23022553.04

Sample Matrix Water

% Moisture

Other Information:

Time Collected:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	29.65	mg/L	1.00	0.610	2.15			02/24/23 22:55	SKM
	>C12-C28	19.97	mg/L	1.00	0.640	2.15			02/24/23 22:55	SKM
	>C28-C35	0.531	mg/L	1.00	0.470	2.15		J	02/24/23 22:55	SKM
	Total C6-C35	50.15	mg/L	1.00	0.470				02/24/23 22:55	SKM
	1-Chlorooctane(surr)	116	%	1.00		70-125			02/24/23 22:55	SKM
	Chlorooctadecane(surr)	97.5	%	1.00		70-125			02/24/23 22:55	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS

Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB2106-MS1

Job Sample ID:

23022553.05

Time Collected:

Sample Matrix Water % Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5							
	C6-C12	29.52	mg/L	1.00	0.610	2.15		02/24/23 23:27	SKM
	>C12-C28	21.01	mg/L	1.00	0.640	2.15		02/24/23 23:27	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15		02/24/23 23:27	SKM
	Total C6-C35	50.53	mg/L	1.00	0.470			02/24/23 23:27	SKM
	1-Chlorooctane(surr)	117	%	1.00		70-125		02/24/23 23:27	SKM
	Chlorooctadecane(surr)	103	%	1.00		70-125		02/24/23 23:27	SKM



Job ID: 23022553

02/24/23 23:59

SKM

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

Other Information:

BGB2106-MSD1

Chlorooctadecane(surr)

106

%

Job Sample ID:

23022553.06

Time Collected:

Sample Matrix Water

% Moisture

70-125

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S							
	C6-C12	28.78	mg/L	1.00	0.610	2.15		02/24/23 23:59	SKM
	>C12-C28	21.35	mg/L	1.00	0.640	2.15		02/24/23 23:59	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15		02/24/23 23:59	SKM
	Total C6-C35	50.12	mg/L	1.00	0.470			02/24/23 23:59	SKM
	1-Chlorooctane(surr)	118	%	1.00		70-125		02/24/23 23:59	SKM

1.00



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A3576-07 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID: 23022553.07 Sample Matrix

Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 00:31	SKM
	>C12-C28	0.666	mg/L	1.00	0.640	2.15		J	02/25/23 00:31	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15			02/25/23 00:31	SKM
	Total C6-C35	0.666	mg/L	1.00	0.470				02/25/23 00:31	SKM
	1-Chlorooctane(surr)	105	%	1.00		70-125			02/25/23 00:31	SKM
	Chlorooctadecane(surr)	95.3	%	1.00		70-125			02/25/23 00:31	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A3576-08 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID: Sample Matrix

23022553.08

% Moisture

Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 01:02	SKM
	>C12-C28	0.743	mg/L	1.00	0.640	2.15		J	02/25/23 01:02	SKM
	>C28-C35	0.814	mg/L	1.00	0.470	2.15		J	02/25/23 01:02	SKM
	Total C6-C35	1.56	mg/L	1.00	0.470				02/25/23 01:02	SKM
	1-Chlorooctane(surr)	108	%	1.00		70-125			02/25/23 01:02	SKM
	Chlorooctadecane(surr)	84.5	%	1.00		70-125			02/25/23 01:02	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A3576-09 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID: 23022553.09 Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 01:34	SKM
	>C12-C28	1.37	mg/L	1.00	0.640	2.15		J	02/25/23 01:34	SKM
	>C28-C35	1.39	mg/L	1.00	0.470	2.15		J	02/25/23 01:34	SKM
	Total C6-C35	2.76	mg/L	1.00	0.470				02/25/23 01:34	SKM
	1-Chlorooctane(surr)	116	%	1.00		70-125			02/25/23 01:34	SKM
	Chlorooctadecane(surr)	85.4	%	1.00		70-125			02/25/23 01:34	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A3576-10 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID: 23022553.10

Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 02:06	SKM
	>C12-C28	0.742	mg/L	1.00	0.640	2.15		J	02/25/23 02:06	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15			02/25/23 02:06	SKM
	Total C6-C35	0.742	mg/L	1.00	0.470				02/25/23 02:06	SKM
	1-Chlorooctane(surr)	101	%	1.00		70-125			02/25/23 02:06	SKM
	Chlorooctadecane(surr)	77	%	1.00		70-125			02/25/23 02:06	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A3576-11 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID:

23022553.11

Sample Matrix Water

Other Information:	

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 03:41	SKM
	>C12-C28	< 0.64	mg/L	1.00	0.640	2.15			02/25/23 03:41	SKM
	>C28-C35	0.604	mg/L	1.00	0.470	2.15		J	02/25/23 03:41	SKM
	Total C6-C35	0.604	mg/L	1.00	0.470				02/25/23 03:41	SKM
	1-Chlorooctane(surr)	103	%	1.00		70-125			02/25/23 03:41	SKM
	Chlorooctadecane(surr)	80.3	%	1.00		70-125			02/25/23 03:41	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-07 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID:

23022553.12

Sample Matrix Water

% Moisture

eter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
Petroleum Hydrocarbons									
2	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 04:13	SKM
C28	0.867	mg/L	1.00	0.640	2.15		J	02/25/23 04:13	SKM
C35	< 0.47	mg/L	1.00	0.470	2.15			02/25/23 04:13	SKM
C6-C35	0.867	mg/L	1.00	0.470				02/25/23 04:13	SKM
rooctane(surr)	106	%	1.00		70-125			02/25/23 04:13	SKM
octadecane(surr)	79.9	%	1.00		70-125			02/25/23 04:13	SKM
	eter/Test Description Petroleum Hydrocarbons 2 C28 C35 C6-C35 rooctane(surr) octadecane(surr)	Petroleum Hydrocarbons 2 < 0.61 C28	Petroleum Hydrocarbons       2     < 0.61	Petroleum Hydrocarbons       2     < 0.61	Petroleum Hydrocarbons       2     < 0.61	Petroleum Hydrocarbons  2 < 0.61 mg/L 1.00 0.610 2.15  C28 0.867 mg/L 1.00 0.640 2.15  C35 < 0.47 mg/L 1.00 0.470 2.15  C6-C35 0.867 mg/L 1.00 0.470  rooctane(surr) 106 % 1.00 70-125	Petroleum Hydrocarbons  2 < 0.61 mg/L 1.00 0.610 2.15  C28 0.867 mg/L 1.00 0.640 2.15  C35 < 0.47 mg/L 1.00 0.470 2.15  C6-C35 0.867 mg/L 1.00 0.470  rooctane(surr) 106 % 1.00 70-125	Petroleum Hydrocarbons  2 < 0.61 mg/L 1.00 0.610 2.15  C28 0.867 mg/L 1.00 0.640 2.15 J  C35 < 0.47 mg/L 1.00 0.470 2.15  C6-C35 0.867 mg/L 1.00 0.470  rooctane(surr) 106 % 1.00 70-125	Petroleum Hydrocarbons  2



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-08 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID:

23022553.13

Sample Matrix Water

Other	Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 04:45	SKM
	>C12-C28	0.713	mg/L	1.00	0.640	2.15		J	02/25/23 04:45	SKM
	>C28-C35	0.538	mg/L	1.00	0.470	2.15		J	02/25/23 04:45	SKM
	Total C6-C35	1.25	mg/L	1.00	0.470				02/25/23 04:45	SKM
	1-Chlorooctane(surr)	95.1	%	1.00		70-125			02/25/23 04:45	SKM
	Chlorooctadecane(surr)	78.5	%	1.00		70-125			02/25/23 04:45	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-09 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID: Sample Matrix

23022553.14 Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s							
	C6-C12	0.672	mg/L	1.00	0.610	2.15	J	02/25/23 05:16	SKM
	>C12-C28	5.81	mg/L	1.00	0.640	2.15		02/25/23 05:16	SKM
	>C28-C35	2.46	mg/L	1.00	0.470	2.15		02/25/23 05:16	SKM
	Total C6-C35	8.94	mg/L	1.00	0.470			02/25/23 05:16	SKM
	1-Chlorooctane(surr)	101	%	1.00		70-125		02/25/23 05:16	SKM
	Chlorooctadecane(surr)	84.3	%	1.00		70-125		02/25/23 05:16	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-10 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID:

23022553.15

Sample Matrix Water

Othor Informatio	n.
Other Informatio	н.

Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
Total Petroleum Hydrocarbon	S								
C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 05:48	SKM
>C12-C28	0.903	mg/L	1.00	0.640	2.15		J	02/25/23 05:48	SKM
>C28-C35	0.83	mg/L	1.00	0.470	2.15		J	02/25/23 05:48	SKM
Total C6-C35	1.73	mg/L	1.00	0.470				02/25/23 05:48	SKM
1-Chlorooctane(surr)	102	%	1.00		70-125			02/25/23 05:48	SKM
Chlorooctadecane(surr)	83.3	%	1.00		70-125			02/25/23 05:48	SKM
	Total Petroleum Hydrocarbon C6-C12 >C12-C28 >C28-C35 Total C6-C35 1-Chlorooctane(surr)	Total Petroleum Hydrocarbons         C6-C12       < 0.61	Total Petroleum Hydrocarbons           C6-C12         < 0.61	Total Petroleum Hydrocarbons         C6-C12       < 0.61					



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-11 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID: 23022553.16 Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 06:20	SKM
	>C12-C28	0.654	mg/L	1.00	0.640	2.15		J	02/25/23 06:20	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15			02/25/23 06:20	SKM
	Total C6-C35	0.654	mg/L	1.00	0.470				02/25/23 06:20	SKM
	1-Chlorooctane(surr)	98.5	%	1.00		70-125			02/25/23 06:20	SKM
	Chlorooctadecane(surr)	81	%	1.00		70-125			02/25/23 06:20	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-12 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID: 23022553.17

Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 06:51	SKM
	>C12-C28	0.649	mg/L	1.00	0.640	2.15		J	02/25/23 06:51	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15			02/25/23 06:51	SKM
	Total C6-C35	0.649	mg/L	1.00	0.470				02/25/23 06:51	SKM
	1-Chlorooctane(surr)	93.8	%	1.00		70-125			02/25/23 06:51	SKM
	Chlorooctadecane(surr)	74.1	%	1.00		70-125			02/25/23 06:51	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-13 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID: Sample Matrix

23022553.18

% Moisture

Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 07:21	SKM
	>C12-C28	0.825	mg/L	1.00	0.640	2.15		J	02/25/23 07:21	SKM
	>C28-C35	0.757	mg/L	1.00	0.470	2.15		J	02/25/23 07:21	SKM
	Total C6-C35	1.58	mg/L	1.00	0.470				02/25/23 07:21	SKM
	1-Chlorooctane(surr)	97.3	%	1.00		70-125			02/25/23 07:21	SKM
	Chlorooctadecane(surr)	79.4	%	1.00		70-125			02/25/23 07:21	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-14 Date Collected: 02/03/23 Time Collected: 09:05

Job Sample ID: 23022553.19

Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 07:53	SKM
	>C12-C28	0.676	mg/L	1.00	0.640	2.15		J	02/25/23 07:53	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15			02/25/23 07:53	SKM
	Total C6-C35	0.676	mg/L	1.00	0.470				02/25/23 07:53	SKM
	1-Chlorooctane(surr)	103	%	1.00		70-125			02/25/23 07:53	SKM
	Chlorooctadecane(surr)	79.1	%	1.00		70-125			02/25/23 07:53	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-51 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID: 23022553.20 Sample Matrix

Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 08:23	SKM
	>C12-C28	0.721	mg/L	1.00	0.640	2.15		J	02/25/23 08:23	SKM
	>C28-C35	0.684	mg/L	1.00	0.470	2.15		J	02/25/23 08:23	SKM
	Total C6-C35	1.41	mg/L	1.00	0.470				02/25/23 08:23	SKM
	1-Chlorooctane(surr)	95.1	%	1.00		70-125			02/25/23 08:23	SKM
	Chlorooctadecane(surr)	78.4	%	1.00		70-125			02/25/23 08:23	SKM
	` ,									



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-52 Date Collected: 02/01/23 Time Collected: 13:49

Job Sample ID: Sample Matrix

23022553.21

% Moisture

Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 08:54	SKM
	>C12-C28	< 0.64	mg/L	1.00	0.640	2.15			02/25/23 08:54	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15			02/25/23 08:54	SKM
	Total C6-C35	<0.47	mg/L	1.00	0.470				02/25/23 08:54	SKM
	1-Chlorooctane(surr)	136	%	1.00		70-125		S8	02/25/23 08:54	SKM
	Chlorooctadecane(surr)	73.1	%	1.00		70-125			02/25/23 08:54	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-64 Date Collected: 02/03/23 Time Collected: 09:05

Job Sample ID: 23022553.22 Sample Matrix

Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 09:25	SKM
	>C12-C28	1.23	mg/L	1.00	0.640	2.15		J	02/25/23 09:25	SKM
	>C28-C35	0.662	mg/L	1.00	0.470	2.15		J	02/25/23 09:25	SKM
	Total C6-C35	1.90	mg/L	1.00	0.470				02/25/23 09:25	SKM
	1-Chlorooctane(surr)	159	%	1.00		70-125		S8	02/25/23 09:25	SKM
	Chlorooctadecane(surr)	127	%	1.00		70-125		S8	02/25/23 09:25	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A1459-65 Date Collected: 02/03/23 Time Collected: 09:05

Job Sample ID:

23022553.23

Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 09:56	SKM
	>C12-C28	0.778	mg/L	1.00	0.640	2.15		J	02/25/23 09:56	SKM
	>C28-C35	0.519	mg/L	1.00	0.470	2.15		J	02/25/23 09:56	SKM
	Total C6-C35	1.30	mg/L	1.00	0.470				02/25/23 09:56	SKM
	1-Chlorooctane(surr)	155	%	1.00		70-125		S8	02/25/23 09:56	SKM
	Chlorooctadecane(surr)	121	%	1.00		70-125			02/25/23 09:56	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGA3905-BLK1

Job Sample ID:

23022553.24

Sample Matrix

Water

% Moisture

Time Collected: Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 10:27	SKM
	>C12-C28	0.749	mg/L	1.00	0.640	2.15		J	02/25/23 10:27	SKM
	>C28-C35	0.6	mg/L	1.00	0.470	2.15		J	02/25/23 10:27	SKM
	Total C6-C35	1.35	mg/L	1.00	0.470				02/25/23 10:27	SKM
	1-Chlorooctane(surr)	161	%	1.00		70-125		S8	02/25/23 10:27	SKM
	Chlorooctadecane(surr)	128	%	1.00		70-125		S8	02/25/23 10:27	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB0310-BLK1

Job Sample ID:

23022553.25

Time Collected: Other Information: Sample Matrix Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 10:59	SKM
	>C12-C28	0.782	mg/L	1.00	0.640	2.15		J	02/25/23 10:59	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15			02/25/23 10:59	SKM
	Total C6-C35	0.782	mg/L	1.00	0.470				02/25/23 10:59	SKM
	1-Chlorooctane(surr)	154	%	1.00		70-125		S8	02/25/23 10:59	SKM
	Chlorooctadecane(surr)	121	%	1.00		70-125			02/25/23 10:59	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB2204-BLK

Job Sample ID:

23022553.26

Time Collected:

Sample Matrix Water

Other	Information:	

Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
Total Petroleum Hydrocarbons	S								
C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 11:30	SKM
>C12-C28	0.93	mg/L	1.00	0.640	2.15		J	02/25/23 11:30	SKM
>C28-C35	0.86	mg/L	1.00	0.470	2.15		J	02/25/23 11:30	SKM
Total C6-C35	1.79	mg/L	1.00	0.470				02/25/23 11:30	SKM
1-Chlorooctane(surr)	160	%	1.00		70-125		S8	02/25/23 11:30	SKM
Chlorooctadecane(surr)	122	%	1.00		70-125			02/25/23 11:30	SKM
	Total Petroleum Hydrocarbons C6-C12 >C12-C28 >C28-C35 Total C6-C35 1-Chlorooctane(surr)	Total Petroleum Hydrocarbons         C6-C12       < 0.61	Total Petroleum Hydrocarbons           C6-C12         < 0.61	Total Petroleum Hydrocarbons         C6-C12       < 0.61	Total Petroleum Hydrocarbons           C6-C12         < 0.61	Total Petroleum Hydrocarbons         C6-C12       < 0.61			



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB2204-MRL1

Job Sample ID:

23022553.27

Time Collected: Other Information: Sample Matrix Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 12:02	SKM
	>C12-C28	0.923	mg/L	1.00	0.640	2.15		J	02/25/23 12:02	SKM
	>C28-C35	0.934	mg/L	1.00	0.470	2.15		J	02/25/23 12:02	SKM
	Total C6-C35	1.86	mg/L	1.00	0.470				02/25/23 12:02	SKM
	1-Chlorooctane(surr)	157	%	1.00		70-125		S8	02/25/23 12:02	SKM
	Chlorooctadecane(surr)	130	%	1.00		70-125		S8	02/25/23 12:02	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB2204-BS1

Job Sample ID:

23022553.28

Time Collected:

Sample Matrix % Moisture

Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	27.24	mg/L	1.00	0.610	2.15			02/25/23 12:34	SKM
	>C12-C28	20.46	mg/L	1.00	0.640	2.15			02/25/23 12:34	SKM
	>C28-C35	0.769	mg/L	1.00	0.470	2.15		J	02/25/23 12:34	SKM
	Total C6-C35	48.47	mg/L	1.00	0.470				02/25/23 12:34	SKM
	1-Chlorooctane(surr)	158	%	1.00		70-125		S8	02/25/23 12:34	SKM
	Chlorooctadecane(surr)	124	%	1.00		70-125			02/25/23 12:34	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Time Collected:

Client Sample ID: Date Collected:

Other Information:

BGB2204-BSD1

Job Sample ID:

23022553.29

Sample Matrix

Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5								
	C6-C12	27.07	mg/L	1.00	0.610	2.15			02/25/23 13:06	SKM
	>C12-C28	21.99	mg/L	1.00	0.640	2.15			02/25/23 13:06	SKM
	>C28-C35	0.568	mg/L	1.00	0.470	2.15		J	02/25/23 13:06	SKM
	Total C6-C35	49.62	mg/L	1.00	0.470				02/25/23 13:06	SKM
	1-Chlorooctane(surr)	148	%	1.00		70-125		S8	02/25/23 13:06	SKM
	Chlorooctadecane(surr)	120	%	1.00		70-125			02/25/23 13:06	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB2204-MS1

Job Sample ID:

23022553.30

Sample Matrix

Water

Time Collected: Other Information:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons									
	C6-C12	28.73	mg/L	1.00	0.610	2.15			02/25/23 13:37	SKM
	>C12-C28	23.64	mg/L	1.00	0.640	2.15			02/25/23 13:37	SKM
	>C28-C35	0.591	mg/L	1.00	0.470	2.15		J	02/25/23 13:37	SKM
	Total C6-C35	52.96	mg/L	1.00	0.470				02/25/23 13:37	SKM
	1-Chlorooctane(surr)	156	%	1.00		70-125		S8	02/25/23 13:37	SKM
	Chlorooctadecane(surr)	123	%	1.00		70-125			02/25/23 13:37	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB2204-MSD1

Job Sample ID:

23022553.31

Time Collected: Other Information: Sample Matrix Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons									
	C6-C12	31.27	mg/L	1.00	0.610	2.15			02/25/23 15:13	SKM
	>C12-C28	24.89	mg/L	1.00	0.640	2.15			02/25/23 15:13	SKM
	>C28-C35	0.8	mg/L	1.00	0.470	2.15		J	02/25/23 15:13	SKM
	Total C6-C35	56.96	mg/L	1.00	0.470				02/25/23 15:13	SKM
	1-Chlorooctane(surr)	167	%	1.00		70-125		S8	02/25/23 15:13	SKM
	Chlorooctadecane(surr)	128	%	1.00		70-125		S8	02/25/23 15:13	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23B1097-01 Date Collected: 02/02/23 Time Collected: 11:00

Job Sample ID:

23022553.32

Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons									
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 15:45	SKM
	>C12-C28	0.824	mg/L	1.00	0.640	2.15		J	02/25/23 15:45	SKM
	>C28-C35	0.568	mg/L	1.00	0.470	2.15		J	02/25/23 15:45	SKM
	Total C6-C35	1.39	mg/L	1.00	0.470				02/25/23 15:45	SKM
	1-Chlorooctane(surr)	146	%	1.00		70-125		S8	02/25/23 15:45	SKM
	Chlorooctadecane(surr)	106	%	1.00		70-125			02/25/23 15:45	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23B1047-02 Date Collected: 02/09/23 Time Collected: 11:40

Job Sample ID:

23022553.33

Sample Matrix Water

% Moisture

Test Method	Parameter/Test Desc
Other Informa	uon.

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 16:17	SKM
	>C12-C28	0.722	mg/L	1.00	0.640	2.15		J	02/25/23 16:17	SKM
	>C28-C35	0.488	mg/L	1.00	0.470	2.15		J	02/25/23 16:17	SKM
	Total C6-C35	1.21	mg/L	1.00	0.470				02/25/23 16:17	SKM
	1-Chlorooctane(surr)	141	%	1.00		70-125		S8	02/25/23 16:17	SKM
	Chlorooctadecane(surr)	105	%	1.00		70-125			02/25/23 16:17	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23B1047-05 Date Collected: 02/09/23 Time Collected: 11:00

Job Sample ID:

23022553.34

Sample Matrix

Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 16:52	SKM
	>C12-C28	0.729	mg/L	1.00	0.640	2.15		J	02/25/23 16:52	SKM
	>C28-C35	0.625	mg/L	1.00	0.470	2.15		J	02/25/23 16:52	SKM
	Total C6-C35	1.35	mg/L	1.00	0.470				02/25/23 16:52	SKM
	1-Chlorooctane(surr)	160	%	1.00		70-125		S8	02/25/23 16:52	SKM
	Chlorooctadecane(surr)	118	%	1.00		70-125			02/25/23 16:52	SKM



Other Information:

Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23B1047-06 Date Collected: 02/09/23 Time Collected: 11:25

Job Sample ID:

23022553.35

Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 17:25	SKM
	>C12-C28	0.919	mg/L	1.00	0.640	2.15		J	02/25/23 17:25	SKM
	>C28-C35	0.79	mg/L	1.00	0.470	2.15		J	02/25/23 17:25	SKM
	Total C6-C35	1.71	mg/L	1.00	0.470				02/25/23 17:25	SKM
	1-Chlorooctane(surr)	164	%	1.00		70-125		S8	02/25/23 17:25	SKM
	Chlorooctadecane(surr)	125	%	1.00		70-125		S8	02/25/23 17:25	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23B1331-02 Date Collected: 02/09/23 Time Collected: 12:10

Job Sample ID:

23022553.36

Sample Matrix

Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 17:58	SKM
	>C12-C28	1.01	mg/L	1.00	0.640	2.15		J	02/25/23 17:58	SKM
	>C28-C35	0.948	mg/L	1.00	0.470	2.15		J	02/25/23 17:58	SKM
	Total C6-C35	1.96	mg/L	1.00	0.470				02/25/23 17:58	SKM
	1-Chlorooctane(surr)	160	%	1.00		70-125		S8	02/25/23 17:58	SKM
	Chlorooctadecane(surr)	132	%	1.00		70-125		S8	02/25/23 17:58	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23B1331-04 Date Collected: 02/09/23 Time Collected: 12:25

Job Sample ID: 23022553.37

Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 18:31	SKM
	>C12-C28	1.02	mg/L	1.00	0.640	2.15		J	02/25/23 18:31	SKM
	>C28-C35	0.868	mg/L	1.00	0.470	2.15		J	02/25/23 18:31	SKM
	Total C6-C35	1.89	mg/L	1.00	0.470				02/25/23 18:31	SKM
	1-Chlorooctane(surr)	164	%	1.00		70-125		S8	02/25/23 18:31	SKM
	Chlorooctadecane(surr)	124	%	1.00		70-125			02/25/23 18:31	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A4079-02 Date Collected: 02/07/23 Time Collected: 13:02

Job Sample ID: Sample Matrix

23022553.38

% Moisture

Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 19:05	SKM
	>C12-C28	1.10	mg/L	1.00	0.640	2.15		J	02/25/23 19:05	SKM
	>C28-C35	1.21	mg/L	1.00	0.470	2.15		J	02/25/23 19:05	SKM
	Total C6-C35	2.31	mg/L	1.00	0.470				02/25/23 19:05	SKM
	1-Chlorooctane(surr)	158	%	1.00		70-125		S8	02/25/23 19:05	SKM
	Chlorooctadecane(surr)	123	%	1.00		70-125			02/25/23 19:05	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A4079-03 Date Collected: 02/07/23 Time Collected: 12:47

Job Sample ID:

23022553.39

Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 19:37	SKM
	>C12-C28	0.998	mg/L	1.00	0.640	2.15		J	02/25/23 19:37	SKM
	>C28-C35	1.08	mg/L	1.00	0.470	2.15		J	02/25/23 19:37	SKM
	Total C6-C35	2.07	mg/L	1.00	0.470				02/25/23 19:37	SKM
	1-Chlorooctane(surr)	158	%	1.00		70-125		S8	02/25/23 19:37	SKM
	Chlorooctadecane(surr)	113	%	1.00		70-125			02/25/23 19:37	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A4079-04 Date Collected: 02/07/23 Time Collected: 12:57

Job Sample ID: 23022553.40 Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	ıs								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 21:26	SKM
	>C12-C28	1.28	mg/L	1.00	0.640	2.15		J	02/25/23 21:26	SKM
	>C28-C35	1.26	mg/L	1.00	0.470	2.15		J	02/25/23 21:26	SKM
	Total C6-C35	2.55	mg/L	1.00	0.470				02/25/23 21:26	SKM
	1-Chlorooctane(surr)	166	%	1.00		70-125		S8	02/25/23 21:26	SKM
	Chlorooctadecane(surr)	135	%	1.00		70-125		S8	02/25/23 21:26	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A4079-05 Date Collected: 02/07/23 Time Collected: 13:15

Job Sample ID: Sample Matrix

23022553.41

% Moisture

Water

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 21:59	SKM
	>C12-C28	1.02	mg/L	1.00	0.640	2.15		J	02/25/23 21:59	SKM
	>C28-C35	1.10	mg/L	1.00	0.470	2.15		J	02/25/23 21:59	SKM
	Total C6-C35	2.11	mg/L	1.00	0.470				02/25/23 21:59	SKM
	1-Chlorooctane(surr)	158	%	1.00		70-125		S8	02/25/23 21:59	SKM
	Chlorooctadecane(surr)	81.1	%	1.00		70-125			02/25/23 21:59	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A4079-06 Date Collected: 02/10/23 Time Collected: 12:24

Job Sample ID: Sample Matrix Water

23022553.42

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 22:31	SKM
	>C12-C28	1.02	mg/L	1.00	0.640	2.15		J	02/25/23 22:31	SKM
	>C28-C35	1.10	mg/L	1.00	0.470	2.15		J	02/25/23 22:31	SKM
	Total C6-C35	2.12	mg/L	1.00	0.470				02/25/23 22:31	SKM
	1-Chlorooctane(surr)	158	%	1.00		70-125		S8	02/25/23 22:31	SKM
	Chlorooctadecane(surr)	115	%	1.00		70-125			02/25/23 22:31	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A4079-07 Date Collected: 02/10/23 Time Collected: 12:24

Job Sample ID: 23022553.43 Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 23:03	SKM
	>C12-C28	1.06	mg/L	1.00	0.640	2.15		J	02/25/23 23:03	SKM
	>C28-C35	1.01	mg/L	1.00	0.470	2.15		J	02/25/23 23:03	SKM
	Total C6-C35	2.07	mg/L	1.00	0.470				02/25/23 23:03	SKM
	1-Chlorooctane(surr)	156	%	1.00		70-125		S8	02/25/23 23:03	SKM
	Chlorooctadecane(surr)	117	%	1.00		70-125			02/25/23 23:03	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A4079-08 Date Collected: 02/10/23 Time Collected: 12:24

Sample Matrix Water

23022553.44

% Moisture

Job Sample ID:

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/25/23 23:35	SKM
	>C12-C28	0.664	mg/L	1.00	0.640	2.15		J	02/25/23 23:35	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15			02/25/23 23:35	SKM
	Total C6-C35	0.664	mg/L	1.00	0.470				02/25/23 23:35	SKM
	1-Chlorooctane(surr)	156	%	1.00		70-125		S8	02/25/23 23:35	SKM
	Chlorooctadecane(surr)	116	%	1.00		70-125			02/25/23 23:35	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: 23A4079-09 Date Collected: 02/10/23 Time Collected:

Job Sample ID: Sample Matrix

23022553.45

% Moisture

Water

12:24

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	s								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/26/23 00:07	SKM
	>C12-C28	1.22	mg/L	1.00	0.640	2.15		J	02/26/23 00:07	SKM
	>C28-C35	1.13	mg/L	1.00	0.470	2.15		J	02/26/23 00:07	SKM
	Total C6-C35	2.36	mg/L	1.00	0.470				02/26/23 00:07	SKM
	1-Chlorooctane(surr)	168	%	1.00		70-125		S8	02/26/23 00:07	SKM
	Chlorooctadecane(surr)	129	%	1.00		70-125		S8	02/26/23 00:07	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected:

BGB1372-BLK

Job Sample ID:

23022553.46

Time Collected:

Sample Matrix Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbon	S								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/26/23 00:39	SKM
	>C12-C28	0.896	mg/L	1.00	0.640	2.15		J	02/26/23 00:39	SKM
	>C28-C35	< 0.47	mg/L	1.00	0.470	2.15			02/26/23 00:39	SKM
	Total C6-C35	0.896	mg/L	1.00	0.470				02/26/23 00:39	SKM
	1-Chlorooctane(surr)	157	%	1.00		70-125		S8	02/26/23 00:39	SKM
	Chlorooctadecane(surr)	121	%	1.00		70-125			02/26/23 00:39	SKM



Job ID: 23022553

Date 3/3/2023

Client Name: NWDLS Attn: Monica O. Martin

Project Name:

Client Sample ID: Date Collected: Time Collected: Other Information: Job Sample ID: Sample Matrix

23022553.47

Water

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	MQL	Reg Limit	Q	Date Time	Analyst
TX 1005	Total Petroleum Hydrocarbons	5								
	C6-C12	< 0.61	mg/L	1.00	0.610	2.15			02/26/23 01:10	SKM
	>C12-C28	1.11	mg/L	1.00	0.640	2.15		J	02/26/23 01:10	SKM
	>C28-C35	0.911	mg/L	1.00	0.470	2.15		J	02/26/23 01:10	SKM
	Total C6-C35	2.02	mg/L	1.00	0.470				02/26/23 01:10	SKM
	1-Chlorooctane(surr)	155	%	1.00		70-125		S8	02/26/23 01:10	SKM
	Chlorooctadecane(surr)	118	%	1.00		70-125			02/26/23 01:10	SKM

#### QUALITY CONTROL CERTIFICATE



Analysis : Total Petroleum Hydrocarbons Method : TX 1005 Reporting Units : mg/L

**Samples in This QC Batch :** 23022553.01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Sample Preparation: PB23022457 Prep Method: TX 1005 Prep Date: 02/24/23 12:00 Prep By: Skannan

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
C6-C12	TPH-1005-1	< MDL	mg/L	1.00	2.15	0.61	
>C12-C28	TPH-1005-2	< MDL	mg/L	1.00	2.15	0.64	
>C28-C35	TPH-1005-4	< MDL	mg/L	1.00	2.15	0.47	
Total C6-C35		< MDL	mg/L	1.00		0.47	
Chlorooctadecane(surr)	3386-33-2	108	%	1.00			
1-Chlorooctane(surr)	111-85-3	144	%	1.00			S1

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	43	46.4	108	43	48.0	112	3.4	20	75-125	
>C12-C28	43	45.6	106	43	46.1	107	1.1	20	75-125	
>C28-C35	43	37.1	86.4	43	37.4	86.9	0.7	20	75-125	

#### QUALITY CONTROL CERTIFICATE



Analysis : Total Petroleum Hydrocarbons Method : TX 1005 Reporting Units : mg/L

**Samples in This QC Batch:** 23022553.21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40

Sample Preparation: PB23022458 Prep Method: TX 1005 Prep Date: 02/24/23 12:00 Prep By: Skannan

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
C6-C12	TPH-1005-1	< MDL	mg/L	1.00	2.15	0.61	
>C12-C28	TPH-1005-2	< MDL	mg/L	1.00	2.15	0.64	
>C28-C35	TPH-1005-4	< MDL	mg/L	1.00	2.15	0.47	
Total C6-C35		< MDL	mg/L	1.00		0.47	
Chlorooctadecane(surr)	3386-33-2	110	%	1.00			
1-Chlorooctane(surr)	111-85-3	127	%	1.00			S1

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	43	47.7	111	43	45.5	106	4.6	20	75-125	
>C12-C28	43	46.4	108	43	44.9	104	3.3	20	75-125	
>C28-C35	43	38.3	89.1	43	37.8	87.9	1.3	20	75-125	

#### QUALITY CONTROL CERTIFICATE



Analysis : Total Petroleum Hydrocarbons Method : TX 1005 Reporting Units : mg/L

**Samples in This QC Batch :** 23022553.41,42,43,44,45,46,47

Sample Preparation: PB23022459 Prep Method: TX 1005 Prep Date: 02/24/23 12:00 Prep By: Skannan

QC Type: Method Blank							
Parameter	CAS #	Result	Units	D.F.	MQL	MDL	Qual
C6-C12	TPH-1005-1	< MDL	mg/L	1.00	2.15	0.61	
>C12-C28	TPH-1005-2	< MDL	mg/L	1.00	2.15	0.64	
>C28-C35	TPH-1005-4	< MDL	mg/L	1.00	2.15	0.47	
Total C6-C35		< MDL	mg/L	1.00		0.47	
Chlorooctadecane(surr)	3386-33-2	108	%	1.00			
1-Chlorooctane(surr)	111-85-3	128	%	1.00			S1

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
C6-C12	43	44.6	104	43	44.4	103	0.4	20	75-125	
>C12-C28	43	47.1	110	43	45.6	106	3.2	20	75-125	
>C28-C35	43	37.5	87.2	43	37.6	87.3	0.3	20	75-125	

Viat (D	Sample ID	Re- extraction	Amt. Extracted (g / mL)	Sph #	Initial pB	Final Vol. (ml.) ^{Pt}	TX1006	Fraction #1 initial vol.(mL)	Fraction #1 final vol.(mL)**	Fraction #2 initial vol.(mL)	Fraction #2 final vol.(mL) P2	Comments/Dilutions/ Reagent Change/Other Clnups, etc.
	BGB2106-BLKI		32.23	31	6	3.0						
-	-MRLI		31.63		1	1						
	-691,		32.86	53			5.71					
	-Bsov		30.80		1							
	-W1,		32.29		1	91				- 1		
	V -MSDI		32.53	1								
-	23A3576-07		32.28									
	1 -08		32.60									
	-09'		32.58									
	-10 "		32.20									
	V -11"	-	32.30									
	2391459-07		33.61									
	-08"		34.51	( = 1						11		
	-09 "		33.59							-		
	-10 "	-	33.16 33.20					( - )				
	-11 *		33.20			100						
	-12 "		33.40									
	-13 "		34.40									
	-14 "		33.08									
	-51 *	10	33.26						~ ~			
	-52 "		34.21									
	-64 =		33.41						. 1			
	1 -65 =		34.20					1==1				Control of
	8GA3905-BLKI"		33.19									BGB2106-LBK1
	BGBOGO-BLKI		31.83	1	V	4			T = 4			1 -LBK2

Batch ID: TPH- 021423-01

Analyte Group (circle): (TX1005 TPH

TX1006 TPH Screen Only / Other.




02/24/2023

NWOLS

AMS

NWDLS Report Package Page 633 of 1010

- 35 -



Df-Water-01

- 10	Post Extraction Concentral	tion"	~
Analyst/Duic:		0	(N/A)
NEVAP Temp:	·c	Temp. ID	
N ₂ Blowdown			
Final Solvent:	n-Pentane / Other:		

MeOff

RX.

Sand

Note: Continued on next page.

2215144 DI-Water

Viel ID	Sample ID	Ra- extraction	Amt. Extracted (g / mL)	Spk #	Initial pH	Final Vol. (ml.)Ps	TX1006	Fraction #1 initial vol.(ml.)	Fraction #1 final vol.(ml.)**	Fraction 02 initial vol.(mL)	Fraction #2 final vol.(mL) P2	Comments/Dilutions/ Reagent Change/Other Chups, etc.
	BGB2204 - BLX			Sı	6	3.0						
	-Mai		32.42	152	1							
	-1361		31.89	153			<b>Sales</b>					
	-600		32.47	T	1							
	-MSi		32.84	11	1							
	1150		32.81	1	1		Total Control					II .
	2381097-01		33.01	1			-					
	2381047-02		32.62									
	-05		33.66	-								
	-06"		33.18									
	2381331-02 "		33.36									
	-04 "		33.22									
	23A4079-02 "		33.12									
	1 -03 "		33.04				1					
	-04 11		33.00									
	-05 **		32.80							-		
	-06 "		33.46			1						
n .	-01 "		33.03								-	
	-08 "		32.98							1		
	-09 **		33.27							1	-	
	8981372-BLK"		32.92	1	1	V						8GB2204-LBK1
-	12			-	-		-					
1	- 5		0							-		
	24								-			763
	25			-	-					-		- 62

Barch ID: TPH-021523-01

Analyte Group (circle):

-	1	~	╮		-
Л	X	100	5	TΡ	H
C	7				~

/ TX1006 TPH /

Screen Only

Other:__

OPI17	Batch (D: 7	PH- 02-1523-0	Centr	fage 44323P	7 Review:	W 02.23:23	Organic Extractions
CUTOZIE	- E	xtraction IIII			Scale ID:		Commisents BGB2204
olid / BT / n-Aq / DW	Analyte G		Y TX1006 T	PH Extraction Te Other:	chnique MI		0402201
Spike Amt(mL	Spike Cone, (mcg/mL)	Spike ID	Spike Amt(mL)	Spike Conc. (mcg/mL)			
.100	10,000	2205642	.100				
.003	2,000	84					
	Spike Amti(m)	Spike Amti(mL)  100  100  100  100  100  100  100  1	Spike Conc. (mcg/mL)  Start Firme: IV47  Analyte Group: TX1005 TPH  Spike Conc. Spike 1D  100 10,000 \$2205642	Spike Conc. Spike ID Spike Amt(mL)	Spike Cone. Spike ID Spike Cone. (mcg/mL)  Sid / BT / Spike Cone. Spike ID Spike Cone. (mcg/mL)  100   0,000   2205642 .100   20,000	COT 01/5/13 Extraction Start Firme: 147 Hand Shaken or 071401 ID:  Start Firme: 1X1005 TPH TX1006 TPH Extraction Technique Minimal Spike Cone. Spike ID Spike Cone. (mcg/mL)  100 10,000 \$2205642 .100 20,000	Extraction Start Time: 147 Hand Shaken or 071401 Scale 1D: 8387716749  Analyte Group: TX1005 TPH TX1006 TPH Extraction Technique MLLE MLSE Other:  Spike Cone. Spike ID Spike Cone. (mcg/mL)  100 10,000 \$12205642 .100 20,000

Reagents	ID	Reagents	ID	Reagents	ID.	Reagents	ID -	Reagents	10
N)	2302226	Acessee	2213777	all paper	2103151	#7			
kr Sout	-	MeOel	2215144	DI-Water	DI-Water-01	63		(E) 8-	

	Post Extracti	on Co	ncentral	tion ^{ri}	200
Analyst/Date:			_		r (N/A)
NEVAP Temp:			*C	Temp.	
Nz Blowdown					
Final Solvent:	n-Pentane	1	Other:		

Note: Continued on next page.



# SUBCONTRACT

Sending Laboratory:

North Water District Laboratory Services, Inc. 130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

Subcontracted Laboratory:

A & B Labs 10100 East Freeway, Suite 100

Houston, TX 77029 Phone: (713) 453-6060 Fax: (713) 453-6091

Work Order: 23A3576

Analysis		Due	Expires	S	Comments
paple ID: 23A3576-02	Marine Water	Sampled:	01/26/202	23 08:3	10
TOC-41 1  Analyte(s): Total Organic Co. on (TOC)	02	/23/2023	02/23/2023	08:30	
TPH-1005	02	/23/2023	02/09/2023	08:30	
Analyte(s): 1-Chlorooctadecane-surr	1	-Chlorooctane	e-surr		tal Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:					
Sample ID: 23A3576-04	Marine W cer	Sampled	: 01/26/20		
TOC-415.1	02	23/2023	02/23/2023	000	
Analyte(s):					
Total Organic Carbon (TOC) TPH-1005	02	/23/2023	02/0" 2023	09:00	
Analyte(s): 1-Chlorooctadecane-surr	1	-Chlorooctan	suri		Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:					
Sample ID: 23A3576-06	Marine Water	Sampled	1: 01/26/20	23 0	45
TOC-415.1	-	/23/2023	02/23/2023	08:45	
Analyte(s): Total Organic Carbon (TOC)		-		00.45	
TPH-1005	0.	2/23/2023	02/09/2023	08:45	
					the state of the s
Analyte(s): 1-Chlorooctadecane-surr		L-Chlorooctan	ve-surr		Total Petroleum Hydrocarbons (TPH), C6-C35



Analysis	Due	Expires	Comments
Sample ID: 23A3576-07 Elutro	iate Sampled: 01	/25/2023 10:15	
		- 1-44-C	Anger (Marie Marie )
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr	02/23/2023 1-Chlorooctar		Leached: 02/01/2023 13:49  Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:			
Sample ID: 23A3576-08 Elutr	iate Sampled: 01	/26/2023 10:35	
	-	Approveded tous	ECOCHEO: 02/01/200 10:00
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr	02/23/2023 1-Chloroocta	02/09/2023 10:35 ne-surr	Leached: 02/01/2023 13:49  Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:			
	22-04-04-04-04-04		
Sample ID: 23A3576-09 Eluti	iate Sampled: 01	/25/2023 10:30	THE RESERVE TO SERVE THE SERVE TO SERVE THE SE
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr	02/23/2023 1-Chloroocta	02/08/2023 10:30 ne-surr	Leached: 02/01/2023 13:49  Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:			
Sample ID: 23A3576-10	riate Sampled: 0.	1/26/2023 10:15	
Sample 10: 23A3376-10 Elab	Samples, U.	,,	02/01/2023-10-00
Analyte(s): Total Organic Carbon (TOC)	02/23/2023	02/09/2023 10:15	Leached: 02/01/2023 13:49
TPH-1005-ELUT			
	1-Chloroocta	ine-surr	Total Petro eum Hydrocarbons (TPH), C6-C35



Analysis		Due	Expires	Comments
Sample ID: 23A3576-11	Elutriate	Sampled: 01	/25/2023 13:45	
				resented. de/01/2023 Toron
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr	цА	02/23/2023 1-Chlorooctal	02/08/2023 13:45 ne-surr	Leached: 02/01/2023 13:49  Total Petroleum Hydrocarbons (TPH., C6-C35
Containers Supplied:				
mple ID: 23A3576-16	Sediment	Sampled: 0	1/25/2023 10:15	
TPH-3 05		02/23/2023	02/08/2023 10:15	
Analyte(s), 1-Chloroock lecane-surr		1-Chloroocta	ne-surr	Total Petroleum Hydroca (TPH), C6-C35
Containers Suppli				
Sample ID: 23A3570-23	Sediment	Sampled: 0	1/26/2023 10:35	
TPH-1005		02/23/2023	02/09/2023 10:35	
Analyte(s): 1-Chlorooctadecane-surr	-	1-Chloroocta	ine-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:				
Sample ID: 23A3576-28	Sediment	Sal gled: U	01/25/2023 0:30	
TPH-1005		02/23/ 123	02/08 2023 10:30	
Analyte(s): 1-Chlorooctadecane-surr		1-Chloroocta	turr	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:				
Sample ID: 23A3576-35	Sedimen	t ampled: I	01/26/2023 10:15	
TPH-1005		02/23/2023	02/09/2023 10 5	
Analyte(s): 1-Chlorooctadecane-surr		1-Chloroocta	ane-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:				
Sample ID: 23 8576-36	Sedimen	t Sampled:	01/25/2023 13:45	
TPH-1005		02/23/2023	02/08/2023 13:45	
Analyte		1-Chlorooct	ane-surr	Total Petroleu, Hydrocarbons (TPH), C6-C35
1-Confrooctadecane-surr		T CHILDI OUCL	SELECT STREET	



Andrew Rodriguez

2-24-23

Received By

02/24/23 435

Date

iny



# SUBCONTRACT

Sending Laboratory:

North Water District Laboratory Services, Inc. 130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

Subcontracted Laboratory:

A & B Labs 10100 East Freeway, Suite 100 Houston, TX 77029 Phone: (713) 453-6060 Fax: (713) 453-6091

Work Order: 23A1459

Analysis	Due	Expires	Comments
Sample ID: 23A1459-02	Marine Water Sampled	: 01/25/2023 09	:30
TOC-415.1  Analyte(s): Total Organic Care (TOC)	03/06/2023	02/22/2023 09:30	
TPH-1005 Analyte(s):	03/06/2023	02/08/2023 09:30	
1-Chlorooctadecane-surr	1-Chlorooctan	e-surr	Total Petrole Hydrocarbons (TPH), C6-
Containers Supplied:			
Sample ID: 23A1459-03	Marine Water Sampled	: 01/25/2023 12	:50
TOC-415.1	3/06/2023	02/22/2023 12:50	
Analyte(s):			
Total Organic Carbon (TOC)	03/06/26 1	02/08/2023 12:56	
TPH-1005	03/06/26	02/08/2023 12.3	
Analyte(s): 1-Chlorooctadecane-surr	1-Chlorooctan	e r	Total Petroleum Hydrocarbons (TPH), C6-
Containers Supplied:		X	
Sample ID: 23A1459-04	Marine Water Samples	01/25/2023 14	2:50
TOC-415.1	03/06/20	02/22/2023 14 50	
Analyte(s):			
Total Organic Carbon (TOC)	/06/2023	02/08/2023 14:50	
TPH-1005	706/2023	02/06/2023 14.50	
Analyte(s): 1-Chlorooctadecane-surr	1-Chlorooctan	ne-surr	Total Petroleum Hydrocarbons (TPH), C6-
Containers Supplied:			

Page 64 of 80



Analysis		Due	Expires	Comments
	-	ver = 4 3		
Analyte(s): Total Organic Carbon (TOC)		03/06/2023	02/24/2023 11:25	
Total Organic Carbon (TOC)		03/06/2023	02/10/2023 11:25	
Analyte(s): 1-Chlorooctadecane-surr		1-Chlorooctar	ne-surr	Total Petroleum Hydrocarbons (TPH:, C6-C35
Containers Supplied:				
Sample ID: 23A1459-07	Elutriate	Sampled: 01	/16/2023 14:20	
		-		1 - 1 - 10 - 10 - 10 - 10 - 10 - 10 - 1
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s):	IZA	03/06/2023	01/30/2023 14:20	
1-Chlorooctadecane-surr		1-Chloroocta	ne-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:				
Sample ID: 23A1459-08	Elutriate	Sampled: 01	1/16/2023 17:20	
Analyte(s):		-		
Total Organic Carbon (TOC) TPH-1005-ELUT	13A	03/06/2023	01/30/2023 17:20	Leached: 02/01/2023 13:49
Analyte(s): 1-Chlorooctadecane-surr	, =	I-Chloroocta	ne-surr	Total Petroleum Hydrocarbons (TPN), C6-C35
Containers Supplied:				
Sample ID: 23A1459-09	Elutriate	Sampled: 0	1/19/2023 15:20	
T		-		
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr	API	03/06/2023 1-Chloroocta	02/02/2023 15:20 ane-surr	Leached: 02/01/2023 13:49  Total Petro eum Hydrocarbons (TPH), C6-C35
Containers Supplied:				



Analysis		Due	Expires	Comments
Sample ID: 23A1459-10	Elutriate	Sampled: 01	/19/2023 17:00	
Analyte(s):			00-E+ CC0013 N-00	hasebod: 07/01/2023 10:00
Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s):	15A	03/06/2023	02/02/2023 17:00	Leached: 02/01/2023 13:49
1-Chlorooctadecane-surr Containers Supplied:		1-Chlorooctar	e-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
	Elutrista	Sampled: 01	/18/2023 09:40	
Sample ID: 23A1459-11	Elutriate	Sampled: 01	10/2023 03.40	
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr	16A	03/06/2023 1-Chloroactar		Leached: 02/01/2023 13:49  Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:				
Sample ID: 23A1459-12	Elutriate	Sampled: 01	/18/2023 11:15	
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT	17A	03/06/2023	02/01/2023 11:15	Leached: 02/01/2023 13:49
Analyte(s): 1-Chlorooctadecane-surr		1-Chloroocta	ne-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:				
Sample ID: 23A1459-13	Elutriate	Sampled: 01	/16/2023 16:37	
		C- 011		
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr	18A	03/06/2023 1-Chlorocta	01/30/2023 16:37 ne-surr	Leached: 02/01/2023 13:49  Total Petroleum Hydrocarbons (TPH), C6-C35



Analysis		Due	Expires	Comments
Sample ID: 23A1459-14	Elutriate	Sampled: 03	1/18/2023 14:10	
Analyte(s): Total Organic Carbon (TOC)				
TPH-1005-ELUT  Analyte(s):  1-Chlorooctadecane-surr	19A	03/06/2023 1-Chloroocta		Leached: 02/03/2023 09:05  Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:		T CHILITOCUS	ne sun	Total Petroleum Hydrocarbons (TPH), Co-Cos
Sample ID: 23A1459-16	Sediment	Sampled: 0	1/16/2023 14:20	
TPH-10.  Analyte(s):  1-Chlorooctade ge-surr		03/06/2023 1-Chloroocta	01/30/2023 14:20 ne-surr	Total Petroleum ydrocarbons (TPH), C6-C35
Containers Supplied.				
Sample ID: 23A1459-17	Sediment	Sampled: 0	1/17/2023 09:40	
TPH-1005  Analyte(s):  1-Chlorooctadecane-surr	1	03/06/2023 1-Chlorooctar	01/31/2023 09:40 ne-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:	•			
Sample ID: 23A1459-18	Sediment	Sample d: 0	1/17/2023 1 40	
TPH-1005  Analyte(s): 1-Chlorooctadecane-surr		03/06/202 1-Chlorooctar	01/31/202 14:40 ne-sa	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:				
Sample ID: 23A1459-20	Sediment	Sampled:	1/16/2023 13 20	
TPH-1005  Analyte(s): 1-Chlorooctadecane-surr		03/06/223	01/30/2023 17:2 ne-sum	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:	-			
Sample ID: 23A1459-21	Sediment	Sampled: 0.	1/17/2023 11:30	
TPH-1005  Analyte(s):  1-Chlorooctadecane-surr		03/06/2023 1-Chlorooctar	01/31/2023 11:30 ne-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:				



Analysis	Due	Expires	Comments
Sample ID: 23A1459-51 Elutria	te Sampled: 0	1/23/2023 13:05	
Analyte(s): Total Organic Carbon (TOC)			03/01/2033 10:00
TPH-1005-ELUT Apalyte(s):	03/06/2023		Leached: 02/01/2023 13:49
1-Chlorooctadecane-surr Containers Supplied:	1-Chloroocta	ine-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
Sample ID: 23A1459-52 Elutria	te Sampled: 0	1/21/2023 10:00	
T		المرابع والمحافظ	
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s):	03/06/2023	02/04/2023 10:00	Leached: 02/01/2023 13:49
1-Chlorooctadecane-surr	1-Chloroocta	ine-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:			
Sample ID: 23A1459-54 Sedim	ent Sampled: (	01/25/2023 08:00	
TPH-1005 Analyte(s):	03/06/2023	02/08/2023 08:00	
1-Chlorooctadecane-sur	1-Chloroocta	ane-surr	Total Peter adm Hydrocarbons (TPH), C6-C35
Containers Supplied:			
Sample ID: 23A1459-55 Sedim	ent Sampled: U	01/23/2023 16:00	
TPH-1005	03/66/2023	02/06/2023 5:00	
Analyte(s): 1-Chlorooctadecane-surr	1-Chloroocta	ane-	Total Petroleum Hydrocarbons (TP-1), C6-C35
Containers Supplied:			
Sample ID: 23A1459-56 Sedim	ent simpled: l	01/23/2023 13:05	
TPH-1005	03/06/2023	02/06/2023 13:05	
Analyte(s): 1-Chlorooctadecane-surr	1-Chloroocta	ane-surr	Total Petros on Hydrocarbons (TPH), C6-C35
Containers Supplied:			



Analysis		Due	Expire	es	Comments
Sample ID: 23A1459-58	Sediment	Sampled: (	01/21/2023	10:00	
TPH 005 Analyte		03/06/2023	02/04/2023	10:00	
1-Chlorooca decane-surr		1-Chloroocta	ine-surr		Total Petroleum Hydrocau ns (TPH), C6-C35
Containers Supplies					
Sample ID: 23A1459-53	Sediment	Sampled: U	01/21/2023	15:10	
TPH-1005		03/06/2023	02/04/2023	15:10	
Analyte(s): 1-Chlorooctadecane-surr		1-Chloroocta	ine-surr		Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Sopplied:		1			
Sample ID: 23A1459-60	Sediment	Sampled:	1/21/2023	.45	
TPH-1005		03/06/2023	02/04/2 23	11:45	
Analyte(s): 1-Chlorooctadecane-surr		1. Chieves			
The second secon		1-Chioroocta	SUIT		Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:				-	
Sample ID: 23A1459-62	Marine W	ter Sample	d: 01/27/20	23 13:	10
TOC-415.1		03/06/2023	02/24/2023	13:10	
Analyte(s): Total Organic Carbon (TOC)					
TPH-1005		03/06/2023	02/10/2023	13:10	
Analyte(s):		-54-54-54	3-4-54-5-6		
1-Chloroor cane-surr		1-Chlorooctane-surr			Total Petroleum Hy ocarbons (TPH), C6-C35
Contacts Supplied:					
Sample ID: 23A1459-64	Elutriate !	Sampled: 01	/19/2023 1	4:00	
					Common Capapana 2
Analyte(s):					
Total Organic Carbon (TOC) TPH-1005-ELUT	000	03/06/2023	02/02/2023	14:00	Leached: 02/03/2023 09:05
Analyte(s):	220	55,00,2025	02/02/2023	11,00	2000100. 02/03/2020 03.03
1-Chlorooctadecane-surr		1-Chloroocta	DATE OF THE		Total Petroleum Hydrocarbons (TPH), C6-C35
1-Chiorooctabecane-surr		T CHILDI DOCKS	IC SUIT		Total Ped oledin Hydrocarbons (TPT), Co-C33



Work Order: 23A1459 (Continued)

Analysis Due Expires Comments

Sample ID: 23A1459-65 Elutriate Sampled: 01/21/2023 11:45

Analyte(s):

Total Organic Carbon (TOC)

TPH-1005-ELUT

Analyte(s):

1-Chlorooctadecane-surr

03/06/2023

02/04/2023 11:45 Leached: 02/03/2023 09:05

Total Petroleum Hydrocarbons (TPH), C6-C35

Containers Supplied:

Analyte(5):

1-Chlorooctadecane-surr

1-Chlorooctane-surr

1-Chlorooctane-surr

Total Petroleum Hydrocarbons (TPH), C6-C35

Containers Supplied:

Received By



# SUBCONTRACT ORDER

Sending Laboratory:

North Water District Laboratory Services, Inc. 130 South Trade Center Parkway Conroe, TX 77385

Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Deena Higginbotham

Subcontracted Laboratory:

A & B Labs 10100 East Freeway, Suite 100 Houston, TX 77029 Phone: (713) 453-6060 Fax: (713) 453-6091

Work Order: 23B1097

Comments Due Expires Analysis

Sample ID: 23B1097-01 Waste Water Sampled: 02/02/2023 11:00

Analyte(s): Total Phenolics TPH-1005

32A

02/16/2023

02/16/2023 11:00

Analyte(s): 1-Chlorooctadecane-surr

1-Chlorooctane-surr

Total Petroleum Hydrocarbons (TPH), C6-C35

Containers Supplied:

Released By

Received By

02/24/23 1135

3600



# SUBCONTRACT ORDER

Sending Laboratory:

North Water District Laboratory Services, Inc. 130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

Subcontracted Laboratory:

A & B Labs 10100 East Freeway, Suite 100 Houston, TX 77029

Phone: (713) 453-6060 Fax: (713) 453-6091

Work Order: 23B1047

Comments Due Expires Analysis

Marine Water Sampled: 02/09/2023 11:40 Sample ID: 23B1047-02

Analyte(s):

Total Organic Carbon (TOC) TPH-1005

Analyte(s):

1-Chlorooctadecane-surr

02/23/2023 11:40 02/23/2023

1-Chlorooctane-surr

Total Petroleum Hydrocarbons (TPH), C6-C35

Sample ID: 23B1047-05

Marine Water Sampled: 02/09/2023 11:00

Analyte(s): Total Organic Carbon (TOC)

TPH-1005

Containers Supplied:

Analyte(s):

1-Chlorooctadecane-surr

34 A

35A

02/23/2023 11:00 02/23/2023

1-Chlorooctane-surr

Total Petroleum Hydrocarbons (TPH), C6-C35

Containers Supplied:

Marine Water Sampled: 02/09/2023 11:25 Sample ID: 23B1047-06

Analyte(s):

Total Organic Carbon (TOC)

PH-1005

Analyte(s):

1-Chlorooctadecane-surr

02/23/2023

02/23/2023 11:25

1-Chlorooctane-surr

Total Petroleum Hydrocarbons (TPH), C6-C35

Containers Supplied:

Analyte(s):

Total Organic Carbon (TOC)

Containers Supplied:

NWDLS Report Package Page 649 of 1010

NWDLS Rev 1.2 Effective: 11/12/2021

Page 72 of 80

Page 1 of 2



Analysis		Due	Expires	Comments	
mple ID: 23B1047-08	Elutriate	Sampled: 02	2/09/2023 09:37		
TOC-5316 C-FLUT  Analyte(s): Total Organic Carbon (COC)		02/23/2023	03/09/2023 09:37		
Containers Supplied:					
Sample ID: 23B1047-09	Elutriate	Sampled: 0.	2/09/2023 10:06		
TOC-5310 C-ELUT  Analyte(s): Total Organic Carbon (TOC)		02/28/2023	03/09/2023 10:06		
Containers Supplied:		*			
Sample ID: 23B1047-10	Elutriate	Sampled: 0.	2/09/2003 10:36		
TOC-5310 C-ELUT  Analyte(s):  Total Organic Carbon (TOC)		02/23/2023	09/2023 10:36		
Containers Supplied:					
Sample ID: 23B1047-11	Electriate	Sampled: 0	2/09/2023 10:45		
TOC-5310 C-ELUT  Analyte(s):  Total Organic Carb (TOC)		02/23/2023	03/09/2023 10:45		
Containers Splied:					
Andrew Rodrigu	22	2-24-1	3	A ( ) 01/24/23	112
Released By		Date	Receiv	ved By Date	1



# SUBCONTRACT

Sending Laboratory:

North Water District Laboratory Services, Inc. 130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

Subcontracted Laboratory:

A & B Labs 10100 East Freeway, Suite 100 Houston, TX 77029

Phone: (713) 453-6060 Fax: (713) 453-6091

Work Order: 23B1331

Comments Analysis Due Expires Sample ID: 23B1331-02 Marine Water Sampled: 02/09/2023 12:10 Analyte(s): Total Organic Carbon (TOC) TPH-1005 02/23/2023 02/23/2023 12:10 36A Analyte(s): 1-Chlorooctane-surr Total Petroleum Hydrocarbons (TPH), C6-C35 1-Chlorooctadecane-surr Containers Supplied: Sample ID: 23B1331-04 Marine Water Sampled: 02/09/2023 12:25 Analyte(s): Total Organic Carbon (TOC) 02/23/2023 02/23/2023 12:25 TPH-1005 Analyte(s): Total Petro eum Hydrocarbons (TPII), C6-C35 1-Chlorooctadecane-surr 1-Chlorooctane-surr Containers Supplied: Elutriate Sampled: 02/09/2023 12:48 mple ID: 23B1331-05 03/09/2023 TOC-531 ELUT 02/23/2023 Analyte(s): Total Organic Carbon Containers Supplied: 02/09/2023 13:17 Sample ID: 23B1331-06 Ele 109/2023 13:17 02/23/2023 TOC-5310 C-ELUT Analyte(s): Total Organic (TOC) supplied:



Andrew Rodriguez

2-24-23

Received By

02/29/23 1135

Date

IRM



# SUBCONTRACT

Sending Laboratory:

North Water District Laboratory Services, Inc. 130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

Subcontracted Laboratory:

A & B Labs 10100 East Freeway, Suite 100 Houston, TX 77029 Phone: (713) 453-6060 Fax: (713) 453-6091

Work Order: 23A4079

Analysis		Due	Expires	C	comments
Sample ID: 23A4079-02	Marine Water	Sampled:	02/07/2023	13:02	
Analyte(s): Total Organic Carbon (TOC) TPH-1005 Analyte(s): 1-Chlorooctadecane-surr Containers Supplied:	3011	3/10/2023 -Chlorooctane	02/21/2023 1 e-surr	3:02	Total Petroleum Hydrocarbons (TPH), C6-C35
Sample ID: 23A4079-03	Marine Water	Sampled.	: 02/07/202	12:42	
Analyte(s): Total Organic Carbon (TOC) TPH-1005 Analyte(s): 1-Chlorooctadecane-surr Containers Supplied:	3	3/10/2023 L-Chlorooctane	02/21/2023 1 e-surr	2:47	Total Petroleum Hydrocarbons (TPH), C6-C35
Sample ID: 23A4079-04	Marine Water	Sampled	: 02/07/202	3 12:5	7
Analyte(s): Total Organic Carbon (TOC) TPH-1005 Analyte(s): 1-Chlorooctadecane-surr		3/10/2023 1-Chlorooctan	02/21/2023 I	2:57	Total Petroleum Hydrocarbons (TPH), C6-C35
Containers Supplied:					



#### Work Order: 23A4079 (Continued)

Analysis		Due	Expires	Comments
Sample ID: 23A4079-05	Marine Wa	ter Sampled:	02/07/2023 13:	15
Analyte(s): Total Organic Carbon (TOC) TPH-1005 Analyte(s): 1-Chlorooctadecane-surr Containers Supplied:	чіА	03/10/2023 1-Chlorooctane	02/21/2023 13:15 e-surr	Total Petroleum Hydrocarbons (TPH), C6-C35
Sample ID: 23A4079-06	Elutriate	Sampled: 02/	07/2023 10:07	
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr Containers Supplied:	42A	03/10/2023 1-Chlorooctan	02/21/2023 10:07 e-surr	Leached: 02/10/2023 12:24  Total Petroleum Hydrocarbons (TPH), C6-C35
Sample ID: 23A4079-07	Elutriate	Sampled: 02,	/07/2023 10:07	
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr Containers Supplied:	ACD	03/10/2023 1-Chlorooctar	02/21/2023 10:07 ne-surr	Leached: 02/10/2023 12:24  Total Petroleum Hydrocarbons (TPH), C6-C35
Sample ID: 23A4079-08	Elutriate	Sampled: 02	/07/2023 10:57	
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr Containers Supplied:	44A	03/10/2023 1-Chlorocctae		Leached: 02/10/2023 12:24  Total Petroleum Hydrocarbons (TPH), C6-C35



Work Order: 23A4079 (Continued)

Analysis		Due	Expires	Comments
Sample ID: 23A4079-09	Elutriate	Sampled: 02	/07/2023 10:37	
			0 10 000 10 000	A COMPANY OF THE PARK OF THE P
Analyte(s): Total Organic Carbon (TOC) TPH-1005-ELUT Analyte(s): 1-Chlorooctadecane-surr Containers Supplied:	45A	03/10/2023 1-Chloroocter		Leached: 02/10/2023 12:24  Total Petroleum Hydrocarbons (TPh.), C6-C35
emple ID: 23A4079-10	Sediment	Sampled: 0	2/07/2023 11:57	
VOA-c 10-MedS  Analyte(s), 1,2-Dichloroeth e-d4-surr Ethylbenzene Tetrachloroethylene (Pe. Noro Xylene (total)	oethylene)	03/10/2023 4-Bromofluor m+p-xylene Toluene-d8-s	02/21/2023 11:57 robenzene-surr	Dibromofluoro Chane-surr o-Xylene Trichloroethylene)
Containers Supplied:	Continue of	- manifesti (	02/07/2023 11:29	
Sample ID: 23A4079-11 VOA-8260-MedS	Sedimen		02/21/2023 11:25	
Analyte(s):  1,2-Dichloroethane-d4-surr Ethylbenzene Tetrachloroethylene (Perchloro Xylene (total)	oethylene)	4-Bromofluo m+p-xylene Toluene-d8-	ros vene-s	Dibromofluoromethane-surr o-Xylene Trichloroethene (Trichloroethylene)
Containers Supplied:				
Sample ID: 23A4079-17	2 Sedimen	Sampled: U	02/07/2023 09:23	
		03/10/2023	02/21/2023 09:23	
VOA-8260-MedS				
Analyte(s): 1,2-Dichloroethane-d4-surr Ethylbenzene	oethylene)	4-Bromofluo m+p-xylene Toluene-c8-		Dibromofluoron, sene-surr o-Xylene Trichloroechene (Trichlor Stylene)



#### Work Order: 23A4079 (Continued)

Analysis	Due	Expires	Comments
Sample 9: 23A4079-13 Sedimen	nt Sampled: 0	2/07/2023 10:57	
VOA-8260-MedS	03/10/2023	02/21/2023 10:57	
Analyte(s):			
1,2-Dichloroethane-d4-surr Ethylbenzene		obenzene-surr	Dibromofluo methane-surr
Tetrachloroethylene (Perchloroethylene)	m+p-xylene Toluene-d8 s	vier.	rich roethene (Trichlorgethylene)
Xylene (total)	TOIGETTE GO S	an i	The decisie ( The not decision)
Containers Supplied:			
Sample ID: 23A4079-14 Sedimen	nt Sampled: 0	2/01/2023 10/17	
VOA-8260-MedS	03/10/2023	02/21/20 10:07	
Analyte(s):			
1,2-Dichloroethane-d4-surr		ob-szene-surr	Dibromofluoromethane-surr
Ethylbenzene Tetrachloroethylene (Perchloroethylene)	m+p-xylene. Toluer = de s		o-Xylene Trichloroethene (Trichloroethylene)
Xylene (total)	) ciuca e da-s	uri	The horoeutene (The horoeutylene)
Containers Supplied:			
	The second second second	2/02/2022 10:27	
Sample ID: 23A4079-15	nt Sampled: 0	2/0//2023 10:3/	
	03/10/2023	02/21/2023 10:37	
VOA-8260-MedS Analyte(s):	03/10/2023	02/21/2023 10:37	
VOA-8260-MedS  Analyte(s): 1,2-Dichloroetha	03/10/2023 4-Bromofluor		Dibromofluoromethane-surr
VOA-8260-MedS  Analyte(s):  1,2-Dichloroetha  Ethylbenzeps	03/10/2023 4-Bromofluor m+p-xylene	02/21/2023 10:37 obenzene-surr	o-Xylene
VOA-8260-MedS  Analyte(s):  1,2-Dichloroethar d4-surr  Ethylbenzep  Tetrach dethylene (Perchloroethylene)	03/10/2023 4-Bromofluor	02/21/2023 10:37 obenzene-surr	and the first of the second se
VOA-8260-MedS  Analyte(s):  1,2-Dichloroethan d4-surr Ethylbenzeps Tetrach aethylene (Perchloroethylene) Xylv e (total)	03/10/2023 4-Bromofluor m+p-xylene	02/21/2023 10:37 obenzene-surr	o-Xylene
VOA-8260-MedS  Analyte(s):  1,2-Dichloroethar d4-surr Ethylbenzepe Tetrachi aethylene (Perchloroethylene)	03/10/2023 4-Bromofluor m+p-xylene	02/21/2023 10:37 obenzene-surr	o-Xylene
VOA-8260-MedS  Analyte(s):  1,2-Dichloroethan d4-surr Ethylbenzeps Tetrach aethylene (Perchloroethylene) Xylv e (total)	03/10/2023 4-Bromofluor m+p-xylene	02/21/2023 10:37 obenzene-surr	o-Xylene
VOA-8260-MedS  Analyte(s):  1,2-Dichloroetha d4-surr Ethylbenzen Tetrach bethylene (Perchloroethylene) XVI e (total)  Containers Supplied:	03/10/2023 4-Bromofluor m+p-xylene Toluene-d8-s	02/21/2023 10:37 obenzene-surr	o-Xylene Trichloroethene (Trichloroethylene)
VOA-8260-MedS  Analyte(s):  1,2-Dichloroetha d4-surr Ethylbenzen Tetrach bethylene (Perchloroethylene) XVI e (total)  Containers Supplied:	03/10/2023 4-Bromofluor m+p-xylene	02/21/2023 10:37 obenzene-surr	o-Xylene
VOA-8260-MedS  Analyte(s):  1,2-Dichloroethan d4-surr Ethylbenzepa Tetrachi aethylene (Perchloroethylene) XVI e (total)	03/10/2023 4-Bromofluor m+p-xylene Toluene-d8-s	02/21/2023 10:37 obenzene-surr	o-Xylene Trichloroethene (Trichloroethylene)  All an orlandes 1133
Analyte(s):  1,2-Dichloroethar d4-surr Ethylbenzen Tetrachy bethylene (Perchloroethylene) XVI e (total)  Containers Supplied:	03/10/2023 4-Bromofluor m+p-xylene Toluene-d8-s	02/21/2023 10:37 obenzene-surr	10-Xylene Trichloroethene (Trichloroethylene)  All orlands 113

### **Sample Condition Checklist**



A&I	3 JobID : <b>23022553</b> Date	e Received : <b>02/24/2023</b> Time Received : <b>11</b> :	35AM		
Clie	ent Name : <b>NWDLS</b>				
Ter	nperature : 3.6°C San	nple pH: NA			
The	ermometer ID : <b>IR4</b> pH I	Paper ID: <b>NA</b>			
Ре	rservative :				
		Check Points	Yes	No	N/A
1.	Cooler Seal present and signed.			Χ	
2.	Sample(s) in a cooler.		Χ		
3.	If yes, ice in cooler.		Х		
4.	Sample(s) received with chain-of-custody.		Х		
5.	C-O-C signed and dated.		Х		
6.	Sample(s) received with signed sample custo	ody seal.		Х	
7.	Sample containers arrived intact. (If No com		Х		
8.	Matrix: Soil Liquid Sludge	Solid Cassette Tube Bulk Badge Food Other			
9.	Samples were received in appropriate contain	iner(s)	Х		
10.	Sample(s) were received with Proper preser	vative			Х
11.	All samples were tagged or labeled.		Х		
12.	Sample ID labels match C-O-C ID's.		Х		
13.	Bottle count on C-O-C matches bottles found	1.		Χ	
14.	Sample volume is sufficient for analyses req	uested.	Х		
15.	Samples were received with in the hold time	h.	Х		
16.	VOA vials completely filled.				Х
17.	Sample accepted.		Х		
18.	Has client been contacted about sub-out				Х
Cor	nments : Include actions taken to resolve dis	crenancies/problem:			
	eived an extra vial. AM 02/24/23	e. epe., problem			

Received by: Jedralin Check in by/date: EValdez / 02/24/2023

ab-s005-0321



Service Request No:K2301449

Monica Martin North Water District Lab Services (NWDLS) 130 South Trade Center Parkway Conroe, TX 77385

**Laboratory Results for: 23A1459** 

Dear Monica,

Enclosed are the results of the sample(s) submitted to our laboratory February 03, 2023 For your reference, these analyses have been assigned our service request number **K2301449**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3260. You may also contact me via email at Luke.Rahn@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Luke Rahn

**Project Manager** 



### **Narrative Documents**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



Client: North Water District Lab Services (NWDLS)

Project: 23A1459

Service Request: K2301449

Date Received: 02/03/2023

Sample Matrix: Elutriate, Liquid

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### **Sample Receipt:**

Nine elutriate, liquid samples were received for analysis at ALS Environmental on 02/03/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

#### **General Chemistry:**

No significant anomalies were noted with this analysis.



## Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com North Water District Lab Services (NWDLS)

Service Request:K2301449

**Project:** 23A1459

Client:

#### **SAMPLE CROSS-REFERENCE**

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K2301449-001	23A1459-07	2/1/2023	1000
K2301449-002	23A1459-08	2/1/2023	1000
K2301449-003	23A1459-09	2/1/2023	1000
K2301449-004	23A1459-10	2/1/2023	1000
K2301449-005	23A1459-11	2/1/2023	1000
K2301449-006	23A1459-12	2/1/2023	1000
K2301449-007	23A1459-13	2/1/2023	1000
K2301449-008	23A1459-51	2/1/2023	1000
K2301449-009	23A1459-52	2/1/2023	1000



1/23014419

### **SUBCONTRACT ORDER**

**Sending Laboratory:** 

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

**Subcontracted Laboratory:** 

ALS Kelso

1317 South 13th Avenue

Kelso, WA 98626

Phone: (360) 577-7222

Fax:

Analysis		Due	Expires	s C	omments	
	Marine Water	Sampled:	01/25/202	23 11:20	•	
	03,	/06/2023	02/08/2023	11:20	1333	
Containers Supplied:						
	Marine Water	Sampled:	01/25/202	23 14:17	7	
	03	/06/2023	02/08/2023	14:17		
Containers Supplied:						
	Marine Water	Sampled:	01/25/202	23 15:45	7	
	03	/06/2023	02/08/2023	15: <del>4</del> 5		
	03	/06/2023	02/01/2023	15:45		
	M	onobutyltin			Tributyltin	

Marine Water Sampled	d: 01/27/2023 12:00	
03/06/2023	02/10/2023 12:00	
03/06/2023	02/03/2023 12:00	
Monobutyltin Monobutyltin		Tributyltin Tributyltin

NWDLS Report Package Page 663 of 1010

Monobutyltin

Tributyltin



1230/449

### SUBCONTRACT ORDER (Continued)

Work Order: 23A1459 (Continued)

Analysis		Due	Expires	Comments	
Sample ID: 23A1459-07	Elutriate	Sampled: 01	/16/2023 14:20		
Sub_CN T-ELUT		03/06/2023	01/30/2023 14:20	Leached: 02/01/2023 10:00	****
Analyte(s): Total Cyanide					
Containers Supplied:					
Sample ID: 23A1459-08	Elutriate	Sampled: 01	/16/2023 17:20		
Sub_CN T-ELÚT		03/06/2023	01/30/2023 17:20	Leached: 02/01/2023 10:00	
Analyte(s): Total Cyanide					
Containers Supplied:					
Sample ID: 23A1459-09	Elutriate	Sampled: 01	/19/2023 15:20		
Sub_CN T-ELUT		03/06/2023	02/02/2023 15:20	Leached: 02/01/2023 10:00	
Analyte(s): Total Cyanide					
Containers Supplied:					
Sample ID: 23A1459-10	Elutriate	Sampled: 01	/19/2023 17:00		
Sub_CN T-ELUT  Analyte(s):  Total Cyanide		03/06/2023	02/02/2023 17:00	Leached: 02/01/2023 10:00	
Containers Supplied:					
Sample ID: 23A1459-11	Elutriate	Sampled: 01	//18/2023 09:40	And a strong page of the strong	
Sub_CN T-ELUT  Analyte(s):  Total Cyanide		03/06/2023	02/01/2023 09:40	Leached: 02/01/2023 10:00	
Containers Supplied:					
Sample ID: 23A1459-12	Elutriate	Sampled: 01	/18/2023 11:15		***************************************
Sub_CN T-ELUT		03/06/2023	02/01/2023 11:15	Leached: 02/01/2023 10:00	
Analyte(s): Total Cyanide					
Containers Supplied:					



NWDLS Rev 1.2 Effective: 11/12/2021

12201449

### SUBCONTRACT ORDER

(Continued)

<b>Work Order:</b>	23A1459 (	(Continued)
--------------------	-----------	-------------

Analysis		Due	Expires	Comments	
Sample ID: 23A1459-13	Elutriate	Sampled: 01	/16/2023 16:37		
Sub_CN T-ELUT		03/06/2023	01/30/2023 16:37	Leached: 02/01/2023 10:00	
Analyte(s): Total Cyanide					
Containers Supplied:					
	Sediment	Sampled: 0	1/16/2023 14:20		
		03/06/2023	01/30/2023 14:20		
		Monobutyltin		Tributyltin	
		Monobutyltin		Tributyltin	
Containers Supplied:					
	Sediment	Sampled: 0	1/17/2023 09:40		
		03/06/2023	01/31/2023 09:40		
		Monobutyltin		Tributyltin	
		Monobutyltin		Tributyltin	
Containers Supplied:					
				And the second s	
	Sediment	Sampled: 0.	1/17/2023 14:40		
		03/06/2023	01/31/2023 14:40		
		Monobutyitin		Tributyltin	
		Monobutyltin		Tributyltin	
Containers Supplied:					
		11.11N/#F/VI		Laboratoria -	
	Sediment	Sampled: 0.	1/16/2023 17:20		
		03/06/2023	01/30/2023 17:20		
		Monobutyltin		Tributyltin	
		Monobutyltin		Tributyltin	
Containers Supplied:					
	Sediment	Sampled: 0.	1/17/2023 11:30		
		03/06/2023	01/31/2023 11:30		
		Monobutyltin		Tributyltin	
		Monobutyltin		Tributyltin	
Containers Supplied:					



NWDLS Rev 1.2 Effective: 11/12/2021

K2301449

# SUBCONTRACT ORDER

(Continued)

Work Order: 23A1459 (Continued)

Analysis	Due	Expires	Comments	
	Sediment Sampled: 0.	1/20/2023 09:30		
	03/06/2023	02/03/2023 09:30		
	\$ # \$ \$ \$ Li		"Tuibu da déire	
	Monobutyltin Monobutyltin		Tributyltin Tributyltin	
Containers Supplied:				
	Marine Water Sampled	d: 01/27/2023 16	:07	
	03/06/2023	02/10/2023 16:07		
	03/06/2023	02/03/2023 16:07		
	03/00/2023	02/03/2023 10:07		
	Monobutyltin		Tributyltin	
	Monobutyltin		Tributyltin	
Containers Supplied:				
	Marine Water Sample	d: 01/27/2023 15	:20	
	03/06/2023	02/10/2023 15:20		
Carry co, cop				
	03/06/2023	02/03/2023 15:20		
	Monobutyltin Monobutyltin		Tributyltin Tributyltin	
Containers Sympliads	Honobacytan		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Containers Supplied:				
Sample ID: 23A1459-51	Elutriate Sampled: 01	/23/2023 13:05		
Sub_CN T-ELUT	03/06/2023	02/06/2023 13:05	Leached: 02/01/2023 10:00	
Analyte(s): Total Cyanide				
Containers Supplied:				
Sample ID: 23A1459-52	Elutriate Sampled: 01	//21/2023 10:00		
Sub_CN T-ELUT	03/06/2023	02/04/2023 10:00	Leached: 02/01/2023 10:00	
Analyte(s): Total Cyanide				
Containers Supplied:				



12301449

# SUBCONTRACT ORDER

(Continued)

Work Order:	23A1459	(Continued)
-------------	---------	-------------

Analysis	Due	Expire	s	Comments	
	Sediment Sampled: 0.	1/21/2023	16:45		
	03/06/2023	02/04/2023	16:45		
	Monobutyitin			Tributyltin	
	Monobutyltin			Tributyltin	
Containers Supplied:					
	Marine Water Sampled	d: 01/27/20	123 13:2	26	
	03/06/2023	02/10/2023	13:26		
	03/06/2023	02/03/2023	13:26		
Assetsianish	· · · · · · · · · · · · · · · · · · ·	,,			
	Monobutyltin			Tributyltin	
	Monobutyltin		•	Tributyltin	
Containers Supplied:					
			WIMMED TO THE REAL PROPERTY OF THE PERTY OF		
Spl	62/62			UPS	G2/62/23 Date (S 2/3/23 1019
Released By	Date		Received	I By	Date '
			12-	C 225	10 2/3/25 101

PM	
----	--

en en en en	210		Cooler Receipt	and P	reser	vatio	n Forn	n	21/11/	,		
ient <u>I I I I</u>	11/2/00		010100	.•	1.5 - 0	_Ser		uest <b>K23</b>	<u> </u>	····-	1 11	<del></del>
eceived:	210122	_ Opened: _	-15/25	By:	MM		_ Unload	ed: <u> </u>	3/23	By: _	MM	
Samples we	re received via?	(USPS)	Fed Ex	U <b>PS</b>	Di	HL.	PDX	Cou	rier l	Hand Del	livered	
Samples we	re received in: (circ	le) Ca	poler Box	En	velope		Other				NA.	
Were custod	y seals on coolers?		NA Y (N)	lf yes, he	w man	y and v	where?				_	
If present, w	ere custody seals in	tact?	Y N I	lf presen	t, were i	they si	gned and	dated?		Y	N	
· ·				1			· [				· · · · · · ·	
					Out of	temn		PM lotified				With the state of
Temp Blank	Sample Temp	iR Gun	Cooler #/COC ID / N/	A .	ndicate	with "	(° lf oi	ut of temp	Tracki	ng Numb	er NA	Filed
	. P.U.	I I AU						Anthone	21264	1/0/0/0	165812	0
	`											
				•								
Was a Tempe	rature Blank preser	it in cooler?	NA Y N	If yes, n	otate the	e temp	erature in	the appropria	ate column al	ove:		
If no, take th	ne temperature of a	representativo	e sample bottle contain									
			cified temperature rang			,				Y	> N	
			as collected? If not, n	-	cooler	# abov	e and not	ify the PM.	⟨NA	$\supset \dot{\hat{v}}$	N N	
	ssue samples were r		Frozen Partially Th		Thawe				And the second s		14	
n (2						_						
_	nterial: <i>Inserts I</i>		bble Wrap Gel Pack	s Wet	Ice D	ry Ice	Sleeves					
	dy papers properly i	•	• , ,	- Children					NA	$\mathcal{L}^{\mathbf{Y}}$	) N	
_	les received in good male labels complet	,	nbroken) s, preservation, etc.)?						NA NA	(Y)	N	
	ple labels and tags								NA NA	$-\langle \overset{\mathbf{J}}{\mathbf{v}} \rangle$	) N	
		_	imes received for the to	ests indi	cated?				NA.	$\bigcirc$ Y		
			EN SOP) received at th			17 Ind	icate in th	e table belov			N	
			e? Indicate in the table			-, -,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		NA	and the same of th	N	
4. Was C12/R										/	N	
		the method sr	pecified time limit? If r	not nota	te the er	ror be	low and n	otify the PM	NA NA		N	
		_	ed exactly to the 100m		Ń		) Y	N	Under		Overfille	d
<u> </u>		•										
St	ample ID on Bott	le	Sample	D on	COC				Identific	d by:		
									·			
						<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>						
			Bottle Count	Head-				Volum	e Reage	nt Lot		
	Sample ID		Bottle Type	space	Broke	рΗ	Reage	ent adde			Initials	Time
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<del>                _   _       _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _</del>								
				1								
<u> </u>												
Notes, Disc	repancies, Resol	utions: $\overline{\Box}$	)ig not	Ph	duse	łο	hirite	G NO	MMZ		<del></del>	
G:\SMO	\2022 Forms			SOP: S		EN				Review	ed: 12/9	/2022



### **Miscellaneous Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

#### **Inorganic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
N. d. C. T. DEO	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-laboratification-	<b>.</b> 0.5
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Service Request: K2301449

**Client:** North Water District Lab Services (NWDLS)

**Project:** 23A1459/

**Sample Name:** 

23A1459-07 **Date Collected:** 02/1/23

Lab Code: K2301449-001 **Date Received:** 02/3/23

**Sample Matrix:** Elutriate, Liquid

**Analyzed By Analysis Method Extracted/Digested By** 

SM 4500-CN-E **MRICH MRICH** 

Sample Name: 23A1459-08 **Date Collected:** 02/1/23

Lab Code: K2301449-002 Date Received: 02/3/23

**Sample Matrix:** Elutriate, Liquid

**Analyzed By Analysis Method Extracted/Digested By** 

SM 4500-CN-E **MRICH MRICH** 

Sample Name: 23A1459-09 **Date Collected:** 02/1/23

Lab Code: K2301449-003 **Date Received:** 02/3/23

Sample Matrix: Elutriate, Liquid

**Extracted/Digested By Analyzed By Analysis Method** 

SM 4500-CN-E **MRICH MRICH** 

**Sample Name:** 23A1459-10 **Date Collected:** 02/1/23

Lab Code: K2301449-004 **Date Received:** 02/3/23Sample Matrix: Elutriate, Liquid

**Analyzed By Extracted/Digested By Analysis Method** 

SM 4500-CN-E **MRICH MRICH** 

Sample Name: 23A1459-11 **Date Collected:** 02/1/23

K2301449-005 Lab Code: **Date Received:** 02/3/23 Elutriate, Liquid Sample Matrix:

**Analyzed By Analysis Method Extracted/Digested By** SM 4500-CN-E **MRICH MRICH** 

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

**Sample Name:** 

23A1459-12 **Date Collected:** 02/1/23

**Lab Code:** K2301449-006 **Date Received:** 02/3/23

Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By

SM 4500-CN- E MRICH MRICH

**Sample Name:** 23A1459-13 **Date Collected:** 02/1/23

**Lab Code:** K2301449-007 **Date Received:** 02/3/23

Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By

SM 4500-CN- E MRICH MRICH

Sample Name: 23A1459-51 Date Collected: 02/1/23

**Lab Code:** K2301449-008 **Date Received:** 02/3/23

Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By

SM 4500-CN- E MRICH MRICH

**Sample Name:** 23A1459-52 **Date Collected:** 02/1/23

**Lab Code:** K2301449-009 **Date Received:** 02/3/23

Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By

SM 4500-CN- E MRICH MRICH



# Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



# **General Chemistry**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 02/01/23 10:00

Sample Matrix: Elutriate, Liquid Date Received: 02/03/23 10:10

Sample Name: 23A1459-07 Basis: NA

**Lab Code:** K2301449-001

#### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/09/23 16:15	02/09/23	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 02/01/23 10:00

Sample Matrix: Elutriate, Liquid Date Received: 02/03/23 10:10

Sample Name: 23A1459-08 Basis: NA

**Lab Code:** K2301449-002

#### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/09/23 16:15	02/09/23	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 02/01/23 10:00

Sample Matrix: Elutriate, Liquid Date Received: 02/03/23 10:10

Sample Name: 23A1459-09 Basis: NA

**Lab Code:** K2301449-003

#### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Extracted	Q
Cyanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/09/23 16:15	02/09/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301449 **Date Collected:** 02/01/23 10:00 **Project:** 23A1459

**Date Received:** 02/03/23 10:10 **Sample Matrix:** Elutriate, Liquid

**Sample Name:** Basis: NA 23A1459-10

Lab Code: K2301449-004

#### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/14/23 16:53	02/14/23	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 02/01/23 10:00

Sample Matrix: Elutriate, Liquid Date Received: 02/03/23 10:10

Sample Name: 23A1459-11 Basis: NA

**Lab Code:** K2301449-005

#### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/14/23 16:53	02/14/23	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 02/01/23 10:00

Sample Matrix: Elutriate, Liquid Date Received: 02/03/23 10:10

Sample Name: 23A1459-12 Basis: NA

**Lab Code:** K2301449-006

#### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cyanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/14/23 16:53	02/14/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301449 **Date Collected:** 02/01/23 10:00 **Project:** 23A1459

**Date Received:** 02/03/23 10:10 **Sample Matrix:** Elutriate, Liquid

**Sample Name:** Basis: NA 23A1459-13

Lab Code: K2301449-007

#### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/14/23 16:53	02/14/23	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 02/01/23 10:00

Sample Matrix: Elutriate, Liquid Date Received: 02/03/23 10:10

Sample Name: 23A1459-51 Basis: NA

**Lab Code:** K2301449-008

#### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cyanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/04/23 15:04	02/04/23	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 02/01/23 10:00

Sample Matrix: Elutriate, Liquid Date Received: 02/03/23 10:10

Sample Name: 23A1459-52 Basis: NA

**Lab Code:** K2301449-009

#### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cyanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/04/23 15:04	02/04/23	



# **QC Summary Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



# **General Chemistry**

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301449

Project:23A1459Date Collected:NASample Matrix:Elutriate, LiquidDate Received:NA

Sample Name: Method Blank Basis: NA

**Lab Code:** K2301449-MB1

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cyanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/04/23 15:04	02/04/23	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301449

Project:23A1459Date Collected:NASample Matrix:Elutriate, LiquidDate Received:NA

Sample Name: Method Blank Basis: NA

**Lab Code:** K2301449-MB2

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Extracted	Q
Cyanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/09/23 16:15	02/09/23	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301449

Project:23A1459Date Collected:NASample Matrix:Elutriate, LiquidDate Received:NA

Sample Name: Method Blank Basis: NA

**Lab Code:** K2301449-MB3

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/14/23 16:53	02/14/23	

QA/QC Report

Client: North Water District Lab Services (NWDLS)

**Service Request:** 

K2301449

Project: Sample Matrix: 23A1459

Date Analyzed:

02/09/23

Elutriate, Liquid

**Date Extracted:** 

02/09/23

**Lab Control Sample Summary** 

Cyanide, Total

**Analysis Method:** SM 4500-CN- E

**Units:** 

mg/L

**Prep Method:** SM 4500-CN-C

**Basis:** 

NA

**Analysis Lot:** 

794191

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K2301449-LCS3	0.073	0.075	98	84-115

QA/QC Report

**Client:** North Water District Lab Services (NWDLS) **Service Request:** 

K2301449

**Project: Sample Matrix:**  23A1459

Elutriate, Liquid

**Date Analyzed:** 

02/04/23

**Date Extracted:** 

02/04/23

**Duplicate Lab Control Sample Summary General Chemistry Parameters** 

**Analysis Method:** 

SM 4500-CN-E

**Units:** 

mg/L

**Prep Method:** 

SM 4500-CN-C

**Basis:** 

NA

**Analysis Lot:** 

793766

**Lab Control Sample** K2301449-LCS1

**Duplicate Lab Control Sample** K2301449-DLCS1

% Rec

**RPD Limit** 

**Analyte Name** Cyanide, Total

Result 0.076

**Spike Amount** 0.075

% Rec 101

Result 0.079

**Spike Amount** 0.075

% Rec 106

Limits 84-115 **RPD** 20

QA/QC Report

**Client:** North Water District Lab Services (NWDLS) **Service Request:** 

K2301449

**Project: Sample Matrix:**  23A1459

**Date Analyzed: Date Extracted:**  02/14/23

Elutriate, Liquid

02/14/23

**Duplicate Lab Control Sample Summary General Chemistry Parameters** 

**Analysis Method:** 

SM 4500-CN-E

**Units:** 

mg/L

**Prep Method:** 

NA

SM 4500-CN-C

**Basis:** 

**Analysis Lot:** 

794621

**Lab Control Sample** K2301449-LCS2

0.075

**Duplicate Lab Control Sample** K2301449-DLCS2

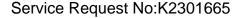
% Rec

**Analyte Name** 

Cyanide, Total

Result **Spike Amount** 0.0758

% Rec 101


Result 0.0727

**Spike Amount** 0.075

% Rec 97

Limits 84-115

**RPD Limit RPD** 20





Monica Martin North Water District Lab Services (NWDLS) 130 South Trade Center Parkway Conroe, TX 77385

Laboratory Results for: 23A1459

Dear Monica,

Enclosed are the results of the sample(s) submitted to our laboratory February 08, 2023 For your reference, these analyses have been assigned our service request number **K2301665**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3260. You may also contact me via email at Luke.Rahn@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Luke Rahn

**Project Manager** 



### **Narrative Documents**



Client: North Water District Lab Services (NWDLS)

Project: 23A1459

Service Request: K2301665

Date Received: 02/08/2023

Sample Matrix: Sediment, Elutriate, Liquid

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### **Sample Receipt:**

Four sediment, elutriate, liquid samples were received for analysis at ALS Environmental on 02/08/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

#### **Semivoa GC:**

Method ALS SOP, 02/25/2023: Sample K2301665-004 was received past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

#### **General Chemistry:**

No significant anomalies were noted with this analysis.



#### **SAMPLE DETECTION SUMMARY**

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: 23A1459-66	Lab ID: K2301665-004						
Analyte	Results	Flag	MDL	MRL	Units	Method	
Solids, Total	77.3				Percent	160.3 Modified	



# Sample Receipt Information

Client: North Water District Lab Services (NWDLS) Service Request: K2301665

**Project:** 23A1459

#### **SAMPLE CROSS-REFERENCE**

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K2301665-001	23A1459-14	2/3/2023	0905
K2301665-002	23A1459-64	2/3/2023	0905
K2301665-003	23A1459-65	2/3/2023	0905
K2301665-004	23A1459-66	1/21/2023	0000

NWDLS Report Package Page 699 of 1010



KZ301665

# SUBCONTRACT ORDER

**Sending Laboratory:** 

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

**Subcontracted Laboratory:** 

ALS Kelso

1317 South 13th Avenue Kelso, WA 98626

Phone: (360) 577-7222

Fax:

Work Order: 23A1459

Analysis	Du	е	Expires		Comments	
ample ID: 23A1459-02	Marine Water Sa	mpled:	01/25/202	3 11:2	20	
Sub_GNT-4500	03/06/	2023 (	02/08/2023	11:20		
Analyte(s)						
Total Cyanio						
Containers Supplies						
Sample ID: 23A1459-03	Marine Water Sa	mpled:	01/25/202	3 14:1	17	 
Sub_CN T-4500	03/06/	2023 (	02/08/2023	14:17		 
Analyte(s):						
Total Cyanide						
Containers Supplied:						
Sample ID: 23A1459-04	Marine Water	mpled:	0 25/202	?3 15:4	15	
Sub_CN T-4500	03/06/	202	2/08/2023	15:45		 
Analyte(s):			<b>.</b>			
Total Cyanide Sub_Organotins-TX1001	03/2	2023 (	02/01/2023	15.45		
Analyte(s):	03/04/	2023	32/01/023	13.73		
Dibutyltin	Monob	utyitin		<b>A</b>	Tributyltin	
Dibutyltin	Monob	utyltin		The state of the s	Tributyltin	
Containers Supplied:						
Sample ID: 23A1459-05	Marine Water Sa	mpled:	01/27/202	?3 12:0	00	
Sub_CN T-4500	03/06/	2023 (	02/10/2023	12:00		
Analyte(s):						
Total Cyanide						
Sub_Organotins X1001	03/06/	2023 (	02/03/2023	12:00		
Analyte(s): Dibutyltig	Monob	um dei -			<b>7</b> 7.00 1 10	
Dibut	Monob Monob				Tributyltin Tributyltin	
Con Iners Supplied:	1.01.05				modefalls	
сон <b>ц</b> инега зарриса.						



# KZ301665 SUBCONTRACT **ORDER**

(Continued)

#### Work Order: 23A1459 (Continued)

Analysis	Due	Expires	Comments	
	03/06/2023	01/30/2023 16:37	Leached: 02/01/2023 10:00	
<i>Analyte(s):</i> Total Cyanide				
Containers Supplied:				
Sample ID: 23A1459-14 <i>El</i>	utriate Sampled: 01	/23/2023 00:00		
Sub_CN T-ELUT	03/06/2023	02/06/2023 00:00	Leached: 02/03/2023 09:05	***************************************
<i>Analyte(s):</i> Total Cyanide				
Containers Supplied:				
			•	
Sub_Organotins_TX1001 Analyte(s):	03/06/2023	01/30/2023 14:20		A A L
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin  Containers Supplied:	Monobutyltin		Tributyltin	
	03/06/2023	01/31/2023 09:40		
Analyte(s): Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyltin		Tributyltin	
Containers Supplied:				
int-Organistics-P410215	03/06/2023	01/31/2023 14:40		
Analyte(s): Dibutyltin	Manabutultia		Tuite, as dain	
Dibutyltin	Monobutyltin Monobutyltin		Tributyltin Tributyltin	
Containers Supplied:				
	03/06/2023	01/30/2023 17:20		
Analyte(s):	35, 46, 2023	02,00,2020 17.20		
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyltin		Tributyltin	
Containers Supplied:				



67301665 SUBCONTRACT

### SUBCONTRACT ORDER

(Continued)

#### Work Order: 23A1459 (Continued)

Analysis	Due	Expires	Comments	
Analyte(s): Dibutyltin	03/06/2023 Monobutyltin	02/04/2023 16:45	Tributyltin	
Dibutyltin  Containers Supplied:	Monobutyltin		Tributyltin	
сопсинета Эарриеа.				
Analyte(s): Total Cyanide	03/06/2023	02/10/2023 13:26		
Analyte(s):	03/06/2023	02/03/2023 13:26		
Dibutyltin Dibutyltin	Monobutyltin Monobutyltin		Tributyltin Tributyltin	
Containers Supplied:				
Sample ID: 23A1459-64	Elutriate Sampled: 01	/20/2023 09:30		
Sub_CN T-ELUT  Analyte(s):  Total Cyanide	03/06/2023	02/03/2023 09:30	Leached: 02/03/2023 09:05	
Containers Supplied:				
Sample ID: 23A1459-65	Elutriate Sampled: 01	/21/2023 16:45		
Sub_CN T-ELUT  Analyte(s):  Total Cyanide	03/06/2023	02/04/2023 16:45	Leached: 02/03/2023 09:05	
Containers Supplied:				
Sample ID: 23A1459-66	Sediment Sampled: 0.	1/21/2023 00:00		
Sub_Organotins-TX1001  Analyte(s):	03/06/2023	02/04/2023 00:00		
Dibutyltin Dibutyltin	Monobutyltin Monobutyltin		Tributyltin Tributyltin	
Containers Supplied:				
	. / .	60	1.00	
Polando d Diu	$\frac{2/7}{\text{Date}}$	/ZO Pagain	ufs red By ry Nedlisa	$\frac{21'1/23}{25}$
Released By	Date	1/00014	eu by	Date

ent ·	Ntur	OLS	Cooler Receipt	and P	reser			ron (^	1/0/05	PM/	
ceived: 2	18123	Opened:	7.18/23	By: _	11 4	Sen ク	rice Request I Unloaded:	7.18	123 By:	NX	<del>)</del>
Samples we	re received via?	USPS	Fed Ex	UPS	DH	IL	- PDX	Courie		ivered	
Samples we	re received in: (cir	cle) (Ĉ	Fooler Box	A A STATE OF THE PARTY OF THE P	velope		Other		1147110 27 21	NA NA	
Were custod	y seals on coolers	)	NA Y (N)	If yes, he	w many	and v	vhere?				
If present, w	ere custody seals i	ntact?	YN	If presen	t, were t	hey si	gned and dated	?	Y	N	
		,				1	PM				
emp Blank	Sample Temp	JR Gun	Cooler #/COC ID / N	iA.	Out of ndicate		Notifie		Tracking Numb	me MA	Filed
	1.2 -	1200				17114) Z.		17	- 12W 40V		riied
									900	2/(2)1	_
<del></del>				•						<u> 2 4 5 15</u>	1
										-··.	
Was a Tempe	rature Blank prese	nt in cooler?	NA Y (N)	If yes =	ntata tha	torre	erature in the a	anronviete.	oolumn abassa	······································	
			e sample bottle contai								
			ecified temperature rai		и птс со	otet, fi	otate in the col	uuu sam	/ ~	)	
		_	y as collected? If not,	_	oooles :	# aha-	a and natifical	- D) (	NA (Y	N	
	ssue samples were		Frozen Partially 1				e and notity the	e PM.	NA Y	N	
	•	- wanning	The same of the sa	AS Property	Thawe	ш			Carried States		
	aterial: Inserts (	Married Marrie	ubble Wrap Gel Pac	ks (Wet	Ice D	ry Ice	Sleeves				
	dy papers properly								NA (Y	) N	
	les received in goo								NA (Y	N	
	inple labels compli ple labels and tags		is, preservation, etc.)?						NA Y	N	
	_	-	lumes received for the	tacto indi	nntad?				NA Y	N	
			EN SOP) received at t			10 144	lianta in tha tab	lo bol	NA (Y	) N	
			ce? Indicate in the tab		mate pr	L: 1784	icuie in ine iuo	ie delow	NA (Y) (NA) Y	) N	
4. Was C12/R		noue neadspa	cc: Indicate in the tab	ie deiow.						N	
	<del></del>	the method	specified time limit? If	not nota	ta tha ar	tor ha	law and natific	the DM	NA Y	N	
			lled exactly to the 100		N.	7	Y N	ine Pivi	NA Y	N	
J. WEIG 1001	a storno birororor	ogy comes n	Tour cazetry to the root	an mark!		<u>~</u>	1 18	1	Underfilled	Overfille	<u> </u>
S	ample ID on Bot	tle	Samp	le ID on	COC				identified by:	<u>G</u>	
		····									
		•	·					***			······································
		· .	Bottle Count	Head-				Volume	Reagent Lot		: :
	Sample ID	· · · · · · · · · · · · · · · · · · ·	Bottle Type	2 bace	Broke	рН	Reagent	added	Number	Initials	Time
		<del>" , , , , , , , , , , , , , , , , , , ,</del>									
								1 1		1	
Notes, Disc	repancies, Reso	olutions:		<b>.</b>	<u>.                                    </u>	L	<u> </u>	_1		11	
				4							
G. (3IVIC	)\2022 Forms			SOP: S	MO-G	EN			Review	ed: 12/9	/2022



## **Miscellaneous Forms**

#### **Inorganic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
N. d. C. T. DEO	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-laboratification-	<b>.</b> 0.5
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOO Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

Service Request: K2301665

**Date Collected:** 02/3/23

Date Received: 02/8/23

**Sample Name:** 23A1459-14

**Lab Code:** K2301665-001

**Analysis Method** 

Sample Matrix: Elutriate, Liquid

Extracted/Digested By Analyzed By

SM 4500-CN- E MRICH MRICH

Sample Name: 23A1459-64 Date Collected: 02/3/23

**Lab Code:** K2301665-002 **Date Received:** 02/8/23

Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By

SM 4500-CN- E MRICH MRICH

Sample Name: 23A1459-65 Date Collected: 02/3/23

**Lab Code:** K2301665-003 **Date Received:** 02/8/23

Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By

SM 4500-CN- E MRICH MRICH

**Sample Name:** 23A1459-66 **Date Collected:** 01/21/23

**Lab Code:** K2301665-004 **Date Received:** 02/8/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT



# Sample Results



# Semivolatile Organic Compounds by GC

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301665 **Date Collected:** 01/21/23 00:00 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/08/23 10:50

**Sample Name:** 23A1459-66 Units: ug/Kg Lab Code: K2301665-004 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.3	0.34	1	02/25/23 15:08	2/9/23	*
Di-n-butyltin Cation	ND U	1.3	0.25	1	02/25/23 15:08	2/9/23	*
Tri-n-butyltin Cation	ND U	1.3	0.56	1	02/25/23 15:08	2/9/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	60	10 - 152	02/25/23 15:08		

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301665 **Date Collected:** 01/21/23 00:00 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/08/23 10:50

**Sample Name:** 23A1459-66 Units: ug/Kg

Lab Code: K2301665-004 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.99	0.26	1	02/25/23 15:08	2/9/23	*
Di-n-butyltin Cation	ND U	0.99	0.19	1	02/25/23 15:08	2/9/23	*
Tri-n-butyltin Cation	ND U	0.99	0.43	1	02/25/23 15:08	2/9/23	*



# **General Chemistry**

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301665 **Date Collected:** 02/03/23 09:05 **Project:** 23A1459

**Date Received:** 02/08/23 10:50 **Sample Matrix:** Elutriate, Liquid

**Sample Name:** Basis: NA 23A1459-14

Lab Code: K2301665-001

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/14/23 16:53	02/14/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301665 **Date Collected:** 02/03/23 09:05 **Project:** 23A1459

**Date Received:** 02/08/23 10:50 **Sample Matrix:** Elutriate, Liquid

**Sample Name:** Basis: NA 23A1459-64

Lab Code: K2301665-002

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cyanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/14/23 16:53	02/14/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301665 **Date Collected:** 02/03/23 09:05 **Project:** 23A1459

**Date Received:** 02/08/23 10:50 **Sample Matrix:** Elutriate, Liquid

**Sample Name:** Basis: NA 23A1459-65

Lab Code: K2301665-003

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/14/23 16:53	02/14/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301665 **Date Collected:** 01/21/23 00:00 **Project:** 23A1459

**Date Received:** 02/08/23 10:50 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-66 Basis: As Received

Lab Code: K2301665-004

#### **Inorganic Parameters**

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	77.3	Percent	_	_	1	02/02/23 16:57	



# **QC Summary Forms**



# Semivolatile Organic Compounds by GC

QA/QC Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301665

**Project:** 23A1459 **Sample Matrix:** Sediment

SURROGATE RECOVERY SUMMARY
Butyltins

**Analysis Method:** ALS SOP **Extraction Method:** Method

		Tri-n-propyltin			
Sample Name	Lab Code	10-152			
23A1459-66	K2301665-004	60			
Method Blank	KQ2302128-04	78			
Lab Control Sample	KQ2302128-05	62			

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301665

Project: 23A1459

Sample Matrix: Sediment

Date Collected: NA

Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:KQ2302128-04Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.97	0.26	1	02/25/23 11:34	2/9/23	
Di-n-butyltin Cation	ND U	0.97	0.19	1	02/25/23 11:34	2/9/23	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	02/25/23 11:34	2/9/23	

Surrogate Name% RecControl LimitsDate AnalyzedQTri-n-propyltin7810 - 15202/25/23 11:34

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301665

Project:23A1459Date Collected:NASample Matrix:SedimentDate Received:NA

Sample Name: Method Blank Units: ug/Kg

Lab Code: KQ2302128-04 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.97	0.26	1	02/25/23 11:34	2/9/23	
Di-n-butyltin Cation	ND U	0.97	0.19	1	02/25/23 11:34	2/9/23	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	02/25/23 11:34	2/9/23	

QA/QC Report

**Client:** North Water District Lab Services (NWDLS)

**Service Request:** K2301665 **Project:** 23A1459 **Date Analyzed:** 02/25/23

Sample Matrix: Sediment **Date Extracted:** 02/09/23

**Lab Control Sample Summary** 

**Butyltins** 

**Analysis Method:** ALS SOP **Units:** ug/Kg **Prep Method:** Method **Basis:** Dry

> **Analysis Lot:** 795850

**Lab Control Sample** KQ2302128-05

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Di-n-butyltin Cation	16.3	19.2	85	10-190
n-Butyltin Cation	14.7	15.6	94	10-200
Tri-n-butyltin Cation	15.5	22.3	70	10-186

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301665 Date Collected: NA 23A1459 Sediment **Date Received:** 

Sample Name: Lab Control Sample

Project:

Matrix:

Lab Code: KQ2302128-05 Units: ug/Kg

Basis: Dry

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
Di-n-butyltin Cation	0.19	16.3	17.7	8		1	02/25/23 11:51
Tri-n-butyltin Cation	0.43	15.5	17.3	11		1	02/25/23 11:51
n-Butyltin Cation	0.26	14.7	15.2	3		1	02/25/23 11:51



## **General Chemistry**

Analytical Report

Client: North Water District Lab Services (NWDLS) Service F

Service Request: K2301665

Project:23A1459Date Collected:NASample Matrix:Elutriate, LiquidDate Received:NA

Sample Name: Method Blank Basis: NA

**Lab Code:** K2301665-MB

### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cyanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/14/23 16:53	02/14/23	

### ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301665

**Project** 23A1459 **Date Collected:** 01/21/23

Sample Matrix: Sediment

**Date Received:** 02/08/23 Date Analyzed: 02/02/23

**Replicate Sample Summary Inorganic Parameters** 

Sample Name:

23A1459-66

Units: Percent

Lab Code:

K2301665-004

Basis: As Received

**Duplicate** Sample

K2301665-

**004DUP** 

**Analysis Method** 

**MRL MDL** 

Result

Result

Average 76.4

**RPD Limit** 

**Analyte Name** Solids, Total

160.3 Modified

77.3

Sample

75.5

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: North Water District Lab Services (NWDLS)

**Service Request:** 

K2301665

Project: Sample Matrix:

Cyanide, Total

23A1459 Elutriate, Liquid

0.0758

Date Analyzed: Date Extracted: 02/14/23 02/14/23

**Duplicate Lab Control Sample Summary** 

**General Chemistry Parameters** 

0.0727

**Analysis Method:** SM 4500-CN- E

**Units:** 

mg/L

**Prep Method:** SM 4500-CN-C

Basis:

97

84-115

**Analysis Lot:** 

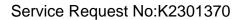
NA 794621

**RPD Limit** 

20

Lab Control Sample K2301665-LCS

0.075


**Duplicate Lab Control Sample** 

K2301665-DLCS

0.075

Analyte Name Result Spike Amount % Rec Result Spike Amount % Rec Limits RPD

101





Monica Martin North Water District Lab Services (NWDLS) 130 South Trade Center Parkway Conroe, TX 77385

**Laboratory Results for: 23A1459** 

Dear Monica,

Enclosed are the results of the sample(s) submitted to our laboratory February 02, 2023 For your reference, these analyses have been assigned our service request number **K2301370**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3260. You may also contact me via email at Luke.Rahn@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Luke Rahn

Project Manager



### **Narrative Documents**



Client: North Water District Lab Services (NWDLS)

Project: 23A1459

Service Request: K2301370

Date Received: 02/02/2023

Sample Matrix: Sediment

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### **Sample Receipt:**

Two sediment samples were received for analysis at ALS Environmental on 02/02/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

### Semivoa GC:

No significant anomalies were noted with this analysis.



### **SAMPLE DETECTION SUMMARY**

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: 23A1459-46	Lab ID: K2301370-001					
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	67.2				Percent	160.3 Modified
CLIENT ID: 23A1459-47		Lab	ID: K2301	370-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	64.7				Percent	160.3 Modified



## Sample Receipt Information

Client: North Water District Lab Services (NWDLS) Service Request:K2301370

**Project:** 23A1459

### **SAMPLE CROSS-REFERENCE**

SAMPLE # CLIENT SAMPLE ID DATE TIME

 K2301370-001
 23A1459-46
 1/23/2023

 K2301370-002
 23A1459-47
 1/23/2023



# SUBCONTRACT ORDER

(Continued)

Work Order: 23A145		-			1(2301370
Analysis		Due	Expires	Comments	
	Sediment	Sampled: 01	1/18/2023 14:10		
Sale_Guyaneting TX1000		03/06/2023	02/01/2023 14:10		
danta (c)				man of a fir	
		Monobutyltin Monobutyltin		Tributyltin Tributyltin	
Containers Supplied:		rionobacytan		,,,out,,	
	Sediment	Sampled: 01	1/19/2023 08:15		
		03/06/2023	02/02/2023 08:15		
Dilectoria		Manahuhiltin		Tributyltin	
Dibutulting		Monobutyltin Monobutyltin		Tributyitin	
Containers Supplied:		•			
contained supplical					
	Sediment	Sampled: 0	1/20/2023 09:15		
		03/06/2023	02/03/2023 09:15		
		Monobutyltin		Tributyltin	
Dibridge		Monobutyltin		Tributyltin	
Containers Supplied:					
Sample ID: 23A1459-46	Sediment	Sampled: 01	1/23/2023 00:00		
Sub_Organotins-TX1001		03/06/2023	02/06/2023 00:00		
Analyte(s):		No and a law day of the same		Tribubaltin	
Dibutyltin Dibutyltin		Monobutyltin Monobutyltin		Tributyltin Tributyltin	
Containers Supplied:		•		·	
сонаністэ эпррнец.					
Sample ID: 23A1459-47	Sediment	Sampled: 0:	1/23/2023 00:00	1 100 MH	
Sub_Organotins-TX1001		03/06/2023	02/06/2023 00:00		
Analyte(s):					
Dibutyltin		Monobutyltin		Tributyltin Tributyltin	
Dibutyitin		Monobutyltin		Hibatytan	
Containers Supplied:					

PM/4/14

Cooler Receipt and Preservation Form Service Request K23 Opened: Unloaded: Samples were received via? USPS Fed Ex **ÚPS** DHL PDX Courier Hand Delivered Samples were received in: (circle) Cooler Box Envelope Other NA Were <u>custody seals</u> on coolers? NA N If yes, how many and where? _ If present, were custody seals intact? Y N If present, were they signed and dated? N PM Out of temp **Notified** Temp Blank Sample Temp IR Gun Cooler #/COC ID / NA indicate with "X If out of temp Tracking Number NA Filed IBOI . Was a Temperature Blank present in cooler? NA If yes, notate the temperature in the appropriate column above: If no, take the temperature of a representative sample bottle contained within the cooler; notate in the column "Sample Temp": . Were samples received within the method specified temperature ranges? If no, were they received on ice and same day as collected? If not, notate the cooler # above and notify the PM. Ν f applicable, tissue samples were received: Frozen Partially Thawed Thawed Packing material: Inserts Baggies Bubble Wrap Gel Packs Wellce Dry Ice Were custody papers properly filled out (ink, signed, etc.)? NA N Were samples received in good condition (unbroken) N Were all sample labels complete (ie, analysis, preservation, etc.)? N 0. Did all sample labels and tags agree with custody papers? Ν 1. Were appropriate bottles/containers and volumes received for the tests indicated? NA 2. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below  $\mathsf{N}\mathsf{A}^{-2}$ Y N 3. Were VOA vials received without headspace? Indicate in the table below. NΑ Υ > N 4. Was C12/Res negative? NA > Y N 5. Were samples received within the method specified time limit? If not, notate the error below and notify the PM NA Y N 6. Were 100ml sterile microbiology bottles filled exactly to the 100ml mark? NA ? Underfilled Overfilled Sample ID on Bottle Sample ID on COC Identified by: **Bottle Count** Head-Volume Reagent Lot Sample ID **Bottle Type** Number space Broke Reagent added Initials Time

G:\SMO\2022 Forms

Notes, Discrepancies, Resolutions: _

SOP: SMO-GEN

Reviewed: 12/9/2022



## **Miscellaneous Forms**

#### **Inorganic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
N. d. C. T. DEO	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-laboratification-	<b>.</b> 0.5
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

 Sample Name:
 23A1459-46
 Date Collected:
 01/23/23

 Lab Code:
 K2301370-001
 Date Received:
 02/2/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP JMOORE BBRIGHT

**Sample Name:** 23A1459-47 **Date Collected:** 01/23/23

**Lab Code:** K2301370-002 **Date Received:** 02/2/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP JMOORE BBRIGHT

Service Request: K2301370



## Sample Results



## Semivolatile Organic Compounds by GC

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301370 **Date Collected:** 01/23/23 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/02/23 10:10

**Sample Name:** 23A1459-46 Units: ug/Kg Lab Code: K2301370-001 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.5	0.39	1	02/26/23 23:49	2/6/23	
Di-n-butyltin Cation	ND U	1.5	0.28	1	02/26/23 23:49	2/6/23	
Tri-n-butyltin Cation	ND U	1.5	0.63	1	02/26/23 23:49	2/6/23	

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	98	10 - 152	02/26/23 23:49	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

**Service Request:** K2301370 **Date Collected:** 01/23/23 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/02/23 10:10

**Sample Name:** 23A1459-46 Units: ug/Kg

Lab Code: K2301370-001 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.98	0.26	1	02/26/23 23:49	2/6/23	
Di-n-butyltin Cation	ND U	0.98	0.19	1	02/26/23 23:49	2/6/23	
Tri-n-butyltin Cation	ND U	0.98	0.43	1	02/26/23 23:49	2/6/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

**Service Request:** K2301370 **Date Collected:** 01/23/23 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/02/23 10:10

**Sample Name:** 23A1459-47 Units: ug/Kg Lab Code: K2301370-002 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.5	0.40	1	02/27/23 00:38	2/6/23	
Di-n-butyltin Cation	ND U	1.5	0.29	1	02/27/23 00:38	2/6/23	
Tri-n-butyltin Cation	ND U	1.5	0.66	1	02/27/23 00:38	2/6/23	

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	42	10 - 152	02/27/23 00:38	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

**Service Request:** K2301370 **Date Collected:** 01/23/23 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/02/23 10:10

**Sample Name:** 23A1459-47 Units: ug/Kg

Lab Code: K2301370-002 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.98	0.26	1	02/27/23 00:38	2/6/23	
Di-n-butyltin Cation	ND U	0.98	0.19	1	02/27/23 00:38	2/6/23	
Tri-n-butyltin Cation	ND U	0.98	0.43	1	02/27/23 00:38	2/6/23	



## **General Chemistry**

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459

**Sample Matrix:** 

23A1459 **Date Collected:** 01/23/23
Sediment **Date Received:** 02/02/23 10:10

Service Request: K2301370

Sample Name: 23A1459-46 Basis: As Received

**Lab Code:** K2301370-001

### **Inorganic Parameters**

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	67.2	Percent	-	-	1	02/22/23 09:47	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

**Project:** 23A1459

**Date Collected:** 01/23/23

Service Request: K2301370

**Date Received:** 02/02/23 10:10 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-47 Basis: As Received

Lab Code: K2301370-002

### **Inorganic Parameters**

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	64.7	Percent	_	_	1	02/22/23 09:47	



## **QC Summary Forms**



## Semivolatile Organic Compounds by GC

QA/QC Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301370

**Project:** 23A1459 **Sample Matrix:** Sediment

## SURROGATE RECOVERY SUMMARY Butyltins

**Analysis Method:** ALS SOP **Extraction Method:** Method

		Tri-n-propyltin			
Sample Name	Lab Code	10-152			
23A1459-46	K2301370-001	98			
23A1459-47	K2301370-002	42			
Method Blank	KQ2302045-03	91			
Lab Control Sample	KQ2302045-04	124			
23A1459-46	KQ2302045-01	84			
23A1459-46	KQ2302045-02	53			

QA/QC Report

Client:North Water District Lab Services (NWDLS)Service Request:Project:23A1459Date Collected:

Sample Matrix: Sediment Date Received: 02/02/23

**Date Analyzed:** 02/27/23 **Date Extracted:** 02/6/23

K2301370

01/23/23

Duplicate Matrix Spike Summary Butyltins

 Sample Name:
 23A1459-46
 Units:
 ug/Kg

 Lab Code:
 K2301370-001
 Basis:
 Dry

**Analysis Method:** ALS SOP **Prep Method:** Method

Matrix SpikeDuplicate Matrix SpikeKQ2302045-01KQ2302045-02

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
n-Butyltin Cation	ND U	15.0	22.4	67	13.5	22.6	60	10-200	10	40
Di-n-butyltin Cation	ND U	21.3 P	27.5	77	17.2	27.9	62	10-190	21	40
Tri-n-butyltin Cation	ND U	14.5 P	32.0	45	19.4	32.4	60	10-186	29	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301370

Project: 23A1459

Sample Matrix: Sediment

Date Collected: NA

Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:KQ2302045-03Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.97	0.26	1	02/26/23 23:16	2/6/23	
Di-n-butyltin Cation	ND U	0.97	0.19	1	02/26/23 23:16	2/6/23	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	02/26/23 23:16	2/6/23	

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	91	10 - 152	02/26/23 23:16	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301370

Project:23A1459Date Collected:NASample Matrix:SedimentDate Received:NA

Sample Name: Method Blank Units: ug/Kg

Lab Code: KQ2302045-03 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.97	0.26	1	02/26/23 23:16	2/6/23	
Di-n-butyltin Cation	ND U	0.97	0.19	1	02/26/23 23:16	2/6/23	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	02/26/23 23:16	2/6/23	

QA/QC Report

**Client:** North Water District Lab Services (NWDLS)

Sediment

Sample Matrix:

**Service Request: Project:** 23A1459 **Date Analyzed:** 

> **Date Extracted:** 02/06/23

K2301370

02/26/23

**Lab Control Sample Summary** 

**Butyltins** 

**Analysis Method:** ALS SOP **Units:** ug/Kg **Prep Method:** Method

**Basis:** Dry **Analysis Lot:** 796038

**Lab Control Sample** KQ2302045-04

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Di-n-butyltin Cation	28.5 P	19.2	149	10-190
n-Butyltin Cation	20.0 P	15.6	128	10-200
Tri-n-butyltin Cation	30.7	22.3	138	10-186

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301370 Date Collected: 01/23/23

Project: 23A1459
Matrix: Sediment

Date Received: 2/2/23

**Sample Name:** 23A1459-46

**Lab Code:** KQ2302045-01

Units: ug/Kg Basis: Dry

Percent Solids: 67.2

**Butyltins** 

Analytical Method: ALS SOP Prep Method: Method

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	<b>Factor</b>	Date Analyzed
Di-n-butyltin Cation	0.28	21.3	32.7	42	Р	1	02/27/23 00:05
Tri-n-butyltin Cation	0.62	14.5	27.4	62	Р	1	02/27/23 00:05
n-Butyltin Cation	0.38	15.0	20.6	31		1	02/27/23 00:05

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301370

Date Collected: 01/23/23

Project: 23A1459
Matrix: Sediment

Date Received: 2/2/23

**Sample Name:** 23A1459-46 **Lab Code:** KQ2302045-02

Units: ug/Kg

Basis: Dry

Percent Solids: 67.2

**Butyltins** 

Analytical Method: ALS SOP Prep Method: Method

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	<b>Factor</b>	<b>Date Analyzed</b>
Di-n-butyltin Cation	0.28	17.2	17.9	4		1	02/27/23 00:22
Tri-n-butyltin Cation	0.63	19.4	19.5	<1		1	02/27/23 00:22
n-Butyltin Cation	0.38	13.5	14.5	7		1	02/27/23 00:22

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301370

Project: 23A1459
Matrix: Sediment

Date Collected: NA

Date Received:

Sample Name: Lab Control Sample

**Lab Code:** KQ2302045-04

**Units:** ug/Kg **Basis:** Dry

**Butyltins** 

Analytical Method: ALS SOP Prep Method: Method

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
Di-n-butyltin Cation	0.19	28.5	42.8	40	Р	1	02/26/23 23:33
Tri-n-butyltin Cation	0.43	30.7	39.6	25		1	02/26/23 23:33
n-Butyltin Cation	0.26	20.0	48.6	83	Р	1	02/26/23 23:33



# **General Chemistry**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

#### ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301370

**Project** 23A1459 **Date Collected:** 01/23/23

Sample Matrix: Sediment Date Received: 02/02/23

Date Analyzed: 02/22/23

Replicate Sample Summary

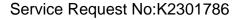
Inorganic Parameters

Sample Name: 23A1459-46 Units: Percent

Lab Code: K2301370-001 Basis: As Received

Duplicate Sample

K2301370-


Sample 001DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitSolids, Total160.3 Modified-67.272.369.8720

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.





Monica Martin North Water District Lab Services (NWDLS) 130 South Trade Center Parkway Conroe, TX 77385

**Laboratory Results for: 23A1459** 

Dear Monica,

Enclosed are the results of the sample(s) submitted to our laboratory February 10, 2023 For your reference, these analyses have been assigned our service request number **K2301786**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3260. You may also contact me via email at Luke.Rahn@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Luke Rahn

Project Manager



## **Narrative Documents**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



Client: North Water District Lab Services (NWDLS)

Project: 23A1459

Service Request: K2301786

Date Received: 02/10/2023

Sample Matrix: Elutriate, Liquid, Ocean Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### **Sample Receipt:**

Fourteen elutriate, liquid, ocean water samples were received for analysis at ALS Environmental on 02/10/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

#### Semivoa GC:

Method ALS SOP, 02/26/2023:Samples were received past or with insufficient holding time remaining. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation. Method ALS SOP, 02/26/2023:The analysis of Butyltins by ALS SOP requires the use of dual column confirmation. When the Continuing Calibration Verification (CCV) criterion is met for both columns, the lower of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for Di-n-butyltin Cation, Tri-n-butyltin Cation, and Tri-n-propyltin. The results were reported from the column with an acceptable CCV. The data quality was not affected. No further corrective action was necessary.

Method ALS SOP, 02/26/2023:The upper control criterion was exceeded for Di-n-butyltin Cation in Duplicate Laboratory Control Sample (LCS) KQ2302966-03. The analyte in question was not detected in the associated field samples. The error associated with elevated recovery indicated a high bias. The sample data was not significantly affected. The recovery for this analyte and the LCS/DLCS RPD were acceptable. No further corrective action was appropriate.

Method ALS SOP, 02/26/2023:The upper control criterion was exceeded for Tri-n-propyltin in samples 23A1459-07 and 23A1459-51. No target analytes were detected in the samples. The error associated with an elevated recovery equated to a high bias. The quality of the sample data was not significantly affected. No further corrective action was appropriate.

Approved by Date 03/16/2023



### **SAMPLE DETECTION SUMMARY**

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: 23A1459-03		Lab	ID: K2301	786-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.13		0.029	0.050	ug/L	ALS SOP
CLIENT ID: 23A1459-08		Lab	ID: K2301	786-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.13		0.029	0.050	ug/L	ALS SOP
CLIENT ID: 23A1459-10		Lab	ID: K2301	786-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.064		0.029	0.050	ug/L	ALS SOP
CLIENT ID: 23A1459-11		Lab	ID: K2301	786-007		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.031	J	0.029	0.050	ug/L	ALS SOP
CLIENT ID: 23A1459-52		Lab	ID: K2301	786-012		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.065		0.033	0.056	ug/L	ALS SOP
CLIENT ID: 23A1459-64		Lab	ID: K2301	786-013		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.044	J	0.029	0.050	ug/L	ALS SOP
CLIENT ID: 23A1459-65		Lab	ID: K2301	786-014		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.17		0.029	0.050	ug/L	ALS SOP



# Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com North Water District Lab Services (NWDLS)

Service Request: K2301786

**Project:** 23A1459

Client:

#### **SAMPLE CROSS-REFERENCE**

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K2301786-001	23A1459-02	1/25/2023	0930
K2301786-002	23A1459-03	1/25/2023	1250
K2301786-003	23A1459-07	2/1/2023	1349
K2301786-004	23A1459-08	2/1/2023	1349
K2301786-005	23A1459-09	2/1/2023	1349
K2301786-006	23A1459-10	2/1/2023	1349
K2301786-007	23A1459-11	2/1/2023	1349
K2301786-008	23A1459-12	2/1/2023	1349
K2301786-009	23A1459-13	2/1/2023	1349
K2301786-010	23A1459-14	2/3/2023	0905
K2301786-011	23A1459-51	2/1/2023	1349
K2301786-012	23A1459-52	2/1/2023	1349
K2301786-013	23A1459-64	2/3/2023	0905
K2301786-014	23A1459-65	2/3/2023	0905



### SUBCONTRACT ORDER

### **Sending Laboratory:**

North Water District Laboratory Services, Inc. 130 South Trade Contact Parliages

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

### **Subcontracted Laboratory:**

ALS Kelso

1317 South 13th Avenue Kelso, WA 98626

Phone: (360) 577-7222

Fax:

### Work Order: 23A1459

Analysis	Due	Expires	Comments
Sample ID: 23A1459-02	Marine Water Sampled	: 01/25/2023 0	9:30
	03/06/2023	02/08/2023 09:30	0
Analyte(s):			
Sub_Organotins-TX1001	03/06/2023	02/01/2023 09:30	0
Analyte(s):			
Dibutyltin	Monobutyltin		Tributyltin
Dibutyltin	Monobutyltin		Tributyltin
Containers Supplied:			
Sample ID: 23A1459-03	Marine Water Sampled	: 01/25/2023 1	2:50
Sub_CN T-4500	03/06/2023	02/08/2023 12:50	0
Analyte(s):	, ,	,,	
Total Cyanide			
Sub_Organotins-TX1001	03/06/2023	02/01/2023 12:50	0
Analyte(s):			
Dibutyltin	Monobutyltin		Tributyltin
Dibutyltin	Monobutyltin		Tributyltin
Containers Supplied:			
	03/06/2023	02/08/2023 14:50	0
Analyte(s):			
Total Cyanide			
	03/06/2023	02/01/2023 14:50	0
Analyte(s):			
Dibutyltin	Monobutyltín		Tributyltin
Dibutyltin	MonobutyItin		Tributyltin
Containers Supplied:			



KZ301786

# SUBCONTRACT ORDER

(Continued)

Analysis	Due	Expires	Comments	
	Samuel and the same of the	7772V22		
(60_0rgameame=44.000)	03/06/2023 02	2/10/2023 12:30		
Analyte(s):				
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyltin		Tributyltin	
Containers Supplied:				
	2/9/2	3	(1.P5	2/9/23
Released By	Date	Receive	•	Date
		Rec by A	Redlisa	Z110123 1020
		4 / 4	<b>y</b>	1070



KZ301786

### SUBCONTRACT ORDER

**Sending Laboratory:** 

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

**Subcontracted Laboratory:** 

ALS Kelso

1317 South 13th Avenue

Kelso, WA 98626

Phone: (360) 577-7222

Fax:

Work Order: 23A1459

Analysis	Due	Expires	Comments	Hall	
Sample ID:	rine Water Samoled:	01/25/2023	09:30		

03/06/2023 02/08/2023 09:30

Containers Supplied:

Marine Water	Sampled: 01/25/202	<i>12:50</i>

03/06/2023 02/08/2023 12:50

Containers Supplied:

	Marine Water Sampled: 01	1/25/2023 14:50	
	03/06/2023 02/	08/2023 14:50	

Dibut this

03/06/2023 02/01/2023 14:50

Monobutyltin Monobutyltin

Monobutyltin

Tributyltin Tributyltin

Tributyltin

Containers Supplied:

	Marine Water Sampled	: 01/27/2023 11:25	
	03/06/2023	02/10/2023 11:25	
Analyte(s):			
Total Cyanide			
C	03/06/2023	02/03/2023 11:25	
Analyte(s):			
Dibutyltin	Monobutyltin		Tributyltin

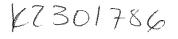
Containers Supplied:

Dibutyltin





### SUBCONTRACT ORDER (Continued)


Analysis		Due	Expires	Comments	
Sample ID: 23A1459-07	Elutriate	Sampled: 01	/16/2023 14:20		
Sub_CN T-ELUT  Analyte(s):  Total Cyanide		03/06/2023	01/30/2023 14:20	Leached: 02/01/2023 10:00	
Sub_Organotins-TX1001-ELUT  Analyte(s): Dibutyltin		03/06/2023 Monobutyltin	01/23/2023 14:20	Leached: 02/01/2023 13:49  Tributyltin	
Containers Supplied:		Honobacytes		modylui	
Sample ID: 23A1459-08	Elutriate	Sampled: 01	/16/2023 17:20		
Šub_CN T-ELUT  Analyte(s):  Total Cyanide		03/06/2023	01/30/2023 17:20	Leached: 02/01/2023 10:00	
Sub_Organotins-TX1001-ELUT Analyte(s):		03/06/2023	01/23/2023 17:20	Leached: 02/01/2023 13:49	
Dibutyltin  Containers Supplied:		MonobutyItin		Tributyltin	
Sample ID: 23A1459-09	Elutriate	Sampled: 01	/19/2023 15:20		
Sub_CN T-ELUT  Analyte(s):  Total Cyanide		03/06/2023	02/02/2023 15:20	Leached: 02/01/2023 10:00	
Sub_Organotins-TX1001-ELUT  Analyte(s):		03/06/2023	01/26/2023 15:20	Leached: 02/01/2023 13:49	
Dibutyltin  Containers Supplied:		Monobutyltin		Tributyltin	
Sample ID: 23A1459-10	Elutriate	Sampled: 01	/19/2023 17:00		
Sub_CN T-ELUT  Analyte(s):  Total Cyanide		03/06/2023	02/02/2023 17:00	Leached: 02/01/2023 10:00	
Sub_Organotins-TX1001-ELUT Analyte(s):		03/06/2023	01/26/2023 17:00		
Dibatyltin  Containers Supplied:		Monobutyltin		Tributyltin	



67301786

### SUBCONTRACT ORDER (Continued)

Analysis		Due	Expires	Comments	
Sample ID: 23A1459-11	Elutriate	Sampled: 01	/18/2023 09:40		
Sub_CN T-ELUT  Analyte(s):  Total Cyanide		03/06/2023	02/01/2023 09:40	Leached: 02/01/2023 10:00	
Sub_Organotins-TX1001-ELUT Analyte(s):		03/06/2023	01/25/2023 09:40	Leached: 02/01/2023 13:49	
Dibutyltin  Containers Supplied:		Monobutyltin		Tributyltin	
сопшнегэ Заррнеа.					
Sample ID: 23A1459-12	Elutriate	Sampled: 01	/18/2023 11:15		
Sub_CN T-ELUT  Analyte(s):  Total Cyanide		03/06/2023	02/01/2023 11:15	Leached: 02/01/2023 10:00	
Sub_Organotins-TX1001-ELUT Analyte(s):		03/06/2023	01/25/2023 11:15	Leached: 02/01/2023 13:49	
Dibutyltin  Containers Supplied:		Monobutyltin		Tributyitin	
Sample ID: 23A1459-13	Elutriate	Sampled: 01	/16/2023 16:37		
Sub_CN T-ELUT  Analyte(s):  Total Cyanide		03/06/2023	01/30/2023 16:37	Leached: 02/01/2023 10:00	
Sub_Organotins-TX1001-ELUT  Analyte(s):		03/06/2023	01/23/2023 16:37	Leached: 02/01/2023 13:49	
Dibutyltin		Monobutyltin		Tributyltin	
Containers Supplied:					
Sample ID: 23A1459-14	Elutriate	Sampled: 01	/18/2023 14:10		·····
Sub_CN T-ELUT  Analyte(s):  Total Cyanide		03/06/2023	02/01/2023 14:10	Leached: 02/03/2023 09:05	
Sub_Organotins-TX1001-ELUT  Analyte(s):		03/06/2023	01/25/2023 14:10	Leached: 02/03/2023 09:05	
Dibutyltin		Monobutyltin		Tributyltin	
Containers Supplied:					
	Sediment	Sampled: 0.	1/16/2023 14:20		
Analyte(s):		03/06/2023	01/30/2023 14:20		
Dibutyltin Dibutyltin		Monobutyltin Monobutyltin		Tributyltin Tributyltin	
Containers Supplied:		•		· · · · · · · · · · · · · · · · · · ·	





### SUBCONTRACT ORDER (Continued)

Analysis		Due	Expire	5	Comments	
	Marine Wa	iter Sampled	: 01/27/20.	23 15:.	32	
		03/06/2023	02/10/2023	15:32		
Analyte(s): Total Cyanide		. ,				
		03/06/2023	02/03/2023	15:32		
Analyte(s): Dibutyltin		Monobutyltin			Tributheltin	
Dibutyltin		Monobutyltin			Tributyltin Tributyltin	
Containers Supplied:					<b>,</b>	
	Marine Wa	nter Sampled	: 01/27/20.	23 14:4	10	
Sufferior Survey Control of the Cont		03/06/2023	02/10/2023	14:40		
Analyte(s):			•			
Total Cyanide		22/26/2020	00 (00 (000			
Analytical		03/06/2023	02/03/2023	14:40		
Analyte(s): Dibutyltin		Monobutyltin			Tributyltin	
Dibutyltin		Monobutyltin			Tributyltin	
Containers Supplied:						
<b>2,∔€5</b> D: 23A1459-51	Elutriate	Sampled: 01/	/23/2023 1.	3:05		
Sub_CN T-ELUT		03/06/2023	02/06/2023	13:05	Leached: 02/01/2023 10:00	
Analyte(s):						
Total Cyanide		02/06/2022	04 (00 (000			
Sub_Organotins-TX1001-ELUT		03/06/2023	01/30/2023	13:05	Leached: 02/01/2023 13:49	
Analyte(s): Dibutyltin		Monobutyltin			Tributyltin	
Containers Supplied:		, 10110241, 15111			moutylan	
containers Supplieu.						
Sample ID: 23A1459-52	Elutriate	Sampled: 01/	/21/2023 10	0:00		***************************************
Sub_CN T-ELUT		03/06/2023	02/04/2023	10:00	Leached: 02/01/2023 10:00	
Analyte(s):						
Total Cyanide		02/05/2022	04 (20 (202	10.00		
Sub_Organotins-TX1001-ELUT		03/06/2023	01/28/2023	10:00	Leached: 02/01/2023 13:49	
Analyte(s): Dibutyltin		Monobutyltin			Tributyltin	
-		· ionobacymin			Πουςγισει	
Containers Supplied:						





### SUBCONTRACT ORDER (Continued)

Analysis		Due	Expires	5	Commer	nts	
	Sediment Se	ampled: 0	1/21/2023 1	1:45			
	0	3/06/2023	02/04/2023	11:45			
Analyte(s):							
Dibutyltin		Monobutyltin				Tributyltin	
Dibutyltin		Monobutyltin				Tributyltin	
Containers Supplied:							
	Marine Wate	r Sample	d: 01/27/202	23 13:	10		
	0	3/06/2023	02/10/2023	13:10			
Analyte(s):		. ,	, ,				
Total Cyanide							
	0	3/06/2023	02/03/2023	13:10			
Analyte(s):		Manahaskaki				T 2 - 4 - 44	
Dibutyltin Dibutyltin		Monobutyltin Monobutyltin				Tributyltin Tributyltin	
·		oriobatyitii i				Tributyltin	
Containers Supplied:							
Sample ID: 23A1459-64	Elutriate Sa	mpled: 01	/19/2023 14	1:00			
Sub_CN T-ELUT	0	3/06/2023	02/02/2023	14:00	Leached:	02/03/2023 09:05	
Analyte(s):							
Total Cyanide	0	2/06/2022	04/26/2022	44.00		00/00/2000 00 00	
Sub_Organotins-TX1001-ELUT Analyte(s):	U	3/06/2023	01/26/2023	14:00	Leached:	02/03/2023 09:05	
Dibutyltin		Monobutyltin				Tributyltin	
·		r to no bacy (cir)				modeyidir	
Containers Supplied:							
Sample ID: 23A1459-65	Elutriate Sa	mpled: 01	/21/2023 11	1:45			
Sub_CN T-ELUT	0	3/06/2023	02/04/2023	11:45	Leached:	02/03/2023 09:05	
Analyte(s):							
Total Cyanide Sub Organotine TV1001-FULT	^	2 (06 /2022	04 (20 (2022	14.4"	1 ac-b-3	03/03/3033 00:05	
Sub_Organotins-TX1001-ELUT	U	3/06/2023	01/28/2023	11:45	Leached:	02/03/2023 09:05	
Analyte(s): Dibutyltin		Monobutyltin				Tributyltin	
Containers Supplied:		oobucytuli				Thousand The Teach of the Teach	
сопатегь зиррпеи.							
	Sediment Si	ampled: 0	1/27/2023 1	2:30			7.7.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
	0	3/06/2023	02/10/2023	12:30			
Analyte(s):							
Dibutyltin		Monobutyltin				Tributyltin	
Dibutyltin		Monobutyltin				Tributyltin	



KZ301786

### SUBCONTRACT ORDER (Continued)

(Continued)

SPL	02/09/23	UPS	02/09/27
Released By	Date	Received By	Date
1. 186 W. F	_		
art.	Re	uly Necles	2/10/23
	·	ł	1020

Sample ID on Bottle	Sample ID on COC	Identified by:

Sample ID	Bottle Count Bottle Type	Head-	Broke	рΗ	Volume added	Reagent Lot Number	Initials	Time
								· · · · · · · · · · · · · · · · · · ·

Notes, Discrepancies, Resolutions: Did not

G:\SMO\2022 Forms

**SOP: SMO-GEN** 

ve 121ve

Reviewed: 12/9/2022



# **Miscellaneous Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

#### **Inorganic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
N. d. C. T. DEO	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-laboratification-	<b>.</b> 0.5
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOO Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Service Request: K2301786

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

 Sample Name:
 23A1459-02
 Date Collected:
 01/25/23

 Lab Code:
 K2301786-001
 Date Received:
 02/10/23

Sample Matrix: Ocean Water

Analysis Method Extracted/Digested By Analyzed By
ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-03 **Date Collected:** 01/25/23

Lab Code: K2301786-002 Date Received: 02/10/23

Sample Matrix: Ocean Water

Analysis Method Extracted/Digested By Analyzed By

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-07 **Date Collected:** 02/1/23

Lab Code: K2301786-003 Date Received: 02/10/23
Sample Matrix: Elutriate, Liquid

Analysis MethodExtracted/Digested ByAnalyzed ByALS SOPZPRIMBBRIGHT

Sample Name: 23A1459-08 Date Collected: 02/1/23

Lab Code: K2301786-004 Date Received: 02/10/23
Sample Matrix: Elutriate, Liquid

Analysis MethodExtracted/Digested ByAnalyzed ByALS SOPZPRIMBBRIGHT

 Sample Name:
 23A1459-09
 Date Collected:
 02/1/23

 Lab Code:
 K2301786-005
 Date Received:
 02/10/23

Lab Code: K2301786-005 Date Received: 02/10/23
Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By
ALS SOP ZPRIM BBRIGHT

Analyst Summary report

Service Request: K2301786

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

 Sample Name:
 23A1459-10
 Date Collected:
 02/1/23

 Lab Code:
 K2301786-006
 Date Received:
 02/10/23

Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By
ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-11 **Date Collected:** 02/1/23

Lab Code:K2301786-007Date Received: 02/10/23Sample Matrix:Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By
ALS SOP ZPRIM BBRIGHT

Sample Name: 23A1459-12 Date Collected: 02/1/23

Lab Code: K2301786-008 Date Received: 02/10/23
Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By
ALS SOP ZPRIM BBRIGHT

 Sample Name:
 23A1459-13
 Date Collected:
 02/1/23

 Lab Code:
 K2301786-009
 Date Received:
 02/10/23

Lab Code: K2301786-009 Date Received: 02/10/23
Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By
ALS SOP ZPRIM BBRIGHT

 Sample Name:
 23A1459-14
 Date Collected:
 02/3/23

 Lab Code:
 K2301786-010
 Date Received:
 02/10/23

Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By
ALS SOP ZPRIM BBRIGHT

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

 Sample Name:
 23A1459-51
 Date Collected:
 02/1/23

 Lab Code:
 K2301786-011
 Date Received:
 02/10/23

Sample Matrix: Elutriate, Liquid

Analysis MethodExtracted/Digested ByAnalyzed ByALS SOPZPRIMBBRIGHT

**Sample Name:** 23A1459-52 **Date Collected:** 02/1/23

Lab Code:K2301786-012Date Received:02/10/23Sample Matrix:Elutriate, Liquid

Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-64 **Date Collected:** 02/3/23

Lab Code: K2301786-013 Date Received: 02/10/23
Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By
ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-65 **Date Collected:** 02/3/23

Lab Code: K2301786-014 Date Received: 02/10/23
Sample Matrix: Elutriate, Liquid

Analysis Method Extracted/Digested By Analyzed By

ALS SOP ZPRIM BBRIGHT

Service Request: K2301786



# Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



# Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301786

**Project:** 23A1459 **Date Collected:** 01/25/23 09:30

Sample Matrix: Ocean Water Date Received: 02/10/23 10:20

 Sample Name:
 23A1459-02
 Units: ug/L

 Lab Code:
 K2301786-001
 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.050	0.029	1	02/26/23 18:06	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 18:06	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 18:06	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	136	10 - 195	02/26/23 18:06	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 01/25/23 12:50 23A1459

**Sample Matrix:** Ocean Water **Date Received:** 02/10/23 10:20

**Sample Name:** 23A1459-03 Units: ug/L Lab Code: K2301786-002 Basis: NA

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** EPA 3520C

**Project:** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.13	0.050	0.029	1	02/26/23 18:22	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 18:22	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 18:22	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	78	10 - 195	02/26/23 18:22	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/01/23 13:49 **Project:** 23A1459

**Sample Matrix:** Elutriate, Liquid **Date Received:** 02/10/23 10:20

**Sample Name:** 23A1459-07 Units: ug/L Lab Code: K2301786-003 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.050	0.029	1	02/26/23 18:38	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 18:38	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 18:38	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q	
Tri-n-propyltin	215	10 - 195	02/26/23 18:38	*	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/01/23 13:49 **Project:** 23A1459

**Sample Matrix:** Elutriate, Liquid **Date Received:** 02/10/23 10:20

**Sample Name:** 23A1459-08 Units: ug/L Lab Code: K2301786-004 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.13	0.050	0.029	1	02/26/23 18:55	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 18:55	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 18:55	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	115	10 - 195	02/26/23 18:55	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/01/23 13:49 **Project:** 23A1459

**Sample Matrix:** Elutriate, Liquid **Date Received:** 02/10/23 10:20

**Sample Name:** 23A1459-09 Units: ug/L Lab Code: K2301786-005 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.050	0.029	1	02/26/23 19:11	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 19:11	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 19:11	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	168	10 - 195	02/26/23 19:11	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/01/23 13:49 **Project:** 23A1459

**Sample Matrix:** Elutriate, Liquid **Date Received:** 02/10/23 10:20

**Sample Name:** 23A1459-10 Units: ug/L Lab Code: K2301786-006 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.064	0.050	0.029	1	02/26/23 19:27	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 19:27	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 19:27	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	157	10 - 195	02/26/23 19:27	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/01/23 13:49 **Project:** 23A1459

**Sample Matrix:** Elutriate, Liquid **Date Received:** 02/10/23 10:20

**Sample Name:** 23A1459-11 Units: ug/L Lab Code: K2301786-007 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.031 ј	0.050	0.029	1	02/26/23 19:44	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 19:44	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 19:44	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	180	10 - 195	02/26/23 19:44	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 02/01/23 13:49

Sample Matrix: Elutriate, Liquid Date Received: 02/10/23 10:20

 Sample Name:
 23A1459-12
 Units: ug/L

 Lab Code:
 K2301786-008
 Basis: NA

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** EPA 3520C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.050	0.029	1	02/26/23 20:00	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 20:00	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 20:00	2/16/23	*

Surrogate Name% RecControl LimitsDate AnalyzedQTri-n-propyltin16910 - 19502/26/23 20:00

Service Request: K2301786

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 02/01/23 13:49

Sample Matrix: Elutriate, Liquid Date Received: 02/10/23 10:20

 Sample Name:
 23A1459-13
 Units: ug/L

 Lab Code:
 K2301786-009
 Basis: NA

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** EPA 3520C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.050	0.029	1	02/26/23 20:16	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 20:16	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 20:16	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	121	10 - 195	02/26/23 20:16	

Service Request: K2301786

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/03/23 09:05 **Project:** 23A1459

**Date Received:** 02/10/23 10:20 **Sample Matrix:** Elutriate, Liquid

**Sample Name:** 23A1459-14 Units: ug/L Lab Code: K2301786-010 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.050	0.029	1	02/26/23 20:33	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 20:33	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 20:33	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	135	10 - 195	02/26/23 20:33	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/01/23 13:49 **Project:** 23A1459

**Sample Matrix:** Elutriate, Liquid **Date Received:** 02/10/23 10:20

**Sample Name:** 23A1459-51 Units: ug/L Lab Code: K2301786-011 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.10	0.058	1	02/26/23 21:22	2/16/23	*
Di-n-butyltin Cation	ND U	0.10	0.015	1	02/26/23 21:22	2/16/23	*
Tri-n-butyltin Cation	ND U	0.10	0.024	1	02/26/23 21:22	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	339	10 - 195	02/26/23 21:22	*	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/01/23 13:49 **Project:** 23A1459

**Sample Matrix:** Elutriate, Liquid **Date Received:** 02/10/23 10:20

**Sample Name:** 23A1459-52 Units: ug/L Lab Code: K2301786-012 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.065	0.056	0.033	1	02/26/23 21:38	2/16/23	*
Di-n-butyltin Cation	ND U	0.056	0.0083	1	02/26/23 21:38	2/16/23	*
Tri-n-butyltin Cation	ND U	0.056	0.014	1	02/26/23 21:38	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	74	10 - 195	02/26/23 21:38	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/03/23 09:05 **Project:** 23A1459

**Date Received:** 02/10/23 10:20 **Sample Matrix:** Elutriate, Liquid

**Sample Name:** 23A1459-64 Units: ug/L Lab Code: K2301786-013 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.044 ј	0.050	0.029	1	02/26/23 21:54	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 21:54	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 21:54	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	147	10 - 195	02/26/23 21:54	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/03/23 09:05 **Project:** 23A1459

**Date Received:** 02/10/23 10:20 **Sample Matrix:** Elutriate, Liquid

**Sample Name:** 23A1459-65 Units: ug/L Lab Code: K2301786-014 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.17	0.050	0.029	1	02/26/23 22:11	2/16/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	02/26/23 22:11	2/16/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 22:11	2/16/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	128	10 - 195	02/26/23 22:11		



# **QC Summary Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



# Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

QA/QC Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301786

**Project:** 23A1459 **Sample Matrix:** Ocean Water

SURROGATE RECOVERY SUMMARY
Butyltins

**Analysis Method:** ALS SOP **Extraction Method:** EPA 3520C

		Tri-n-propyltin
Sample Name	Lab Code	10-195
23A1459-02	K2301786-001	136
23A1459-03	K2301786-002	78
Method Blank	KQ2302966-01	148
Lab Control Sample	KQ2302966-02	149
Duplicate Lab Control Sample	KQ2302966-03	187

QA/QC Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301786

**Project:** 23A1459

Sample Matrix: Elutriate, Liquid

SURROGATE RECOVERY SUMMARY
Butyltins

**Analysis Method:** ALS SOP **Extraction Method:** EPA 3520C

		Tri-n-propyltin				
Sample Name	Lab Code	10-195				
23A1459-07	K2301786-003	215*				
23A1459-08	K2301786-004	115				
23A1459-09	K2301786-005	168				
23A1459-10	K2301786-006	157				
23A1459-11	K2301786-007	180				
23A1459-12	K2301786-008	169				
23A1459-13	K2301786-009	121				
23A1459-14	K2301786-010	135				
23A1459-51	K2301786-011	339*				
23A1459-52	K2301786-012	74				
23A1459-64	K2301786-013	147				
23A1459-65	K2301786-014	128				

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301786

Project:23A1459Date Collected:NASample Matrix:Ocean WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 KQ2302966-01
 Basis: NA

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.050	0.029	1	02/26/23 17:16	2/16/23	
Di-n-butyltin Cation	0.014 J	0.050	0.0073	1	02/26/23 17:16	2/16/23	
Tri-n-butyltin Cation	ND U	0.050	0.012	1	02/26/23 17:16	2/16/23	

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	148	10 - 195	02/26/23 17:16		

QA/QC Report

Client: North Water District Lab Services (NWDLS)

**Service Request:** 

K2301786

Project: Sample Matrix: 23A1459 Ocean Water Date Analyzed: Date Extracted: 02/26/23 02/16/23

**Duplicate Lab Control Sample Summary** 

**Butyltins** 

**Analysis Method:** ALS SOP

**Units:** 

ug/L

**Prep Method:** 

EPA 3520C

Basis:

NA

Analysis Lot:

795862

Lab Control Sample KQ2302966-02 Duplicate Lab Control Sample KQ2302966-03

% Rec **Analyte Name** Result **Spike Amount** % Rec Result **Spike Amount** % Rec Limits **RPD Limit RPD** Di-n-butyltin Cation 221 * 0.711 0.383 186 0.847 0.383 10-200 17 30 n-Butyltin Cation 0.435 P 0.312 140 0.455 0.312 146 10-200 5 30 Tri-n-butyltin Cation 0.553 0.446 124 0.677 0.446 152 10-200 20 30

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301786

**Project:** 23A1459

**Date Collected:** 01/25/23 12:50

Matrix: Ocean Water

Date Received: 2/10/23

**Sample Name:** 23A1459-03

**Lab Code:** K2301786-002

Units: ug/L Basis: NA

**Butyltins** 

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.029	0.13	0.14	7		1	02/26/23 18:22

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301786

**Project:** 23A1459

Date Collected: 02/01/23 13:49

Matrix: Elutriate, Liquid

Date Received: 2/10/23

Sample Name:

23A1459-08

**Lab Code:** K2301786-004

Units: ug/L Basis: NA

**Butyltins** 

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.029	0.13	0.15	14		1	02/26/23 18:55

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Elutriate, Liquid

Service Request: K2301786

**Project:** 23A1459

Matrix:

**Date Collected:** 02/01/23 13:49 **Date Received:** 2/10/23

**Sample Name:** 23A1459-10

**Lab Code:** K2301786-006

Units: ug/L Basis: NA

**Butyltins** 

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.029	0.064	0.080	22		1	02/26/23 19:27

Confirmation Results

Client: North Water District Lab Services (NWDLS) Service Request: K2301786

**Project:** 23A1459 **Date Collected:** 02/01/23 13:49

Matrix: Elutriate, Liquid Date Received: 2/10/23

**Sample Name:** 23A1459-11

**Lab Code:** K2301786-007 **Units:** ug/L

Basis: NA

**Butyltins** 

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.029	0.031	0.031	<1	J	1	02/26/23 19:44

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301786

**Project:** 23A1459

Date Collected: 02/01/23 13:49

Matrix: Elutriate, Liquid

Date Received: 2/10/23

**Sample Name:** 23A1459-52

**Lab Code:** K2301786-012

Units: ug/L Basis: NA

**Butyltins** 

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.033	0.065	0.087	29		1	02/26/23 21:38

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301786

**Project:** 23A1459

**Date Collected:** 02/03/23 09:05

Matrix: Elutriate, Liquid

Date Received: 2/10/23

**Sample Name:** 23A1459-64

**Lab Code:** K2301786-013

Units: ug/L Basis: NA

**Butyltins** 

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.029	0.044	0.059	29	J	1	02/26/23 21:54

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301786 **Date Collected:** 02/03/23 09:05 23A1459

Matrix: Date Received: 2/10/23 Elutriate, Liquid

Sample Name: 23A1459-65

Project:

Lab Code: K2301786-014 Units: ug/L

Basis: NA

**Butyltins** 

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.029	0.17	0.24	34		1	02/26/23 22:11

Confirmation Results

Client: North Water District Lab Services (NWDLS) Service Request: K2301786

Project: 23A1459 Date Collected: NA Matrix: Ocean Water Date Received:

Sample Name: Method Blank

**Lab Code:** KQ2302966-01 **Units:** ug/L

Basis: NA

**Butyltins** 

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
Di-n-butyltin Cation	0.0073	0.014	0.019	30	J	1	02/26/23 17:16

Confirmation Results

Client: North Water District Lab Services (NWDLS) Service Request: K2301786

Project:23A1459Date Collected: NAMatrix:Ocean WaterDate Received:

Sample Name: Lab Control Sample

**Lab Code:** KQ2302966-02 **Units:** ug/L

Basis: NA

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
Di-n-butyltin Cation	0.0073	0.711	0.672	6		1	02/26/23 17:33
Tri-n-butyltin Cation	0.012	0.553	0.691	22		1	02/26/23 17:33
n-Butyltin Cation	0.029	0.435	0.673	43	Р	1	02/26/23 17:33

Confirmation Results

Client: North Water District Lab Services (NWDLS)

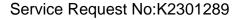
Service Request: K2301786

Date Collected: NA

Project: 23A1459

Matrix: Ocean Water

Date Received:


Sample Name: Duplicate Lab Control Sample

**Lab Code:** KQ2302966-03

Units: ug/L Basis: NA

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	<b>Factor</b>	Date Analyzed
Di-n-butyltin Cation	0.0073	0.847	0.912	7		1	02/26/23 17:49
Tri-n-butyltin Cation	0.012	0.677	0.853	23		1	02/26/23 17:49
n-Butyltin Cation	0.029	0.455	0.485	6		1	02/26/23 17:49





Monica Martin North Water District Lab Services (NWDLS) 130 South Trade Center Parkway Conroe, TX 77385

**Laboratory Results for: 23A1459** 

Dear Monica,

Enclosed are the results of the sample(s) submitted to our laboratory February 01, 2023 For your reference, these analyses have been assigned our service request number **K2301289**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3260. You may also contact me via email at Luke.Rahn@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Luke Rahn

Project Manager



## **Narrative Documents**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



Client: North Water District Lab Services (NWDLS)

Project: 23A1459

Service Request: K2301289

Date Received: 02/01/2023

Sample Matrix: Sediment, Ocean Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### **Sample Receipt:**

Thirty seven sediment, ocean water samples were received for analysis at ALS Environmental on 02/01/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

#### Semivoa GC:

Method ALS SOP, 03/28/2023:The analysis of sample K2301289-031 was initially performed within the recommended holding time. Reanalysis was required due to Continuing Calibration Verification (CCV) failure. The reanalysis was performed past the recommended holding time. The results from the second analysis were reported.

Method ALS SOP, 03/09/2023: Many samples received past the recommended holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

Method ALS SOP, 03/09/2023:The upper control criterion was exceeded for Tri-n-propyltin in sample 23A1459-28. No target analytes were detected in the sample at concentrations above the MRL. The error associated with an elevated recovery equated to a high bias. The quality of the sample data was not significantly affected. No further corrective action was appropriate.

Method ALS SOP, 03/28/2023:The analysis of K2301289 samples was initially performed within the recommended holding time. Rederivitization and reanalysis were required. The reanalysis was performed past the recommended holding time. The results from the second analysis were reported.

Method ALS SOP, 03/28/2023:The Relative Percent Difference (RPD) for n-Butyltin Cation in the replicate Laboratory Control Sample (LCS) analyses (KQ2301926-02 and KQ2301926-03) was outside control criteria. All recoveries for target analytes were acceptable.

#### **General Chemistry:**

No significant anomalies were noted with this analysis.

Approved by	Jule Bake	Date _	03/29/2023	_
	/			



CLIENT ID: 23A1459-18	Lab ID: K2301289-007								
Analyte	Results	Flag	MDL	MRL	Units	Method			
Di-n-butyltin Cation	1.4	JP	0.27	1.4	ug/Kg	ALS SOP			
Di-n-butyltin Cation	0.95	JP	0.19	1.0	ug/Kg	ALS SOP			
n-Butyltin Cation	1.6		0.37	1.4	ug/Kg	ALS SOP			
n-Butyltin Cation	1.1		0.26	1.0	ug/Kg	ALS SOP			
Solids, Total	70.3				Percent	160.3 Modified			
CLIENT ID: 23A1459-58		Lab	ID: K2301	1289-034					
Analyte	Results	Flag	MDL	MRL	Units	Method			
Di-n-butyltin Cation	0.75	J	0.22	1.2	ug/Kg	ALS SOP			
Di-n-butyltin Cation	0.63	J	0.19	0.98	ug/Kg	ALS SOP			
n-Butyltin Cation	1.5		0.31	1.2	ug/Kg	ALS SOP			
n-Butyltin Cation	1.3		0.26	0.98	ug/Kg	ALS SOP			
Solids, Total	84.9				Percent	160.3 Modified			
CLIENT ID: 23A1459-04		Lab	ID: K2301	1289-003					
Analyte	Results	Flag	MDL	MRL	Units	Method			
n-Butyltin Cation	0.072		0.029	0.050	ug/L	ALS SOP			
CLIENT ID: 23A1459-05		Lab	ID: K2301	1289-004					
Analyte	Results	Flag	MDL	MRL	Units	Method			
n-Butyltin Cation	0.049	JP	0.029	0.050	ug/L	ALS SOP			
CLIENT ID: 23A1459-16		Lab	ID: K2301	1289-005					
Analyte	Results	Flag	MDL	MRL	Units	Method			
n-Butyltin Cation	0.39	J	0.35	1.3	ug/Kg	ALS SOP			
n-Butyltin Cation	0.29	J	0.26	0.99	ug/Kg	ALS SOP			
Solids, Total	74.0				Percent	160.3 Modified			
LIENT ID: 23A1459-17		Lab	ID: K2301	1289-006					
Analyte	Results	Flag	MDL	MRL	Units	Method			
n-Butyltin Cation	0.63	J	0.35	1.3	ug/Kg	ALS SOP			
n-Butyltin Cation	0.46	J	0.26	0.96	ug/Kg	ALS SOP			
Solids, Total	72.4				Percent	160.3 Modified			
LIENT ID: 23A1459-21		Lab	ID: K2301	1289-009					
Analyte	Results	Flag	MDL	MRL	Units	Method			
n-Butyltin Cation	0.39	J	0.38	1.4	ug/Kg	ALS SOP			
n-Butyltin Cation	0.26	U	0.26	0.95	ug/Kg	ALS SOP			
Solids, Total	66.1				Percent	160.3 Modified			
CLIENT ID: 23A1459-22		Lab	ID: K2301	1289-010					
Analyte	Results	Flag	MDL	MRL	Units	Method			
n-Butyltin Cation	1.1	J	0.44	1.7	ug/Kg	ALS SOP			
n-Butyltin Cation	NWDLS Report Pac	ı	0.26	0.99	ug/Kg	ALS SOP			



Analyte	CLIENT ID: 23A1459-22		Lab	ID: K2301	1289-010			
CLIENT ID: 23A1459-24   Results   Flag   MDL   MRL   Units   Method	Analyte	Results	Flag	MDL	MRL	Units	Method	
Analyte	Solids, Total	59.0				Percent	160.3 Modified	
n-Butyltin Cation         0.70         J         0.35         1.3         ug/kg ALS SOP ALS SOP and butyltin Cation         ALS SOP ALS SOP ALS SOP Bercent         ALS SOP ALS SOP ALS SOP ALS SOP Bercent         ALS SOP ALS SOP ALS SOP Bercent         ALS SOP ALS SO	CLIENT ID: 23A1459-24		Lab	ID: K2301	1289-011			
n-Butyltin Cation Solids, Total         0.52 74.0         J 0.26 0.98 0.98 0.96 0.98 0.96 0.91 160.3 Modified         ALS SOP Percent 160.3 Modified           CLIENT ID: 23A1459-25         Lab ID: K2301289-012           Analyte         Results         Flag MDL MRL Value Units 0.67 0.67 0.98 0.98 0.98 0.96 0.98 0.96 0.98 0.96 0.98 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.99	Analyte	Results	Flag	MDL	MRL	Units	Method	
Solids, Total   74.0   Percent   160.3 Modified	n-Butyltin Cation	0.70	J	0.35	1.3	ug/Kg	ALS SOP	
CLIENT ID: 23A1459-25   Results   Flag   MDL   MRL   Units   Method	n-Butyltin Cation	0.52	J	0.26	0.98	ug/Kg	ALS SOP	
Results	Solids, Total	74.0				Percent	160.3 Modified	
n-Butyltin Cation         0.67         J         0.36         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.48         J         0.26         0.98         ug/Kg         ALS SOP           Solids, Total         71.7         Lab ID: K2301289-013         Legent         160.3 Modified           CLIENT ID: 23A1459-27         Lab ID: K2301289-013           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.26         J         0.26         0.99         ug/Kg         ALS SOP           n-Butyltin Cation         0.26         J         0.26         0.99         ug/Kg         ALS SOP           n-Butyltin Cation         0.40         JP         0.37         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.40         JP         0.37         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.40         JP         0.37         1.4         ug/Kg         ALS SOP           solids, Total         68.7         JP         0.26         0.97         ug/Kg         ALS SOP           n-Butyltin Cation         0.63         J	CLIENT ID: 23A1459-25		Lab	ID: K2301	1289-012			
n-Butyltin Cation Solids, Total         0.48 71.7         J         0.26 0.98         ug/Kg Percent         ALS SOP 160.3 Modified           CLIENT ID: 23A1459-27         Lab ID: K23U1289-013           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation n-Butyltin Cation Solids, Total         0.26 63.5         J         0.26 0.99         0.99         ug/Kg ALS SOP Percent         160.3 Modified           CLIENT ID: 23A1459-28         Lab ID: K2301289-014           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation n-Butyltin Cation         0.40         JP         0.37         1.4         ug/Kg         ALS SOP ALS SOP           Nolids, Total         68.7         JP         0.26         0.97         ug/Kg         ALS SOP ALS SOP           Analyte         Results         Flag         MDL         MRL         Units         Method           CLIENT ID: 23A1459-30         Lab ID: K23U1289-015           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation	Analyte	Results	Flag	MDL	MRL	Units	Method	
Solids, Total   Tota	n-Butyltin Cation	0.67	J	0.36	1.4	ug/Kg	ALS SOP	
CLIENT ID: 23A1459-27	n-Butyltin Cation	0.48	J	0.26	0.98	ug/Kg	ALS SOP	
Analyte	Solids, Total	71.7				Percent	160.3 Modified	
Description	CLIENT ID: 23A1459-27		Lab	ID: K2301	1289-013			
n-Butyltin Cation Solids, Total         0.26 63.5         J         0.26 0.99         ug/kg Percent         ALS SOP 160.3 Modified           CLIENT ID: 23A1459-28         Lab ID: K2301289-014           Analyte         Results         Flag Plan         MDL MRL         Wnits Units         Method           n-Butyltin Cation n-Butyltin Cation Solids, Total         0.40 68.7         JP         0.37 0.26         1.4 0.97 0.97         ug/kg ug/kg         ALS SOP ALS SOP Percent         160.3 Modified           CLIENT ID: 23A1459-30         Lab ID: K2301289-015           Analyte         Results         Flag MDL         MRL         Units         Method           n-Butyltin Cation n-Butyltin Cation 10.46         0.63 0.46         J         0.26 0.98         ug/kg 0.98         ALS SOP 0.98         ALS SOP 0.98         ALS SOP 0.98         ALS SOP 0.99         MRL         Units         Method         Method         N-Butyltin Cation 0.51         J         0.38 0.38         1.4 0.38         ug/kg 0.99         ALS SOP 0.99         AL	Analyte	Results	Flag	MDL	MRL	Units	Method	
CLIENT ID: 23A1459-28	n-Butyltin Cation	0.41	J	0.41	1.6	ug/Kg	ALS SOP	
CLIENT ID: 23A1459-28   Results   Flag   MDL   MRL   Units   Method	n-Butyltin Cation	0.26	J	0.26	0.99	ug/Kg	ALS SOP	
Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.40         JP         0.37         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.27         JP         0.26         0.97         ug/Kg         ALS SOP           Solids, Total         68.7         JP         0.26         0.97         ug/Kg         ALS SOP           Percent         160.3 Modified           CLIENT ID: 23A1459-30           Lab ID: K2301289-015           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.63         J         0.26         0.98         ug/Kg         ALS SOP           Solids, Total         72.9         Lab ID: K2301289-016         Lab ID: K2301289-016           CLIENT ID: 23A1459-31         Lab ID: K2301289-016         Method           n-Butyltin Cation         0.51         J         0.38         1.4         ug/Kg         ALS SOP           Solids, Total         68.2         Percent         160.3 Modified           CLIENT ID: 23A1459-32         Lab ID:	Solids, Total	63.5				Percent	160.3 Modified	
n-Butyltin Cation         0.40         JP         0.37         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.27         JP         0.26         0.97         ug/Kg         ALS SOP           Solids, Total         68.7         JP         0.26         0.97         ug/Kg         ALS SOP           Percent         160.3 Modified           CLIENT ID: 23A1459-30         Lab ID: K2301289-015           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.63         J         0.35         1.3         ug/Kg         ALS SOP           n-Butyltin Cation         0.46         J         0.26         0.98         ug/Kg         ALS SOP           Solids, Total         72.9         Lab ID: K2301289-016         Lab ID: K2301289-016         Lab ID: K2301289-016         Lab ID: K2301289-016         Method           n-Butyltin Cation         0.51         J         0.38         1.4         ug/Kg         ALS SOP           Solids, Total         68.2         D         0.99         ug/Kg         ALS SOP           Solids, Total         68.2         Lab ID: K2301289-017         Lab ID: K2301289-017	CLIENT ID: 23A1459-28		Lab	ID: K2301	289-014			
No.	Analyte	Results	Flag	MDL	MRL	Units	Method	
Solids, Total   68.7   Percent   160.3 Modified	n-Butyltin Cation	0.40	JP	0.37	1.4	ug/Kg	ALS SOP	
CLIENT ID: 23A1459-30         Lab ID: K2301289-015           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.63         J         0.35         1.3         ug/Kg         ALS SOP           n-Butyltin Cation         0.46         J         0.26         0.98         ug/Kg         ALS SOP           Solids, Total         72.9         Lab ID: K2301289-016         Example CLIENT ID: 23A1459-31           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.51         J         0.38         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.35         J         0.26         0.99         ug/Kg         ALS SOP           Solids, Total         68.2         Percent         160.3 Modified           CLIENT ID: 23A1459-32         Lab ID: K2301289-017           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.	n-Butyltin Cation	0.27	JP	0.26	0.97	ug/Kg	ALS SOP	
Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.63         J         0.35         1.3         ug/Kg         ALS SOP           n-Butyltin Cation         0.46         J         0.26         0.98         ug/Kg         ALS SOP           Solids, Total         72.9         Lab ID: K2301289-016         Lab ID: K2301289-016           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.51         J         0.38         1.4         ug/Kg         ALS SOP           Solids, Total         68.2         J         0.26         0.99         ug/Kg         ALS SOP           CLIENT ID: 23A1459-32         Lab ID: K2301289-017           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	Solids, Total	68.7				Percent	160.3 Modified	
n-Butyltin Cation         0.63         J         0.35         1.3         ug/Kg         ALS SOP           n-Butyltin Cation         0.46         J         0.26         0.98         ug/Kg         ALS SOP           Solids, Total         72.9         Lab ID: K2301289-016         Example ID: K2301289-016           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.51         J         0.38         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.35         J         0.26         0.99         ug/Kg         ALS SOP           Solids, Total         68.2         Lab ID: K2301289-017         Example ID: K2301289-017           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	CLIENT ID: 23A1459-30		Lab	ID: K2301	1289-015			
n-Butyltin Cation Solids, Total         0.46 72.9         J         0.26 0.98         0.98 Ug/Kg Percent         ALS SOP 160.3 Modified           CLIENT ID: 23A1459-31         Lab ID: K2301289-016           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation n-Butyltin Cation         0.51 0.35         J         0.26 0.99         0.99 0.99         ug/Kg 0.99         ALS SOP 0.99           Solids, Total         68.2         Percent         160.3 Modified           CLIENT ID: 23A1459-32         Lab ID: K2301289-017           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	Analyte	Results	Flag	MDL	MRL	Units	Method	
Solids, Total         72.9         Percent         160.3 Modified           CLIENT ID: 23A1459-31         Lab ID: K2301289-016           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.51         J         0.38         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.35         J         0.26         0.99         ug/Kg         ALS SOP           Solids, Total         68.2         Percent         160.3 Modified           CLIENT ID: 23A1459-32           Lab ID: K2301289-017           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	n-Butyltin Cation	0.63	J	0.35	1.3	ug/Kg	ALS SOP	
CLIENT ID: 23A1459-31         Lab ID: K2301289-016           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.51         J         0.38         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.35         J         0.26         0.99         ug/Kg         ALS SOP           Solids, Total         68.2         Percent         160.3 Modified           CLIENT ID: 23A1459-32           Lab ID: K2301289-017           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	n-Butyltin Cation	0.46	J	0.26	0.98	ug/Kg	ALS SOP	
Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.51         J         0.38         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.35         J         0.26         0.99         ug/Kg         ALS SOP           Solids, Total         68.2         Percent         160.3 Modified           CLIENT ID: 23A1459-32           Lab ID: K2301289-017           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	Solids, Total	72.9				Percent	160.3 Modified	
n-Butyltin Cation         0.51         J         0.38         1.4         ug/Kg         ALS SOP           n-Butyltin Cation         0.35         J         0.26         0.99         ug/Kg         ALS SOP           Solids, Total         68.2         Percent         160.3 Modified           CLIENT ID: 23A1459-32           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	CLIENT ID: 23A1459-31	Lab ID: K2301289-016						
n-Butyltin Cation         0.35         J         0.26         0.99         ug/Kg         ALS SOP           Solids, Total         68.2         Lab ID: K2301289-017           CLIENT ID: 23A1459-32         Lab ID: K2301289-017           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	Analyte	Results	Flag	MDL	MRL	Units	Method	
Solids, Total         68.2         Percent         160.3 Modified           CLIENT ID: 23A1459-32         Lab ID: K2301289-017           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	n-Butyltin Cation	0.51	J	0.38	1.4	ug/Kg	ALS SOP	
CLIENT ID: 23A1459-32         Lab ID: K2301289-017           Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	n-Butyltin Cation	0.35	J	0.26	0.99	ug/Kg	ALS SOP	
Analyte         Results         Flag         MDL         MRL         Units         Method           n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	Solids, Total	68.2				Percent	160.3 Modified	
n-Butyltin Cation         0.53         J         0.32         1.2         ug/Kg         ALS SOP           n-Butyltin Cation         0.41         J         0.26         0.95         ug/Kg         ALS SOP	CLIENT ID: 23A1459-32		Lab	ID: K2301	1289-017			
n-Butyltin Cation 0.41 J 0.26 0.95 ug/Kg ALS SOP	Analyte	Results	Flag	MDL	MRL	Units	Method	
,	n-Butyltin Cation	0.53	J	0.32	1.2	ug/Kg	ALS SOP	
Solids, Total 78.0 Percent 160.3 Modified	n-Butyltin Cation	0.41	J	0.26	0.95	ug/Kg	ALS SOP	
	Solids, Total	78.0				Percent	160.3 Modified	



CLIENT ID: 23A1459-39		Lab	ID: K2301	289-022		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	1.4	J	0.41	1.5	ug/Kg	ALS SOP
n-Butyltin Cation	0.90	J	0.26	0.99	ug/Kg	ALS SOP
Solids, Total	64.2				Percent	160.3 Modified
Tri-n-butyltin Cation	1.3	J	0.67	1.5	ug/Kg	ALS SOP
Tri-n-butyltin Cation	0.82	J	0.43	0.99	ug/Kg	ALS SOP
LIENT ID: 23A1459-40		Lab	ID: K2301	289-023		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.63	JP	0.32	1.2	ug/Kg	ALS SOP
n-Butyltin Cation	0.50	JP	0.26	0.96	ug/Kg	ALS SOP
Solids, Total	79.3				Percent	160.3 Modified
LIENT ID: 23A1459-43		Lab	ID: K2301	289-025		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.59	J	0.31	1.2	ug/Kg	ALS SOP
n-Butyltin Cation	0.50	J	0.26	0.99	ug/Kg	ALS SOP
Solids, Total	85.6				Percent	160.3 Modified
LIENT ID: 23A1459-50		Lab	ID: K2301	289-030		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.083		0.029	0.050	ug/L	ALS SOP
LIENT ID: 23A1459-54		Lab	ID: K2301	289-031		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.37	JP	0.32	1.2	ug/Kg	ALS SOP
n-Butyltin Cation	0.30	J	0.26	0.97	ug/Kg	ALS SOP
Solids, Total	79.4				Percent	160.3 Modified
Tri-n-butyltin Cation	0.78	JP	0.53	1.2	ug/Kg	ALS SOP
Tri-n-butyltin Cation	0.62	JP	0.43	0.97	ug/Kg	ALS SOP
LIENT ID: 23A1459-60		Lab	ID: K2301	289-036		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.47	J	0.32	1.2	ug/Kg	ALS SOP
n-Butyltin Cation	0.37	J	0.26	0.96	ug/Kg	ALS SOP
Solids, Total	78.0				Percent	160.3 Modified
CLIENT ID: 23A1459-62		Lab	ID: K2301	289-037		
Analyte	Results	Flag	MDL	MRL	Units	Method
n-Butyltin Cation	0.067		0.029	0.050	ug/L	ALS SOP
CLIENT ID: 23A1459-20		Lab	ID: K2301	289-008		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	66.0				Percent	160.3 Modified



CLIENT ID: 23A1459-34		Lab	ID: K2301	1289-018		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	73.6				Percent	160.3 Modified
CLIENT ID: 23A1459-35		Lab	ID: K2301	1289-019		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	71.8				Percent	160.3 Modified
CLIENT ID: 23A1459-36		Lab	ID: K2301	1289-020		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	68.5				Percent	160.3 Modified
CLIENT ID: 23A1459-38		Lab	ID: K2301	1289-021		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	65.6				Percent	160.3 Modified
CLIENT ID: 23A1459-41		Lab	ID: K2301	1289-024		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	78.8				Percent	160.3 Modified
CLIENT ID: 23A1459-44		Lab	ID: K2301	1289-026		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	84.5				Percent	160.3 Modified
CLIENT ID: 23A1459-45		Lab	ID: K2301	1289-027		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	70.0				Percent	160.3 Modified
CLIENT ID: 23A1459-48		Lab	ID: K2301	1289-028		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	70.2				Percent	160.3 Modified
CLIENT ID: 23A1459-55		Lab	ID: K2301	1289-032		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	83.6				Percent	160.3 Modified
CLIENT ID: 23A1459-56		Lab	ID: K2301	1289-033		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	81.9				Percent	160.3 Modified
CLIENT ID: 23A1459-59		Lab	ID: K2301	1289-035		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	77.8				Percent	160.3 Modified



# Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com **Project:** 23A1459

Client:

#### **SAMPLE CROSS-REFERENCE**

K2301289-001         23A1459-02         1/25/2023         1120           K2301289-002         23A1459-03         1/25/2023         1417           K2301289-003         23A1459-04         1/25/2023         1545           K2301289-004         23A1459-05         1/27/2023         1200           K2301289-005         23A1459-16         1/16/2023         1420           K2301289-006         23A1459-17         1/17/2023         0940           K2301289-007         23A1459-18         1/17/2023         1720           K2301289-009         23A1459-20         1/16/2023         1720           K2301289-010         23A1459-21         1/17/2023         1630           K2301289-011         23A1459-22         1/17/2023         1630           K2301289-012         23A1459-24         1/19/2023         1520           K2301289-013         23A1459-25         1/20/2023         1100           K2301289-013         23A1459-27         1/19/2023         1700           K2301289-015         23A1459-30         1/18/2023         1940           K2301289-016         23A1459-31         1/18/2023         1400           K2301289-017         23A1459-34         1/18/2023         1940           K230128	SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K2301289-002         23A1459-03         1/25/2023         1417           K2301289-003         23A1459-04         1/25/2023         1545           K2301289-004         23A1459-05         1/27/2023         1200           K2301289-005         23A1459-16         1/16/2023         1420           K2301289-006         23A1459-17         1/17/2023         0440           K2301289-007         23A1459-18         1/17/2023         1440           K2301289-008         23A1459-20         1/16/2023         1720           K2301289-010         23A1459-21         1/17/2023         1630           K2301289-011         23A1459-22         1/17/2023         1520           K2301289-012         23A1459-24         1/19/2023         1520           K2301289-013         23A1459-25         1/20/2023         1700           K2301289-014         23A1459-28         1/20/2023         1700           K2301289-015         23A1459-30         1/18/2023         940           K2301289-016         23A1459-31         1/18/2023         1140           K2301289-017         23A1459-32         1/19/2023         115           K2301289-019         23A1459-36         1/18/2023         1154           K2301289-		· · · · · · · · · · · · · · · · · · ·	<del></del>	
K2301289-003       23A1459-04       1/25/2023       1545         K2301289-004       23A1459-05       1/27/2023       1200         K2301289-005       23A1459-16       1/16/2023       1420         K2301289-006       23A1459-17       1/17/2023       0940         K2301289-007       23A1459-18       1/17/2023       1440         K2301289-008       23A1459-20       1/16/2023       1720         K2301289-010       23A1459-21       1/17/2023       1630         K2301289-011       23A1459-22       1/17/2023       1630         K2301289-012       23A1459-24       1/19/2023       1520         K2301289-013       23A1459-25       1/20/2023       1700         K2301289-014       23A1459-25       1/19/2023       1700         K2301289-015       23A1459-30       1/18/2023       190         K2301289-016       23A1459-31       1/18/2023       190         K2301289-017       23A1459-32       1/19/2023       115         K2301289-018       23A1459-34       1/18/2023       116         K2301289-019       23A1459-36       1/18/2023       116         K2301289-021       23A1459-36       1/18/2023       1637         K2301289-022 </td <td></td> <td>23A1459-03</td> <td>1/25/2023</td> <td></td>		23A1459-03	1/25/2023	
K2301289-004       23A1459-05       1/27/2023       1200         K2301289-005       23A1459-16       1/16/2023       1420         K2301289-006       23A1459-17       1/17/2023       0940         K2301289-007       23A1459-18       1/17/2023       1440         K2301289-008       23A1459-20       1/16/2023       1720         K2301289-009       23A1459-21       1/17/2023       1630         K2301289-010       23A1459-22       1/17/2023       1630         K2301289-011       23A1459-24       1/19/2023       1520         K2301289-012       23A1459-25       1/20/2023       1100         K2301289-013       23A1459-25       1/19/2023       1700         K2301289-014       23A1459-28       1/20/2023       1700         K2301289-015       23A1459-30       1/18/2023       1250         K2301289-016       23A1459-31       1/18/2023       1940         K2301289-017       23A1459-32       1/19/2023       0920         K2301289-018       23A1459-34       1/18/2023       1115         K2301289-019       23A1459-36       1/18/2023       1116         K2301289-021       23A1459-38       1/19/2023       1637         K2301289-	K2301289-003		1/25/2023	
K2301289-006       23A1459-17       1/17/2023       0940         K2301289-007       23A1459-18       1/17/2023       1440         K2301289-008       23A1459-20       1/16/2023       1720         K2301289-009       23A1459-21       1/17/2023       1130         K2301289-010       23A1459-22       1/17/2023       1630         K2301289-011       23A1459-24       1/19/2023       1520         K2301289-012       23A1459-25       1/19/2023       1700         K2301289-013       23A1459-27       1/19/2023       1700         K2301289-014       23A1459-28       1/20/2023       1250         K2301289-015       23A1459-30       1/18/2023       0940         K2301289-016       23A1459-31       1/18/2023       0920         K2301289-017       23A1459-32       1/19/2023       1155         K2301289-018       23A1459-35       1/18/2023       1515         K2301289-029       23A1459-35       1/18/2023       1516         K2301289-020       23A1459-36       1/19/2023       110         K2301289-021       23A1459-39       1/18/2023       0925         K2301289-022       23A1459-40       1/16/2023       0930         K2301289-0				
K2301289-007       23A1459-18       1/17/2023       1440         K2301289-008       23A1459-20       1/16/2023       1720         K2301289-009       23A1459-21       1/17/2023       1130         K2301289-010       23A1459-22       1/17/2023       1630         K2301289-011       23A1459-24       1/19/2023       1520         K2301289-012       23A1459-25       1/20/2023       1100         K2301289-013       23A1459-27       1/19/2023       1700         K2301289-014       23A1459-28       1/20/2023       1250         K2301289-015       23A1459-30       1/18/2023       0940         K2301289-016       23A1459-31       1/18/2023       0940         K2301289-017       23A1459-32       1/19/2023       0920         K2301289-018       23A1459-35       1/18/2023       1154         K2301289-019       23A1459-35       1/18/2023       1545         K2301289-020       23A1459-38       1/19/2023       1110         K2301289-021       23A1459-38       1/17/2023       1637         K2301289-022       23A1459-39       1/18/2023       0925         K2301289-023       23A1459-41       1/17/2023       0915         K2301289-	K2301289-005	23A1459-16	1/16/2023	1420
K2301289-008       23A1459-20       1/16/2023       1720         K2301289-009       23A1459-21       1/17/2023       1130         K2301289-010       23A1459-22       1/17/2023       1630         K2301289-011       23A1459-24       1/19/2023       1520         K2301289-012       23A1459-25       1/20/2023       1100         K2301289-013       23A1459-27       1/19/2023       1700         K2301289-014       23A1459-28       1/20/2023       1250         K2301289-015       23A1459-30       1/18/2023       190         K2301289-016       23A1459-31       1/18/2023       190         K2301289-017       23A1459-32       1/19/2023       115         K2301289-018       23A1459-35       1/18/2023       1545         K2301289-019       23A1459-35       1/18/2023       1545         K2301289-020       23A1459-36       1/19/2023       1110         K2301289-021       23A1459-38       1/17/2023       1412         K2301289-022       23A1459-39       1/18/2023       925         K2301289-023       23A1459-41       1/17/2023       1637         K2301289-024       23A1459-43       1/18/2023       915         K2301289-025 </td <td>K2301289-006</td> <td>23A1459-17</td> <td>1/17/2023</td> <td>0940</td>	K2301289-006	23A1459-17	1/17/2023	0940
K2301289-009       23A1459-21       1/17/2023       1630         K2301289-010       23A1459-22       1/17/2023       1630         K2301289-011       23A1459-24       1/19/2023       1520         K2301289-012       23A1459-25       1/20/2023       1100         K2301289-013       23A1459-27       1/19/2023       1700         K2301289-014       23A1459-28       1/20/2023       1250         K2301289-015       23A1459-30       1/18/2023       0940         K2301289-016       23A1459-31       1/18/2023       1400         K2301289-017       23A1459-32       1/19/2023       0920         K2301289-018       23A1459-34       1/18/2023       1115         K2301289-019       23A1459-35       1/18/2023       1545         K2301289-020       23A1459-36       1/19/2023       1110         K2301289-021       23A1459-38       1/17/2023       1412         K2301289-022       23A1459-39       1/18/2023       0925         K2301289-023       23A1459-40       1/16/2023       1637         K2301289-024       23A1459-41       1/17/2023       0920         K2301289-025       23A1459-43       1/18/2023       0915         K2301289-	K2301289-007	23A1459-18	1/17/2023	1440
K2301289-010       23A1459-22       1/17/2023       1630         K2301289-011       23A1459-24       1/19/2023       1520         K2301289-012       23A1459-25       1/20/2023       1100         K2301289-013       23A1459-27       1/19/2023       1700         K2301289-014       23A1459-28       1/20/2023       1250         K2301289-015       23A1459-30       1/18/2023       0940         K2301289-016       23A1459-31       1/18/2023       1400         K2301289-017       23A1459-32       1/19/2023       0920         K2301289-018       23A1459-34       1/18/2023       1115         K2301289-019       23A1459-35       1/18/2023       1545         K2301289-020       23A1459-36       1/19/2023       1110         K2301289-021       23A1459-38       1/17/2023       1412         K2301289-022       23A1459-39       1/18/2023       0920         K2301289-023       23A1459-40       1/16/2023       1637         K2301289-024       23A1459-41       1/17/2023       0920         K2301289-025       23A1459-43       1/18/2023       0915         K2301289-026       23A1459-45       1/20/2023       0915         K2301289-	K2301289-008	23A1459-20	1/16/2023	1720
K2301289-011       23A1459-24       1/19/2023       1520         K2301289-012       23A1459-25       1/20/2023       1100         K2301289-013       23A1459-27       1/19/2023       1700         K2301289-014       23A1459-28       1/20/2023       1250         K2301289-015       23A1459-30       1/18/2023       0940         K2301289-016       23A1459-31       1/18/2023       1400         K2301289-017       23A1459-32       1/19/2023       0920         K2301289-018       23A1459-34       1/18/2023       1115         K2301289-019       23A1459-35       1/18/2023       1545         K2301289-020       23A1459-36       1/19/2023       1110         K2301289-021       23A1459-38       1/17/2023       1412         K2301289-022       23A1459-39       1/18/2023       0925         K2301289-023       23A1459-40       1/16/2023       1637         K2301289-024       23A1459-43       1/17/2023       0920         K2301289-025       23A1459-43       1/18/2023       0915         K2301289-026       23A1459-45       1/20/2023       0930         K2301289-029       23A1459-48       1/20/2023       0930         K2301289-	K2301289-009	23A1459-21	1/17/2023	1130
K2301289-012       23A1459-25       1/20/2023       1100         K2301289-013       23A1459-27       1/19/2023       1700         K2301289-014       23A1459-28       1/20/2023       1250         K2301289-015       23A1459-30       1/18/2023       0940         K2301289-016       23A1459-31       1/18/2023       1400         K2301289-017       23A1459-32       1/19/2023       0920         K2301289-018       23A1459-34       1/18/2023       1115         K2301289-019       23A1459-35       1/18/2023       1545         K2301289-020       23A1459-36       1/19/2023       1110         K2301289-021       23A1459-38       1/17/2023       1412         K2301289-022       23A1459-39       1/18/2023       0925         K2301289-023       23A1459-40       1/16/2023       1637         K2301289-024       23A1459-41       1/17/2023       0920         K2301289-025       23A1459-43       1/18/2023       0915         K2301289-026       23A1459-44       1/19/2023       0915         K2301289-027       23A1459-45       1/20/2023       0930         K2301289-029       23A1459-49       1/27/2023       1607         K2301289-	K2301289-010	23A1459-22	1/17/2023	1630
K2301289-013       23A1459-27       1/19/2023       1700         K2301289-014       23A1459-28       1/20/2023       1250         K2301289-015       23A1459-30       1/18/2023       0940         K2301289-016       23A1459-31       1/18/2023       1400         K2301289-017       23A1459-32       1/19/2023       0920         K2301289-018       23A1459-34       1/18/2023       1115         K2301289-019       23A1459-35       1/18/2023       1545         K2301289-020       23A1459-36       1/19/2023       1110         K2301289-021       23A1459-38       1/17/2023       1412         K2301289-022       23A1459-39       1/18/2023       0925         K2301289-023       23A1459-40       1/16/2023       1637         K2301289-024       23A1459-41       1/17/2023       0920         K2301289-025       23A1459-43       1/18/2023       1410         K2301289-026       23A1459-44       1/19/2023       0915         K2301289-029       23A1459-48       1/20/2023       0915         K2301289-029       23A1459-49       1/27/2023       1607         K2301289-030       23A1459-50       1/27/2023       1520         K2301289-	K2301289-011	23A1459-24	1/19/2023	1520
K2301289-014       23A1459-28       1/20/2023       1250         K2301289-015       23A1459-30       1/18/2023       0940         K2301289-016       23A1459-31       1/18/2023       1400         K2301289-017       23A1459-32       1/19/2023       0920         K2301289-018       23A1459-34       1/18/2023       1115         K2301289-019       23A1459-35       1/18/2023       1545         K2301289-020       23A1459-36       1/19/2023       1110         K2301289-021       23A1459-38       1/17/2023       1412         K2301289-022       23A1459-39       1/18/2023       0925         K2301289-023       23A1459-40       1/16/2023       1637         K2301289-024       23A1459-41       1/17/2023       0920         K2301289-025       23A1459-43       1/18/2023       1410         K2301289-026       23A1459-44       1/19/2023       0915         K2301289-028       23A1459-45       1/20/2023       0930         K2301289-029       23A1459-49       1/27/2023       1607         K2301289-030       23A1459-50       1/27/2023       1520         K2301289-031       23A1459-50       1/25/2023       0800	K2301289-012	23A1459-25	1/20/2023	1100
K2301289-015       23A1459-30       1/18/2023       0940         K2301289-016       23A1459-31       1/18/2023       1400         K2301289-017       23A1459-32       1/19/2023       0920         K2301289-018       23A1459-34       1/18/2023       1115         K2301289-019       23A1459-35       1/18/2023       1545         K2301289-020       23A1459-36       1/19/2023       1110         K2301289-021       23A1459-38       1/17/2023       1412         K2301289-022       23A1459-39       1/18/2023       0925         K2301289-023       23A1459-40       1/16/2023       1637         K2301289-024       23A1459-41       1/17/2023       0920         K2301289-025       23A1459-43       1/18/2023       1410         K2301289-026       23A1459-43       1/19/2023       0815         K2301289-027       23A1459-45       1/20/2023       0930         K2301289-028       23A1459-48       1/20/2023       0930         K2301289-029       23A1459-49       1/27/2023       1607         K2301289-030       23A1459-50       1/27/2023       1520         K2301289-031       23A1459-54       1/25/2023       0800	K2301289-013	23A1459-27	1/19/2023	1700
K2301289-016       23A1459-31       1/18/2023       1400         K2301289-017       23A1459-32       1/19/2023       0920         K2301289-018       23A1459-34       1/18/2023       1115         K2301289-019       23A1459-35       1/18/2023       1545         K2301289-020       23A1459-36       1/19/2023       1110         K2301289-021       23A1459-38       1/17/2023       1412         K2301289-022       23A1459-39       1/18/2023       0925         K2301289-023       23A1459-40       1/16/2023       1637         K2301289-024       23A1459-41       1/17/2023       0920         K2301289-025       23A1459-43       1/18/2023       1410         K2301289-026       23A1459-44       1/19/2023       0915         K2301289-027       23A1459-45       1/20/2023       0930         K2301289-029       23A1459-49       1/27/2023       1607         K2301289-030       23A1459-50       1/27/2023       1520         K2301289-031       23A1459-50       1/25/2023       0800	K2301289-014	23A1459-28	1/20/2023	1250
K2301289-01723A1459-321/19/20230920K2301289-01823A1459-341/18/20231115K2301289-01923A1459-351/18/20231545K2301289-02023A1459-361/19/20231110K2301289-02123A1459-381/17/20231412K2301289-02223A1459-391/18/20230925K2301289-02323A1459-401/16/20231637K2301289-02423A1459-411/17/20230920K2301289-02523A1459-431/18/20231410K2301289-02623A1459-441/19/20230815K2301289-02723A1459-451/20/20230915K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-015	23A1459-30	1/18/2023	0940
K2301289-01823A1459-341/18/20231115K2301289-01923A1459-351/18/20231545K2301289-02023A1459-361/19/20231110K2301289-02123A1459-381/17/20231412K2301289-02223A1459-391/18/20230925K2301289-02323A1459-401/16/20231637K2301289-02423A1459-411/17/20230920K2301289-02523A1459-431/18/20231410K2301289-02623A1459-441/19/20230815K2301289-02723A1459-451/20/20230930K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-016	23A1459-31	1/18/2023	1400
K2301289-01923A1459-351/18/20231545K2301289-02023A1459-361/19/20231110K2301289-02123A1459-381/17/20231412K2301289-02223A1459-391/18/20230925K2301289-02323A1459-401/16/20231637K2301289-02423A1459-411/17/20230920K2301289-02523A1459-431/18/20231410K2301289-02623A1459-441/19/20230815K2301289-02723A1459-451/20/20230915K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-017	23A1459-32	1/19/2023	0920
K2301289-02023A1459-361/19/20231110K2301289-02123A1459-381/17/20231412K2301289-02223A1459-391/18/20230925K2301289-02323A1459-401/16/20231637K2301289-02423A1459-411/17/20230920K2301289-02523A1459-431/18/20231410K2301289-02623A1459-441/19/20230815K2301289-02723A1459-451/20/20230915K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-018	23A1459-34	1/18/2023	1115
K2301289-02123A1459-381/17/20231412K2301289-02223A1459-391/18/20230925K2301289-02323A1459-401/16/20231637K2301289-02423A1459-411/17/20230920K2301289-02523A1459-431/18/20231410K2301289-02623A1459-441/19/20230815K2301289-02723A1459-451/20/20230915K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-019	23A1459-35	1/18/2023	1545
K2301289-02223A1459-391/18/20230925K2301289-02323A1459-401/16/20231637K2301289-02423A1459-411/17/20230920K2301289-02523A1459-431/18/20231410K2301289-02623A1459-441/19/20230815K2301289-02723A1459-451/20/20230915K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-020	23A1459-36	1/19/2023	1110
K2301289-02323A1459-401/16/20231637K2301289-02423A1459-411/17/20230920K2301289-02523A1459-431/18/20231410K2301289-02623A1459-441/19/20230815K2301289-02723A1459-451/20/20230915K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-021	23A1459-38	1/17/2023	1412
K2301289-02423A1459-411/17/20230920K2301289-02523A1459-431/18/20231410K2301289-02623A1459-441/19/20230815K2301289-02723A1459-451/20/20230915K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-022	23A1459-39	1/18/2023	0925
K2301289-02523A1459-431/18/20231410K2301289-02623A1459-441/19/20230815K2301289-02723A1459-451/20/20230915K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-023	23A1459-40	1/16/2023	1637
K2301289-02623A1459-441/19/20230815K2301289-02723A1459-451/20/20230915K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-024	23A1459-41	1/17/2023	0920
K2301289-02723A1459-451/20/20230915K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800			1/18/2023	1410
K2301289-02823A1459-481/20/20230930K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-026	23A1459-44	1/19/2023	0815
K2301289-02923A1459-491/27/20231607K2301289-03023A1459-501/27/20231520K2301289-03123A1459-541/25/20230800	K2301289-027	23A1459-45	1/20/2023	0915
K2301289-030       23A1459-50       1/27/2023       1520         K2301289-031       23A1459-54       1/25/2023       0800	K2301289-028	23A1459-48	1/20/2023	
K2301289-031 23A1459-54 1/25/2023 0800		23A1459-49		
	K2301289-030		1/27/2023	
	K2301289-031		1/25/2023	
K2301289-032 23A1459-55 1/23/2023 1600				
K2301289-033 23A1459-56 1/26/2023 1305				
K2301289-034 23A1459-58 1/21/2023 1000		23A1459-58		
K2301289-035 23A1459-59 1/21/2023 1645				
K2301289-036 23A1459-60 1/21/2023 1645				
K2301289-037 23A1459-62 1/27/2023 1326	K2301289-037	23A1459-62	1/27/2023	1326



H2301289

SUBCONTRACT ORDER

Sending Laboratory:

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Monica O. Martin

**Subcontracted Laboratory:** 

ALS Kelso

1317 South 13th Avenue

Kelso, WA 98626

Phone: (360) 577-7222

Fax:

Work Order: 23A1459

Analysis	Due	Expires	C	omments	
Sample ID: 23A1459-02	Marine Water Sampled	: 01/25/202	3 11:20		
Sub_CN T-4500	02/02/2023	02/08/2023	11:20		
Analyte(s): Total Cyanide					
Containers Supplied:					
Sample ID: 23A1459-03	Marine Water Sampled	: 01/25/202	23 14:17		
Sub_CN T-4500  Analyte(s):  Total Cyanide	02/02/2023	02/08/2023	14:17		
Containers Supplied:					
Sample ID: 23A1459-04	Marine Water Sampled	: 01/25/202	23 15:45		
Sub_CN T-4500	02/02/2023	02/08/2023	15:45	Mary III	
Analyte(s): Total Cyanide					
Sub_Organotins-TX1001	02/02/2023	02/01/2023	15:45		
Analyte(s):					
Dibutyltin	Monobutyltin			Tributyltin	
Dibutyltin	Monobutyltin			Tributyltin	
Containers Supplied:					
Sample ID: 23A1459-05	Marine Water Sampled	: 01/27/202	23 12:00		14 0 0 14 1
Sub_CN T-4500	02/02/2023	02/10/2023	12:00		
Sub_Organotins-TX1001	02/02/2023	02/03/2023	12:00		
Analyte(s):					
Dibutyltin	Monobutyltin			Tributyltin	
Dibutyltin	Monobutyltin			Tributyltin	
Containers Supplied:					



K2301289

#### SUBCONTRACT ORDER (Continued)

Analysis		Due	Expires	Comments
Sample ID: 23A1459-16	Sediment	Sampled: 03	1/16/2023 14:20	
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin		02/02/2023  Monobutyltin Monobutyltin	01/30/2023 14:20	Tributyltin Tributyltin
Containers Supplied:				
Sample ID: 23A1459-17	Sediment	Sampled: 01	1/17/2023 09:40	
Sub_Organotins-TX1001		02/02/2023	01/31/2023 09:40	
Analyte(s): Dibutyltin Dibutyltin		Monobutyltin Monobutyltin		Tributyltin Tributyltin
Containers Supplied:				
Sample ID: 23A1459-18	Sediment	Sampled: 0	1/17/2023 14:40	
Sub_Organotins-TX1001  Analyte(s): Dibutyltin		02/02/2023 Monobutyltin	01/31/2023 14:40	Tributyltin
Dibutyltin		Monobutyltin		Tributyltin
Containers Supplied:				
Sample ID: 23A1459-20	Sediment	Sampled: 0	1/16/2023 17:20	***************************************
Sub_Organotins-TX1001  Analyte(s): Dibutyltin		02/02/2023 Monobutyltin	01/30/2023 17:20	Tributyltin
Dibutyltin		Monobutyltin		Tributyltin
Containers Supplied:				
Sample ID: 23A1459-21	Sediment	Sampled: 0.	1/17/2023 11:30	
Sub_Organotins-TX1001  Analyte(s):		02/02/2023	01/31/2023 11:30	
Dibutyltin Dibutyltin		Monobutyltin Monobutyltin		Tributyltin Tributyltin
Containers Supplied:		· ionobacjimi		
			· · · · · · · · · · · · · · · · · · ·	AND THE PROPERTY OF THE PROPER





#### SUBCONTRACT ORDER (Continued)

Analysis		Due	Expires	Comments	
Sample ID: 23A1459-22	Sediment	Sampled: 02	1/17/2023 16:30		
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin		02/02/2023 Monobutyltin Monobutyltin	01/31/2023 16:30	Tributyitin Tributyitin	
Containers Supplied:					
Sample ID: 23A1459-24	Sediment	Sampled: 0	1/19/2023 15:20		
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin		02/02/2023  Monobutyltin  Monobutyltin	02/02/2023 15:20	Tributyltin Tributyltin	
Containers Supplied:					
Sample ID: 23A1459-25	Sediment	Sampled: 0:	1/20/2023 11:00		
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin  Containers Supplied:		02/02/2023 Monobutyltin Monobutyltin	02/03/2023 11:00	Tributyltin Tributyltin	
Sample ID: 23A1459-27	Sediment	Sampled: 0	1/19/2023 17:00		
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin Containers Supplied:		02/02/2023 Monobutyltin Monobutyltin	02/02/2023 17:00	Tributyltin Tributyltin	
Sample ID: 23A1459-28	Sediment	Sampled: 0	1/20/2023 12:50		
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin		02/02/2023 Monobutyltin Monobutyltin	02/03/2023 12:50	Tributyltin Tributyltin	
Containers Supplied:					





### SUBCONTRACT ORDER (Continued)

	Due	Expires	Comments	
Sediment	Sampled: 02	1/18/2023 09:40		
	02/02/2023 Monobutyltin Monobutyltin	02/01/2023 09:40	Tributyltin Tributyltin	
Sediment	Sampled: 0	1/18/2023 14:00		
	02/02/2023 MonobutyItin	02/01/2023 14:00	Tributyltin	
	Monobutyltin		Tributyltin	
Sediment	Sampled: 0	1/19/2023 09:20		
	02/02/2023  Monobutyltin  Monobutyltin	02/02/2023 09:20	Tributyltin Tributyltin	
Sediment	Sampled: 0.	1/18/2023 11:15	L. Washington	
	02/02/2023  Monobutyltin Monobutyltin	02/01/2023 11:15	Tributyltin Tributyltin	
Sediment	Sampled: 0.	1/18/2023 15:45		
	02/02/2023  Monobutyitin Monobutyitin	02/01/2023 15:45	Tributyltin Tributyltin	
	·			
	Sediment  Sediment	Sediment Sampled: 02  Sediment Sampled: 02  Sediment Sampled: 02  02/02/2023  Monobutyltin Monob	Sediment         Sampled: 01/18/2023 09:40           02/02/2023         02/01/2023 09:40           Monobutyltin	Sediment         Sampled: 01/18/2023 09:40           02/02/2023         02/01/2023 09:40           Monobutyltin         Tributyltin           Sediment         Sampled: 01/18/2023 14:00           Monobutyltin         Tributyltin           Monobutyltin         Tributyltin           Sediment         Sampled: 01/19/2023 09:20           Monobutyltin         Tributyltin           Monobutyltin         Tributyltin           Sediment         Sampled: 01/18/2023 11:15           02/02/2023         02/01/2023 11:15           Monobutyltin         Tributyltin           Monobutyltin         Tributyltin           Sediment         Sampled: 01/18/2023 15:45           02/02/2023         02/01/2023 15:45           Monobutyltin         Tributyltin



K2301289

# SUBCONTRACT ORDER (Continued)

Analysis	Due	Expires	Comments
Sample ID: 23A1459-36	Sediment Sampled: 0.	1/19/2023 11:10	
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin	02/02/2023 Monobutyltin Monobutyltin	02/02/2023 11:10	Tributyltin Tributyltin
Containers Supplied:			
Sample ID: 23A1459-38	Sediment Sampled: 0.	1/17/2023 14:12	
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin	02/02/2023 Monobutyltin Monobutyltin	01/31/2023 14:12	Tributyltin Tributyltin
Containers Supplied:	Floriobutytori		Hodeyidii
Sample ID: 23A1459-39	Sediment Sampled: 0	1/18/2023 09:25	
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin	02/02/2023 Monobutyltin Monobutyltin	02/01/2023 09:25	Tributyltin Tributyltin
Containers Supplied:			
Sample ID: 23A1459-40	Sediment Sampled: 0	1/16/2023 16:37	
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin	02/02/2023 Monobutyitin Monobutyitin	01/30/2023 16:37	Tributyltin Tributyltin
Containers Supplied:			
Sample ID: 23A1459-41	Sediment Sampled: 0	1/17/2023 09:20	
Sub_Organotins-TX1001  Analyte(s): Dibutyltin Dibutyltin  Containers Supplied:	02/02/2023 Monobutyltin Monobutyltin	01/31/2023 09:20	Tributyltin Tributyltin
сонашев эпрриси.			



# SUBCONTRACT ORDER

(Continued)

h2301289

Work Order: 23A1459 (Continued)

Analysis	Due	Expires	Comments	
Sample ID: 23A1459-43	Sediment Sampled: 0	1/18/2023 14:10		
Sub_Organotins-TX1001	02/02/2023	02/01/2023 14:10		
Analyte(s):				
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyltin		Tributyltin	
Containers Supplied:				
Sample ID: 23A1459-44	Sediment Sampled: 0	1/19/2023 08:15		
Sub_Organotins-TX1001	02/02/2023	02/02/2023 08:15		
Analyte(s):				
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyitin		Tributyltin	
Containers Supplied:				
Sample ID: 23A1459-45	Sediment Sampled: 0	1/20/2023 09:15		
Sub_Organotins-TX1001	02/02/2023	02/03/2023 09:15		
Analyte(s):				
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyltin		Tributyltin	
Containers Supplied:				
Sample ID: 23A1459-48	Sediment Sampled: 0	1/20/2023 09:30		N. e.
Sub_Organotins-TX1001	02/02/2023	02/03/2023 09:30		
Analyte(s):				
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyltin		Tributyltin	
Containers Supplied:				
Sample ID: 23A1459-49	Marine Water Sample	d: 01/27/2023 16	07	
Sub_CN T-4500	02/02/2023	02/10/2023 16:07		
Analyte(s):				
Total Cyanide	A2 /A2 /2A22	02/03/2023 16:07		
Sub_Organotins-TX1001	02/02/2023	02/03/2023 10.0/		
Analyte(s):	Monobutyltin		Tributyltin	
Dibutyltin Dibutyltin	Monobutyitin		Tributyltin	
•	1 to soundly said		· · · · · · · · · · · · · · · · · · ·	
Containers Supplied:				



# SUBCONTRACT ORDER

(Continued)

Work Order: 23A1459 (Continued)

Analysis	Due	Expires	Comments	
Sample ID: 23A1459-50	Marine Water Sampled	l: 01/27/2023 15:	20	
Sub_CN T-4500	02/02/2023	02/10/2023 15:20		
Analyte(s):				
Total Cyanide				
Sub_Organotins-TX1001	02/02/2023	02/03/2023 15:20		
Analyte(s):	A.A. S. e Ber.		Tubba da datas	
Dibutyltin	Monobutyltin		Tributyltin Tributyltin	
Dibutyltin	Monobutyltin		modylan	
Containers Supplied:				
Sample ID: 23A1459-54	Sediment Sampled: 0:	1/25/2023 08:00		.,,,,,,
Sub_Organotins-TX1001	02/02/2023	02/08/2023 08:00		
Analyte(s):				
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyltin		Tributyltin	
Containers Supplied:				
Sample ID: 23A1459-55	Sediment Sampled: 0.	1/23/2023 16:00		
Sub_Organotins-TX1001	02/02/2023	02/06/2023 16:00		
Analyte(s):				
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyltin		Tributyltin	
Containers Supplied:				
Sample ID: 23A1459-56	Sediment Sampled: 0.	1/26/2023 13:05	<u>, , , , , , , , , , , , , , , , , , , </u>	
Sub_Organotins-TX1001	02/02/2023	02/09/2023 13:05		
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyltin		Tributyltin	
Containers Supplied:				
Sample ID: 23A1459-58	Sediment Sampled: 0	1/21/2023 10:00		
Sub_Organotins-TX1001	02/02/2023	02/04/2023 10:00		
Analyte(s):				
Dibutyltin	Monobutyltin		Tributyltin	
Dibutyltin	Monobutyltin		Tributyltin	
Containers Supplied:				

H2301289



12301289

### SUBCONTRACT ORDER (Continued)

Work Order: 23A1459 (Continued)

Analysis		Due	Expire	S	Comments	
Sample ID: 23A1459-59	Sediment	Sampled: 0.	1/21/2023	16:45		
Sub_Organotins-TX1001  Analyte(s):		02/02/2023	02/04/2023	16:45		
Dibutyltin Dibutyltin		Monobutyltin Monobutyltin			Tributyltin Tributyltin	
Containers Supplied:						
Sample ID: 23A1459-60	Sediment	Sampled: 0.	1/21/2023	16:45		
Sub_Organotins-TX1001	****	02/02/2023	02/04/2023	16:45		
Analyte(s): Dibutyltin		Monobutyltin			Tributyltin	
Dibutyltin		Monobutyltin			Tributyltin	
Containers Supplied:						
Sample ID: 23A1459-62	Marine Wa	ater Sample	d: 01/27/20	23 13.	:26	
Sub_CN T-4500	***	02/02/2023	02/10/2023	13:26		
Analyte(s): Total Cyanide						
Sub_Organotins-TX1001		02/02/2023	02/03/2023	13:26		
Analyte(s): Dibutyltin		Monobutyltin			Tributyltin	
Dibutyltin		Monobutyltin			Tributyltin	
Containers Supplied:						
			·			
An	and the second s	1/30	/23		WB	1/30/23
Released By		Date	· · ·	Receive		Date
				12-1		13 11/23 1030

client NV	SKI		Cooler Receipt	and P	reser		n Form ice Request #	raa (^)	289	4-1,32,,1	
Received: 2	/1/23	_ Opened: _	2/1/23	By:	m	0614	Unloaded: 2	, — , — , — , — , — , — , — , — , — , —	3 BV: V	6M	
. Samples we	re received via? re received in: (cire y seals on coolers? ere custody seals in	USPS	Fed Ex  ooler Box  NA Y N	UPS En	<i>D.</i> i <i>velope</i> ow man	_	PDX	Courie	er Hand Dei		
Temp Blank	Sample Temp	IR Gun	Cooler #/COC ID / N.	A	Out of	temp with "X	PM Notified If out of to	mp	Tracking Numb		Filed
	0.6	IP.01	Coolers	2					12W40V0196	~ · · · · · · · · · · · · · · · · · · ·	4
If no, take the sample of applicable, tis fapplicable, which was ample to the papproper fapplicable fapproper fapplicable	s received within they received on ice issue samples were interial: Inserts of papers property es received in good imple labels comple labels and tags priate bottles/contal-preserved bottles vials received within the sinegative?	representative the method special and same day received:  Baggies Buffilled out (inked condition (unter (ie, analysis) agree with curtainers and volumers and vol	e sample bottle contain ccified temperature rang y as collected? If not, n Frozen Partially The abble Wrap Gel Pack c, signed, etc.)? nbroken) s, preservation, etc.)?	ned withinges? notate the hawed as Wet ests indicate appropriate below.	cated?	# above # abov	e and notify the  Sleeves	PM.	NA Y	N N N N N N N N N N N N N Overfilled	
	imple ID on Bott			e ID on	<del></del>				Identified by:	Overmod	
			Bottle Count			1	SHO	· 1	HC DT	) -16 3 - j j-h-ter	
	Sample ID		Bottle Type	Head- space	Broke	pН	Reagent	Volume added	Reagent Lot Number	Initials	Time
	repancies, Reso	lutions:		SOP: S	MO-G	EN			Review	ed: 12/9/	2022



## **Miscellaneous Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

#### **Inorganic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

 Sample Name:
 23A1459-02
 Date Collected:
 01/25/23

 Lab Code:
 K2301289-001
 Date Received:
 02/1/23

Sample Matrix: Ocean Water

Analysis Method Extracted/Digested By Analyzed By

SM 4500-CN- E MRICH MRICH

**Sample Name:** 23A1459-03 **Date Collected:** 01/25/23

**Lab Code:** K2301289-002 **Date Received:** 02/1/23

Sample Matrix: Ocean Water

Analysis Method Extracted/Digested By Analyzed By

SM 4500-CN- E MRICH MRICH

**Sample Name:** 23A1459-04 **Date Collected:** 01/25/23

**Lab Code:** K2301289-003 **Date Received:** 02/1/23

Sample Matrix: Ocean Water

Analysis Method Extracted/Digested By Analyzed By

ALS SOP ZPRIM BBRIGHT SM 4500-CN- E MRICH MRICH

**Sample Name:** 23A1459-05 **Date Collected:** 01/27/23

Lab Code: K2301289-004 Date Received: 02/1/23
Sample Matrix: Ocean Water

Analysis MethodExtracted/Digested ByAnalyzed ByALS SOPZPRIMBBRIGHT

SM 4500-CN- E MRICH MRICH

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

**Date Collected:** 01/16/23 **Date Received:** 02/1/23

Service Request: K2301289

 Sample Name:
 23A1459-16

 Lab Code:
 K2301289-005

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-17 **Date Collected:** 01/17/23

**Lab Code:** K2301289-006 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-18 **Date Collected:** 01/17/23

**Lab Code:** K2301289-007 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-20 **Date Collected:** 01/16/23

**Lab Code:** K2301289-008 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

Service Request: K2301289

**Sample Name:** 23A1459-21 **Lab Code:** K2301289-009

Sample Matrix: Sediment

**Date Collected:** 01/17/23

**Date Received:** 02/1/23

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-22 **Date Collected:** 01/17/23

**Lab Code:** K2301289-010 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-24 **Date Collected:** 01/19/23

**Lab Code:** K2301289-011 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-25 **Date Collected:** 01/20/23

Lab Code: K2301289-012 Date Received: 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

Analyst Summary report

**Client:** North Water District Lab Services (NWDLS)

**Project:** 23A1459/

**Sample Name:** 23A1459-27 **Date Collected:** 01/19/23 Lab Code: K2301289-013 **Date Received:** 02/1/23

Sample Matrix: Sediment

**Analyzed By Analysis Method Extracted/Digested By** 

160.3 Modified **ZBIBI** 

ALS SOP **ZPRIM BBRIGHT** 

**Sample Name:** 23A1459-28 Date Collected: 01/20/23

Lab Code: K2301289-014 **Date Received:** 02/1/23

Sample Matrix: Sediment

**Analyzed By Extracted/Digested By Analysis Method** 

160.3 Modified **ZBIBI** 

ALS SOP **ZPRIM BBRIGHT** 

Sample Name: 23A1459-30 **Date Collected:** 01/18/23

Lab Code: K2301289-015 **Date Received:** 02/1/23

Sample Matrix: Sediment

**Analyzed By Extracted/Digested By Analysis Method** 

160.3 Modified **ZBIBI** 

**ZPRIM** ALS SOP **BBRIGHT** 

**Sample Name:** 23A1459-31 **Date Collected:** 01/18/23

Lab Code: K2301289-016

**Date Received:** 02/1/23 Sample Matrix: Sediment

**Analysis Method Extracted/Digested By Analyzed By** 

160.3 Modified **ZBIBI** 

**ZPRIM BBRIGHT** ALS SOP

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

 Sample Name:
 23A1459-32
 Date Collected:
 01/19/23

 Lab Code:
 K2301289-017
 Date Received:
 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-34 **Date Collected:** 01/18/23

**Lab Code:** K2301289-018 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-35 **Date Collected:** 01/18/23

**Lab Code:** K2301289-019 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-36 **Date Collected:** 01/19/23

**Lab Code:** K2301289-020 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

 Sample Name:
 23A1459-38
 Date Collected:
 01/17/23

 Lab Code:
 K2301289-021
 Date Received:
 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-39 **Date Collected:** 01/18/23

**Lab Code:** K2301289-022 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-40 **Date Collected:** 01/16/23

**Lab Code:** K2301289-023 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-41 **Date Collected:** 01/17/23

**Lab Code:** K2301289-024 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

Service Request: K2301289

**Sample Name:** 23A1459-43 **Lab Code:** K2301289-025

Sample Matrix: Sediment

**Date Collected:** 01/18/23 **Date Received:** 02/1/23

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-44 **Date Collected:** 01/19/23

**Lab Code:** K2301289-026 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-45 **Date Collected:** 01/20/23

**Lab Code:** K2301289-027 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-48 **Date Collected:** 01/20/23

**Lab Code:** K2301289-028 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

 Sample Name:
 23A1459-49
 Date Collected:
 01/27/23

 Lab Code:
 K2301289-029
 Date Received:
 02/1/23

Sample Matrix: Ocean Water

Analysis Method Extracted/Digested By Analyzed By

ALS SOP ZPRIM BBRIGHT SM 4500-CN- E MRICH MRICH

**Sample Name:** 23A1459-50 **Date Collected:** 01/27/23

**Lab Code:** K2301289-030 **Date Received:** 02/1/23

Sample Matrix: Ocean Water

Analysis Method Extracted/Digested By Analyzed By

ALS SOP ZPRIM BBRIGHT SM 4500-CN- E MRICH MRICH

**Sample Name:** 23A1459-54 **Date Collected:** 01/25/23

**Lab Code:** K2301289-031 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP JMOORE BBRIGHT

**Sample Name:** 23A1459-55 **Date Collected:** 01/23/23

Lab Code: K2301289-032 Date Received: 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

 Sample Name:
 23A1459-56
 Date Collected:
 01/26/23

 Lab Code:
 K2301289-033
 Date Received:
 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-58 **Date Collected:** 01/21/23

**Lab Code:** K2301289-034 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-59 **Date Collected:** 01/21/23

**Lab Code:** K2301289-035 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

**Sample Name:** 23A1459-60 **Date Collected:** 01/21/23

**Lab Code:** K2301289-036 **Date Received:** 02/1/23

Sample Matrix: Sediment

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

ALS SOP ZPRIM BBRIGHT

Analyst Summary report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459/

 Sample Name:
 23A1459-62
 Date Collected:
 01/27/23

 Lab Code:
 K2301289-037
 Date Received:
 02/1/23

Sample Matrix: Ocean Water

Analysis Method Extracted/Digested By Analyzed By

ALS SOP ZPRIM BBRIGHT

SM 4500-CN- E MRICH MRICH



## Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



## Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/25/23 15:45

Sample Matrix: Ocean Water Date Received: 02/01/23 10:30

 Sample Name:
 23A1459-04
 Units: ug/L

 Lab Code:
 K2301289-003
 Basis: NA

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** EPA 3520C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.072	0.050	0.029	1	03/28/23 16:55	2/2/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	03/28/23 16:55	2/2/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	03/28/23 16:55	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	106	10 - 195	03/28/23 16:55		

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/27/23 12:00

Sample Matrix: Ocean Water Date Received: 02/01/23 10:30

 Sample Name:
 23A1459-05
 Units: ug/L

 Lab Code:
 K2301289-004
 Basis: NA

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** EPA 3520C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.049 JP	0.050	0.029	1	03/28/23 17:11	2/2/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	03/28/23 17:11	2/2/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	03/28/23 17:11	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	97	10 - 195	03/28/23 17:11		

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/16/23 14:20 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-16 Units: ug/Kg Lab Code: K2301289-005 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.39 ј	1.3	0.35	1	03/09/23 14:25	2/2/23	*
Di-n-butyltin Cation	ND U	1.3	0.26	1	03/09/23 14:25	2/2/23	*
Tri-n-butyltin Cation	ND U	1.3	0.58	1	03/09/23 14:25	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	102	10 - 152	03/09/23 14:25	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/16/23 14:20 23A1459

**Project: Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-16 Units: ug/Kg

Lab Code: K2301289-005 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.29 ј	0.99	0.26	1	03/09/23 14:25	2/2/23	*
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 14:25	2/2/23	*
Tri-n-butyltin Cation	ND U	0.99	0.43	1	03/09/23 14:25	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 09:40 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-17 Units: ug/Kg Lab Code: K2301289-006 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

**Project:** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.63 Ј	1.3	0.35	1	03/09/23 15:51	2/2/23	*
Di-n-butyltin Cation	ND U	1.3	0.26	1	03/09/23 15:51	2/2/23	*
Tri-n-butyltin Cation	ND U	1.3	0.58	1	03/09/23 15:51	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	106	10 - 152	03/09/23 15:51		

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/17/23 09:40

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-17 Units: ug/Kg

Lab Code: K2301289-006 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.46 Ј	0.96	0.26	1	03/09/23 15:51	2/2/23	*
Di-n-butyltin Cation	ND U	0.96	0.19	1	03/09/23 15:51	2/2/23	*
Tri-n-butyltin Cation	ND U	0.96	0.43	1	03/09/23 15:51	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 14:40 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-18 Units: ug/Kg Lab Code: K2301289-007 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	1.6	1.4	0.37	1	03/09/23 16:09	2/2/23	*
Di-n-butyltin Cation	1.4 JP	1.4	0.27	1	03/09/23 16:09	2/2/23	*
Tri-n-butyltin Cation	ND U	1.4	0.62	1	03/09/23 16:09	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	125	10 - 152	03/09/23 16:09	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 14:40 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-18 Units: ug/Kg

Lab Code: K2301289-007 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	1.1	1.0	0.26	1	03/09/23 16:09	2/2/23	*
Di-n-butyltin Cation	0.95 JP	1.0	0.19	1	03/09/23 16:09	2/2/23	*
Tri-n-butyltin Cation	ND U	1.0	0.43	1	03/09/23 16:09	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/16/23 17:20 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-20 Units: ug/Kg Lab Code: K2301289-008 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND Ui	1.5	0.52	1	03/09/23 16:26	2/2/23	*
Di-n-butyltin Cation	ND U	1.5	0.29	1	03/09/23 16:26	2/2/23	*
Tri-n-butyltin Cation	ND U	1.5	0.65	1	03/09/23 16:26	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	106	10 - 152	03/09/23 16:26		

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/16/23 17:20

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-20 Units: ug/Kg

Lab Code: K2301289-008 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND Ui	0.99	0.35	1	03/09/23 16:26	2/2/23	*
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 16:26	2/2/23	*
Tri-n-butyltin Cation	ND U	0.99	0.43	1	03/09/23 16:26	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 11:30 23A1459

**Project: Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-21 Units: ug/Kg Lab Code: K2301289-009 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.39 ј	1.4	0.38	1	03/09/23 16:43	2/2/23	*
Di-n-butyltin Cation	ND U	1.4	0.28	1	03/09/23 16:43	2/2/23	*
Tri-n-butyltin Cation	ND U	1.4	0.63	1	03/09/23 16:43	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	55	10 - 152	03/09/23 16:43	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 11:30 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-21 Units: ug/Kg

Lab Code: K2301289-009 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.95	0.26	1	03/09/23 16:43	2/2/23	*
Di-n-butyltin Cation	ND U	0.95	0.19	1	03/09/23 16:43	2/2/23	*
Tri-n-butyltin Cation	ND U	0.95	0.43	1	03/09/23 16:43	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 16:30 23A1459

**Project: Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-22 Units: ug/Kg Lab Code: K2301289-010 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	1.1 J	1.7	0.44	1	03/09/23 17:00	2/2/23	*
Di-n-butyltin Cation	ND U	1.7	0.32	1	03/09/23 17:00	2/2/23	*
Tri-n-butyltin Cation	ND U	1.7	0.72	1	03/09/23 17:00	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	100	10 - 152	03/09/23 17:00		

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 16:30 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-22 Units: ug/Kg

Lab Code: K2301289-010 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.62 ј	0.99	0.26	1	03/09/23 17:00	2/2/23	*
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 17:00	2/2/23	*
Tri-n-butyltin Cation	ND U	0.99	0.43	1	03/09/23 17:00	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/19/23 15:20 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-24 Units: ug/Kg Lab Code: K2301289-011 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.70 ј	1.3	0.35	1	03/09/23 17:17	2/2/23	
Di-n-butyltin Cation	ND U	1.3	0.26	1	03/09/23 17:17	2/2/23	
Tri-n-butyltin Cation	ND U	1.3	0.57	1	03/09/23 17:17	2/2/23	

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	125	10 - 152	03/09/23 17:17	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/19/23 15:20 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-24 Units: ug/Kg

Lab Code: K2301289-011 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.52 ј	0.98	0.26	1	03/09/23 17:17	2/2/23	
Di-n-butyltin Cation	ND U	0.98	0.19	1	03/09/23 17:17	2/2/23	
Tri-n-butyltin Cation	ND U	0.98	0.43	1	03/09/23 17:17	2/2/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/20/23 11:00 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-25 Units: ug/Kg Lab Code: K2301289-012 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.67 ј	1.4	0.36	1	03/09/23 17:35	2/2/23	
Di-n-butyltin Cation	ND U	1.4	0.26	1	03/09/23 17:35	2/2/23	
Tri-n-butyltin Cation	ND U	1.4	0.59	1	03/09/23 17:35	2/2/23	

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	83	10 - 152	03/09/23 17:35	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/20/23 11:00

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-25 Units: ug/Kg

Lab Code: K2301289-012 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.48 ј	0.98	0.26	1	03/09/23 17:35	2/2/23	
Di-n-butyltin Cation	ND U	0.98	0.19	1	03/09/23 17:35	2/2/23	
Tri-n-butyltin Cation	ND U	0.98	0.43	1	03/09/23 17:35	2/2/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/19/23 17:00 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-27 Units: ug/Kg Lab Code: K2301289-013 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.41 Ј	1.6	0.41	1	03/09/23 17:52	2/2/23	_
Di-n-butyltin Cation	ND U	1.6	0.30	1	03/09/23 17:52	2/2/23	
Tri-n-butyltin Cation	ND U	1.6	0.68	1	03/09/23 17:52	2/2/23	

**Surrogate Name** % Rec **Date Analyzed** 03/09/23 17:52 Q **Control Limits** 64 10 - 152 Tri-n-propyltin

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/19/23 17:00

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-27 Units: ug/Kg

Lab Code: K2301289-013 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.26 ј	0.99	0.26	1	03/09/23 17:52	2/2/23	
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 17:52	2/2/23	
Tri-n-butyltin Cation	ND U	0.99	0.43	1	03/09/23 17:52	2/2/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/20/23 12:50 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-28 Units: ug/Kg Lab Code: K2301289-014 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.40 JP	1.4	0.37	1	03/09/23 18:09	2/2/23	
Di-n-butyltin Cation	ND U	1.4	0.27	1	03/09/23 18:09	2/2/23	
Tri-n-butyltin Cation	ND U	1.4	0.61	1	03/09/23 18:09	2/2/23	

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	156	10 - 152	03/09/23 18:09	*	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/20/23 12:50

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-28 Units: ug/Kg

Lab Code: K2301289-014 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.27 JP	0.97	0.26	1	03/09/23 18:09	2/2/23	
Di-n-butyltin Cation	ND U	0.97	0.19	1	03/09/23 18:09	2/2/23	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	03/09/23 18:09	2/2/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 09:40 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-30 Units: ug/Kg Lab Code: K2301289-015 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.63 ј	1.3	0.35	1	03/09/23 18:26	2/2/23	*
Di-n-butyltin Cation	ND U	1.3	0.26	1	03/09/23 18:26	2/2/23	*
Tri-n-butyltin Cation	ND U	1.3	0.58	1	03/09/23 18:26	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	98	10 - 152	03/09/23 18:26	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/18/23 09:40

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-30 Units: ug/Kg

Lab Code: K2301289-015 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.46 Ј	0.98	0.26	1	03/09/23 18:26	2/2/23	*
Di-n-butyltin Cation	ND U	0.98	0.19	1	03/09/23 18:26	2/2/23	*
Tri-n-butyltin Cation	ND U	0.98	0.43	1	03/09/23 18:26	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 14:00 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-31 Units: ug/Kg Lab Code: K2301289-016 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.51 ј	1.4	0.38	1	03/09/23 18:43	2/2/23	*
Di-n-butyltin Cation	ND U	1.4	0.28	1	03/09/23 18:43	2/2/23	*
Tri-n-butyltin Cation	ND U	1.4	0.63	1	03/09/23 18:43	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	107	10 - 152	03/09/23 18:43		

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 14:00 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-31 Units: ug/Kg

Lab Code: K2301289-016 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.35 ј	0.99	0.26	1	03/09/23 18:43	2/2/23	*
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 18:43	2/2/23	*
Tri-n-butyltin Cation	ND U	0.99	0.43	1	03/09/23 18:43	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/19/23 09:20 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-32 Units: ug/Kg Lab Code: K2301289-017 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.53 ј	1.2	0.32	1	03/09/23 19:34	2/2/23	
Di-n-butyltin Cation	ND U	1.2	0.24	1	03/09/23 19:34	2/2/23	
Tri-n-butyltin Cation	ND U	1.2	0.53	1	03/09/23 19:34	2/2/23	

**Surrogate Name** % Rec **Date Analyzed** 03/09/23 19:34 Q **Control Limits** 73 10 - 152 Tri-n-propyltin

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/19/23 09:20

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-32 Units: ug/Kg

Lab Code: K2301289-017 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.41 ј	0.95	0.26	1	03/09/23 19:34	2/2/23	
Di-n-butyltin Cation	ND U	0.95	0.19	1	03/09/23 19:34	2/2/23	
Tri-n-butyltin Cation	ND U	0.95	0.43	1	03/09/23 19:34	2/2/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 11:15 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-34 Units: ug/Kg Lab Code: K2301289-018 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	1.3	0.36	1	03/09/23 19:51	2/2/23	*
Di-n-butyltin Cation	ND U	1.3	0.26	1	03/09/23 19:51	2/2/23	*
Tri-n-butyltin Cation	ND U	1.3	0.59	1	03/09/23 19:51	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	96	10 - 152	03/09/23 19:51		

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 11:15 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-34 Units: ug/Kg

Lab Code: K2301289-018 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.99	0.26	1	03/09/23 19:51	2/2/23	*
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 19:51	2/2/23	*
Tri-n-butyltin Cation	ND U	0.99	0.43	1	03/09/23 19:51	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 15:45 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-35 Units: ug/Kg Lab Code: K2301289-019 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.4	0.36	1	03/09/23 20:09	2/2/23	*
Di-n-butyltin Cation	ND U	1.4	0.26	1	03/09/23 20:09	2/2/23	*
Tri-n-butyltin Cation	ND U	1.4	0.59	1	03/09/23 20:09	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	86	10 - 152	03/09/23 20:09		

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/18/23 15:45

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-35 Units: ug/Kg

Lab Code: K2301289-019 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.97	0.26	1	03/09/23 20:09	2/2/23	*
Di-n-butyltin Cation	ND U	0.97	0.19	1	03/09/23 20:09	2/2/23	*
Tri-n-butyltin Cation	ND U	0.97	0.43	1	03/09/23 20:09	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/19/23 11:10 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-36 Units: ug/Kg K2301289-020 Lab Code: Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.4	0.38	1	03/09/23 20:26	2/2/23	
Di-n-butyltin Cation	ND U	1.4	0.28	1	03/09/23 20:26	2/2/23	
Tri-n-butyltin Cation	ND U	1.4	0.63	1	03/09/23 20:26	2/2/23	

**Surrogate Name** % Rec **Date Analyzed** 03/09/23 20:26 Q **Control Limits** 72 10 - 152 Tri-n-propyltin

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/19/23 11:10

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-36 Units: ug/Kg

Lab Code: K2301289-020 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.99	0.26	1	03/09/23 20:26	2/2/23	
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 20:26	2/2/23	
Tri-n-butyltin Cation	ND U	0.99	0.43	1	03/09/23 20:26	2/2/23	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/17/23 14:12

Sample Matrix: Sediment Date Received: 02/01/23 10:30

 Sample Name:
 23A1459-38
 Units: ug/Kg

 Lab Code:
 K2301289-021
 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.5	0.39	1	03/09/23 09:17	2/2/23	*
Di-n-butyltin Cation	ND U	1.5	0.28	1	03/09/23 09:17	2/2/23	*
Tri-n-butyltin Cation	ND U	1.5	0.64	1	03/09/23 09:17	2/2/23	*

Surrogate Name% RecControl LimitsDate AnalyzedQTri-n-propyltin8610 - 15203/09/23 09:17

Analytical Report

Client: North Water District Lab Services (NWDLS)

 Project:
 23A1459
 Date Collected:
 01/17/23 14:12

 Sample Matrix:
 Sediment
 Date Received:
 02/01/23 10:30

Sample Name: 23A1459-38 Units: ug/Kg

Lab Code: K2301289-021 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.96	0.26	1	03/09/23 09:17	2/2/23	*
Di-n-butyltin Cation	ND U	0.96	0.19	1	03/09/23 09:17	2/2/23	*
Tri-n-butyltin Cation	ND U	0.96	0.43	1	03/09/23 09:17	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 09:25 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-39 Units: ug/Kg Lab Code: K2301289-022 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	1.4 J	1.5	0.41	1	03/09/23 09:34	2/2/23	*
Di-n-butyltin Cation	ND U	1.5	0.30	1	03/09/23 09:34	2/2/23	*
Tri-n-butyltin Cation	1.3 ј	1.5	0.67	1	03/09/23 09:34	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	89	10 - 152	03/09/23 09:34		

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 09:25 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-39 Units: ug/Kg

Lab Code: K2301289-022 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.90 Ј	0.99	0.26	1	03/09/23 09:34	2/2/23	*
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 09:34	2/2/23	*
Tri-n-butyltin Cation	0.82 ј	0.99	0.43	1	03/09/23 09:34	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/16/23 16:37 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-40 Units: ug/Kg Lab Code: K2301289-023 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.63 JP	1.2	0.32	1	03/09/23 10:09	2/2/23	*
Di-n-butyltin Cation	ND U	1.2	0.24	1	03/09/23 10:09	2/2/23	*
Tri-n-butyltin Cation	ND U	1.2	0.53	1	03/09/23 10:09	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	89	10 - 152	03/09/23 10:09	

Analytical Report

**Client:** Service Request: K2301289 North Water District Lab Services (NWDLS)

**Date Collected:** 01/16/23 16:37 23A1459

**Project: Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-40 Units: ug/Kg

Lab Code: K2301289-023 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.50 JP	0.96	0.26	1	03/09/23 10:09	2/2/23	*
Di-n-butyltin Cation	ND U	0.96	0.19	1	03/09/23 10:09	2/2/23	*
Tri-n-butyltin Cation	ND U	0.96	0.43	1	03/09/23 10:09	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 09:20 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-41 Units: ug/Kg Lab Code: K2301289-024 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.2	0.33	1	03/09/23 10:26	2/2/23	*
Di-n-butyltin Cation	ND U	1.2	0.24	1	03/09/23 10:26	2/2/23	*
Tri-n-butyltin Cation	ND U	1.2	0.54	1	03/09/23 10:26	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	82	10 - 152	03/09/23 10:26	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/17/23 09:20

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-41 Units: ug/Kg

Lab Code: K2301289-024 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.98	0.26	1	03/09/23 10:26	2/2/23	*
Di-n-butyltin Cation	ND U	0.98	0.19	1	03/09/23 10:26	2/2/23	*
Tri-n-butyltin Cation	ND U	0.98	0.43	1	03/09/23 10:26	2/2/23	*

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 14:10 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-43 Units: ug/Kg Lab Code: K2301289-025 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.59 ј	1.2	0.31	1	03/09/23 11:17	2/2/23	*
Di-n-butyltin Cation	ND U	1.2	0.23	1	03/09/23 11:17	2/2/23	*
Tri-n-butyltin Cation	ND U	1.2	0.50	1	03/09/23 11:17	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	109	10 - 152	03/09/23 11:17	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/18/23 14:10

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-43 Units: ug/Kg

Lab Code: K2301289-025 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.50 ј	0.99	0.26	1	03/09/23 11:17	2/2/23	*
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 11:17	2/2/23	*
Tri-n-butyltin Cation	ND U	0.99	0.43	1	03/09/23 11:17	2/2/23	*

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/19/23 08:15

Sample Matrix: Sediment Date Received: 02/01/23 10:30

 Sample Name:
 23A1459-44
 Units: ug/Kg

 Lab Code:
 K2301289-026
 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.2	0.30	1	03/09/23 11:34	2/2/23	
Di-n-butyltin Cation	ND U	1.2	0.22	1	03/09/23 11:34	2/2/23	
Tri-n-butyltin Cation	ND U	1.2	0.50	1	03/09/23 11:34	2/2/23	

Surrogate Name% RecControl LimitsDate AnalyzedQTri-n-propyltin6410 - 15203/09/23 11:34

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/19/23 08:15

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-44 Units: ug/Kg

Lab Code: K2301289-026 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.97	0.26	1	03/09/23 11:34	2/2/23	
Di-n-butyltin Cation	ND U	0.97	0.19	1	03/09/23 11:34	2/2/23	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	03/09/23 11:34	2/2/23	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/20/23 09:15

Sample Matrix: Sediment Date Received: 02/01/23 10:30

 Sample Name:
 23A1459-45
 Units: ug/Kg

 Lab Code:
 K2301289-027
 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.4	0.37	1	03/09/23 11:51	2/2/23	
Di-n-butyltin Cation	ND U	1.4	0.27	1	03/09/23 11:51	2/2/23	
Tri-n-butyltin Cation	ND U	1.4	0.61	1	03/09/23 11:51	2/2/23	

Surrogate Name% RecControl LimitsDate AnalyzedQTri-n-propyltin9010 - 15203/09/23 11:51

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/20/23 09:15

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-45 Units: ug/Kg

Lab Code: K2301289-027 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.99	0.26	1	03/09/23 11:51	2/2/23	
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 11:51	2/2/23	
Tri-n-butyltin Cation	ND U	0.99	0.43	1	03/09/23 11:51	2/2/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/20/23 09:30 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-48 Units: ug/Kg Lab Code: K2301289-028 Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.4	0.37	1	03/09/23 12:09	2/2/23	
Di-n-butyltin Cation	ND U	1.4	0.27	1	03/09/23 12:09	2/2/23	
Tri-n-butyltin Cation	ND U	1.4	0.61	1	03/09/23 12:09	2/2/23	

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	136	10 - 152	03/09/23 12:09	

Analytical Report

**Client:** Service Request: K2301289 North Water District Lab Services (NWDLS)

**Date Collected:** 01/20/23 09:30 23A1459

**Project: Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-48 Units: ug/Kg

Lab Code: K2301289-028 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.99	0.26	1	03/09/23 12:09	2/2/23	
Di-n-butyltin Cation	ND U	0.99	0.19	1	03/09/23 12:09	2/2/23	
Tri-n-butyltin Cation	ND U	0.99	0.43	1	03/09/23 12:09	2/2/23	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/27/23 16:07

Sample Matrix: Ocean Water Date Received: 02/01/23 10:30

 Sample Name:
 23A1459-49
 Units: ug/L

 Lab Code:
 K2301289-029
 Basis: NA

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** EPA 3520C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.050	0.029	1	03/28/23 17:28	2/2/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	03/28/23 17:28	2/2/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	03/28/23 17:28	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	94	10 - 195	03/28/23 17:28	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/27/23 15:20 **Project:** 23A1459

**Sample Matrix:** Ocean Water **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-50 Units: ug/L Lab Code: K2301289-030 Basis: NA

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** EPA 3520C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.083	0.050	0.029	1	03/28/23 17:44	2/2/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	03/28/23 17:44	2/2/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	03/28/23 17:44	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	83	10 - 195	03/28/23 17:44	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/25/23 08:00 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-54 Units: ug/Kg Lab Code: K2301289-031 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.37 ЈР	1.2	0.32	1	03/28/23 18:17	2/6/23	*
Di-n-butyltin Cation	ND U	1.2	0.24	1	03/28/23 18:17	2/6/23	*
Tri-n-butyltin Cation	0.78 JP	1.2	0.53	1	03/28/23 18:17	2/6/23	*

**Surrogate Name** % Rec Q **Control Limits Date Analyzed** 03/28/23 18:17 84 10 - 152 Tri-n-propyltin

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/25/23 08:00

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-54 Units: ug/Kg

Lab Code: K2301289-031 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.30 ј	0.97	0.26	1	03/28/23 18:17	2/6/23	*
Di-n-butyltin Cation	ND U	0.97	0.19	1	03/28/23 18:17	2/6/23	*
Tri-n-butyltin Cation	0.62 JP	0.97	0.43	1	03/28/23 18:17	2/6/23	*

Service Request: K2301289

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/23/23 16:00 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-55 Units: ug/Kg Lab Code: K2301289-032 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.2	0.30	1	03/09/23 12:26	2/2/23	
Di-n-butyltin Cation	ND U	1.2	0.22	1	03/09/23 12:26	2/2/23	
Tri-n-butyltin Cation	ND U	1.2	0.50	1	03/09/23 12:26	2/2/23	

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	65	10 - 152	03/09/23 12:26	

Analytical Report

Client: North Water District Lab Services (NWDLS)

**Project:** 23A1459 **Date Collected:** 01/23/23 16:00

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-55 Units: ug/Kg

Lab Code: K2301289-032 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.96	0.26	1	03/09/23 12:26	2/2/23	
Di-n-butyltin Cation	ND U	0.96	0.19	1	03/09/23 12:26	2/2/23	
Tri-n-butyltin Cation	ND U	0.96	0.43	1	03/09/23 12:26	2/2/23	

Service Request: K2301289

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/26/23 13:05 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-56 Units: ug/Kg Lab Code: K2301289-033 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.2	0.32	1	03/09/23 12:43	2/2/23	
Di-n-butyltin Cation	ND U	1.2	0.23	1	03/09/23 12:43	2/2/23	
Tri-n-butyltin Cation	ND U	1.2	0.52	1	03/09/23 12:43	2/2/23	

**Surrogate Name** % Rec **Date Analyzed** 03/09/23 12:43 Q **Control Limits** 72 10 - 152 Tri-n-propyltin

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/26/23 13:05

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-56 Units: ug/Kg

Lab Code: K2301289-033 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.98	0.26	1	03/09/23 12:43	2/2/23	
Di-n-butyltin Cation	ND U	0.98	0.19	1	03/09/23 12:43	2/2/23	
Tri-n-butyltin Cation	ND U	0.98	0.43	1	03/09/23 12:43	2/2/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/21/23 10:00 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-58 Units: ug/Kg Lab Code: K2301289-034 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	1.5	1.2	0.31	1	03/09/23 13:00	2/2/23	
Di-n-butyltin Cation	0.75 ј	1.2	0.22	1	03/09/23 13:00	2/2/23	
Tri-n-butyltin Cation	ND U	1.2	0.50	1	03/09/23 13:00	2/2/23	

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	84	10 - 152	03/09/23 13:00	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/21/23 10:00 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-58 Units: ug/Kg

Lab Code: K2301289-034 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	1.3	0.98	0.26	1	03/09/23 13:00	2/2/23	
Di-n-butyltin Cation	0.63 J	0.98	0.19	1	03/09/23 13:00	2/2/23	
Tri-n-butyltin Cation	ND U	0.98	0.43	1	03/09/23 13:00	2/2/23	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/21/23 16:45

Sample Matrix: Sediment Date Received: 02/01/23 10:30

 Sample Name:
 23A1459-59
 Units: ug/Kg

 Lab Code:
 K2301289-035
 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	1.3	0.33	1	03/09/23 13:17	2/2/23	
Di-n-butyltin Cation	ND U	1.3	0.24	1	03/09/23 13:17	2/2/23	
Tri-n-butyltin Cation	ND U	1.3	0.54	1	03/09/23 13:17	2/2/23	

Surrogate Name% RecControl LimitsDate AnalyzedQTri-n-propyltin5710 - 15203/09/23 13:17

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

23A1459 **Date Collected:** 01/21/23 16:45

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-59 Units: ug/Kg

Lab Code: K2301289-035 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

**Project:** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.97	0.26	1	03/09/23 13:17	2/2/23	
Di-n-butyltin Cation	ND U	0.97	0.19	1	03/09/23 13:17	2/2/23	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	03/09/23 13:17	2/2/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/21/23 16:45 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-60 Units: ug/Kg Lab Code: K2301289-036 Basis: Dry

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	0.47 ј	1.2	0.32	1	03/09/23 13:35	2/2/23	
Di-n-butyltin Cation	ND U	1.2	0.24	1	03/09/23 13:35	2/2/23	
Tri-n-butyltin Cation	ND U	1.2	0.53	1	03/09/23 13:35	2/2/23	

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	65	10 - 152	03/09/23 13:35	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/21/23 16:45

Sample Matrix: Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-60 Units: ug/Kg

Lab Code: K2301289-036 Basis: As Received

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.37 ј	0.96	0.26	1	03/09/23 13:35	2/2/23	
Di-n-butyltin Cation	ND U	0.96	0.19	1	03/09/23 13:35	2/2/23	
Tri-n-butyltin Cation	ND U	0.96	0.43	1	03/09/23 13:35	2/2/23	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/27/23 13:26

Sample Matrix: Ocean Water Date Received: 02/01/23 10:30

 Sample Name:
 23A1459-62
 Units: ug/L

 Lab Code:
 K2301289-037
 Basis: NA

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** EPA 3520C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	0.067	0.050	0.029	1	03/28/23 18:01	2/2/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	03/28/23 18:01	2/2/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	03/28/23 18:01	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	66	10 - 195	03/28/23 18:01	



# **General Chemistry**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/25/23 11:20 **Project:** 23A1459 **Date Received:** 02/01/23 10:30 **Sample Matrix:** Ocean Water

**Sample Name:** 23A1459-02 Basis: NA

Lab Code: K2301289-001

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/04/23 15:04	02/04/23	

Analytical Report

Client: North Water District Lab Services (NWDLS)

North Water District Lab Services (NWDLS)
23A1459

23A1459 **Date Collected:** 01/25/23 14:17 Ocean Water **Date Received:** 02/01/23 10:30

Service Request: K2301289

Sample Name: 23A1459-03 Basis: NA

**Lab Code:** K2301289-002

**Project:** 

**Sample Matrix:** 

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/04/23 15:04	02/04/23	

Analytical Report

Client: North Water District Lab Services (NWDLS)

North Water District Lab Services (NWDLS)

23A1459

Ocean Water Date Received: 02/01/23 10:30

**Service Request:** K2301289 **Date Collected:** 01/25/23 15:45

Sample Name: 23A1459-04 Basis: NA

**Lab Code:** K2301289-003

**Project:** 

**Sample Matrix:** 

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/04/23 15:04	02/04/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/27/23 12:00 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Ocean Water

**Sample Name:** 23A1459-05 Basis: NA

Lab Code: K2301289-004

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/04/23 15:04	02/04/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/16/23 14:20 **Project:** 23A1459 **Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-16 Basis: As Received Lab Code: K2301289-005

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	74.0	Percent	_	_	1	02/02/23 11:07	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 09:40 **Project:** 23A1459 **Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-17 Basis: As Received

Lab Code: K2301289-006

## **Inorganic Parameters**

**Analyte Name Analysis Method** Result Units MRL **MDL** Dil. **Date Analyzed** Q Solids, Total 72.4 02/02/23 11:07 160.3 Modified Percent

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 14:40 **Project:** 23A1459 **Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-18 Basis: As Received

Lab Code: K2301289-007

## **Inorganic Parameters**

**Analyte Name Analysis Method** Result Units MRL **MDL** Dil. **Date Analyzed** Q Solids, Total 70.3 Percent 02/02/23 11:07 160.3 Modified

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/16/23 17:20 **Project:** 23A1459 **Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-20 Basis: As Received Lab Code: K2301289-008

## **Inorganic Parameters**

**Analyte Name Analysis Method** Result Units MRL **MDL** Dil. **Date Analyzed** Q Solids, Total 02/02/23 11:07 160.3 Modified 66.0 Percent

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 11:30 **Project:** 23A1459 **Date Received:** 02/01/23 10:30

**Sample Matrix:** Sediment

**Sample Name:** 23A1459-21 Basis: As Received Lab Code: K2301289-009

**Inorganic Parameters** 

**Analyte Name Analysis Method** Result Units MRL **MDL** Dil. **Date Analyzed** Q Solids, Total 02/02/23 11:07 160.3 Modified 66.1 Percent

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 16:30 **Project:** 23A1459 **Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-22 Basis: As Received

Lab Code: K2301289-010

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	59.0	Percent	_	_	1	02/02/23 11:07	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/19/23 15:20 **Project:** 23A1459 **Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-24 Basis: As Received

Lab Code: K2301289-011

## **Inorganic Parameters**

**Analyte Name Analysis Method** Result Units MRL **MDL** Dil. **Date Analyzed** Q Solids, Total 74.0 02/02/23 11:07 160.3 Modified Percent

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/20/23 11:00 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-25 Basis: As Received

Lab Code: K2301289-012

**Project:** 

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	71.7	Percent	_	_	1	02/02/23 11:07	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/19/23 17:00 **Project:** 23A1459

**Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-27

**Sample Matrix:** 

Lab Code:

K2301289-013

Sediment

Basis: As Received

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	63.5	Percent	_	_	1	02/02/23 11:07	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/20/23 12:50 **Project:** 23A1459 **Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-28 Basis: As Received Lab Code: K2301289-014

## **Inorganic Parameters**

**Analyte Name Analysis Method** Result Units MRL **MDL** Dil. **Date Analyzed** Q 02/02/23 11:07 Solids, Total 160.3 Modified 68.7 Percent

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 09:40 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-30 Basis: As Received

Lab Code: K2301289-015

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160 3 Modified	72.9	Percent	_	_	1	02/02/23 11:07	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 14:00 **Project:** 23A1459

**Sample Matrix:** Sediment **Date Received:** 02/01/23 10:30

**Sample Name:** Lab Code:

23A1459-31 K2301289-016 Basis: As Received

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	68.2	Percent	_	_	1	02/02/23 11:07	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/19/23 09:20 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-32 Basis: As Received

Lab Code: K2301289-017

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	78.0	Percent	_	_	1	02/02/23 11:07	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Project:** 23A1459

**Date Collected:** 01/18/23 11:15

**Date Received:** 02/01/23 10:30 Sediment

**Sample Name:** 23A1459-34 Basis: As Received

Lab Code: K2301289-018

**Sample Matrix:** 

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	73.6	Percent	_	_	1	02/02/23 11:07	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 15:45 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-35 Basis: As Received

Lab Code: K2301289-019

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	71.8	Percent	_	_	1	02/02/23 11:07	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/19/23 11:10 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-36 Basis: As Received

Lab Code: K2301289-020

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	68.5	Percent	_	_	1	02/02/23 11:07	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/17/23 14:12 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-38 Basis: As Received

Lab Code: K2301289-021

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	65.6	Percent	_	_	1	02/02/23 13:52	

Analytical Report

Client: North Water District Lab Services (NWDLS)

Project: 23A1459

**Date Collected:** 01/18/23 09:25 **Date Received:** 02/01/23 10:30

Service Request: K2301289

Sample Matrix: Sedim

Sediment Date Recei

Sample Name: 23A1459-39 Basis: As Received

**Lab Code:** K2301289-022

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	64.2	Percent	_	_	1	02/02/23 13:52	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/16/23 16:37 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-40 Basis: As Received

Lab Code: K2301289-023

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	79.3	Percent	_	_	1	02/02/23 13:52	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Sediment

Service Request: K2301289 **Date Collected:** 01/17/23 09:20 **Project:** 23A1459 **Date Received:** 02/01/23 10:30

**Sample Name:** 23A1459-41 Basis: As Received

Lab Code: K2301289-024

**Sample Matrix:** 

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	78.8	Percent	_	_	1	02/02/23 13:52	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/18/23 14:10 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-43 Basis: As Received

Lab Code: K2301289-025

**Project:** 

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	85.6	Percent	_	_	1	02/02/23 13:52	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/19/23 08:15 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-44 Basis: As Received

Lab Code: K2301289-026

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	84.5	Percent	_	_	1	02/02/23 13:52	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Sediment

Service Request: K2301289 **Date Collected:** 01/20/23 09:15 **Project:** 23A1459

**Sample Name:** 23A1459-45 Basis: As Received

Lab Code: K2301289-027

**Sample Matrix:** 

## **Inorganic Parameters**

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	70.0	Percent	_	_	1	02/02/23 13:52	

**Date Received:** 02/01/23 10:30

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/20/23 09:30 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-48 Basis: As Received

Lab Code: K2301289-028

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	70.2	Percent	_	_	1	02/02/23 13:52	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Ocean Water

**Sample Name:** 23A1459-49 Basis: NA

Lab Code: K2301289-029

**Project:** 

### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/04/23 15:04	02/04/23	

Service Request: K2301289 **Date Collected:** 01/27/23 16:07

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/27/23 15:20 **Project:** 23A1459 **Date Received:** 02/01/23 10:30 **Sample Matrix:** Ocean Water

**Sample Name:** 23A1459-50 Basis: NA

Lab Code: K2301289-030

### **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Extracted	Q
Cyanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/09/23 16:15	02/09/23	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/25/23 08:00 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-54 Basis: As Received

Lab Code: K2301289-031

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	79.4	Percent	_	_	1	02/02/23 13:52	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/23/23 16:00 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-55 Basis: As Received

Lab Code: K2301289-032

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	83.6	Percent	_	_	1	02/02/23 13:52	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/26/23 13:05 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-56 Basis: As Received

Lab Code: K2301289-033

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	81.9	Percent	_	_	1	02/02/23 13:52	

Analytical Report

Client: North Water District Lab Services (NWDLS)

Project: 23A1459

**Date Collected:** 01/21/23 10:00

Service Request: K2301289

Sediment Date Received: 02/01/23 10:30

Sample Name: 23A1459-58 Basis: As Received

**Lab Code:** K2301289-034

**Sample Matrix:** 

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	84.9	Percent	_	_	1	02/02/23 13:52	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/21/23 16:45 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-59 Basis: As Received

Lab Code: K2301289-035

Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	77.8	Percent	_	_	1	02/02/23 13:52	

Analytical Report

**Client:** North Water District Lab Services (NWDLS)

Service Request: K2301289 **Date Collected:** 01/21/23 16:45 **Project:** 23A1459

**Date Received:** 02/01/23 10:30 **Sample Matrix:** Sediment

**Sample Name:** 23A1459-60 Basis: As Received

Lab Code: K2301289-036

<b>Analyte Name</b>	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	<b>Date Analyzed</b>	Q
Solids Total	160.3 Modified	78.0	Percent	_	_	1	02/02/23 13:52	

Analytical Report

Client: North Water District Lab Services (NWDLS)

Project: 23A1459

Ocean Water Date Received: 02/01/23 10:30

Service Request: K2301289

Date Collected: 01/27/23 13:26

Sample Name: 23A1459-62 Basis: NA

**Lab Code:** K2301289-037

**Sample Matrix:** 

## **General Chemistry Parameters**

								Date	
Analyte Name	<b>Analysis Method</b>	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cvanide, Total	SM 4500-CN- E	ND U	mg/L	0.020	0.0005	1	02/09/23 16:15	02/09/23	



# **QC Summary Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



# Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

QA/QC Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Sample Matrix:** Ocean Water

# SURROGATE RECOVERY SUMMARY Butyltins

**Analysis Method:** ALS SOP **Extraction Method:** EPA 3520C

		Tri-n-propyltin
Sample Name	Lab Code	10-195
23A1459-04	K2301289-003	106
23A1459-05	K2301289-004	97
23A1459-49	K2301289-029	94
23A1459-50	K2301289-030	83
23A1459-62	K2301289-037	66
Method Blank	KQ2301926-01	72
Lab Control Sample	KQ2301926-02	90
Duplicate Lab Control Sample	KQ2301926-03	70

QA/QC Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Sample Matrix:** Sediment

# SURROGATE RECOVERY SUMMARY Butyltins

**Analysis Method:** ALS SOP **Extraction Method:** Method

	Tri-n-propyltin							
Sample Name	Lab Code	10-152						
23A1459-16	K2301289-005	102						
23A1459-17	K2301289-006	106						
23A1459-18	K2301289-007	125						
23A1459-20	K2301289-008	106						
23A1459-21	K2301289-009	55						
23A1459-22	K2301289-010	100						
23A1459-24	K2301289-011	125						
23A1459-25	K2301289-012	83						
23A1459-27	K2301289-013	64						
23A1459-28	K2301289-014	156*						
23A1459-30	K2301289-015	98						
23A1459-31	K2301289-016	107						
23A1459-32	K2301289-017	73						
23A1459-34	K2301289-018	96						
23A1459-35	K2301289-019	86						
23A1459-36	K2301289-020	72						
23A1459-38	K2301289-021	86						
23A1459-39	K2301289-022	89						
23A1459-40	K2301289-023	89						
23A1459-41	K2301289-024	82						
23A1459-43	K2301289-025	109						
23A1459-44	K2301289-026	64						
23A1459-45	K2301289-027	90						
23A1459-48	K2301289-028	136						
23A1459-54	K2301289-031	84						
23A1459-55	K2301289-032	65						
23A1459-56	K2301289-033	72						
23A1459-58	K2301289-034	84						
23A1459-59	K2301289-035	57						
23A1459-60	K2301289-036	65						
Method Blank	KQ2301898-04	54						
Method Blank	KQ2302045-03	91						
Method Blank	KQ2304287-02	88						
Lab Control Sample	KQ2301898-03	69						
Lab Control Sample	KQ2302045-04	124						
Lab Control Sample	KQ2304287-03	37						
23A1459-16	KQ2301898-01	56						

NWDLS Report Package Page 957 of 1010

QA/QC Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

**Project:** 23A1459 **Sample Matrix:** Sediment

SURROGATE RECOVERY SUMMARY
Butyltins

**Analysis Method:** ALS SOP **Extraction Method:** Method

 Tri-n-propyltin

 Sample Name
 Lab Code
 10-152

 23A1459-16
 KQ2301898-02
 91

 23A1459-39
 KQ2304287-01
 76

QA/QC Report

Client: North Water District Lab Services (NWDLS)

23A1459 **Date Collected:** Sediment **Date Received:** 

02/01/23 Date Analyzed: 03/9/23

> **Date Extracted:** 02/2/23

K2301289

01/18/23

**Service Request:** 

**Matrix Spike Summary** 

**Butyltins** 

Sample Name: 23A1459-39 **Units:** ug/Kg Lab Code: K2301289-022 **Basis:** Dry

**Analysis Method:** ALS SOP **Prep Method:** Method

**Project:** 

**Sample Matrix:** 

**Matrix Spike** 

KQ2304287-01

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
n-Butyltin Cation	1.4 J	26.2	24.1	103	10-200
Di-n-butyltin Cation	ND U	17.4	29.7	59	10-190
Tri-n-butyltin Cation	1.3 J	29.2	34.5	81	10-186

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: North Water District Lab Services (NWDLS) **Service Request:** 

K2301289

**Project:** 23A1459 **Sample Matrix:** 

**Date Collected:** 

01/16/23

Sediment

**Date Received:** 

**Date Extracted:** 

02/01/23

Date Analyzed:

03/9/23 02/2/23

**Duplicate Matrix Spike Summary** 

**Butyltins** 

Sample Name: 23A1459-16 **Units:** 

ug/Kg

Lab Code: **Analysis Method:**  K2301289-005

ALS SOP

**Basis:** 

Dry

**Prep Method:** 

Method

**Matrix Spike** KQ2301898-01 **Duplicate Matrix Spike** 

KQ2301898-02

						_				
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
n-Butyltin Cation	0.39 J	21.8	20.8	103	20.3	20.2	99	10-200	7	40
Di-n-butyltin Cation	ND U	24.4	25.5	95	21.0	24.8	85	10-190	15	40
Tri-n-butyltin Cation	ND U	25.5	29.7	86	24.3	28.8	84	10-186	5	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project: 23A1459

Sample Matrix: Sediment

Date Collected: NA

Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:KQ2301898-04Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.95	0.26	1	03/09/23 13:52	2/2/23	
Di-n-butyltin Cation	ND U	0.95	0.19	1	03/09/23 13:52	2/2/23	
Tri-n-butyltin Cation	ND U	0.95	0.43	1	03/09/23 13:52	2/2/23	

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q	
Tri-n-propyltin	54	10 - 152	03/09/23 13:52		

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project:23A1459Date Collected:NASample Matrix:SedimentDate Received:NA

Sample Name: Method Blank Units: ug/Kg

Lab Code: KQ2301898-04 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	<b>Date Analyzed</b>	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.95	0.26	1	03/09/23 13:52	2/2/23	
Di-n-butyltin Cation	ND U	0.95	0.19	1	03/09/23 13:52	2/2/23	
Tri-n-butyltin Cation	ND U	0.95	0.43	1	03/09/23 13:52	2/2/23	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project:23A1459Date Collected:NASample Matrix:Ocean WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:KQ2301926-01Basis: NA

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** EPA 3520C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	<b>Date Extracted</b>	Q
n-Butyltin Cation	ND U	0.050	0.029	1	03/28/23 16:04	2/2/23	*
Di-n-butyltin Cation	ND U	0.050	0.0073	1	03/28/23 16:04	2/2/23	*
Tri-n-butyltin Cation	ND U	0.050	0.012	1	03/28/23 16:04	2/2/23	*

Surrogate Name	% Rec	<b>Control Limits</b>	Date Analyzed	Q
Tri-n-propyltin	72	10 - 195	03/28/23 16:04	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project: 23A1459

Sample Matrix: Sediment

Date Collected: NA

Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:KQ2302045-03Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.97	0.26	1	02/26/23 23:16	2/6/23	
Di-n-butyltin Cation	ND U	0.97	0.19	1	02/26/23 23:16	2/6/23	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	02/26/23 23:16	2/6/23	

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q
Tri-n-propyltin	91	10 - 152	02/26/23 23:16	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project:23A1459Date Collected:NASample Matrix:SedimentDate Received:NA

Sample Name: Method Blank Units: ug/Kg

Lab Code: KQ2302045-03 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.97	0.26	1	02/26/23 23:16	2/6/23	
Di-n-butyltin Cation	ND U	0.97	0.19	1	02/26/23 23:16	2/6/23	
Tri-n-butyltin Cation	ND U	0.97	0.43	1	02/26/23 23:16	2/6/23	

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project: 23A1459

Sample Matrix: Sediment

Date Collected: NA

Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:KQ2304287-02Basis: Dry

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.96	0.26	1	03/09/23 08:43	2/2/23	
Di-n-butyltin Cation	ND U	0.96	0.19	1	03/09/23 08:43	2/2/23	
Tri-n-butyltin Cation	ND U	0.96	0.43	1	03/09/23 08:43	2/2/23	

Surrogate Name	% Rec	<b>Control Limits</b>	<b>Date Analyzed</b>	Q	
Tri-n-propyltin	88	10 - 152	03/09/23 08:43		

Analytical Report

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project:23A1459Date Collected:NASample Matrix:SedimentDate Received:NA

Sample Name: Method Blank Units: ug/Kg

Lab Code: KQ2304287-02 Basis: As Received

**Butyltins** 

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
n-Butyltin Cation	ND U	0.96	0.26	1	03/09/23 08:43	2/2/23	
Di-n-butyltin Cation	ND U	0.96	0.19	1	03/09/23 08:43	2/2/23	
Tri-n-butyltin Cation	ND U	0.96	0.43	1	03/09/23 08:43	2/2/23	

QA/QC Report

**Client:** North Water District Lab Services (NWDLS)

**Service Request: Project:** 23A1459

**Date Analyzed:** 03/09/23

Sample Matrix: Sediment **Date Extracted:** 

02/02/23

K2301289

**Lab Control Sample Summary** 

**Butyltins** 

**Analysis Method:** ALS SOP **Prep Method:** Method

**Units:** 

ug/Kg

**Basis:** 

Dry

**Analysis Lot:** 

797467

**Lab Control Sample** KQ2301898-03

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Di-n-butyltin Cation	26.3	19.2	137	10-190
n-Butyltin Cation	27.1	15.6	174	10-200
Tri-n-butyltin Cation	25.9	22.3	116	10-186

QA/QC Report

**Client:** North Water District Lab Services (NWDLS)

**Service Request:** K2301289 **Project:** 23A1459 **Date Analyzed:** 02/26/23

Sample Matrix: Sediment **Date Extracted:** 02/06/23

**Lab Control Sample Summary** 

**Butyltins** 

**Analysis Method:** ALS SOP **Units:** ug/Kg **Prep Method:** Method **Basis:** 

Dry **Analysis Lot:** 796038

**Lab Control Sample** KQ2302045-04

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Di-n-butyltin Cation	28.5 P	19.2	149	10-190
n-Butyltin Cation	20.0 P	15.6	128	10-200
Tri-n-butyltin Cation	30.7	22.3	138	10-186

QA/QC Report

**Client:** North Water District Lab Services (NWDLS)

**Service Request:** K2301289

**Project:** 23A1459 **Date Analyzed:** 03/09/23 Sample Matrix: Sediment **Date Extracted:** 02/02/23

**Lab Control Sample Summary** 

**Butyltins** 

**Analysis Method:** ALS SOP **Units:** ug/Kg **Prep Method:** Method **Basis:** Dry

> **Analysis Lot:** 797477

**Lab Control Sample** KQ2304287-03

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Di-n-butyltin Cation	15.4	19.2	81	10-190
n-Butyltin Cation	30.2	15.6	194	10-200
Tri-n-butyltin Cation	11.8	22.3	53	10-186

QA/QC Report

Client: North Water District Lab Services (NWDLS)

**Service Request:** 

K2301289

Project: Sample Matrix: 23A1459 Ocean Water **Date Analyzed: Date Extracted:** 

03/28/23 02/02/23

**Duplicate Lab Control Sample Summary** 

**Butyltins** 

**Analysis Method:** ALS SOP

ug/L

**Prep Method:** EPA 3520C

Units: Basis:

NA

Analysis Lot:

799194

Lab Control Sample KQ2301926-02 Duplicate Lab Control Sample KQ2301926-03

							% Rec		
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	Limits	RPD	RPD Limit
Di-n-butyltin Cation	0.317	0.383	83	0.292	0.383	76	10-200	8	30
n-Butyltin Cation	0.451	0.312	145	0.270	0.312	87	10-200	50 *	30
Tri-n-butyltin Cation	0.346	0.446	78	0.298	0.446	67	10-200	15	30

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/25/23 15:45

Matrix: Ocean Water

Date Received: 2/1/23

**Sample Name:** 23A1459-04

**Lab Code:** K2301289-003

Units: ug/L Basis: NA

**Butyltins** 

**Analytical Method:** ALS SOP **Prep Method:** EPA 3520C

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.029	0.072	0.098	31		1	03/28/23 16:55

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project**: 23A1459

Date Collected: 01/27/23 12:00

Matrix: Ocean Water

Date Received: 2/1/23

Sample Name: 23

23A1459-05

**Lab Code:** K2301289-004

Units: ug/L Basis: NA

**Butyltins** 

**Analytical Method:** ALS SOP **Prep Method:** EPA 3520C

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.029	0.049	0.074	41	JP	1	03/28/23 17:11

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

Date Collected: 01/16/23 14:20

**Project:** 23A1459

ate Conected. 01/10/23 14.

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-16 **Lab Code:** K2301289-005

Units: ug/Kg

Basis: As Received

Percent Solids: 74.0

**Butyltins** 

		Primary	Confirmation	Dilution			
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.26	0.29	0.30	3	J	1	03/09/23 14:25
n-Butyltin Cation	0.35	0.39	0.40	3	J	1	03/09/23 14:25

Confirmation Results

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project: 23A1459 Date Collected: 01/17/23 09:40

Matrix: Sediment Date Received: 2/1/23

Sample Name: 23A1459-17 Lab Code:

K2301289-006

Units: ug/Kg

Basis: Dry

Percent Solids: 72.4

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.35	0.63	0.63	<1	J	1	03/09/23 15:51
n-Butyltin Cation	0.26	0.46	0.46	<1	J	1	03/09/23 15:51

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289 Date Collected: 01/17/23 14:40 23A1459

Matrix: Sediment Date Received: 2/1/23

Sample Name: 23A1459-18

Project:

Lab Code: K2301289-007 Units: ug/Kg

Basis: Dry

Percent Solids: 70.3

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	<b>Factor</b>	<b>Date Analyzed</b>
Di-n-butyltin Cation	0.27	1.4	2.8	67	JP	1	03/09/23 16:09
Di-n-butyltin Cation	0.19	0.95	1.9	67	JP	1	03/09/23 16:09
n-Butyltin Cation	0.26	1.1	1.4	24		1	03/09/23 16:09
n-Butyltin Cation	0.37	1.6	2.0	22		1	03/09/23 16:09

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

Date Collected: 01/17/23 11:30

Project: 23A1459
Matrix: Sediment

Date Collected: 01/17/23 11:3

Date Received: 2/1/23

**Sample Name:** 23A1459-21

**Lab Code:** K2301289-009

Units: ug/Kg

Basis: Dry

Percent Solids: 66.1

**Butyltins** 

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.38	0.39	0.48	21	J	1	03/09/23 16:43

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/17/23 16:30

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-22

**Lab Code:** K2301289-010

Units: ug/Kg

Basis: Dry

Percent Solids: 59.0

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.44	1.1	1.2	9	J	1	03/09/23 17:00
n-Butyltin Cation	0.26	0.62	0.71	14	J	1	03/09/23 17:00

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/19/23 15:20

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-24 **Lab Code:** K2301289-011

Units: ug/Kg

Basis: Dry

Percent Solids: 74.0

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.35	0.70	0.88	23	J	1	03/09/23 17:17
n-Butyltin Cation	0.26	0.52	0.65	22	J	1	03/09/23 17:17

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/20/23 11:00

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-25 **Lab Code:** K2301289-012

Units: ug/Kg

Basis: Dry

Percent Solids: 71.7

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.36	0.67	0.74	10	J	1	03/09/23 17:35
n-Butyltin Cation	0.26	0.48	0.53	10	J	1	03/09/23 17:35

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/19/23 17:00

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-27

**Lab Code:** K2301289-013

Units: ug/Kg

Basis: Dry

Percent Solids: 63.5

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.41	0.41	0.47	14	J	1	03/09/23 17:52
n-Butyltin Cation	0.26	0.26	0.30	14	J	1	03/09/23 17:52

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

Date Collected: 01/20/23 12:50

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-28

**Lab Code:** K2301289-014

Units: ug/Kg

Basis: Dry

Percent Solids: 68.7

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.37	0.40	0.98	84	JP	1	03/09/23 18:09
n-Butyltin Cation	0.26	0.27	0.68	86	JP	1	03/09/23 18:09

Confirmation Results

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project: 23A1459 Date Collected: 01/18/23 09:40

Matrix: Sediment Date Received: 2/1/23

Sample Name: 23A1459-30 Lab Code:

Units: ug/Kg

K2301289-015

Basis: Dry

Percent Solids: 72.9

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.35	0.63	0.77	20	J	1	03/09/23 18:26
n-Butyltin Cation	0.26	0.46	0.56	20	J	1	03/09/23 18:26

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/18/23 14:00

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-31

**Lab Code:** K2301289-016

Units: ug/Kg

Basis: Dry

Percent Solids: 68.2

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.38	0.51	0.55	8	J	1	03/09/23 18:43
n-Butyltin Cation	0.26	0.35	0.38	8	J	1	03/09/23 18:43

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/19/23 09:20

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-32

**Lab Code:** K2301289-017

Units: ug/Kg

Basis: Dry

Percent Solids: 78.0

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.32	0.53	0.59	11	J	1	03/09/23 19:34
n-Butyltin Cation	0.26	0.41	0.46	11	J	1	03/09/23 19:34

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289 Date Collected: 01/18/23 09:25 23A1459

Matrix: Sediment Date Received: 2/1/23

Sample Name: 23A1459-39

Project:

Lab Code: K2301289-022 Units: ug/Kg

Basis: Dry

Percent Solids: 64.2

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
Tri-n-butyltin Cation	0.67	1.3	1.5	14	J	1	03/09/23 09:34
Tri-n-butyltin Cation	0.43	0.82	0.96	16	J	1	03/09/23 09:34
n-Butyltin Cation	0.26	0.90	1.1	20	J	1	03/09/23 09:34
n-Butyltin Cation	0.41	1.4	1.7	19	J	1	03/09/23 09:34

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/16/23 16:37

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-40 **Lab Code:** K2301289-023

Units: ug/Kg

Basis: As Received

Percent Solids: 79.3

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.26	0.50	0.95	62	JP	1	03/09/23 10:09
n-Butyltin Cation	0.32	0.63	1.2	62	JP	1	03/09/23 10:09

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/18/23 14:10

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-43 **Lab Code:** K2301289-025

Units: ug/Kg

Basis: As Received

Percent Solids: 85.6

Butyltins

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.26	0.50	0.54	8	J	1	03/09/23 11:17
n-Butyltin Cation	0.31	0.59	0.63	7	J	1	03/09/23 11:17

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

Date Collected: 01/27/23 15:20

Matrix: Ocean Water

Date Received: 2/1/23

Sample Name:

23A1459-50

**Lab Code:** K2301289-030

Units: ug/L Basis: NA

**Butyltins** 

**Analytical Method:** ALS SOP **Prep Method:** EPA 3520C

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.029	0.083	0.092	10		1	03/28/23 17:44

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289 Date Collected: 01/25/23 08:00 23A1459

Matrix: Sediment Date Received: 2/1/23

Sample Name: 23A1459-54

Project:

Lab Code: K2301289-031 Units: ug/Kg

Basis: As Received

Percent Solids: 79.4

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	<b>Factor</b>	<b>Date Analyzed</b>
Tri-n-butyltin Cation	0.43	0.62	0.94	41	JP	1	03/28/23 18:17
Tri-n-butyltin Cation	0.53	0.78	1.2	42	JP	1	03/28/23 18:17
n-Butyltin Cation	0.32	0.37	0.56	41	JP	1	03/28/23 18:17
n-Butyltin Cation	0.26	0.30	0.45	40	J	1	03/28/23 18:17

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289 Date Collected: 01/21/23 10:00 23A1459

Matrix: Sediment Date Received: 2/1/23

Sample Name: 23A1459-58

Project:

Lab Code: K2301289-034 Units: ug/Kg

Basis: As Received

Percent Solids: 84.9

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	<b>Factor</b>	<b>Date Analyzed</b>
Di-n-butyltin Cation	0.19	0.63	0.72	13	J	1	03/09/23 13:00
Di-n-butyltin Cation	0.22	0.75	0.85	12	J	1	03/09/23 13:00
n-Butyltin Cation	0.31	1.5	1.5	<1		1	03/09/23 13:00
n-Butyltin Cation	0.26	1.3	1.3	<1		1	03/09/23 13:00

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/21/23 16:45

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-60

**Lab Code:** K2301289-036

Units: ug/Kg

Basis: Dry

Percent Solids: 78.0

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
n-Butyltin Cation	0.32	0.47	0.50	6	J	1	03/09/23 13:35
n-Butyltin Cation	0.26	0.37	0.39	5	J	1	03/09/23 13:35

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459 **Date Collected:** 01/27/23 13:26

Matrix: Ocean Water Date Received: 2/1/23

**Sample Name:** 23A1459-62

**Lab Code**: K2301289-037 **Units**: ug/L

Basis: NA

**Butyltins** 

**Analytical Method:** ALS SOP **Prep Method:** EPA 3520C

	MDL	Primary Result	Confirmation Result	RPD	Q	Dilution Factor	Date Analyzed
n-Butyltin Cation	0.029	0.067	0.076	13		1	03/28/23 18:01

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/16/23 14:20

Matrix: Sediment

Date Received: 2/1/23

**Sample Name:** 23A1459-16 **Lab Code:** KQ2301898-01

Units: ug/Kg

Basis: Dry

Percent Solids: 74.0

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	<b>Factor</b>	Date Analyzed
Di-n-butyltin Cation	0.26	24.4	25.1	3		1	03/09/23 14:42
Tri-n-butyltin Cation	0.58	25.5	26.0	2		1	03/09/23 14:42
n-Butyltin Cation	0.35	21.8	25.0	14		1	03/09/23 14:42

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

**Project:** 23A1459

**Date Collected:** 01/16/23 14:20 **Date Received:** 2/1/23

Matrix: Sediment

Sample Name:

23A1459-16

**Lab Code:** KQ2301898-02

Units: ug/Kg

Basis: Dry

Percent Solids: 74.0

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
Di-n-butyltin Cation	0.25	21.0	21.6	3		1	03/09/23 15:00
Tri-n-butyltin Cation	0.56	24.3	24.4	<1		1	03/09/23 15:00
n-Butyltin Cation	0.34	20.3	23.7	15		1	03/09/23 15:00

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

Date Collected: NA

Project: 23A1459
Matrix: Sediment

Date Received:

Sample Name: Lab Control Sample

**Lab Code:** KQ2301898-03

**Units:** ug/Kg **Basis:** Dry

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
Di-n-butyltin Cation	0.19	26.3	27.0	3		1	03/09/23 14:09
Tri-n-butyltin Cation	0.43	25.9	26.1	<1		1	03/09/23 14:09
n-Butyltin Cation	0.26	27.1	30.4	11		1	03/09/23 14:09

Confirmation Results

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project: 23A1459 Date Collected: NA Matrix: Ocean Water Date Received:

Sample Name: Lab Control Sample

**Lab Code:** KQ2301926-02 **Units:** ug/L

Basis: NA

**Butyltins** 

**Analytical Method:** ALS SOP **Prep Method:** EPA 3520C

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
Di-n-butyltin Cation	0.0073	0.317	0.325	2		1	03/28/23 16:22
Tri-n-butyltin Cation	0.012	0.346	0.375	8		1	03/28/23 16:22
n-Butyltin Cation	0.029	0.451	0.453	<1		1	03/28/23 16:22

Confirmation Results

Client: North Water District Lab Services (NWDLS) Service Request: K2301289

Project: 23A1459 Date Collected: NA Matrix: Ocean Water Date Received:

Sample Name: Duplicate Lab Control Sample

**Lab Code:** KQ2301926-03 **Units:** ug/L

Basis: NA

**Butyltins** 

**Analytical Method:** ALS SOP **Prep Method:** EPA 3520C

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	<b>Factor</b>	Date Analyzed
Di-n-butyltin Cation	0.0073	0.292	0.316	8		1	03/28/23 16:39
Tri-n-butyltin Cation	0.012	0.298	0.345	15		1	03/28/23 16:39
n-Butyltin Cation	0.029	0.270	0.308	13		1	03/28/23 16:39

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

Date Collected: NA

Project: 23A1459
Matrix: Sediment

Date Received:

Sample Name: Lab Control Sample

**Lab Code:** KQ2302045-04

**Units:** ug/Kg **Basis:** Dry

**Butyltins** 

Analytical Method: ALS SOP Prep Method: Method

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
Di-n-butyltin Cation	0.19	28.5	42.8	40	Р	1	02/26/23 23:33
Tri-n-butyltin Cation	0.43	30.7	39.6	25		1	02/26/23 23:33
n-Butyltin Cation	0.26	20.0	48.6	83	Р	1	02/26/23 23:33

NWDLS Report Package Page 999 of 1010

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289 Date Collected: 01/18/23 09:25 23A1459

Matrix: Sediment Date Received: 2/1/23

Sample Name: 23A1459-39

Project:

Lab Code: KQ2304287-01 Units: ug/Kg

Basis: Dry

Percent Solids: 64.2

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
Di-n-butyltin Cation	0.30	17.4	20.1	14		1	03/09/23 09:51
Tri-n-butyltin Cation	0.67	29.2	29.6	1		1	03/09/23 09:51
n-Butyltin Cation	0.41	26.2	31.0	17		1	03/09/23 09:51

Confirmation Results

Client: North Water District Lab Services (NWDLS)

Service Request: K2301289

Date Collected: NA

Project: 23A1459
Matrix: Sediment

Date Received:

Sample Name: Lab Control Sample

**Lab Code:** KQ2304287-03

**Units:** ug/Kg **Basis:** Dry

**Butyltins** 

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
Di-n-butyltin Cation	0.19	15.4	16.2	5		1	03/09/23 09:00
Tri-n-butyltin Cation	0.43	11.8	11.9	<1		1	03/09/23 09:00
n-Butyltin Cation	0.26	30.2	34.7	14		1	03/09/23 09:00

PCCA Harbor Island
Sect 103 Sediment
Rpt_Final
resumes in the next
PDF labeled:

PCCA Harbor Island Sect 103 Sediment Rpt_Final_Pt 2